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Abstract

In this paper, we consider the problem of scheduling
comparisons of motifs against biological databanks. We
experimentally show that this problem lies in the divisi-
ble load framework with negligible communication costs.
In this framework, we propose a polynomial-time algo-
rithm to optimally solve the maximum weighted flow off-
line scheduling problem on unrelated machines. We also
show how to optimally solve the maximum weighted flow
off-line scheduling problem with preemption on unrelated
machines.

1. Introduction

The problem of searching large-scale genomic sequence
databases is an increasingly important bioinformatics prob-
lem. The results we present in this paper concern the de-
ployment of such applications in heterogeneous parallel
computing environments. In fact, this application is a part of
a larger class of applications, in which each task in the appli-
cation workload exhibits an “affinity” for particular nodes
of the targeted computational platform. In the genomic se-
quence comparison scenario, the presence of the required
data on a particular node is the sole factor that constrains
task placement decisions. In this context, task affinities are
determined by location and replication of the sequence data-
banks in the distributed platform.

Numerous efforts to parallelize biological sequence
comparison applications have been realized. For exam-
ple, several parallel implementations of the BLAST [1]
and FASTA [11] sequence comparison algorithms have
been realized for various computational environments
(e.g., [4, 5, 10]). These efforts are facilitated by the fact that
such biological sequence comparison algorithms are typ-
ically computationally intensive, embarrassingly parallel
workloads. In the scheduling literature, this computa-
tional model is effectively a divisible workload schedul-
ing problem with negligible communication overheads. The

work presented in this paper concerns this scheduling prob-
lem, motivated specifically by the aforementioned divisible
workload scenario. Our work differs from prior work pri-
marily in the theoretical model we consider, which admits
a platform composed of fully unrelated processors. We be-
lieve the generality of this approach will enable us to apply
our scheduling strategies in a wide range of heteroge-
neous platforms.

The remainder of this paper is organized as follows.
Section 2 introduces the GriPPS [3, 7] protein compari-
son application, a genomic sequence comparison applica-
tion as described above. The GriPPS system serves as the
archetype for our application and distributed computing
platform models, presented in Section 3. In the following
sections we describe our theoretical results: given a series of
comparison tasks and a distributed platform on which they
are to be executed, we show a polynomial-time algorithm to
identify the optimal value for the maximum weighted flow
metric and an application schedule that achieves that op-
timum. We solve this problem both in the divisible load
framework (Section 6) and in the more classical framework
with task preemption (Section 7). Before that, Sections 4
and 5 are devoted to preliminary results. Finally, we con-
clude by discussing our planned extensions to this work in
Section 8.

2. Framework

The GriPPS [3, 7] protein comparison application serves
as the context for the scheduling results presented in this pa-
per. The GriPPS framework is based on large databases of
information about proteins; each protein is represented by a
string of characters denoting the sequence of amino acids
of which it is composed. Biologists need to search such
sequence databases for specific patterns that indicate bio-
logically homologous structures. The GriPPS software en-
ables such queries in grid environments, where the data may
be replicated across a distributed heterogeneous computing
platform. To develop a suitable application model for the
GriPPS application scenario, we performed a series of ex-
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Figure 1. Sequence databank divisibility studies.

periments to analyze the fundamental properties of the se-
quence comparison algorithms used in this code. From this
modeling perspective, the critical components of this appli-
cation are:

1. protein databanks: the reference databases of amino
acid sequences, located at fixed locations in a dis-
tributed heterogeneous computing platform;

2. motifs: compact representations of amino acid patterns
that are biologically significant and serve as user input
to the application;

3. sequence comparison servers: processes co-located
with protein databanks, capable of accepting a set of
motifs and identifying matches over any subset of the
databank.

The following sections describe two sets of experi-
ments we conducted that demonstrate two properties of
the GriPPS applications: workload divisibility and uni-
form computation.

