
Data Redistribution Algorithms for
Homogeneous and Heterogeneous Processor

Rings

Hélène Renard, Yves Robert, and Frédéric Vivien

LIP, UMR CNRS-INRIA-UCBL 5668
ENS Lyon, France

{Helene.Renard, Yves.Robert, Frederic.Vivien}@ens-lyon.fr

Abstract. We consider the problem of redistributing data on homoge-
neous and heterogeneous processor rings. The problem arises in several
applications, each time after a load-balancing mechanism is invoked (but
we do not discuss the load-balancing mechanism itself). We provide al-
gorithms that aim at optimizing the data redistribution, both for uni-
directional and bi-directional rings. One major contribution of the paper
is that we are able to prove the optimality of the proposed algorithms
in all cases except that of a bi-directional heterogeneous ring, for which
the problem remains open.

1 Introduction

In this paper, we consider the problem of redistributing data on homogeneous
and heterogeneous rings of processors. The problem typically arises when a
load balancing phase must be initiated. Because either of variations in the
resource performances (CPU speed, communication bandwidth) or in the sys-
tem/application requirements (completed tasks, new tasks, migrated tasks, etc.),
data must be redistributed between participating processors so that the current
(estimated) load is better balanced. We do not discuss the load-balancing mech-
anism itself: we take it as external, be it a system, an algorithm, an oracle, or
whatever. Rather we aim at optimizing the data redistribution induced by the
load-balancing mechanism.

We adopt the following abstract view of the problem. There are n participat-
ing processors P1, P2, . . . , Pn. Each processor Pk initially holds Lk atomic data
items. The load-balancing system/algorithm/oracle has decided that the new
load of Pk should be Lk − δk. If δk > 0, this means that Pk now is overloaded
and should send δk data items to other processors; if δk < 0, Pk is under-loaded
and should receive −δk items from other processors. Of course there is a conser-
vation law:

∑n
k=1 δk = 0. The goal is to determine the required communications

and to organize them (what we call the data redistribution) in minimal time.
We assume that the participating processors are arranged along a ring, either

unidirectional or bidirectional, and either with homogeneous or heterogeneous
link bandwidths, hence a total of four different frameworks to deal with. There

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 123–132, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

124 H. Renard, Y. Robert, and F. Vivien

are two main contexts in which processor rings are useful. The first context is
those of many applications which operate on ordered data, and where the order
needs to be preserved. Think of a large matrix whose columns are distributed
among the processors, but with the condition that each processor operates on
a slice of consecutive columns. An overloaded processor Pi can send its first
columns to the processor Pj that is assigned the slice preceding its own slice;
similarly, Pi can send its last columns to the processor which is assigned the
next slice; obviously, these are the only possibilities. In other words, the ordered
uni-dimensional data distribution calls for a uni-dimensional arrangement of the
processors, i.e., along a ring.

The second context that may call for a ring is the simplicity of the program-
ming. Using a ring, either uni- or bi-directional, allows for a simpler management
of the data to be redistributed. Data intervals can be maintained and updated to
characterize each processor load. Finally, we observe that parallel machines with
a rich but fixed interconnection topology (hypercubes, fat trees, grids, to quote
a few) are on the decline. Heterogeneous cluster architectures, which we target
in this paper, have a largely unknown interconnection graph, which includes
gateways, backbones, and switches, and modeling the communication graph as
a ring is a reasonable, if conservative, choice.

As stated above, we discuss four cases for the redistribution algorithms. In the
simplest case, that of a unidirectional homogeneous ring, we derive an optimal
algorithm. Because the target architecture is quite simple, we are able to provide
explicit (analytical) formulas for the number of data sent/received by each pro-
cessor. The same holds true for the case of a bidirectional homogeneous ring, but
the algorithm becomes more complicated. When assuming heterogeneous com-
munication links, we still derive an optimal algorithm for the unidirectional case,
but we have to use an asynchronous formulation. However, we have to resort to
heuristics based upon linear programming relaxation for the bidirectional case.
We point out that one major contribution of the paper is the design of optimal
algorithms, together with their formal proof of correctness: to the best of our
knowledge, this is the first time that optimal algorithms are introduced.

Due to the lack of space, the detailed proofs of correctness and optimality of
the algorithms are not provided: please see the extended version [6]. Similarly,
please refer to [6] for a survey of related work.

