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Abstract. We focus on mapping iterative algorithms onto heteroge-
neous clusters. The application data is partitioned over the processors,
which are arranged along a virtual ring. At each iteration, independent
calculations are carried out in parallel, and some communications take
place between consecutive processors in the ring. The question is to de-
termine how to slice the application data into chunks, and assign these
chunks to the processors, so that the total execution time is minimized.
A major difficulty is to embed a processor ring into a network that typ-
ically is not fully connected, so that some communication links have to
be shared by several processor pairs. We establish a complexity result as-
sessing the difficulty of this problem, and we design a practical heuristic
that provides efficient mapping, routing, and data distribution schemes.

1 Introduction

We investigate the mapping of iterative algorithms onto heterogeneous clusters.
Such algorithms typically operate on a large collection of application data, which
is partitioned over the processors. At each iteration, some independent calcula-
tions are carried out in parallel, and then some communications take place. This
scheme encompasses a broad spectrum of scientific computations, from mesh
based solvers to signal processing, and image processing algorithms. An abstract
view of the problem is the following: the iterative algorithm repeatedly operates
on a rectangular matrix of data samples. This matrix is split into vertical slices
that are allocated to the computing resources. At each step of the algorithm,
the slices are updated locally, and then boundary information is exchanged be-
tween consecutive slices. This geometrical constraint advocates that processors
be organized as a virtual ring. Then each processor only communicates twice,
once with its predecessor in the ring, and once with its successor. There is no
reason to restrict to a uni-dimensional partitioning of the data, and to map it
onto a uni-dimensional ring of processors. But uni-dimensional partitionings are
very natural for most applications, and we show that finding the optimal one is
already very difficult.

The target architecture is a fully heterogeneous cluster, composed of different-
speed processors that communicate through links of different bandwidths. On
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the architecture side, the problem is twofold: (i) select the processors that par-
ticipate in the solution and decide for their ordering (which defines the ring);
(ii) assign communication routes between each pair of consecutive processors in
the ring. One major difficulty of this ring embedding process is that some of the
communication routes will (most probably) have to share some physical com-
munication links: indeed, the communication networks of heterogeneous clusters
typically are far from being fully connected. If two or more routes share the same
physical link, we have to decide which fraction of the link bandwidth is assigned
to each route. Once the ring and the routing have been decided, there remains
to determine the best partitioning of the application data. Clearly, the quality
of the final solution depends on many application and architecture parameters.

Section 2, is devoted to the precise and formal specification of our optimiza-
tion problem, denoted as SharedRing. We show that the associated decision
problem is NP-complete. Then, section 3 deals with the design of polynomial-
time heuristics to solve the SharedRing problem. We report some experimental
data in Section 4. Finally, we state some concluding remarks in Section 5. Due
to the lack of space, we refer the reader to [6] for a survey of related papers.

2 Framework

2.1 Modeling the Platform Graph

Computing costs. The target computing platform is modeled as a directed graph
G = (P, E). Each node Pi in the graph, 1 ≤ i ≤ |P | = p, models a computing
resource, and is weighted by its relative cycle-time wi: Pi requires wi time-
steps to process a unit-size task. Of course the absolute value of the time-unit
is application-dependent, what matters is the relative speed of one processor
versus the other.

Communication costs. Graph edges represent communication links and are la-
beled with available bandwidths. If there is an oriented link e ∈ E from Pi to
Pj , be denotes the link bandwidth. It takes L/be time-units to transfer one mes-
sage of size L from Pi to Pj using link e. When several messages share the link,
each of them receives a fraction of the available bandwidth. The fractions of the
bandwidth allocated to the messages can be freely determined by the user, ex-
cept that the sum of all these fractions cannot exceed the total link bandwidth.
The eXplicit Control Protocol XCP [5] does enable to implement a bandwidth
allocation strategy that complies with our hypotheses.