2.1. Divisible Workload

We performed an initial set of experiments to demon-
strate that the GriPPS application workload exhibits a high
degree of divisibility – comparisons of a set of motifs
against a large sequence database can be partitioned into
many independent sub-tasks that have aggregate computa-
tional requirements equivalent to that of the original task it-

self. In these experiments we consider a fixed set of roughly
1600 motifs and a database of approximately 106,000 pro-
tein sequences. We consider a series of subset sizes for the
protein database, ranging in size from 1,000 sequences to
96,000 sequences. For each subset size, we construct ten
randomly generated sequence database subsets of the appro-
priate size. We then launch a GriPPS search using the full
set of motifs and the constructed sequence subset, and we
record the total elapsed time for that comparison; each se-
ries comprises 100 runs (ten database subsets for each of the
ten partition size). We repeated this experiment on a num-
ber of different platforms; the data for each machine are pre-
sented in Figure 1, which depicts the measured execution
time for these requests, according to the task size. These
results indicate that the GriPPS workload is highly divisi-
ble, as the correlation between block size and computation
time looks nearly perfectly linear and exhibits a low degree
of variation. To quantify this correlation, we performed a
linear regression analysis on the sequence set partitioning
data corresponding to one of our benchmarking machines
(cirque.ucsd.edu). This regression indicates an overhead of
-0.007 seconds, suggesting that the GriPPS workload ex-
hibits almost no computational overhead and is almost per-
fectly divisible when considering sequence database parti-
tioning.

In order to evaluate the divisibility of the GriPPS appli-
cation on the basis of the motif set, we performed a set of
experiments based on partitioning the approximately 1600
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(a) Motif set divisibility on cirque.ucsd.edu.
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Figure 2. Motif set divisibility studies.
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motifs into subsets of varying size. However, we found
that, compared to protein sequences, the complexity of the
GriPPS algorithms are more dependent on the structure and
contents of the individual motifs. Consequently, we chose
subset sizes such that, for a given subset size, we could con-
struct motif subsets that were both disjoint and that, in ag-
gregate, comprised the full motif set. For each block size,
we then invoked the GriPPS comparison application to find
matches between each motif subset among the entire ref-
erence sequence database. The results of two such exper-
iments are presented in Figures 2(a) and 2(b); these re-
sults were typical for this experiment repeated on different
platforms. In this plot, eight distinct block sizes are cho-
sen; these correspond to partitioning the motif set into 1,
2, 3, 4, 5, 6, 8, and 10 equal-sized but randomly chosen
blocks. From the individual data points representing each
of these experiments, one can appreciate the fact that ex-
ecution times vary substantially even between blocks con-
taining the same number of motifs, supporting our finding
that motif complexity may vary widely in a given motif set.
Note that, in aggregate, the experiments for each block size
effectively performed the same work; the results of the ap-
plication run using a single motif set were identical to those
obtained when the motif set was divided into ten subsets.
Thus, by taking the sum of computation times for a partic-
ular block size, we can fairly assess the effects of partition-
ing the motif set at that granularity. The aggregate execu-
tion time for each of the eight partition sizes clearly indi-
cates a substantial overhead cost associated with partition-
ing the motif set.

Clearly, there exists a fundamental difference in the man-
ner in which motifs and sequences are treated by the algo-
rithms used in the GriPPS framework: although computa-
tion costs vary roughly linearly with the size of the motif
subset chosen, a fixed overhead cost appears to exist in the
empirical data. To quantify this overhead in the experiments
shown in Figure 2, we performed linear regression analyses
on the motif set partitioning data. Such analyses serve to
project the significance of the computational overhead as-
sociated with motif partitioning. The computational over-
head was computed to be 3.7 seconds for cirque.ucsd.edu
and 5.4 seconds for graal.ens-lyon.fr. For comparison, on
cirque.ucsd.edu, an average of 38.5 seconds were needed to
compare the entire motif set against a block of 96,000 se-
quences; clearly such overhead costs are non-negligible.