2 Framework

We consider a set of n processors P1, P2, . . . , Pn arranged along a ring. The
successor of Pi in the ring is Pi+1, and its predecessor is Pi−1, where all indices
are taken modulo n. For 1 ≤ k, l ≤ n, Ck,l denotes the slice of consecutive
processors Ck,l = Pk, Pk+1, . . . , Pl−1, Pl.

We denote by ci,i+1 the capacity of the communication link from Pi to Pi+1.
In other words, it takes ci,i+1 time-units to send a data item from processor Pi

to processor Pi+1. In the case of a bidirectional ring, ci,i−1 is the capacity of the
link from Pi to Pi−1. We use the one-port model for communications: at any

Data Redistribution Algorithms 125

given time, there are at most two communications involving a given processor,
one sent and the other received. A given processor can simultaneously send and
receive data, so there is no restriction in the unidirectional case; however, in
the bidirectional case, a given processor cannot simultaneously send data to its
successor and its predecessor; neither can it receive data from both sides. This
is the only restriction induced by the model: any pair of communications that
does not violate the one-port constraint can take place in parallel.

Each processor Pk initially holds Lk atomic data items. After redistribution,
Pk will hold Lk−δk atomic data items. We call δk the imbalance of Pk. We denote
by δk,l the total imbalance of the processor slice Ck,l: δk,l = δk + δk+1 + . . . +
δl−1 + δl. Because of the conservation law of atomic data items,

∑n
k=1 δk = 0.

Obviously the imbalance cannot be larger than the initial load: Lk ≥ δk. In fact,
we suppose that any processor holds at least one data, both initially (Lk ≥ 1)
and after the redistribution (Lk ≥ 1 + δk): otherwise we would have to build a
new ring from the subset of resources still involved in the computation.

3 Homogeneous Unidirectional Ring

In this section, we consider a homogeneous unidirectional ring. Any processor Pi

can only send data items to its successor Pi+1, and ci,i+1 = c for all i ∈ [1, n]. We
first derive a lower bound on the running time of any redistribution algorithm.
Then, we present an algorithm achieving this bound (hence optimal), and we
prove its correctness.

Lemma 1. Let τ be the optimal redistribution time. Then:

τ ≥
(

max
1≤k≤n, 0≤l≤n−1

|δk,k+l|
)

× c.

Proof. The processor slice Ck,k+l = Pk, Pk+1, . . . , Pk+l−1, Pk+l has a total im-
balance of δk,k+l = δk +δk+1+ . . .+δk+l−1+δk+l. If δk,k+l > 0, δk,k+l data items
must be sent from Ck,k+l to the other processors. The ring is unidirectional, so
Pk+l is the only processor in Ck,k+l with an outgoing link. Furthermore, Pk+l

needs a time equal to δk,k+l ×c to send δk,k+l data items. Therefore, in any case,
a redistribution scheme cannot take less than δk,k+l × c to redistribute all data
items. We have the same type of reasoning for the case δk,k+l < 0.

Theorem 1. Algorithm 1 is optimal.

4 Heterogeneous Unidirectional Ring

In this section we still suppose that the ring is unidirectional but we no longer
assume the communication paths to have the same capacities. We build on the
results of the previous section to design an optimal algorithm (Algorithm 2 be-
low). In this algorithm, the amount of data items sent by any processor Pi is

126 H. Renard, Y. Robert, and F. Vivien

Algorithm 1 Redistribution algorithm for homogeneous unidirectional rings
1: Let δmax = (max1≤k≤n,0≤l≤n−1 |δk,k+l|)
2: Let start and end be two indices such that the slice Cstart,end is of maximal im-

balance: δstart,end = δmax.
3: for s = 1 to δmax do
4: for all l = 0 to n − 1 do
5: if δstart,start+l ≥ s then
6: Pstart+l sends to Pstart+l+1 a data item during the time interval [(s − 1) ×

c, s × c[

exactly the same as in Algorithm 1 (namely δstart,i). However, as the communi-
cation links have different capabilities, we no longer have a synchronous behavior.
A processor Pi sends its δstart,i data items as soon as possible, but we cannot
express its completion time with a simple formula. Indeed, if Pi initially holds
more data items than it has to send, we have the same behavior than previously:
Pi can send its data items during the time interval [0, δstart,i × ci,i+1[. On the
contrary, if Pi holds less data items than it has to send (Li < δstart,i), Pi still
starts to send some data items at time 0 but may have to wait to have received
some other data items from Pi−1 to be able to forward them to Pi+1.

