
Parallel large scale inference of protein domain families

Daniel Kahn 2,3,4 Clément Rezvoy 1,3,5 Frédéric Vivien 2,3,5

1École normale supérieure de Lyon 2 INRIA 3 Université de Lyon
4LBBE, UMR 5558, UCBL – CNRS, Villeurbanne, FRANCE

5LIP, UMR 5668, ENS Lyon – CNRS – INRIA – UCBL, Lyon, FRANCE

Daniel.Kahn@inria.fr, {Clement.Rezvoy,Frederic.Vivien}@ens-lyon.fr

Abstract

The resolution of combinatorial assortments of protein

sequences into domains is a prerequisite for protein se-

quence interpretation. However the recognition and clus-

tering of homologous domains from sequence databases

typically scales quadratically with respect to their size

which grows exponentially, making it essential to paral-

lelize these complex bioinformatics applications. Here we

demonstrate the parallelization of MKDOM2, the sequen-

tial program that has been instrumental in the construc-

tion of the PRODOM database of protein domain families.

This was challenging because of (1) dependencies between

program iterations, (2) their extremely heterogeneous run

times and (3) communication bottlenecks that could arise

because of the large size of the data. A large scale test of the

new program, MPI MKDOM2, demonstrated its robustness

against heterogeneous run times, preparing the grounds for

future releases of PRODOM that would otherwise be out of

reach with MKDOM2 by several orders of magnitude.

Keywords: Bioinformatics, Grid computing, Sequence

clustering, Protein domains, Message passing.

1 Introduction

Proteins are often composed of independent and evo-

lutionarily conserved units called modules [8] or do-

mains [19], as illustrated in Figure 1. Indeed much of the

functional and structural diversity of proteins arises from

the combinatorial nature of these domain arrangements.

Understanding domain arrangements of proteins is there-

fore crucial for proper sequence annotation, providing the

grounds for rational protein engineering and genome se-

quence intepretation. Resolving protein domain arrange-

ments is also a prerequisite for protein classification, either

for bioinformatics purposes or for evolutionary studies.

Protein domains sharing a common evolutive history can

often be recognized by sequence similarity. Several meth-

ods have been proposed to identify and classify domains

following this principle. Databases such as Pfam [16] or

SMART [15] gather domain families compiled by manually

driven computational tools. Consequently, domain family

definitions found in these databases rest on human exper-

tise and experimental results such as structural information.

These databases are therefore regarded as closely matching

the “biological truth”. The construction of these databases,

however, requires expertise and experimental data which

render them unsuitable for the comprehensive processing

of the vast amount of protein sequence data available nowa-

days. Furthermore, the gap between these domain family

databases and the raw databases of protein sequences is con-

stantly widening as the size of the latter is increasing at an

exponential pace. For instance, the size of the Uniprot [21]

database doubles every two years 1. In addition, genome

and metagenome data have shown that the universe of pro-

tein families is very far from being completely represented

in the current data: their number still increases linearly as

a result of increased coverage of genome space [22]. Some

bioinformaticians have thus designed systems to fully au-

tomatically build domain family databases, such as EVER-

EST [13], ADDA [11] and PRODOM [17].

The PRODOM database [5, 17] aims at being a compre-

hensive repository of families of homologous domains built

by an automatic process based solely on sequence similar-

ity. PRODOM is built from all known protein sequences

available in the Uniprot database [21]. Since release 36 [6],

the PRODOM database has been successfully built using the

MKDOM2 algorithm [9]. This algorithm, however, is in-

herently a sequential and iterative algorithm, whose com-

plexity is quadratic in the size of the protein database pro-

cessed. Therefore, the exponential increase in processing

speed over the years is not sufficient to maintain the con-

struction time of PRODOM at a reasonable level. Indeed,

while MKDOM2 took 2 months in 2002 to build a new

version of PRODOM, it needed more than 15 months in

1Uniprot contained in 1.2 million of sequences in March 2004, 2.8 in

February 2006, and 5.7 in February 2008 [18]

2008 14th IEEE International Conference on Parallel and Distributed Systems

1521-9097/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPADS.2008.115

72

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

Figure 1. Example of the decomposition of

proteins into domains. Note that different

proteins may share homologous domains

symbolized here by different cartoons. The

functions of proteins (in this case transcrip-

tional activators) depends strongly on their

domain arrangements. This example was

taken from the ProDom database of protein

domain families [5].

2007. It has thus become impossible to produce new ver-

sions of PRODOM using the sequential MKDOM2 program.