We also ran a second series of experiments to evaluate
the impact of inter-processor communication on applica-
tion performance. In the GriPPS scenario, the protein se-
quence databanks are located at fixed nodes, and only the
motifs need to be distributed (and the results need to be sent
back). We considered data transfer times for the file contain-
ing full motif set used in the experiments described above,
in a cluster environment based on a gigabit/second intercon-

nection network. In this environment, we use scp to repeat-
edly transfer the data file (which occupies 5.8 megabytes
of disk space) at random intervals. Over 20 iterations, the
average data transfer time was 854ms, ranging between
828ms and 880ms. Moreover, the GriPPS developers have
indicated that the profiles in this file contain a substantial
amount of data that is not used by their sequence compari-
son algorithm; in one sample motif file we analyzed closely,
the important motif entries comprise only 3.5% of the total
file size. By transferring only these critical data, and by us-
ing other optimizations (e.g., compression), we believe we
can further reduce communication overhead costs substan-
tially.

We performed a similar analysis on the transfer times
for the GriPPS result output, containing matches between
the specified motif set and protein sequences. On the same
gigabit/second network infrastructure used in the motif set
transfer tests, we considered the result file for a full com-
parison of 1600 motifs against all 106,000 sequences. The
resulting output comprised 36 megabytes of data, requiring
between 2.72s and 2.80s to transfer using scp. This pro-
vides an indication of a conservative upper bound on the
cost of any single transfer operation resulting from this sce-
nario, as any comparison against a subset of the sequence
database will necessarily produce fewer matches. However,
this magnitude of data may be a consideration as the sys-
tem is scaled to handle a much greater request volume. It
should be noted that the current output format is designed
to be human-readable. In a realistic parallel application sce-
nario, such a format would only be generated once the re-
sults from all computational tasks are present at the mas-
ter node. However, even without such optimizations, total
execution time is dominated by the computational require-
ments of this application, for reasonable parameterizations
of the GriPPS application; thus, in this study, we neglect
data transfer costs.

To summarize, the GriPPS protein databank search ap-
plication is an example of a linear divisible workload with-
out communications due to (i) the linear relationship be-
tween the job computation costs and the size of the targeted
protein sequence set, and (ii) the negligible communication
overheads. We will develop scheduling strategies that take
advantage of these properties in Sections 4-7.

2.2. Uniform Computation

A set of tasks is uniform over a set of processors if the
relative execution times of tasks over the set of processors
does not depend on the nature of the tasks. More formally,
for any task Tj , ci,j/ci′,j = ki,i′ , where ci,j is the time
needed to process task Tj on processor i. Essentially, ki,i′

describes the relative power of processors i and i′, regard-
less of the size or the nature of the task being considered.
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Figure 3. Uniformity study on six different machines.

The results depicted in Figure 1 seem to indicate that the
GriPPS comparisons of a motif against a sequence database
define a uniform set of tasks: over the range of sequence
partition sizes, the execution times on any machine seem to
be related to those of any other by a constant multiplica-
tive factor.

To determine if the GriPPS workload is indeed uniform,
we conducted a series of experiments to test the perfor-
mance of the application for a range of motifs on six dif-
ferent machines with varying hardware configurations. No
effort was made to ensure that our benchmark processes had
exclusive access to the resources, but in general, we ob-
served that the platforms were relatively quiescent. On each
machine, we ran a series of comparisons, each searching for
instances of a single motif in the full database of 106,000
sequences. This experiment is run for the first 1000 motifs
in the motif set. To serve as a baseline performance mea-
sure in the evaluation of the uniformity property, we arbi-
trarily used one of our machine as our reference machine.
The entire 1000-motif series was executed from three to
ten times on each of our six target machines. The execu-
tion times from these experiments were averaged according
to motif, after the extremal execution times for each mo-
tif were removed. For each motif, the resulting average exe-
cution times were then normalized to the average execution
time on the reference machine. These results are presented
in Figure 3. The normalized execution time of the reference

machine is, by definition, 1.0 for each motif, and of the five
remaining machines, three exhibit shorter execution times
and two exhibit longer execution times. In general, the data
indicate a clear constant relationship between the compu-
tation time observed for a particular motif on a given ma-
chine, compared to the computation time measured on the
reference machine for that same motif. This trend supports
the hypothesis of uniformity. To quantify this assertion, Ta-
ble 1 presents basic statistical analyses on the normalized
performance data of the five non-reference machines shown
in Figure 3.