Algorithm 2 Redistribution algorithm for heterogeneous unidirectional rings
1: Let δmax = (max1≤k≤n,0≤l≤n−1 |δk,k+l|)
2: Let start and end be two indices such that the slice Cstart,end is of maximal im-

balance: δstart,end = δmax.
3: for all l = 0 to n − 1 do
4: Pstart+l sends δstart,start+l data items one by one and as soon as possible to

processor Pstart+l+1

The asynchronousness of Algorithm 2 implies that it is correct by construc-
tion: we wait for receiving a data item before sending. Furthermore, when the
algorithm terminates, the redistribution is complete.

Lemma 2. The running time of Algorithm 2 is

max
0≤l≤n−1

δstart,start+l × cstart+l,start+l+1.

The result of Lemma 2 is surprising. Intuitively, it says that the running time
of Algorithm 2 is equal to the maximum of the communication times of all the
processors, if each of them initially stored locally all the data items it will have
to send throughout the execution of the algorithm. In other words, there is no
forwarding delay, whatever the initial distribution.

Theorem 2. Algorithm 2 is optimal.

Data Redistribution Algorithms 127

5 Homogeneous Bidirectional Ring

In this section, we consider a homogeneous bidirectional ring. All links have the
same capacity but a processor can send data items to its two neighbors in the
ring: there exists a constant c such that, for all i ∈ [1, n], ci,i+1 = ci,i−1 = c.
We proceed as for the homogeneous unidirectional case: we first derive a lower
bound on the running time of any redistribution algorithm, and then we present
an algorithm achieving this bound.

Lemma 3. Let τ be the optimal redistribution time. Then:

τ ≥ max
{

max
1≤i≤n

|δi|, max
1≤i≤n,1≤l≤n−1

⌈ |δi,i+l|
2

⌉}
× c. (1)

The new (rightmost) term in this lower bound just states that a slice of pro-
cessor can send (or receive) simultaneously at most two data items. Algorithm 3
is a recursive algorithm which defines communication patterns designed so as to
decrease the value of δmax (computed at Step 1) by one from one recursive call
to another. The intuition behind Algorithm 3 is the following:

1. Any non trivial slice Ck,l such that � |δk,l|
2 � = δmax and δk,l ≥ 0 must send

two data items per recursive call, one through each of its extremities.

2. Any non trivial slice Ck,l such that � |δk,l|
2 � = δmax and δk,l ≤ 0 must receive

two data items per recursive call, one through each of its extremities.
3. Once the mandatory communications specified by the two previous cases

are defined, we take care of any processor Pi such that |δi| = δmax. If Pi is
already involved in a communication due to the previous cases, everything
is settled. Otherwise, we have the freedom to choose whom Pi will send a
data item to (case δi > 0) or whom Pi will receive a data item from (case
δi < 0). To simplify the algorithm we decide that all these communications
will take place in the direction from Pi to Pi+1.

Algorithm 3 is initially called with the parameter s = 1. For any call to
Algorithm 3, all the communications take place in parallel and exactly at the
same time, because the communication paths are homogeneous by hypothesis.
One very important point about Algorithm 3 is that this algorithm is a set of
rules which only specify which processor Pi must send a data item to which
processor Pj , one of its immediate neighbors. Therefore, whatever the number
of rules deciding that there must be some data item sent from a processor Pi to
one of its immediate neighbor Pj , only one data item is sent from Pi to Pj to
satisfy all these rules.

Theorem 3. Algorithm 3 is optimal.

128 H. Renard, Y. Robert, and F. Vivien

Algorithm 3 Redistribution algorithm for homogeneous bidirectional rings (for
step s)

1: Let δmax = max{max1≤i≤n |δi|, max1≤i≤n,1≤l≤n−1� |δi,i+l|
2 �}

2: if δmax ≥ 1 then
3: if δmax �= 2 then
4: for all slice Ck,l such that δk,l > 1 and � |δk,l|

2 � = δmax do
5: Pk sends a data item to Pk−1 during the time interval [(s − 1) × c, s × c[.
6: Pl sends a data item to Pl+1 during the time interval [(s − 1) × c, s × c[.
7: for all slice Ck,l such that δk,l < −1 and � |δk,l|

2 � = δmax do
8: Pk−1 sends a data item to Pk during the time interval [(s − 1) × c, s × c[.
9: Pl+1 sends a data item to Pl during the time interval [(s − 1) × c, s × c[.