Routing. We assume we can freely decide how to route messages between proces-
sors. Assume we route a message of size L from Pi to Pj , along a path composed
of k edges e1, e2, . . . , ek. Along each edge em, the message is allocated a fraction
fm of the bandwidth bem . The communication speed along the path is bounded
by the link allocating the smallest bandwidth fraction: we need L/b time-units
to route the message, where b = min1≤m≤k fm. If several messages simultane-
ously circulate on the network and happen to share links, the total bandwidth
capacity of each link cannot be exceeded.
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Application parameters: computations. W is the total size of the work to be
performed at each step of the algorithm. Processor Pi performs a share αi.W ,
where αi ≥ 0 and

∑p
i=1 αi = 1. We allow αj = 0, meaning that processor Pj

do not participate: adding more processors induces more communications which
can slow down the whole process, despite the increased cumulated speed.

Application parameters: communications in the ring. We arrange the participat-
ing processors along a ring. After updating its data slice, each active processor
sends a message of fixed length H to its successor. To illustrate the relation-
ship between W and H, we can view the original data matrix as a rectangle
composed of W columns of height H, so that one single column is exchanged
between consecutive processors in the ring.

Let succ(i) and pred(i) denote the successor and the predecessor of Pi in the
virtual ring. There is a communication path Si from Pi to Psucc(i) in the network:
let si,m be the fraction of the bandwidth bem of the physical link em that is
allocated to the path Si. If a link er is not used in the path, then si,r = 0. Let
ci,succ(i) = 1

minem∈Si
si,m

: Pi requires H.ci,succ(i) time-units to send its message of
size H to its successor Psucc(i). Similarly, we define the path Pi from Pi to Ppred(i),
the bandwidth fraction pi,m of em allocated to Pi, and ci,pred(i) = 1

minem∈Pi
pi,m

.

Objective function. The total cost of one step in the iterative algorithm is the
maximum, over all participating processors (whose set is denoted P), of the time
spent computing and communicating:

Tstep = max
Pi∈P

(
αi.W.wi + H.(ci,pred(i) + ci,succ(i))

)
.

In summary, the goal is to determine the best way to select q processors out of
the p available, to assign them computational workloads, to arrange them along
a ring, and to share the network bandwidth so that Tstep is minimized.

2.2 The SharedRing Optimization Problem

Definition 1 (SharedRing(G,W ,H)). Given p processors Pi of cycle-times
wi and |E| communication links em of bandwidth bem , given the total workload
W and the communication volume H at each step, minimize

Tstep =min
1≤q≤p

min
σ∈Θq,p∑q
i=1 ασ(i)=1

max
1≤i≤q

(
ασ(i).W.wσ(i)+H.(cσ(i),σ(i−1 mod q)+cσ(i),σ(i+1 mod q))

)

(1)

In Equation (1), Θq,p denotes the set of one-to-one functions σ : [1..q] → [1..p]
which index the q selected processors that form the ring, for all candidate values
of q between 1 and p. For each candidate ring represented by such a σ function,
there are constraints hidden by the introduction of the quantities cσ(i),σ(i−1 mod q)
and cσ(i),σ(i+1 mod q), which we gather now. There are 2q communicating paths:
the path Si from Pσ(i) to its successor Psucc(σ(i)) = Pσ(i+1 mod q) and the path Pi
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from Pσ(i) to its predecessor Ppred(σ(i)) = Pσ(i−1 mod q), for 1 ≤ i ≤ q. For each
link em in the interconnection network, let sσ(i),m (resp. pσ(i),m) be the fraction
of the bandwidth bem that is allocated to the path Sσ(i) (resp. Pσ(i)). We have
the equations:
{

1≤ i≤q, 1≤m≤E, sσ(i),m ≥0, pσ(i),m ≥0,
∑q

i=1(sσ(i),m + pσ(i),m)≤bem

1≤ i≤q, cσ(i),succ(σ(i)) = 1
minem∈Sσ(i) sσ(i),m

, cσ(i),pred(σ(i)) = 1
minem∈Pσ(i) pσ(i),m

Since each communicating path Sσ(i) or Pσ(i) will typically involve a few edges,
most of the quantities sσ(i),m and pσ(i),m will be zero. In fact, we have written
em ∈ Sσ(i) if the edge em is actually used in the path Sσ(i), i.e. if si,m is not
zero (and similarly, em ∈ Pσ(i) if pi,m is not zero). Note that, when q and σ are
known, the whole system of (in)equations is quadratic in the unknowns αi, si,j ,
and pi,j (we explicit this system on an example in [6]).