In principle it could be possible to run incremental up-

dates by clustering homologous domains into pre-existing

PRODOM families and running MKDOM2 on the remain-

ing sequences, which would limit the computational cost

to O(n.∆n) when the relative increment ∆n/n is small.

However such a greedy incremental procedure would forbid

the re-examination of previously inferred domain families,

even in the light of contradictory new evidence. Moreover,

the increase in processor speed nowadays tends to slow

down and to be replaced by the multiplication of processor

cores. This trend effectively forces the design of parallel

versions of historically sequential programs, such as MK-

DOM2, in order to benefit from the potential gain in compu-

tational power.

We have thus designed a new parallel algorithm,

MPI MKDOM2, to build the PRODOM database. Our aim

in designing MPI MKDOM2 was twofold: 1) from the bio-

logical point of view we did not want to compromise on the

quality of the output, and thus decided to stay as close as

possible to the behavior of MKDOM2; 2) from the computer

science point of view we wanted an efficient distributed al-

gorithm capable of harnessing the processing power of clus-

ters or even Grids. Satisfying these two objectives appeared

to be contradictory because of the assumptions the MK-

DOM2 algorithm relied upon. The parallelization of MK-

DOM2 was especially challenging because of 1) the poten-

tial inter-dependences between iterations, and 2) the unpre-

dictability and high variability of iteration running times.

In this article, we will start by presenting the MKDOM2

algorithm and the challenges of its parallelization (Sec-

tion 2). We will present the main characteristics of the pro-

posed solution (Section 3). Finally we will evaluate and dis-

cuss the performances of the MPI MKDOM2 algorithm in

terms of speed-up, load balancing and scaling (Section 4).

2 The MKDOM2 algorithm

2.1 The original algorithm

The MKDOM2 algorithm relies on a simple assumption:

the shortest sequence of the dataset —or its repeated unit

if it contains an internal repeat— is an atomic domain [9].

In order to avoid biologically meaningless domains this as-

sumption is complemented by the automatic discarding of

any sequence shorter than 20 amino-acids. In addition,

compositionally biased segments are masked in order to

avoid the clustering of similarly biased segments that are

usually unrelated evolutionarily [20]. The MKDOM2 algo-

rithm is then defined by the iterative application of its un-

derlying assumption:

• While the sequence database is not empty do

1. Discard sequences shorter than 20 amino-acids.

2. Choose as query a shortest sequence (potential

ties are randomly broken).

3. If the query-sequence is longer than 40 amino-

acids, check it for internal repeats using an un-

gapped BLASTP search [3]. If a repeat is found,

the repeat becomes the query-sequence.

4. Using PSI-BLAST [4], search for sequences ho-

mologous to the query-sequence.

5. Define a new family by grouping the query-

sequence and the matching segments from the

PSI-BLAST search.

6. Remove all segments belonging to the new fam-

ily from the database and split sequences accord-

ingly when required.

Figure 2 illustrates this execution under different scenar-

ios depending on the output of Steps 3 and 4. A typical exe-

cution of MKDOM2 is made of a huge number of short-time

iterations. For instance, in Section 4 we report that MK-

DOM2 took 17 hours and 20 minutes with 72,413 iterations

to process a database containing 73,951 protein sequences.

Hence, each iteration took on average 0.86 seconds. Almost

all the time in an iteration is spent in Step 4 performing the

PSI-BLAST search and in Step 5 updating the database.

2.2 Potential parallelizing approaches and
challenges

There are two obvious parallelization approaches: we

can either parallelize the processing of each iteration or we

can process several iterations in parallel. These two ap-

proaches have their pros and cons.

73

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

����
����
����
������
��
��
��

��������
��������
��������
��������

����
����
����
����

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������������
��������
��������
��������
��������

�������
�������
�������
�������

��������
��������
��������
��������

����������������
����������������
����������������
������������������������

��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

Elimination of short sequences

Iteration i+1

Step 1

Match of repeat

query-sequence

query-sequence

Internal repeat detectionStep 3

Database update

PSI-BLAST search of the query-sequence

MatchesNo match

Steps 5 and 6

Step 4

Query-sequence selectionStep 2

Elimination of short sequencesStep 1

Iteration i

no yes

Figure 2. Outline of sequence processing in

the MKDOM2 algorithm [9].