10: else if δmax = 2 then
11: for all slice Ck,l such that δk,l ≥ 3 do
12: Pl sends a data item to Pl+1 during the time interval [(s − 1) × c, s × c[.
13: for all slice Ck,l such that δk,l = 4 do
14: Pk sends a data item to Pk−1 during the time interval [(s − 1) × c, s × c[.
15: for all slice Ck,l such that δk,l ≤ −3 do
16: Pk−1 sends a data item to Pk during the time interval [(s − 1) × c, s × c[.
17: for all slice Ck,l such that δk,l = −4 do
18: Pl+1 sends a data item to Pl during the time interval [(s − 1) × c, s × c[.
19: for all processor Pi such that δi = δmax do
20: if Pi is not already sending, due to one of the previous steps, a data item

during the time interval [(s − 1) × c, s × c[then
21: Pi sends a data item to Pi+1 during the time interval [(s − 1) × c, s × c[.
22: for all processor Pi such that δi = −(δmax) do
23: if Pi is not already receiving, due to one of the previous steps, a data item

during the time interval [(s − 1) × c, s × c[then
24: Pi receives a data item from Pi−1 during the time interval [(s−1)×c, s×c[.
25: if δmax = 1 then
26: for all processor Pi such that δi = 0 do
27: if Pi−1 sends a data item to Pi during the time interval [(s − 1) × c, s × c[

then
28: Pi sends a data item to Pi+1 during the time interval [(s − 1) × c, s × c[.
29: if Pi+1 sends a data item to Pi during the time interval [(s − 1) × c, s × c[

then
30: Pi sends a data item to Pi−1 during the time interval [(s − 1) × c, s × c[.
31: Recursive call to Algorithm 3 (s + 1)

6 Heterogeneous Bidirectional Ring

In this section, we consider the most general case, that of a heterogeneous bidi-
rectional ring. We do not know any optimal redistribution algorithm in this case.
However, if we assume that each processor initially holds more data than it needs
to send during the whole execution of the redistribution (what we call a light
redistribution), then we succeed in deriving an optimal solution.

Data Redistribution Algorithms 129

Throughout this section, we suppose that we have a light redistribution: we
assume that the number of data items sent by any processor throughout the
redistribution algorithm is less than or equal to its original load. There are two
reasons for a processor Pi to send data: (i) because it is overloaded (δi > 0); (ii)
because it has to forward some data to another processor located further in the
ring. If Pi initially holds at least as many data items as it will send during the
whole execution, then Pi can send at once all these data items. Otherwise, in
the general case, some processors may wait to have received data items from a
neighbor before being able to forward them to another neighbor.

Under the “light redistribution” assumption, we can build an integer linear
program to solve our problem (see System 2). Let S be a solution, and denote
by Si,i+1 the number of data items that processor Pi sends to processor Pi+1.
Similarly, Si,i−1 is the number of data items that Pi sends to processor Pi−1. In
order to ease the writing of the equations, we impose in the first two equations
of System 2 that Si,i+1 and Si,i−1 are nonnegative for all i, which imposes to
use other variables Si+1,i and Si−1,i for the symmetric communications. The
third equation states that after the redistribution, there is no more imbalance.
We denote by τ the execution time of the redistribution. For any processor Pi,
due to the one-port constraints, τ must be greater than the time spent by Pi

to send data items (fourth equation) or spent by Pi to receive data items (fifth
equation). Our aim is to minimize τ , hence the system:

Minimize τ, subject to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Si,i+1 ≥ 0 1 ≤ i ≤ n
Si,i−1 ≥ 0 1 ≤ i ≤ n
Si,i+1 + Si,i−1 − Si+1,i − Si−1,i = δi 1 ≤ i ≤ n
Si,i+1ci,i+1 + Si,i−1ci,i−1 ≤ τ 1 ≤ i ≤ n
Si+1,ici+1,i + Si−1,ici−1,i ≤ τ 1 ≤ i ≤ n

(2)

Lemma 4. Any optimal solution of System 2 is feasible, for example using the
following schedule: for any i ∈ [1, n], Pi starts sending data items to Pi+1 at time
0 and, after the completion of this communication, starts sending data items to
Pi−1 as soon as possible under the one-port model.