From Equation (1), we see that the optimal solution involves all processors
as soon as the ratio W

H is large enough: then the impact of the communications
becomes small in front of the cost of the computations, and the computations
should be distributed to all resources. Even in that case, we have to decide how
to arrange the processors along a ring, to construct the communicating paths,
to assign bandwidths ratios and to allocate data chunks. Extracting the “best”
ring seems to be a difficult combinatorial problem.

2.3 Complexity

The following result states the intrinsic difficulty of the SharedRing problem
(see [6] for the proof):

Theorem 1. The decision problem associated to the SharedRing optimization
problem is NP-complete.

3 Heuristics

We describe, in three steps, a polynomial-time heuristic to solve SharedRing:
(i) the greedy algorithm used to construct a solution ring; (ii) the strategy used to
assign bandwidth fractions during the construction; and (iii) a final refinement.

3.1 Ring Construction

We consider a solution ring involving q processors, numbered from P1 to Pq.
Ideally, all these processors should require the same amount of time to compute
and communicate: otherwise, we would slightly decrease the computing load of
the last processor and assign extra work to another one (we are implicitly using
the “divisible load” framework [6]). Hence (see Figure 1) we have for all i (indices
being taken modulo q):

Tstep = αi.W.wi + H.(ci,i−1 + ci,i+1). (2)
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Fig. 1. Summary of computation and communication times with q = 5 processors.

Since
∑q

i=1 αi = 1,
∑q

i=1
Tstep−H.(ci,i−1+ci,i+1)

W.wi
= 1. With wcumul = 1∑q

i=1
1

wi

:

Tstep = W.wcumul

(

1 +
H

W

q∑

i=1

ci,i−1 + ci,i+1

wi

)

(3)

We use Equation (3) as a basis for a greedy algorithm which grows a solution
ring iteratively, starting with the best pair of processors. Then, it iteratively
includes a new node in the current solution ring. Assume we already have a
ring of r processors. We search where to insert each remaining processor Pk in
the current ring: for each pair of successive processors (Pi, Pj) in the ring, we
compute the cost of inserting Pk between Pi and Pj . We retain the processor
and pair that minimize the insertion cost. To compute the cost of inserting Pk

between Pi and Pj , we resort to another heuristic to construct communicating
paths and allocate bandwidth fractions (see Section 3.2) in order to compute the
new costs ck,j (path from Pk to its successor Pj), cj,k, ck,i, and ck,i. Once we
have these costs, we can compute the new value of Tstep as follows:

– We update wcumul by adding the new processor Pk into the formula.
– In

∑r
s=1

cσ(s),σ(s−1)+cσ(s),σ(s+1)

wσ(s)
, we suppress the terms corresponding to the

paths between Pi to Pj and we insert the new terms ck,j+ck,i

wk
, cj,k

wj
and ci,k

wi
.

This step of the heuristic has a complexity proportional to (p − r).r times the
cost to compute four communicating paths. Finally, we grow the ring until we
have p processors. We return the minimal value obtained for Tstep. The total
complexity is

∑p
r=1(p − r)rC = O(p3)C, where C is the cost of computing four

paths in the network. Note that it is important to try all values of r, because
Tstep may not vary monotonically with r (for instance, see Figure 5).

3.2 Bandwidth Allocation

We now assume we have a r-processor ring, a pair (Pi, Pj) of successive processors
in the ring, and a new processor Pk to be inserted between Pi and Pj . Together
with the ring, we have built 2r communicating paths to which a fraction of the
initial bandwidth has been allocated. To build the new four paths involving Pk,
we use the graph G = (P, E, b) where b(em) is what has been left by the 2r paths



Load-Balancing Iterative Computations on Heterogeneous Clusters 935

of the bandwidth of edge em. First we re-inject the bandwidths fractions used by
the communication paths between Pi and Pj . Then to determine the four paths,
from Pk to Pi and Pj and vice-versa:

– We independently compute four paths of maximal bandwidth, using a stan-
dard shortest path algorithm in G.

