
Resource-aware allocation strategies
for divisible loads on large-scale systems

Anne Benoit 2,4,5 Loris Marchal 1,4,5 Jean-François Pineau 6

Yves Robert 2,4,5 Frédéric Vivien 3,4,5

1 CNRS 2 ENS Lyon 3 INRIA 4 Université de Lyon
5 LIP laboratory, UMR 5668, ENS Lyon–CNRS–INRIA–UCBL, Lyon, France

6 LIRMM laboratory, UMR 5506, CNRS–Université Montpellier 2, France

{anne.benoit,loris.marchal,jean-francois.pineau,yves.robert,frederic.vivien}@ens-lyon.fr

Abstract

In this paper, we deal with the large-scale divisi-
ble load problem studied in [12]. We show how to re-
duce this problem to a classical preemptive scheduling
problem on a single machine, thereby establishing new
complexity results, and providing new approximation al-
gorithms and heuristics that subsume those presented
in [12]. We also give some hints on how to extend the
results to a more realistic framework where communica-
tion costs are taken into account.

1 Introduction

In this paper, we deal with the large-scale divisible
load problem introduced by Viswanathan, Veeravalli,
and Robertazzi [12]. In a nutshell, a grid system is de-
ployed, with several divisible applications on one side
and several computing servers on the other side. The
problem is to determine when each application should be
executed, and on which processors. Divisible load appli-
cations are quite interesting in such frameworks because
(i) they encompass quite a variety of applications [11],
and (ii) they are easily amenable to be distributed on sev-
eral servers. As larger and larger collections of resources
are made available to users, the problem of matching ap-
plications and servers becomes more and more difficult.
Therefore the problem addressed in [12] is both very nat-
ural and of practical importance.

In [12], the problem is formulated in a quite general
setting. However, most of the results presented by the
authors only apply to a simplified scenario where com-
munication costs are ignored. The latter scenario re-
mains important because, in this context, the heteroge-
neous load-balancing problem is still difficult. In this
paper we revisit this problem without communication

costs. We show how it can be reduced to a well-studied
scheduling problem on a uni-processor machine, that
of scheduling preemptive tasks with release dates and
deadlines (see Section 3). The main objective for the
uni-processor problem is to maximize the number of
tasks processed before their deadlines. Owing to this
reduction, we establish new complexity results, and we
provide new approximation algorithms and heuristics
that subsume those presented in [12].

The general problem exposed in [12] seems much
more difficult to solve when communication costs are
considered. Nevertheless, we give hints and research di-
rections in Section 4. Beforehand, we start by describing
the target problem in Section 2.

2 Problem description

We only give an operational description of the key
features of the problem considered in [12] and we refer
the reader to the original article for motivation and ad-
ditional details. For the convenience of the reader, we
keep all notations of [12].

There are N sources (data servers) Si that provide
divisible loads to be processed by M sinks (comput-
ing processors) Kj . All sources are directly connected
to all sinks via a complete bipartite network. The ex-
ecution proceeds through iterations. Let L(q)

i be the
load of source Si at the beginning of iteration q, and
let L(q) =

∑N
i=1 L

(q)
i be the total load in the system. A

fraction Y (q) of L(q) will be processed during the itera-
tion.

The main constraint to determine Y (q) is that each
sink Kj must accommodate input data in a limited-
size buffer. Let B(q)

j be the number of load units that
Kj can store during iteration q (these quantities will
vary dynamically across iterations). The idea of [12]

1

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

is to saturate (at least one of) these M sink buffers.
If Y (q)L(q) units are to be distributed across all sinks,
sink Kj should receive a share αjY (q)L(q) that is pro-

portional to its computing power: αj =
1

wjPM
x=1

1
wx

,

where wj is the inverse of the speed of Kj . Equiv-
alently, Kj needs a time wjTcp to execute one load
unit, where Tcp is the computation intensity constant.
Therefore αjY (q)L(q) ≤ B

(q)
j for all j, hence the value

Y (q) = minj
B

(q)
j

αjL(q) . There remains to decide which
source sends inputs to which sink. It is done propor-
tionally again: Si sends α(q)

i,j units to Kj , where α(q)
i,j =

L
(q)
i

L(q)

(
αjY

(q)L(q)
)

= αjY
(q)L

(q)
i .