Machine Mean Normalized Standard
number Execution Time Deviation

1 0.61180 0.00259
2 0.76472 0.00339
3 0.86732 0.00378
4 1.15149 0.00833
5 1.29377 0.00608

Table 1. Statistical analyses of normalized ex-
ecution data.

Based on our experimental findings, we propose a theo-
retical framework to study scheduling problems in the con-
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text of series of requests on a set of databanks distributed
across an heterogeneous computational platform. In partic-
ular, the following section presents formal models for the
divisible workloads motivated by this class of applications,
and the distributed heterogeneous platforms we are target-
ing.

3. Platform and application model

3.1. Notations

Formally, an instance of our problem is defined by n
jobs, J1, ..., Jn and m machines (or processors), M1, ...,
Mm. The job Jj arrives in the system at time rj (expressed
in seconds), which is its release date; we suppose jobs arrive
ordered by increasing release dates. Each job is assigned a
weight or priority wj .1 ci,j denotes the amount of time it
would take for machine Mi to process job Jj . Note that ci,j

can be infinite if the job Jj requires a database that is not
present on the machine Mi. The time at which job Jj fin-
ishes is denoted as Cj . Finally, the flow time of the job Jj is
defined as Fj = Cj − rj .

As we have seen in Section 2.2, we could replace the un-
related times ci,j by the expression Wj · ci, where Wj

denotes the size (in Mflop) of the job Jj and ci de-
notes the computational capacity of machine Mi (in
second·Mflop−1). To maintain correctness, we sepa-
rately track the databases present at each machine and
enforce the constraint that a job Jj may only be exe-
cuted on a machine at which all dependent data of Jj are
present. Thus, the problem is essentially a uniform ma-
chines with restricted availabilities scheduling problem,
which is a specific instance of the more general unre-
lated machines scheduling problem. However, since the
work we present does not rely on these restrictions, we re-
tain the more general scheduling problem formulation
(i.e., unrelated machines).

3.2. Job divisibility

Each job may be divided into an arbitrary number of sub-
jobs, of any size. Furthermore, each sub-job may be exe-
cuted on any machine at which the data dependences of the
job are satisfied. Thus, at a given moment, many different
machines may be processing the same job (with a master
ensuring that these machines are working on different parts
of the job). Therefore, if we denote by αi,j the fraction of
job Jj processed on Mi, we enforce the following property
to ensure each job is fully executed: ∀j,

∑
i αi,j = 1.

1 In this paper, we solve our problem for arbitrary weights and we do
not discuss the definition of these weights. For an example of weight
definition, see the remarks below about maximum stretch minimiza-
tion.

Note that, from a theoretical perspective, divisible load is
a generalization of the preemptive execution model that al-
lows for simultaneous execution of different parts of a same
job on different machines.

3.3. Objective function

The most common objective function in the parallel
scheduling literature is the makespan, i.e., the maximum
of the job termination time maxj Cj . Makespan minimiza-
tion is conceptually a system-centric perspective, seeking
to ensure efficient platform utilization. However, individ-
ual users are typically more interested in optimizing job
flow time (also called response time), i.e., the time their
jobs spend in the system. Optimizing the average (or to-
tal) flow time,