2.2.1 Parallelizing each iteration

Such an approach would have the great advantage, from the

biological point of view, to leave untouched the structure

and thus the nature of the heuristics. The parallel and se-

quential versions of the algorithm would deliver the exact

same output. However the PSI-BLAST search of Step 4

is itself an iterative process: it is a succession of up to

10 BLAST searches where, after each search, the results are

merged into a Position Specific Scoring Matrix (PSSM) that

is used as the query for the next iteration 2. A distributed im-

plementation of Step 4 would thus require the broadcasting

of the new query, and the gathering of the results, for each

of the classical BLAST searches of Step 4. This would lead

to a strong synchronization of all the processes involved.

Such an execution would greatly suffer if the load was not

perfectly distributed among the involved processes. Indeed

the running time of a BLAST search depends on the number

of matches, which cannot be predicted. Therefore we have

no means to guarantee a good load balancing: such a tightly

coupled fine-grain parallelization is unlikely to deliver im-

pressive speed-ups. It can be noted that the distributed im-

plementation of the BLAST tool suite mpiBLAST [7], does

not include blastpgp for similar reasons [2].

2The actual number of iterations performed depends on how many re-

sults there are and how fast the set of results stabilizes.

(a) distribution of processing times (b) extremal values

Figure 3. Excerpt from query processing

times for a database containing all se-

quences from 263 complete genomes [12].

2.2.2 Executing several iterations in parallel

As this approach would enable us to execute thousands

of iterations in parallel, it has the potential of a consider-

able speed-up. This approach, however, encounters serious

problems from the points of view of both computer science

and biological results: the potential inter-dependence of it-

erations, the large variations in the iteration running times,

and the modification of the processing order of query-

sequences.

Inter-dependence of iterations. Let us consider two

query-sequences S1 and S2 that are processed in parallel.

If they belong to the same domain family, they will produce

the same result3 and one of the two executions is thus worth-

less. Under MKDOM2, S1 and S2 would not both have been

considered as query-sequences. In such a scenario, process-

ing both S1 and S2 is nothing but a waste of resources. Such

a scenario is not at all unlikely as slight variations of a se-

quence are prone to have approximatively the same length

and thus are prone to become eligible as query-sequences

at around the same time. In fact, this undesirable scenario

is thought to be one of the main causes of failure of the

previous parallelization attempt [14]. Therefore, we must

definitely avoid to run inter-dependent iterations in parallel.

In practice, inter-dependent iterations do not necessar-

ily involve query-sequences belonging to the same domain

family. Indeed, two inter-dependent iterations may be de-

fined by query-sequences matching neighbouring domains

on a particular sequence S. As domain boundaries are not

sharply defined, the regions where the two query-sequences

match with S can slightly overlap. Because of its sequential

nature, the MKDOM2 algorithm was implicitly taking care

of this peculiarity (yet in an arbitrary way). In a parallel

execution we will have to deal with this problem explicitly.

Variations in query-sequence processing times. As a test

3They will probably not produce the exact same result, but the differ-

ences between the two results are assumed to be small and not biologically

significant.

74

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

of query processing times, we ran MKDOM2 on a large

set of protein sequences from the 263 complete genomes

compiled in HOGENOM release 03 [12]. For this 340 MB

database, processing a query-sequence took on average

33 seconds (the median time being 4 seconds). The distri-

bution of execution times is illustrated on Figure 3(a): it ex-

hibits a steep decay, with a vast majority of query-sequences

with short processing times. What this figure does not show,

however, is that there are few sequences whose processing

times are several orders of magnitude larger than the aver-

age processing time. This is exemplified on Figure 3(b):

the worst case for this experiment was 9,956 seconds, 299-

fold above the average value. We therefore need to design

an algorithm that is robust to these large variations in query

processing times.

Impact on the underlying biological hypothesis. Under

the original MKDOM2 algorithm, the processing of a query-

sequence can lead to the apparition of a new shortest se-

quence which is then chosen as the next query-sequence.

In a parallel execution, in order to simultaneously process

a certain number n of query-sequences, one has first to de-

fine these n query-sequences. This a priori forbids that a

short sequence produced by the processing of the first of

these n query-sequences be processed before these n query-

sequences are fully processed 4. Therefore, a parallel ex-

ecution will not process dependent query-sequences in the

same order than the original MKDOM2 algorithm. This will

obviously have an impact on the solution. Ideally, we would

like this impact to be small and not biologically significant.

We therefore want the parallel execution to stay as close as

possible to the sequential one.

In summary, the only possible approach for the paralleliza-

tion of MKDOM2 is to process several query-sequences in

parallel. To successfully achieve this goal we have to:

1. be careful not to perform redundant computations;

2. be able to cope with high variations in execution times;

3. stay as close as possible to the original MKDOM2 al-

gorithm to lower the impact of the parallelization on

the quality of the output.

