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Abstract. We consider the problem of scheduling an application com-
posed of independent tasks on a fully heterogeneous master-worker
platform with communication costs. We introduce a bi-criteria approach
aiming at maximizing the throughput of the application while minimiz-
ing the energy consumed by participating resources. Assuming arbitrary
super-linear power consumption laws, we investigate different models for
energy consumption, with and without start-up overheads. Building upon
closed-form expressions for the uniprocessor case, we derive optimal or
asymptotically optimal solutions for both models.

1 Introduction

The Earth Simulator requires about 12 megawatts of peak power, and Petaflop
systems may require 100 MW of power, nearly the output of a small power plant
(300 MW). At $100 per MegaWatt.Hour, peak operation of a petaflop machine
may thus cost $10,000 per hour [1]. And these estimates ignore the additional
cost of dedicated cooling. Current estimates state that cooling costs $1 to $3
per watt of heat dissipated [2]. This is just one of the many economical reasons
why energy-aware scheduling is an important issue, even without considering
battery-powered systems such as laptop and embedded systems.

Many important scheduling problems involve large collections of identical
tasks [3,4]. In this paper, we consider a single bag-of-tasks application which
is launched on a heterogeneous platform. We suppose that all processors have
a discrete number of speeds (or modes) of computation: the quicker the speed,
the less efficient energetically-speaking. Our aim is to maximize the throughput,
i.e., the fractional number of tasks processed per time-unit, while minimizing
the energy consumed. Unfortunately, the goals of low power consumption and
efficient scheduling are contradictory. Indeed, throughput can be maximized by
using more energy to speed up processors, while energy can be minimized by
reducing the speeds of the processors, hence the total throughput.

Altogether, power-aware scheduling truly is a bi-criteria optimization prob-
lem. A common approach to such problems is to fix a threshold for one objective
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and to minimize the other. This leads to two interesting questions. If we fix en-
ergy, we get the laptop problem, which asks “What is the best schedule achievable
using a particular energy budget, before battery becomes critically low?”. Fixing
schedule quality gives the server problem, which asks “What is the least energy
required to achieve a desired level of performance?”.

The contribution of this work is to consider a fully heterogeneous master-
worker platform, and to take communication costs into account. Here is the
summary of our main results:

– Under an ideal power-consumption model, we derive an optimal polynomial
algorithm to solve either bi-criteria problem (maximize throughput within a
power consumption threshold, or minimize energy consumption while guar-
anteeing a required throughput).

– Under a refined power-consumption model with start-up overheads, we derive
a polynomial algorithm which is asymptotically optimal.

This paper is organized as follows. We first present the framework and different
power consumption models in Section 2. We study the bi-criteria scheduling
problem under the ideal power consumption model in Section 3, and under the
more realistic model with overheads in Section 4. Section 5 is devoted to an
overview of related work. Finally, we state some concluding remarks in Section 6.

2 Framework

We outline in this section the model for the target applications and platforms,
as well as the characteristics of the consumption model. Next we formally state
the bi-criteria optimization problem.

2.1 Application and Platform Model

We consider a bag-of-tasks application A, composed of a large number of in-
dependent, same-size tasks, to be deployed on a heterogeneous master-worker
platform. We let ω be the amount of computation (expressed in flops) required
to process a task, and δ be the volume of data (expressed in bytes) to be com-
municated for each task. We do not consider return messages. This simplifying
hypothesis could be alleviated by considering longer messages (append the return
message for a given task to the incoming message of the next one).