∑
j Fj , suffers from the limitation that star-

vation is possible, i.e., some jobs may be delayed to an un-
bounded extent [2]. By contrast, minimization of the max-
imum flow time, maxj Fj , does not exhibit this drawback,
but it tends to favor long jobs to the detriment of short ones.
We therefore focus on the maximum weighted flow time, us-
ing job weights to offset the bias against short jobs. Maxi-
mum stretch is a particular case of maximum weighted flow,
in which a job weight is inversely proportional to its size
wj = 1/Wj . Bender, Chakrabarti, and Muthukrishnan have
shown in [2] that, on a single machine, no polynomial time
algorithm can approximate the non-preemptive max-stretch
problem to within a factor of Ω(n1−ε) for arbitrarily small
ε > 0 unless P=NP. Moreover, they state that the preemp-
tive version admits a fully polynomial time approximation
scheme (FPTAS). We will show that we are able to solve
the maximum weighted flow scheduling problem on unre-
lated machines in polynomial time, either under the divis-
ible load hypothesis or in the more classical framework of
preemption (with migration).

3.4. Off-line scheduling

In this theoretical study, we examine the off-line version
of the problem: we suppose that for each job, the sched-
uler knows (in advance) its size, its data dependences, and
its release date. In future work, we will use the results of
the off-line study to propose solutions to the on-line prob-
lem, in which the scheduler discovers a job’s characteristics
at its release date.

Section 4 describes the solution of the makespan mini-
mization problem in the divisible load framework for our
application model. We then discuss in Section 5 the prob-
lem of deadline scheduling and its polynomial-time solu-
tion in the same application context. These results are then
extended in Section 6, which presents a solution to the min-
imization of the maximum weighted flow problem in the
divisible load framework. By adapting some of these tech-
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niques, we then describe a solution to the problem of mini-
mization of the maximum weighted flow when preemption
(but not load divisibility) is allowed; these results are given
in Section 7.

4. Makespan minimization

In this section we consider the classical problem of the
minimization of the makespan. The release dates sorted
by increasing values, r1, ..., rn, along with +∞, define a
set of nint time intervals I1, . . . , Inint . If all release dates
are distinct, then nint = n and Ij = [rj , rj+1[ (except
In = [rn, +∞[). We denote each time interval It by It =
[inf It, sup It[. We further define α

(t)
i,j as the fraction of job

Jj processed by machine Mi during the time interval It. In
this framework, Linear Program (1) lists the constraints that
should hold true in any valid schedule:

1. release date: job Jj cannot be processed before it is re-
leased (Equation (1a));

2. resource usage: during a time interval, a machine can-
not be used longer than the duration of this time inter-
val (Equation (1b));

3. end of schedule: during the last interval, In, any ma-
chine is used a time at most ∆n (Equation (1c));

4. job completion: each job must be processed to comple-
tion (Equation (1d)).

Regarding the objective function of Linear Program (1), we
first remark that the processing of the final job Jn cannot
start sooner than its release date, rn. Thus, Cmax occurs at a
point in time greater than or equal to the release date of the
final job plus ∆n, the maximum time any machine works
after this date, that is, during the final interval, In. Hence,
the given objective function represents the makespan.

MINIMIZE Cmax = rn + ∆n ,
UNDER THE CONSTRAINTS


(1a) ∀i,∀j,∀t, rj ≥ sup It ⇒ α
(t)
i,j = 0

(1b) ∀t,∀i,
∑

j

α
(t)
i,j .ci,j ≤ sup It − inf It

(1c) ∀i,
∑

j

α
(n)
i,j .ci,j ≤ ∆n

(1d) ∀j,
∑

t

∑
i

α
(t)
i,j = 1

(1)

Any feasible solution to Linear Program (1) gives us a
straightforward optimal solution to the makespan minimiza-
tion problem: during any time interval It, and on any ma-
chine Mi, we can greedily schedule in any order the non-
null fractions α

(t)
i,j . Since Linear Program (1) only has ratio-

nal variables:

Theorem 1. Minimizing the makespan is a polynomial
problem.

5. Deadline scheduling

In the framework of deadline scheduling, each job Jj has
not only a release date rj but also a deadline d̄j . The prob-
lem is then to find a schedule such that each job Jj is exe-
cuted within its executable time interval [rj , d̄j ].