– If some paths happen to share some links, we use an analytical method to
compute the bandwidth fractions minimizing Equation 3 to be allocated.

Then we can compute the new value of Tstep as explained above, and derive the
values of the αi. Computing four paths in the network costs C = O(p + |E|).

Fig. 2. Boxed nodes are computing nodes: there are 37 of them, connected through 47
routers, and 91 communication links.
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3.3 Refinements

Schematically, the heuristic greedily grows a ring by peeling off the bandwidths
to insert new processors. To diminish the cost of the heuristic, we never re-
calculate the bandwidth fractions that have been previously assigned. When the
heuristic ends, we have a q-processor ring, q workloads, 2q communicating paths,
bandwidth fractions and communication costs for these paths, and a feasible
value of Tstep. As the heuristic could appear over-simplistic, we have implemented
two variants aimed at refining its solution. The idea is to keep everything but the
bandwidth fractions and workloads. Once we have selected the processor and the
pair minimizing the insertion cost in the current ring, we perform the insertion
and recompute all the bandwidth fractions and workloads. We can re-evaluate
bandwidth fractions using a global approach (see [6] for details):

Method 1: Max-min fairness. We compute first the bandwidths fractions
using the traditional bandwidth-sharing algorithm [1] maximizing the mini-
mum bandwidth allocated to a path, then the αi so as to equate all execution
times (computations followed by communications), thereby minimizing Tstep.

Method 2: Quadratic resolution. Once we have a ring and all the commu-
nicating paths, the program to minimize Tstep is quadratic in the unknowns
αi, si,j and pi,j . We use the KINSOL library [7] to numerically solve it.

4 Experimental Results

4.1 Platform Description

We experimented with two platforms generated with the Tiers network genera-
tor [3]. Due to lack of space, and as the results are equivalent, we only report on
the first platform. All results can be found in [6]. The Tiers generator produces
graphs having three levels of hierarchy (LAN, MAN, and WAN). The platforms
are generated by selecting about 30% of the LAN nodes (the boxed nodes in Fig-
ure 2) which are the computing nodes: the other nodes are simple routers. The
processing powers of the computing nodes are randomly chosen in a list corre-
sponding to the processing powers (evaluated using a LINPACK benchmark [2])
of a wide variety of machines. The link capacities are assigned, using the classi-
fication of the Tiers generator (LAN, MAN, and WAN), with values measured
by pathchar [4] between machines scattered in France, USA, and Japan.
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4.2 Results

Figure 3 plots the number of processors used in the solution ring. As expected,
this number decreases as the ratio H/W increases: additional computational
power does not pay off the communication overhead. Figure 5 presents the nor-
malized execution time as a function of the size of the solution ring for various
communication-to-computation ratios: the optimal size is reached with fewer
processors as the ratio increases. Finally, we try to assess the usefulness of the
two variants introduced to refine the heuristic (Figure 4). Surprisingly enough,
the impact of both variants is not significant: the best gain is 3%. Thus the plain
version of the heuristic turns out to be both low-cost and efficient.

5 Conclusion

The major limitation to programming heterogeneous platforms arises from the
additional difficulty of balancing the load. Data and computations are not evenly
distributed to processors. Minimizing communication overhead becomes a chal-
lenging task. In this paper, the major emphasis was towards a realistic modeling
of concurrent communications in cluster networks. One major result is the NP-
completeness of the SharedRing problem. Rather than the proof, the result
itself is interesting, because it provides yet another evidence of the intrinsic diffi-
culty of designing heterogeneous algorithms. But this negative result should not
be over-emphasized. Indeed, another important contribution of this paper is the
design of an efficient heuristic, that provides a pragmatic guidance to the de-
signer of iterative scientific computations. Implementing such computations on
commodity clusters made up of several heterogeneous resources is a promising
alternative to using costly supercomputers.
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