The master-worker platform, also called star network, or single-level tree in
the literature, is composed of a master Pmaster, the root of the tree, and p workers
Pu (1 ≤ u ≤ p). Without loss of generality, we assume that the master has no
processing capability. Otherwise, we can simulate the computations of the master
by adding an extra worker paying no communication cost. The link between
Pmaster and Pu has a bandwidth bu. We assume a linear cost model: it takes
a time δ/bu to send a task to processor Pu. We suppose that the master can
send/receive data to/from all workers at a given time-step according to the
bounded multi-port model [5,6]. There is a limit on the total amount of data that
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the master can send per time-unit, denoted as BW. Intuitively, the bound BW
corresponds to the bandwidth capacity of the master’s network card; the flow of
data out of the card can be either directed to a single link or split among several
links, hence the multi-port hypothesis. We also assume a computation model
called synchronous start computation: the computation of a task on a worker
can start at the same time as the reception of the task starts, provided that the
computation rate is no greater than the communication rate (the communication
must complete before the computation). This models the fact that, in several
applications, only the first bytes of data are needed to start executing a task. In
addition, the theoretical results of this paper are more easily expressed under this
model, which provides an upper bound on the achievable performance. However,
results in [7] show that proofs written under that model can be extended to more
realistic models (one-port communication and atomic computation).

2.2 Energy Model

Among the main system-level energy-saving techniques, Dynamic Voltage Scal-
ing (DVS) works on a very simple principle: decrease the supply voltage (and so
the clock frequency) to the CPU so as to consume less power. For this reason,
DVS is also called frequency-scaling or speed scaling [8]. We suppose a discrete
voltage-scaling model. The computational speed of worker Pu has to be picked
among a limited number of mu modes. We denote the computational speeds su,i,
meaning that processor Pu running in the ith mode (noted Pu,i) needs ω/su,i

time-units to execute one task of A. We suppose that processing speeds are listed
in increasing order (su,1 ≤ su,2 ≤ · · · ≤ su,mu), and modes are exclusive: one
processor can only run in a single mode at any given time.

Rather than assuming a relation of the form Pd = sα where Pd is the power
dissipation, s the processor speed, and α some constant greater than 1, we adopt
a more general approach, as we only assume that power consumption is a super-
linear function (i.e., a strictly increasing and convex function) of the processor
speed. We denote by Pu,i the power consumption per time unit of processor
Pu,i. We focus on two power consumption models. Under the ideal model,
switching among the modes does not cost any penalty, and an idle processor
does not consume any power. Consequently, for each processor Pu, the power
consumption is super-linear from 0 to the power consumption at frequency su,1.
Under the model with start-up overheads, once a processor is on, its power
consumption is non-null and at least that of its idle frequency, or speed, su,1.
If the cost of turning on and off a processor is null, this model is meaningless.
This is why we need to add a start-up overhead. Under this more realistic model,
power consumption now depends on the duration of the interval during which
the processor is turned on (the overhead is only paid once during this interval).
We introduce a new notation to express power consumption as a function of the
length t of the execution interval:

Pu,i(t) = P
(1)
u,i · t + P(2)

u (1)

where P
(2)
u is the energy overhead to turn processor Pu on.
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To summarize, we consider two models: an ideal model simply characterized
by Pu,i, the power consumption per time-unit of Pu running in mode i, and
a model with start-up overheads, where power consumption is given by
Equation 1 for each processor.

2.3 Objective Function

Our goal is bi-criteria scheduling: the first objective is to minimize the power
consumption, and the second to maximize the throughput. We denote by ρu,i

the throughput of worker Pu,i for application A, i.e., the average number of
tasks Pu,i executes per time-unit. There is a limit to the number of tasks that
each mode of one processor can perform per time-unit. First of all, as Pu,i runs
at speed su,i, it cannot execute more than su,i/ω tasks per time-unit. Second,
as Pu can only be at one mode at a time, and ρu,i ω

su,i
represents the fraction

of time spent under mode mu,i per time-unit, this constraint can be expressed
by:

∀ u ∈ [1..p],
mu∑

i=1

ρu,i ω

su,i
≤ 1.

Under the ideal model, and for the simplicity of proofs, we can add an additional
idle mode Pu,0 whose speed is su,0 = 0. As the power consumption per time-unit
of Pu,i, when fully used, is Pu,i (Pu,0 = 0), its power consumption per time-unit
with a throughput of ρu,i is then

ρu,i ω

su,i
Pu,i.