The authors in [12] state that “communication is [. . .]
assumed to be negligible within a cluster node”. In fact,
they consider all communications to be instantaneous.
In particular, sources can send data to any number of
sinks in parallel, while sinks can receive from any num-
ber of sources. Furthermore, all sinks can start comput-
ing at the very beginning of a period, because sinks can
start computing as soon as they start receiving their first
bit of data (hence a fluid model [3]). With the above fluid
computation model and work distribution, all sinks start
and end their computation simultaneously, as all compu-
tation times are equal:

(
αjY

(q)L(q)
)
wjTcp = T (q) for

all j. Therefore buffers are needed only to prevent sinks
to be overflowed with incoming data (sinks are comput-
ing at a lower rate than they are receiving). Anyway,
the time to compute Y (q)L(q) load units is T (q), and the
time to compute the entire load is T̂ = T (q)

Y (q) = L(q)TcpPM
i=1

1
wi

,

which shows that the platform is utilized at its full po-
tential.

Each source Si has a deadline Tdi and, in an online
setting, new sources can join the system at the beginning
of each new period. The authors discuss several heuris-
tic strategies to decide whether to accept new sources
or not depending upon whether none, some, or all task
deadlines are greater than T̂ . As stated above, buffer
sizes vary during the execution, which, according to the
authors, calls for changing the duration of consecutive
periods. In fact, because (i) the computation model is
linear and (ii) overhead is paid neither for communica-
tion nor for control (e.g., for updating values from one
period to the other, for taking scheduling decisions, etc.),
periods could be arbitrarily small. From any solution
in [12], by dividing each period into two same-size peri-
ods where each quantity is halved, one gets a solution re-
quiring exactly half the buffer space. Therefore, buffers
are not actually constraining. We can state this differ-
ently: we can slow down communications and send data
from source Si to sink Kj exactly at the rate this data
is consumed (executed) by Kj , thereby eliminating the

need for any temporary storage.

3 Equivalence to uni-processor with pre-
emption

From the above description it should be clear that the
problem reduces to scheduling N preemptive tasks Ti
on a uni-processor machine, where each task Ti has a
size Li, a deadline Tdi

, and possibly a release date Tri
,

and the machine has speed
∑M
i=1

1
wi

. Indeed, since all
sources can simultaneously send data to all sinks, with-
out any type of communication (or buffer) constraints,
a system with N sources is equivalent to one with a
single source holding all the N loads. Similarly, since
all sinks can simultaneously receive from all sources, a
system with M sinks is equivalent to one with a single
sink of cumulated speed. Thus, in the classical nota-
tion of scheduling theory, the studied problem is written
(1|pmtn; rj |

∑
Uj) [10]. Here 1 stands for 1 machine,

pmtn means that task executions can be interrupted and
later resumed, rj = Trj

denotes the release dates and∑
Uj is the number of late tasks (those having missed

their deadlines).
The offline case, where everything is known in ad-

vance, can be solved in polynomial time. This was first
shown in 1990 by Lawler [9]. Later, Baptiste [1] pre-
sented another algorithm, of lower complexity. The lat-
ter algorithm can be used as an absolute baseline ref-
erence to estimate (afterward) the performance of any
online algorithm on any instance. For our problem,
the competitive ratio of an online algorithm is the min-
imum, over all possible instances, of the ratio of the
number of tasks that the algorithm succeeded to com-
plete before their deadlines in that instance (the so called
early tasks) and of the number of early tasks in the op-
timal scheduling for that instance. Baruah, Haritsa, and
Sharma have shown [2] that no online algorithm has a
competitive ratio larger than 1

n , and thus that no on-
line algorithm has constant competitive ratio (here, n
is the optimal number of early tasks). Nevertheless,
Kalyanasundaram and Pruhs have shown [8] that for any
instance either their Lax algorithm or the well-known
Shortest Remaining Processing Time (SRPT) is constant
competitive on the instance. This leads them to de-
sign a constant-competitive randomized algorithm (but
with a very very small constant). Furthermore, there are
constant-competitive online algorithms for special in-
stances, such as equal-size tasks, non-decreasing dead-
lines (with release times), or equal relative deadlines
(deadline minus release date) [2]. Finally, if there exists
a schedule satisfying all deadlines, then Earliest Dead-
line First (EDF) always finds it, even in an online set-
ting [5].