Consider the set of all job release dates and job dead-
lines: {r1, . . . , rn, d̄1, . . . , d̄n}. We define an epochal time
as a time value at which one or more points in this set oc-
cur; there are between 2 (when all jobs are released at the
same date and have the same deadline) and 2n (when all
job release dates and job deadlines are distinct) such values.
When ordered in absolute time, adjacent epochal times de-
fine a set of time intervals, analogous to the time intervals
constructed solely from release dates in the previous sec-
tion. Let us again denote by I1, . . . , Inint this set of time in-
tervals, noting that 1 ≤ nint ≤ 2n − 1. Accordingly, given
an interval It, we can reuse the definitions for (i) the interval
lower bound (inf It), (ii) the interval upper bound (sup It),
and (iii) the division and assignment of tasks to machines
during these intervals (α(t)

i,j ). In this framework, System (2)
lists the constraints that should hold true in any valid sched-
ule:

1. release date: job Jj cannot be processed before it is re-
leased (Equation (2a));

2. deadline: job Jj cannot be processed after its deadline
(Equation (2b));

3. resource usage: during a time interval, a machine can-
not be used longer than the duration of this time inter-
val (Equation (2c));

4. job completion: each job must be processed to comple-
tion (Equation (2d)).



(2a) ∀i,∀j,∀t, rj ≥ sup It ⇒ α
(t)
i,j = 0

(2b) ∀i,∀j,∀t, d̄j ≤ inf It ⇒ α
(t)
i,j = 0

(2c) ∀t,∀i,
∑

j

α
(t)
i,j .ci,j ≤ sup It − inf It

(2d) ∀j,
∑

t

∑
i

α
(t)
i,j = 1

(2)

Lemma 1. System (2) has a solution if, and only if, there
exists a schedule satisfying, for any job Jj , the release date
rj and the deadline d̄j .

System (2) can be solved in polynomial time by any lin-
ear solver system as all our variables are rational. Building
a valid schedule from any solution of System (2) is straight-
forward as for any time interval It, and on any machine Mi,
the job fractions α

(t)
i,j can be scheduled in any order.
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6. Minimizing the maximum weighted flow
(in the divisible load framework)

6.1. Relationship with deadline scheduling

Let us assume that we are looking for a schedule S under
which the maximum weighted flow is less than or equal to
some objective value F . The weighted flow of any job Jj is
equal to wj(Cj −rj). Then, due to our hypothesis on F , we
have:

max
1≤j≤n

wj(Cj − rj) ≤ F ⇔

∀j ∈ [1;n], wj(Cj − rj) ≤ F ⇔

∀j ∈ [1;n], Cj ≤ rj + F/wj .

Then, the execution of Jj must be terminated before time
d̄j(F) = rj + F/wj for S to satisfy the bound F on the
maximum weighted flow. Therefore, looking for a sched-
ule which satisfies a given upper bound on the maximum
weighted flow is equivalent to an instance of the deadline
scheduling problem.

One may think that by applying a binary search on pos-
sible values of the objective value F , one would be able to
find the optimal maximum weighted flow, and an optimal
schedule. However, a binary search on rational values will
not terminate. By setting a limit on the precision on the bi-
nary search, the number of process iterations is bounded,
and the quality of the approximation can be guaranteed.
However, as we now show, we can adapt our search to al-
ways find the optimal in polynomial time.

6.2. Problem resolution

So far we have used System (2) to check whether our
problem has a solution whose maximum weighted flow is
smaller than some objective value F . We now show that
we can use it to check whether our problem has a solu-
tion for some particular range of objective values. Later we
show how to divide the whole search space into a number
of search ranges polynomial in our problem size.