We denote by ρu the throughput of worker Pu, i.e., the sum of the through-
put of each mode of Pu (except the throughput of the idle mode), so the total
throughput of the platform is denoted by:

ρ =
p∑

u=1

ρu =
p∑

u=1

mu∑

i=1

ρu,i.

We define problem MinPower (ρ) as the problem of minimizing the power
consumption while achieving a throughput ρ. Similarly, MaxThroughput

(P) is the problem of maximizing the throughput while not exceeding the power
consumption P. In Section 3 we deal with the ideal model . We extend this work
to a more realistic model in Section 4.

3 Ideal Model

Both bi-criteria problems (maximizing the throughput given an upper bound
on power consumption and minimizing the power consumption given a lower
bound on throughput) have been studied at the processor level, using particular
power consumption laws such as Pd = sα [9,10,11]. However, we solve these
problems optimally using the sole assumption that the power consumption is
super-linear. Furthermore, we solve these problems at the platform level, that
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is, for a heterogeneous set of processors. A key step is to establish closed-form
formulas linking power consumption and throughput on a single processor:

Proposition 1. For any processor Pu, the optimal power consumption to achieve
a throughput of ρ > 0 is

Pu(ρ) = max
0≤i<mu

{
(ωρ− su,i)

Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i

}
,

and is obtained using two consecutive modes, Pu,i0 and Pu,i0+1, such that su,i0
ω <

ρ ≤ su,i0+1

ω .

The following result shows how to solve the converse problem, namely maximiz-
ing the throughout subject to a prescribed bound on power consumption.

Proposition 2. The maximum achievable throughput according to the power
consumption limit P is

ρu(P) = min
{

su,mu

ω
; max
1≤i≤mu

{
P(su,i+1 − su,i) + su,iPu,i+1 − su,i+1Pu,i

ω(Pu,i+1 −Pu,i)

}}
,

and is obtained using two consecutive modes, Pu,i0 and Pu,i0+1, such that:
Pu,i0 < P ≤ Pu,i0+1.

Due to lack of space, see [7] for the proofs.
To the best of our knowledge, these uni-processor formulas, linking the

throughput to the power consumption, are new, even for standard laws. They
will prove to be very useful when dealing with multi-processor problems.

3.1 Minimizing Power Consumption

Thanks to Propositions 1 and 2, we do not need to specify the throughput for
each frequency on any given processor. We only have to fix a throughput for
each processor to know how to achieve the minimum power consumption on
that processor. Furthermore, the bounded multi-port hypothesis is easy to take
into account: either the outgoing capacity of the master is able to ensure the
given throughput (BW ≥ ρ), or the system as no solution. Overall, we have the
following linear program (Equation (2)). This linear program is defined by three
types of constraints: the first constraint states that the system has to ensure
the given throughput; the second set of constraints states that the processing
capacity of a processor Pu as well as the bandwidth of the link from Pmaster

to Pu are not exceeded; the last constraint links the power consumption of one
processor according to its throughput.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize P =
p∑

u=1

Pu subject to

p∑

u=1

ρu = ρ

∀u, ρu ≤ min
{

su,mu

ω
;
bu

δ

}

∀ u, ∀ 1 ≤ i ≤ mu, Pu ≥ (ωρu − su,i)
Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i

(2)

For each value Pu used in the objective function (recall that Pu is the power
consumption per time unit of Pu), we have mu equations (see Proposition 1).
When looking at the constraints, we observe that the problem can be optimally
solved using a greedy strategy. We first sort processors in an increasing order
according to their power consumption ratio. This power consumption ratio de-
pends on the different modes of the processors, and the same processor will
appear a number of times equal to its number of modes. Formally, we sort in

non decreasing order the quantities
{

Pu,i+1 −Pu,i

su,i+1 − su,i

}
. The next step is to select

the cheapest mode of the processors so that the system can achieve the required
throughput, given that each processor throughput is limited by its maximal fre-
quency and the bandwidth of the link between itself and the master. Altogether,
we obtain Algorithm 1.