We use System 2 to find an optimal solution to the problem. If, in this
optimal solution, for any processor Pi, the total number of data items sent is
less than or equal to the initial load (Si,i+1 + Si,i−1 ≤ Li), we are under the
“light redistribution” hypothesis and we can use the solution of System 2 safely.
But even if the “light redistribution” hypothesis holds, one may wish to solve
the redistribution problem with a technique less expensive than integer linear
programming (which is potentially exponential). An idea would be to first solve
System 2 to find an optimal rational solution, which can always be done in
polynomial time, and then to round up the obtained solution to find a “good”
integer solution. In fact, it turns out that one of the two natural ways of rounding
always lead to an optimal (integer) solution [6]. The complexity of the light
redistribution problem is therefore polynomial.

130 H. Renard, Y. Robert, and F. Vivien

If we no longer assume the light redistribution hypothesis, we can still derive
a lower bound, and use some heuristics [6]. However, we point out that the
design of an optimal algorithm in the most general case remains open. Given the
complexity of the lower bound, the problem looks very difficult to solve.

7 Experimental Results

To evaluate the impact of the redistributions, we used the SimGrid [5] simulator
to model an iterative application, implemented on a platform generated with the
Tiers network generator [2, 3]. We use the platform represented in Figure 1. The
capacities of the edges are assigned using the classification of the Tiers generator
(local LAN link, LAN/MAN link, MAN/WAN link,. . .). For each link type, we
use values measured using pathchar [4] between some machines in ENS Lyon
and some other machines scattered in France (Strasbourg, Lille, Grenoble, and
Orsay), in the USA (Knoxville, San Diego, and Argonne), and in Japan (Nagoya
and Tokyo).

We randomly select p processors in the platform to build the execution ring.
The communication speed is given by the slowest link in the route from a pro-
cessor to its successor (or predecessor) in the ring. The processing powers (CPU
speeds) of the nodes are first randomly chosen in a list of values corresponding
to the processing powers (expressed in MFlops and evaluated thanks to a bench-
mark taken from LINPACK [1]) of a wide variety of machines. But we make
these speeds vary during the execution of the application.

We model an iterative application which executes during 100 iterations. At
each iteration, independent data are updated by the processors. We may think
of a m × n data matrix whose columns are distributed to the processors (we use
n = m = 1000 in the experiment). Ideally, each processor should be allocated a
number of columns proportional to its CPU speed. This is how the distribution
of columns to processors is initialized. To motivate the need for redistributions,
we create an imbalance by letting the CPU speeds vary during the execution.
The speed of each processor changes two times, first at some iteration randomly
chosen between iterations number 20 and 40, and then at some iteration ran-
domly chosen between iterations number 60 and 80 for each node (see Figure 2
for an illustration). We record the values of each CPU speed in a SimGrid trace.

In the simulations, we use the heterogeneous bidirectional algorithm for light
redistributions, and we test five different schemes, each with a given number of
redistributions within the 100 iterations. The first scheme has no redistribution
at all. The second scheme implements a redistribution after iteration number 50.
The third scheme uses four redistributions, after iterations 20, 40, 60 and 80.
The fourth scheme uses 9 redistributions, implemented every 10 iterations, and
the last one uses 19 redistributions, implemented every 5 iterations. Given the
shape of the CPU traces, some redistributions are likely to be beneficial during
the execution. The last parameter to set is the computation-to-communication
ratio, which amounts to set the relative (average) cost of a redistribution versus
the cost of an iteration. When this parameter increases, iterations take more
time, and the usefulness of a redistribution becomes more important.

Data Redistribution Algorithms 131

Jacquelin

Boivin
Ethernet

Louis

St_Bruno

Jean_Yves

TeX

Geoff

Wright

Rubin
Lachapelle

Disney

iRMX

McGee Jamie

Kansas

Drouin

Gatien

Laroche

Marcoux

Pointe_Claire

Robert

Europe

Tanguay

Morin

Bellemarre

St_Jean

Lessard

Fraser

Kuenning

Gaston

Harry

Bousquet

Paul

Jill

LaTeX

Fafard

Marcel

Jackson

Victoria

Julien

Doyon

Fernand

Soucy

Ste_Julie

Browne

Florient

Gavrel

Bescherelle

Pierre

Olivier

Boucherville

Jocelyne

Croteau

King

Lapointe

Audy

Papineau

Dodge

Julian

SPICE

Lafontaine

Gordon

Juneau

Stephen

Provost

Casavant

St_Antoine

Varennes

St_Paul

Mathematica

Sirois

Monique

Bourassa

OHara

Boston

SunOS

Jacques Thierry

kV Intel

Yolande

Pronovost

Roy

Amadeus

Cambridge

Tremblay

UNIX

Domey

Jean_Claude

36

39

34

32

6

8

3

23

24

262

7

51

27

15

14

16

60

18

75

70

17

50

52

53

59

57

58

25

21

0

42

5

145

45

47

46

20

100

31

40

44

140

155

22

Fig. 1. The platform is composed of 90
machine nodes, connected through 192
communication links

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

P
ro

ce
ss

in
g

po
w

er
s

Number of iterations

Processor Amadeus
Processor Cambridge

Fig. 2. Processing power of 2 sample
machine nodes

 30

 35

 40

 45

 50

 55

 60

 65

 70

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
tim

e
in

 s
ec

.