6.2.1. Solving on a range. First, let us suppose there
exist two values F1 and F2, F1 < F2, such that
the relative order of the release dates and deadlines,
r1, . . . , rn, d̄1(F), . . . , d̄n(F), when ordered in abso-
lute time, is independent of the value of F ∈]F1;F2[.
Then, on the objective interval ]F1,F2[, as before, we de-
fine an epochal time as a time value at which one or
more points in the set {r1, . . . , rn, d̄1(F), . . . , d̄n(F)} oc-
curs. Note that an epochal time which corresponds to
a deadline is no longer a constant but an affine func-
tion in F . As previously, when ordered in absolute

time, adjacent epochal times define a set of time inter-
vals, that we denote by I1, . . . , Inint(F). The durations
of time intervals are now affine functions in F . Us-
ing these new definitions and notations, we can solve
our problem on the objective interval [F1,F2] using Sys-
tem (2) with the additional constraint that F belongs
to [F1,F2] (F1 ≤ F ≤ F2), and with the minimiza-
tion of F as the objective. This gives us System (3).

MINIMIZE F ,
UNDER THE CONSTRAINTS


(3a) F1 ≤ F ≤ F2

(3b) ∀i,∀j,∀t, rj ≥ sup It ⇒ α
(t)
i,j = 0

(3c) ∀i,∀j,∀t, d̄j ≤ inf It ⇒ α
(t)
i,j = 0

(3d) ∀t,∀i,
∑

j

α
(t)
i,j .ci,j ≤ sup It − inf It

(3e) ∀j,
∑

t

∑
i

α
(t)
i,j = 1

(3)

6.2.2. Particular objectives. The relative ordering of the
release dates and deadlines only changes for values of F
where one deadline coincides with a release date or with an-
other deadline. We call such a value of F a milestone.2 In
our problem, there are at most n distinct release dates and
as many distinct deadlines. Thus, there are at most n(n−1)

2
milestones at which a deadline function coincides with a
release date. There are also at most n(n−1)

2 milestones at
which two deadline functions coincides (two affine func-
tions intersect in at most one point). Let nq be the number
of distinct milestones. Then, 1 ≤ nq ≤ n2 − n. We de-
note by F1,F2, ...,Fnq the milestones ordered by increas-
ing values. To solve our problem we just need to perform a
binary search on the set of milestones F1,F2, ...,Fnq , each
time checking whether System (3) has a solution in the ob-
jective interval [Fi,Fi+1] (except for i = nq in which case
we search for a solution in the range [Fnq , +∞[). Hence,
we have the following theorem:

Theorem 2. Minimizing the optimal maximum weighted
flow is a polynomial problem.

7. Minimizing the maximum weighted flow
with preemption but no divisibility

In this section we focus on the more classical problem
with preemption but without the divisible load assumption.
We show that combining the approach of the previous Sec-
tion with the work of Lawler and Labetoulle [9] leads to a

2 In [8], Labetoulle, Lawler, Lenstra, and Rinnoy Kan call such a value
a “critical trial value”.
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polynomial-time algorithm to solve this problem. Note that,
for this exact problem, Bender, Chakrabarti, and Muthukr-
ishnan stated in [2] the existence of a fully polynomial time
approximation scheme (FPTAS). We do not know whether
since that publication someone has already shown that this
problem can be solved in polynomial time.

Following the work of Gonzalez and Sahni [6], Lawler
and Labetoulle present in [9] a scheme to build in
polynomial-time a preemptive schedule of makespan Cobj

for a set of jobs J1, ..., Jn of null release dates (∀j, rj = 0),
under the condition that Linear System (4) has a solu-
tion. This system simply states that:

1. all jobs must be fully processed (Equation (4a));

2. the whole processing of a job cannot take a time larger
than Cobj (Equation (4b));

3. the whole utilization time of a machine cannot be
longer than a time Cobj (Equation (4b)).

Obviously, these constraints must be satisfied by any pre-
emptive schedule whose makespan is no longer than Cobj.
The constructive result obtained by Lawler and Labetoulle
shows that such a schedule exists if, and only if, this set of
constraints has a solution.