Algorithm 1. Greedy algorithm minimizing power consumption under a
given throughput

Data: throughput ρ that has to be achieved
for u = 1 to p do
T [u]← 0; /* throughput of processor Pu */

Φ← 0; /* total throughput of the system */
L ← sorted list of the Puk,ik such that ∀ j,

Puj ,1+ij −Puj ,ij

suj,1+ij − suj ,ij

≤
Puj+1,1+ij+1 −Puj+1,ij+1

suj+1,1+ij+1 − suj+1,ij+1

;

while Φ < ρ do
Puk,ik ← next(L); /* selection of next cheapest mode */
ρ′ ← T [uk]; /* previous throughput of Puk (at mode ik − 1) */

T [uk]← min
{

suk,ik
ω

;
buk

δ
; ρ′ + (ρ− Φ)

}
; /* new throughput of Puk (at mode

ik) */

if T [uk] =
buk

δ
then

L ← L\{Puk,j}; /* no need to look at faster modes for Puk */

Φ← Φ + T [uk]− ρ′;

One can detail more precisely the line labeled /* new throughput */ that
gives the new throughput of Puk

at mode ik. This throughput is bounded
by the maximum throughput at this speed, by the maximum communication
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throughput, and also by the previous throughput (ρ′) plus the remaining
throughput that has to be achieved (ρ − Φ). We point out that, if the last
selected mode is Puk0 ,ik0

, Algorithm 1 will

1. fully use each processor having at least one mode consuming strictly less
than Puk0 ,ik0

, and this either at the throughput of the bandwidth if reached
(this throughput is achieved according to Proposition 1), or at the largest
single fastest mode that consumes strictly less than Puk0 ,ik0

or at the same
mode than Puk0 ,ik0

;
2. either not use at all or fully use at its first non-trivial mode any processor

whose first non-trivial mode consumes exactly the same as Puk0 ,ik0
;

3. not use at all any processor whose first non-trivial mode consumes strictly
more than the mode Puk0 ,ik0

;
4. use Puk0 ,ik0

at the minimum throughput so the system achieves a throughput
of ρ (according to Proposition 1).

Theorem 1. Algorithm 1 optimally solves problem MinPower (ρ) (see linear
program (2)).

Due to lack of space, see [7] for the proof.

3.2 Maximizing the Throughput

Maximizing the throughput is a very similar problem. We only need to adapt
Algorithm 1 so that the objective function considered during the selection process
is replaced by the power consumption:

T [uk]← min
{
Puk,ik

;
(

ω
buk

δ
−suk,ik

)
Puk,ik+1−Puk,ik

suk,ik+1−suk,ik

+Puk,ik
; P′+(P−Ψ)

}

where Ψ is the current power consumption (we iterate while Ψ ≤ P). The proof
that this modified algorithm optimally solves problem MaxThroughput (P)
is very similar to that of Algorithm 1 and can be found in [7].

4 Model with Start-Up Overheads

When we move to more realistic models, the problem gets much more compli-
cated. In this section, we still look at the problem of minimizing the power con-
sumption of the system with a throughput bound, but now we suppose that there
is a power consumption overhead when turning a processor on. We denote this
problem MinPowerOverhead (ρ). First we need to modify the closed-form
formula given by Proposition 1, in order to determine the power consumption
of processor Pu when running at throughput ρu during t time-units. The new
formula is then:
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Pu(t, ρu) = max
0≤i<mu

{
(ωρu − su,i)

Pu,i+1(t)−Pu,i(t)
su,i+1 − su,i

+ Pu,i(t)
}

= max
0≤i<mu

{
(ωρu − su,i)

P
(1)
u,i+1 −P

(1)
u,i

su,i+1 − su,i
· t + P

(1)
u,i · t

}
+ P(2)

u

= P(1)
u (ρu) · t + P(2)

u .

