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Abstract— In this paper we study how distributed scheduling
systems can be designed most effectively; we focus on the
problem of selecting an optimal arrangement of schedulers, or
a deployment, for hierarchically organized systems. We show
that the optimal deployment is a complete spanning d-ary tree;
this result conforms with results from the scheduling literature.
More importantly, we present an approach for determining the
optimal degree d for the tree. We test our approach using DIET, a
network-enabled server system that uses hierarchical schedulers.
Finally, we demonstrate that our approach selects deployments
that are near-optimal in practice.

I. INTRODUCTION

Efficient, scalable schedulers are key middleware compo-
nents needed for users to make effective use of large collec-
tions of machines. A scheduling service matches user requests
with available resources and may also negotiate amongst
competing users and keep track of the status and expected
performance of resources. However, little is known about
how to find the best distributed arrangement, or deployment,
of schedulers. Questions such as “which resources should
be used?”, “how many resources should be used?”, “what
arrangement should be used”, and “should the fastest and
best-connected resource be used for a scheduler or as a
computational resource?” remain difficult to answer.

Here we target a smaller sub-problem: “what is the opti-
mal hierarchical deployment of schedulers on a cluster with
hundreds to thousands of nodes?”.

II. PLATFORM DEPLOYMENT PLANNING

Software system architecture - We consider a service-
provider software system composed of three types of elements:
a set of client nodes C that require computations, a set of
server nodes S that are providers of computations, and a set
of agent nodes A that provide coordination of client requests
with service offerings via service localization, scheduling, and
persistent data management. We consider only hierarchical
arrangements of agents composed of a single top-level root
agent and any number of agents arranged in a tree below the
root agent. Server nodes are leaves of the tree, but may be
attached to any agent in the hierarchy, even if that agent also
has children that are agents.

Request definition - Clients use a 2-phase process to
interact with a deployed hierarchy: they submit a scheduling
request to the agents to find a suitable server in the hierarchy
(the scheduling phase), and then they submit a service request
(job) directly to the server (the service phase). A completed

request is one that has completed both the scheduling and
service request phases and for which a response has been
returned to the client.

Resource architecture - The target resource archi-
tectural framework is represented by a weighted graph
G = (V, E, w, B). Each vertex v in the set of vertices V

represents a computing resource with computing power w in
MFlop/second. Each edge e in the set of edges E represents a
resource link between two resources with edge cost B given
by the bandwidth between the two nodes in Mb/second.

Deployment assumptions - We consider that at the time
of deployment we do not know the client locations or the
characteristics of the client resources. Thus clients are not
considered in the deployment process and, in particular, we
assume that the set of computational resources used by clients
is disjoint from V. A valid deployment will always include at
least the root-level agent and one server. Each node v ∈ V can
be assigned either as a server or an agent or left idle. Thus with
|A| agents, |S| servers, and |V| total resources, |A|+ |S| 6 |V|.

Optimal deployment - Our objective is to find an optimal
deployment of agents and servers for a set of resources V.
We consider an optimal deployment to be a deployment that
provides the maximum throughput ρ of completed requests per
second.

We define the scheduling request throughput in requests per
second, ρsched, as the rate at which requests are processed
by agents and servers in the scheduling phase. Likewise, we
define the service throughput in requests per second, ρservice,
as the rate at which the servers can produce the services
required by the clients. The following lemmas lead to a proof
of an optimal deployment shape of the platform. The proofs
of these lemmas can be found in [1].

Lemma 1. The completed request throughput ρ of a de-
ployment is given by the minimum of the scheduling request
throughput ρsched and the service request throughput ρservice.

The degree of an agent is the number of children directly
attached to it, regardless of whether the children are servers
or agents.

Lemma 2. The scheduling throughput ρsched is limited by the
throughput of the agent with the highest degree.

Lemma 3. The service request throughput ρservice increases
as the number of servers included in a deployment increases.
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DGEMM Nodes Optimal Model selected Our model Star Tri-ary
Size |V| Degree Degree Performance Performance Performance
10 21 1 1 100.0% 22.4% 50.5%

100 25 2 2 100.0% 84.4% 84.6%
200 45 3 8 87.1% 40.0% 100.0%
310 45 15 22 98.5% 73.8% 74.0%
1000 21 20 20 100.0% 100.0% 65.3%

TABLE I

A SUMMARY OF THE PERCENTAGE OF OPTIMAL ACHIEVED BY DIFFERENT TREES DEPLOYMENT.

Definition 1. A Complete Spanning d-ary tree (CSD tree) is
a tree that is both a complete d-ary tree and a spanning tree.

Definition 2. A dMax set is the set of all trees that can be
built using |V| resources and for which the maximum degree
is equal to dMax .

Theorem 1. In a dMax set, all dMax CSD trees have optimal
throughput.

Theorem 2. A complete spanning d-ary tree with degree
d ∈ [1, |V|−1] that maximizes the minimum of the scheduling
request and service request throughputs is an optimal deploy-
ment.

III. EXPERIMENTAL RESULTS

DIET [2] provides a good test case for our approach;
however, we need performance models for the scheduling and
service phases of DIET before applying our approach. The
throughput of the scheduling phase, ρsched, in requests per
second is given by the minimum of the throughput provided
by servers and agents for prediction. The throughput of the
service phase, ρservice, in requests per second is given by the
throughput provided by the servers while taking into account
that the servers spend some time doing predictions.

We tested two operating models: the serial model and the
parallel model. In the serial model, a computing resource has
no capacity for parallelism: it can either send a message,
receive a message, or compute. In the parallel model, a
computing resource can send messages, receive messages, and
do computation in parallel. For both models we only assume
a single port-level: messages must be sent serially and they
must be received serially.

Fig. 1 shows predicted and measured throughput for star-
based DIET deployments using different numbers of servers
in the star and assuming a network bandwidth of 190 MB/s.
The nearly linear increase of throughput with the number of
children (agent degree) shows that throughput in these tests
was server-limited, rather than agent-limited, and that our
model is able to accurately predict performance under these
conditions.

Next we tested the effectiveness of our approach in selecting
a good deployment. We used two similar clusters for these
tests: a 55-node cluster at Lyon and a 140-node cluster at
Sophia in France. For each experiment, we select a cluster,
define the total number of resources available, and pick a
DGEMM problem size. We then used our deployment approach
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Fig. 1. Measured and predicted platform throughput for DGEMM size 1000;
predictions are shown for the serial model with bandwidth 190 Mb/s.

to select a good deployment and tested throughput using
the selected deployment and several other reasonable deploy-
ments. Table I summarizes the results of these experiments by
reporting the percentage of the optimal throughput achieved
for the tree selected by our model, the star, and the tri-ary tree.
Problem size 10 represents the usage of the model in clearly
server-limited conditions, while problem size 1000 represents
clearly server-limited conditions.

IV. CONCLUSION AND FUTURE WORK

This paper showed that a Complete Spanning d-ary trees
provide optimal hierarchical middleware deployments for ho-
mogeneous resource platforms. Our approach determines how
many nodes should be used and in what hierarchical organi-
zation with the goal of maximizing steady-state throughput.
We presented experiments validating the DIET throughput
performance models and demonstrating that our approach can
effectively build a tree for deployment which is nearly optimal
and which performs significantly better than other reasonable
deployments. This article provides only the initial step for
automatic middleware deployment planning. Our final goal is
to develop deployment planning and re-deployment algorithms
for middleware on heterogeneous clusters and grids.
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