(4a) ∀j,
m∑

i=1

αi,j = 1

(4b) ∀j,
m∑

i=1

αi,j · ci,j ≤ Cobj

(4c) ∀i,
n∑

j=1

αi,j · ci,j ≤ Cobj

(4)

Our problem is slightly more general in that we allow ar-
bitrary release dates. Additionally, our objective is to mini-
mize the maximum weighted flow rather than the makespan.
Let us consider a maximum weighted flow objective Fobj.
As we did in Section 6.1, we use this objective value to de-
fine for each job Jj a deadline d̄j(Fobj) = rj +Fobj/wj . As
before, the set of release dates and deadlines defines a set
of epochal times which, in turn, defines a set of time inter-
vals that we denote by I1, . . . , Inint(Fobj).

Then, we claim that there exists a preemptive schedule
whose maximum weighted flow is no greater than Fobj if,
and only if, Linear System (5) has a solution. Linear Sys-
tem (5) simply states that:

1. each job must be processed to completion (Equa-
tion (5a) which corresponds to Equation (4a));

2. the processing of a job during the time interval It can-
not take a time larger than the length of It as, in the cur-
rent framework, a job cannot be simultaneously pro-
cessed by two different machines (Equation (5b) which
corresponds to Equation (4b));

3. the utilization of a machine during a time interval can-
not exceed its capacity (Equation (5c) which corre-
sponds to Equation (4c));

4. the processing of a job cannot start before it is released
(Equation (5d));

5. a job must be fully processed before its dead-
line (Equation (5e)).




(5a) ∀j,
∑

t

∑
i

α
(t)
i,j = 1

(5b) ∀t,∀j,
∑

i

α
(t)
i,j .ci,j ≤ sup It − inf It

(5c) ∀t,∀i,
∑

j

α
(t)
i,j .ci,j ≤ sup It − inf It

(5d) ∀i,∀j,∀t, rj ≥ sup It ⇒ α
(t)
i,j = 0

(5e) ∀i,∀j,∀t, d̄j ≤ inf It ⇒ α
(t)
i,j = 0

(5)

Any preemptive schedule whose maximum weighted
flow is no greater than Fobj must obviously satisfy Linear
System (5). Conversely, suppose that Linear System (5) has
a solution. Then, following Lawler and Labetoulle [9], we
note that the whole system effectively decomposes into a
set of linear sub-systems, one for each of the time intervals,
and that the sub-system corresponding to interval It is ex-
actly equivalent to Linear System (4) where the objective is
the length of the time interval (i.e., Cobj = sup It − inf It).
Therefore, starting from a solution of Linear System (5) we
use the polynomial-time reconstruction scheme of Lawler
and Labetoulle to build a preemptive schedule for each of
the time intervals It. The concatenation of these partial
schedules gives us a solution to our problem.

Thus far, we have shown that we are able to check
the feasibility of a specific objective value for maximum
weighted flow in polynomial time. Moreover, if such an ob-
jective is feasible a schedule that achieves this maximum
weighted flow can also be built in polynomial time. To fi-
nally solve our problem, we recall the methodology pre-
sented in Section 6.1: Linear System (5) can be used to
search for a solution in a range of objective values, defined
by consecutive milestones, over which the linear system is
valid (i.e., the relative order of task release dates and dead-
lines do not change). Similarly, a binary search over the pos-
sible milestone ranges enables us to find and build an opti-
mal solution in polynomial time.

8. Conclusion

We have initially shown experimentally that the divisi-
ble load framework is suitable for our practical implemen-
tation. In this framework, we then presented a polynomial-
time algorithm to solve the theoretical off-line scheduling
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problem of maximum weighted flow minimization. Solv-
ing the off-line problem not only gives us a bound against
which we will be able to compare actual on-line solutions,
it also suggests on-line scheduling strategies that are likely
to prove efficacious. We now plan to investigate the on-line
version of our problem. Furthermore, we plan to implement
a scheduler in a distributed environment running the GriPPS
biological sequence comparison application. In such a prac-
tical setting we will have to take into account the cost of pre-
emptions, what we have not done so far.
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