The overhead is paid only once, and the throughput ρu is still obtained by using
the same two modes Pu,i0 and Pu,i0+1 as in Proposition 1. We first run the mode
Pu,i0 during t(su,i0+1−ρuω)

su,i0+1−su,i0
time-units, then the mode Pu,i0+1 during t(ρuω−su,i0 )

su,i0+1−su,i0

time-units (these values are obtained from the fraction of time the modes are
used per time-unit; see [7] for more details). We can now prove the following
dominance property about optimal schedules (see [7] for the proof):

Proposition 3. There exists an optimal schedule in which all processors, ex-
cept possibly one, are used at a maximum throughput, i.e., either the throughput
dictated by their bandwidth, or the throughput achieved by one of their execution
modes.

Unfortunately, Proposition 3 does not help design an optimal algorithm. How-
ever, a modified version of the previous algorithm remains asymptotically opti-
mal. The general principle of the approach is as follows: instead of looking at
the power consumption per time-unit, we look at the energy consumed during d
time-units, where d will be later defined. Let αu be the throughput of Pu during
d time-units. Thus, the throughput of each processor per time-unit is ρu = αu

d .
As all processors are not necessarily enrolled, let U be the set of the selected
processors’ indexes. The constraint on the energy consumption can be written:

∀ u, ∀ 1 ≤ i ≤ mu, Pu · d ≥
(

(ωρu − su,i)
Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i

)
· d + P(2)

u ,

or, ∀ u, ∀ 1 ≤ i ≤ mu, Pu −
P

(2)
u

d
≥ (ωρu − su,i)

Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i.

The linear program is then:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize P =
∑

u∈U
Pu subject to

p∑

u=1

ρu = ρ

∀u, ρu ≤ min
{

su,mu

ω
;
bu

δ

}

∀ u ∈ U , ∀ 1 ≤ i ≤ mu, Pu −
P

(2)
u

d
≥ (ωρu − su,i)

Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i

(3)
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However, this linear program cannot be solved unless we know U . So we need
to add some constraints. In the meantime, we make a tiny substitution into the
objective function

(
P′

u = Pu − P(2)
u

d

)
, in order to simplify the last constraint

(the first two constraints remain unchanged):
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Minimize P =
p∑

u=1

(
P′

u +
P

(2)
u

d

)
subject to

· · ·
∀ u, ∀ 1 ≤ i ≤ mu, P′

u ≥ (ωρu − su,i)
Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i

(4)

The inequalities are stronger than previously, so every solution of (4) is a solution
of (3). Of course, optimal solutions for (4) are most certainly not optimal for
the initial problem (3). However, the larger d, the closer the constraints are from
each other. Furthermore, Algorithm 1 builds optimal solutions for (4). So, the
expectation is that when d becomes large, solutions built by Algorithm 1 becomes
good approximate solutions for (4). Indeed we derive the following result (see [7]
for the proof):

Theorem 2. Algorithm 1 is asymptotically optimal for problem MinPower-

Overhead (ρ)(see linear program (3)).

5 Related Work

Several papers have been targeting the minimization of power consumption.
Most of them suppose they can switch to arbitrary speed values.

– Unit time tasks. Bunde in [11] focuses on the problem of offline scheduling
unit time tasks with release dates, while minimizing the makespan or the
total flow time on one processor. He chooses to have a continuous range of
speeds for the processors. He extends his work from one processor to multi-
processors, but unlike this paper, does not take any communication time into
account. He also proves the NP-completeness of the problem of minimizing
the makespan on multi-processors with jobs of different amount of work.
Authors in [9] concentrate on minimizing the total flow time of unit time jobs
with release dates on one processor. After proving that no online algorithm
can achieve a constant competitive ratio if job have arbitrary sizes, they
exhibit a constant competitive online algorithm and solve the offline problem
in polynomial time. Contrarily to [11] where tasks are gathered into blocks
and scheduled with increasing speed in order to minimize the makespan,
here the authors prove that the speed of the blocks need to be decreasing in
order to minimize both total flow time and the energy consumption.