2

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

In addition to establishing the complexity of the prob-
lem considered in [12], for both the offline and online
settings, this short overview gives hints on how to better
assess the quality of the three greedy online heuristics
(EDF, Progressive, Non-interleaved) proposed in [12].
Indeed, these heuristics should be compared to their nat-
ural competitors: SRPT, Lax, and the randomized algo-
rithm. In addition, a comparison to the optimal offline
solution would give an absolute estimation of their per-
formance.

4 General problem

The general problem addressed in [12] is challeng-
ing. An important question is to derive a good model,
i.e., a model that is both realistic and tractable. The first
issue is granularity. Multi-round (or multi-iteration) di-
visible load scheduling with a linear cost model faces the
well-known problem that the optimal solution is to have
infinitely many rounds of infinitely small size [6]. There
are two ways to solve this problem: (i) introducing start-
up costs for communications (and possibly for compu-
tations); (ii) introducing fixed-size tasks whose size cor-
responds to the atomicity of the application. The second
issue is related to communication costs. It is not real-
istic to assume unlimited bandwidth capacity as links
and network cards have a maximum capacity. We sug-
gest two candidate models: (i) the one-port model [4]
where two communications involving the same sender
(or receiver) are serialized; (ii) the bounded multi-port
model [7] where several communications involving the
same sender (or receiver) can take place in parallel, pro-
vided that no device capacity is exceeded.

When communication costs are taken into account,
buffer sizes truly matter when all applications do not
have the same communication to computation ratio. In-
deed, if a computationally intensive application is re-
leased before a communication intensive one, we must
send as much data as possible for the first application
before the second one is released, that is before the com-
munication medium gets saturated by the second appli-
cation. Once the second application is released, we sat-
urate both communication and computation resources,
thereby achieving an efficient platform utilization.

In [3] we studied the scheduling of several divisible
loads arriving over time, in a system with one source,
several sinks, and buffer sizes. We aimed at minimiz-
ing the maximum slowdown, or stretch. Minimizing the
maximum stretch is a special case of scheduling with
deadlines. For the offline version of the problem in [12],
and with a finite number of changes of buffer sizes, the
techniques presented in [3] will always find a schedule
satisfying all deadlines when one exists. This is true
in the bounded multi-port model with fluid computation

and synchronous start, which is the bounded multi-port
version of the problem in [12]. These techniques can
be straightforwardly extended to platforms with multi-
ple sources, and are expected to perform well in online
settings, as was the case in [3]. However, they would
need to be extended with some load admission policy
for problems where all deadlines cannot be met.

5 Conclusion

The main goal of this paper was to revisit the work
of [12] in the absence of communication costs, and to
derive new complexity results and heuristics owing to a
reduction to a classical scheduling problem.

The general problem with communication costs re-
mains mostly open. We have only provided hints on how
to tackle this challenging question. We plan to devote
our future work on designing algorithms and heuristics
for the general problem.

Acknowledgment

We thank the reviewers for their comments and sug-
gestions. This work was supported in part by the ANR
StochaGrid project.

References

[1] P. Baptiste. An o(n4) algorithm for preemptive
scheduling of a single machine to minimize the
number of late jobs. Operations Research Letters,
24(4):175–180, May 1999.

[2] S. Baruah, J. Haritsa, and N. Sharma. On-line
scheduling to maximize task completions. In Proc.
IEEE Real-Time Systems Symposium, pages 228–
236. IEEE Computer Society Press, 1994.

[3] A. Benoit, L. Marchal, J.-F. Pineau, Y. Robert, and
F. Vivien. Offline and online scheduling of con-
current bags-of-tasks on heterogeneous platforms.
In APDCM 2008. IEEE Computer Society Press,
2008.