Computation-to-communication ratio

no redistribution
1 redistribution

4 redistributions
9 redistributions

19 redistributions

Fig. 3. Normalized execution time as a function of the computation-to-communication
ratio, for a ring of 8 processors

In Figures 3 and 4, we plot the execution time of different computation
schemes. Both figures report the same comparisons, but for different ring sizes:
we use 8 processors in Figures 3, and 32 in Figures 4. As expected, when the
processing power is high (ratio = 10 in the figures), the best strategy is to use
no redistribution, as their cost is prohibitive. Conversely, when the processing
power is low (ratio = 1 in the figures), it pays off to uses many redistributions,
but not too many! As the ratio increases, all tradeoffs can be found.

8 Conclusion

In this paper, we have considered the problem of redistributing data on rings
of processors. For homogeneous rings the problem has been completely solved.
Indeed, we have designed optimal algorithms, and provided formal proofs [6]
of correctness, both for unidirectional and bidirectional rings. The bidirectional
algorithm turned out to be quite complex, and requires a lengthy proof [6].

132 H. Renard, Y. Robert, and F. Vivien

 35

 40

 45

 50

 55

 60

 65

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
tim

e
in

 s
ec

.

Computation-to-communication ratio

no redistribution
1 redistribution

4 redistributions
9 redistributions

19 redistributions

Fig. 4. Normalized execution time as a function of the ratio computation-to-
communication, for a ring of 32 processors

For heterogeneous rings there remains further research to be conducted. The
unidirectional case was easily solved, but the bidirectional case remains open. Still,
we have derived an optimal solution for light redistributions, an important case in
practice. The complexity of the bound provided for the general case shows that
designing an optimal algorithm is likely to be a difficult task.

All our algorithms have been implemented and extensively tested. We have
reported some simulation results for the most difficult combination, that of het-
erogeneous bi-directional rings. As expected, the cost of data redistributions may
not pay off a little imbalance of the work in some cases. Further work will aim at
investigating how frequently redistributions must occur in real-life applications.

References

1. R. P. Brent. The LINPACK Benchmark on the AP1000: Preliminary Re-
port. In CAP Workshop 91. Australian National University, 1991. Website
http://www.netlib.org/linpack/.

2. K. L. Calvert, M. B. Doar, and E. W. Zegura. Modeling internet topol-
ogy. IEEE Communications Magazine, 35(6):160–163, June 1997. Available at
http://citeseer.nj.nec.com/calvert97modeling.html.

3. M. Doar. A better model for generating test networks. In Proceedings of Globecom
’96, Nov. 1996. Available at http://citeseer.nj.nec.com/doar96better.html.

4. A. B. Downey. Using pathchar to estimate internet link characteristics. In Mea-
surement and Modeling of Computer Systems, pages 222–223, 1999. Available at
http://citeseer.nj.nec.com/downey99using.html.

5. A. Legrand, L. Marchal, and H. Casanova. Scheduling Distributed Applications: The
SimGrid Simulation Framework. In Proceedings of the Third IEEE International
Symposium on Cluster Computing and the Grid (CCGrid’03), May 2003.

6. H. Renard, Y. Robert, and F. Vivien. Data redistribution algorithms for heteroge-
neous processor rings. Research Report RR-2004-28, LIP, ENS Lyon, France, May
2004. Also available as INRIA Research Report RR-5207.

http://www.netlib.org/linpack/
http://citeseer.nj.nec.com/calvert97modeling.html
http://citeseer.nj.nec.com/doar96better.html
http://citeseer.nj.nec.com/downey99using.html

	Introduction
	Framework
	Homogeneous Unidirectional Ring
	Heterogeneous Unidirectional Ring
	Homogeneous Bidirectional Ring
	Heterogeneous Bidirectional Ring
	Experimental Results
	Conclusion