– Communication-aware. In [12], the authors are interested about schedul-
ing task graphs with data dependencies while minimizing the energy con-
sumption of both the processors and the inter-processor communication
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devices. They demonstrate that in the context of multiprocessor systems,
the inter-processor communications were an important source of consump-
tion, and their algorithm reduces up to 80% the communications. However,
as they focus on multiprocessor problems, they only consider the energy con-
sumption of the communications, and they suppose that the communication
times are negligible compared to the computation times.

– Discrete voltage case. In [13], the authors deal with the problem of
scheduling tasks on a single processor with discrete voltages. They also look
at the model where the energy consumption is related to the task, and de-
scribe how to split the voltage for each task. They extend their work in [14]
to online problems. In [15], the authors add the constraint that the voltage
can only be changed at each cycle of every task, in order to limit the num-
ber of transitions and thus the energy overhead. They find that under this
model, the minimal number of frequency transitions in order to minimize
the energy may be greater than two.

– Task-related consumption. [16] addresses the problem of periodic inde-
pendent real-time tasks on one processor, the period being a deadline to all
tasks. In this work the energy consumption is related to the task that is
executed on the processor. A polynomial algorithm is exhibited to find the
optimal speed of each task, and it is shown that EDF can be used to obtain
a feasible schedule with these optimal speed values.

– Deadlines. In [17], the authors focus on the problem where tasks arrive ac-
cording to some release dates. They show that during any elementary time
interval defined by some release dates and deadlines of applications, the
optimal voltage is constant, and they determine this voltage, as well as the
minimum constant speed for each job. [10] improves the best known compet-
itive ratio to minimize the energy while respecting all deadlines. [18] works
with an overloaded processor (which means that no algorithm can finish all
the jobs) and try to maximize the throughput. Their online algorithm is
O(1) competitive for both throughput maximization and energy minimiza-
tion. [19] has a similar approach by allowing task rejection, and proves the
NP-hardness of the studied problem.

– Slack sharing. In [20,21], the authors investigate dynamic scheduling. They
consider the problem of scheduling DAGs before deadlines, using a semi-
clairvoyant model. For each task, the only information available is the worst-
case execution time. Their algorithm operates in two steps: first a greedy
static algorithm schedules the tasks on the processors according to their
worst-case execution times and the deadline, and reduces the processors
speed so that each processor meets the deadline. Then, if a task ends sooner
than according to the static algorithm, a dynamic slack sharing algorithm
uses the extra-time to reduce the speed of computations for the following
tasks. However, they do not take communications into account.

– Heterogeneous multiprocessor systems. Authors in [22] study the prob-
lem of scheduling real-time tasks on two heterogeneous processors. They
provide a FPTAS to derive a solution very close to the optimal energy con-
sumption with a reasonable complexity. In [23], the authors propose a greedy
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algorithm based on affinity to assign frame-based real-time tasks, and then
they re-assign them in pseudo-polynomial time when any processing speed
can be assigned for a processor. Authors of [24] propose an algorithm based
on integer linear programming to minimize the energy consumption with-
out guarantees on the schedulability of a derived solution for systems with
discrete voltage. Some authors also explored the search of approximation al-
gorithms for the minimization of allocation cost of processors under energy
constraints [25,26].

6 Conclusion

In this paper, we have studied the problem of scheduling a single application
with power consumption constraints, on a heterogeneous master-worker plat-
form. We derived new closed-form relations between the throughput and the
power consumption at the processor level. These formulas enabled us to develop
an optimal bi-criteria algorithm under the ideal power consumption model.

Moving to a more realistic model with start-up overheads, we were able to
prove that our approach provides an asymptotically optimal solution. We hope
that our results will provide a sound theoretical basis for forthcoming studies.

As future work, it would be interesting to address sophisticated models with
frequency switching costs, which we expect to lead to NP-hard optimization
problems, and then look for some approximation algorithms.

Acknowledgment. This work was supported in part by the ANR StochaGrid
project.
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