[4] P. Bhat, C. Raghavendra, and V. Prasanna. Effi-
cient collective communication in distributed het-
erogeneous systems. Journal of Parallel and Dis-
tributed Computing, 63:251–263, 2003.

[5] M. L. Dertouzos. Control robotics: the procedural
control of physical processes. In Proceedings of
IFIP Congress, pages 897–813. IFIP, 1974.

3

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

[6] M. Gallet, Y. Robert, and F. Vivien. Comments
on “design and performance evaluation of load dis-
tribution strategies for multiple loads on heteroge-
neous linear daisy chain networks”. J. Parallel and
Distributed Computing, 68(7):1021–1031, 2008.

[7] B. Hong and V. K. Prasanna. Adaptive alloca-
tion of independent tasks to maximize through-
put. IEEE Trans. Parallel Distributed Systems,
18(10):1420–1435, 2007.

[8] B. Kalyanasundaram and K. R. Pruhs. Maximizing
job completions online. J. Algorithms, 49(1):63–
85, 2003.

[9] E. L. Lawler. A dynamic programming algorithm
for preemptive scheduling of a single machine to
minimize the number of late jobs. Ann. Oper. Res.,
26(1-4):125–133, 1990.

[10] J. Lenstra, R. Graham, E. Lawler, and A. Kan. Op-
timization and approximation in deterministic se-
quencing and scheduling: a survey. Annals of Dis-
crete Mathematics, 5:287–326, 1979.

[11] T. Robertazzi. Ten reasons to use divisible load
theory. IEEE Computer, 36(5):63–68, 2003.

[12] S. Viswanathan, B. Veeravalli, and T. G. Rober-
tazzi. Resource-aware distributed scheduling
strategies for large-scale computational clus-
ter/grid systems. IEEE Trans. Parallel Distributed
Systems, 18(10):1450–1461, 2007.

Biographies

Anne Benoit received the PhD degree from Polytech-
nical Institute of Grenoble (INPG) in 2003. She cur-
rently holds a position of Associate Professor at Ecole
Normale Superieure in Lyon, France. She is the au-
thor of 10+ papers published in international journals,
and 25+ papers published in international conferences.
Her research interests include algorithms design and
scheduling techniques for parallel and distributed plat-
forms, and also the performance evaluation of parallel
systems and applications. She is a member of the IEEE.

Loris Marchal received the PhD degree from École
Normale Supérieure de Lyon in 2006. He is currently a
CNRS researcher in the Computer Science Laboratory
LIP at ENS Lyon. His research interest includes paral-
lel algorithm design and scheduling for heterogeneous
platforms.

Jean-François Pineau received the PhD degree from
École Normale Supérieure de Lyon in 2008. He is cur-
rently a postdoctoral fellow with the Computer Science
Laboratory LIRM at Montpellier. He is mainly inter-
ested in the design of parallel algorithms for heteroge-
neous platforms and in scheduling techniques.

Yves Robert received the PhD degree from Institut
National Polytechnique de Grenoble in 1986. He is cur-
rently a full professor in the Computer Science Labora-
tory LIP at ENS Lyon. He is the author of five books,
100+ papers published in international journals, and
130+ papers published in international conferences. His
main research interests are scheduling techniques and
parallel algorithms for clusters and grids. Yves Robert
served on many editorial boards, including IEEE TPDS.
He was the program chair of HiPC’2006 in Bangalore
and of IPDPS’2008 in Miami. He is a Fellow of the
IEEE. He has been elected a Senior Member of Institut
Universitaire de France in 2007.

Frédéric Vivien received a Ph.D. degree from École
normale supérieure de Lyon in 1997. From 1998 to
2002, he was an associate professor at Louis Pasteur
University, in Strasbourg, France. He spent the year
2000 working in the Computer Architecture Group of
the MIT Laboratory for Computer Science. He is cur-
rently a full researcher from INRIA, working at the ENS
Lyon. He is the author of one book, 25 papers published
in international journals, and 35+ papers published in in-
ternational conferences. His main research interests are
scheduling techniques and parallel algorithms for clus-
ters and grids.

4

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