3 Parallelization approach

3.1 Prediction of dependences between
query-sequences

In order to avoid running inter-dependent query-

sequences in parallel, we rely on an all-against-all BLAST

search: initially, we compare all sequences in the database

4The parallelization does not strictly forbid such a scenario. In fact, it

just renders it very undesirable. Indeed, one can always discard the results

produced by the last n− 1 query sequences and run the new shortest one,

as under MKDOM2. But a parallelized version that regularly discards the

extra computations is doomed to have poor performance.

globally to determine whether they share any homology.

This may be seen as a very expensive pre-treatment phase,

almost as expensive as the whole computation one wants

to parallelize. Contrary to the MKDOM2 Algorithm, this

all-against-all BLAST search is embarrassingly parallel and

thus can be trivially parallelized. Furthermore, this search

uses a simple BLAST search which is less time-consuming

than a PSI-BLAST search. Therefore, even if this pre-

treatment has a large computational cost, it enables us to

reach our goal: to very significantly decrease the wall-clock

time needed to produce the PRODOM database (including

the time needed to perform the pre-treatment). Remem-

ber that the unpredicted inter-dependences between query-

sequences is considered to be one of the main reasons the

previous parallelization attempt failed [14]. Finally, such a

search is used for other applications and its cost is there-

fore shared with other projects such as the construction of

protein families in the HOGENOM database [12].

We use the all-against-all result to decide whether any

two query-sequences are worth running in parallel. If ho-

mology is found between two sequences, they are consid-

ered adjacent: neither them nor their subsequences will be

simultaneously selected as query-sequences. Since a PSI-

BLAST search generally generates broader results than a

classical BLAST search, the all-against-all search cannot

absolutely guarantee that the results of non-adjacent se-

quences will not overlap. The all-against-all information,

however, ought to be sufficient to ensure that the occurrence

of these overlaps is infrequent enough not to have a signifi-

cant impact on the performance of the parallel execution.

A potential drawback of this approach is that two se-

quences S1 and S2, which are subsequences of homologous

sequences, are adjacent even if S1 and S2 are not homol-

ogous. From the biological point of view, this can impact

the order in which query-sequences are processed. From

the computer science point of view, this may artificially de-

crease the number of potential query-sequences towards the

end of the iterative process and thus lead to partial starva-

tion (not enough runnable query-sequences to harness the

platform resources).

3.2 A master-worker approach

The obvious way to parallelize MKDOM2 is to use a

master-worker structure. A naive solution would be to fol-

low Algorithm 1. This would lead to very poor performance

because:

1. Relative sequentialization of the respective work of the

master and of the workers;

2. Variations in query-sequence processing times;

3. Potential processor heterogeneity;

4. Potential communication bottlenecks;

5. High computational burden on the master.

75

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

Algorithm 1: Master in a (very) naive master-worker

parallelization of MKDOM2.

while Database is not empty do1

Select the n shortest and non-homologous2

sequences

Send n

p
sequences to each of the p workers3

Gather the n results4

Update the database5

We will now explicit the solutions we propose to overcome

these potential problems. But before doing that, we pinpoint

a problem from the biological point of view: the order in

which results are taken into account.

3.2.1 Order of result incorporation

There is no reason for the master to receive the processing

results in increasing order of the query-sequences (when we

consider the batch of n query-sequences of Step 1). In order

not to depart too much from MKDOM2, we decide to en-

force that results coming from query-sequences belonging

to the same batch are integrated in the database in increas-

ing order of the size of the query-sequences (obviously all

results from a batch are integrated before any result from

the next batch is taken into account). This may force the

master to wait for some results before being able to take

into account already received ones. This enforced property

is important because results from two query-sequences may

overlap even when they are not adjacent in the all-against-

all search (see Section 3.1). When two results overlap, the

one corresponding to the shortest query-sequence is used to

create a domain family and to update the database while the

other one is just discarded.

3.2.2 Relative sequentialization and variations in pro-

cessing times

In the scheme of Algorithm 1, first the master prepares the

batch of new query-sequences, next these queries are pro-

cessed, then their results are used to update the database

and, finally, a new batch is computed. As we do not

want the workers to stay idle waiting for a new batch of

query-sequences, we want the master to build and send the

new batch of query-sequences before any processor ends its

work.

Also, as we have seen, there can be several orders of

magnitude between the shortest and longest query-sequence

processing times. Under a synchronous execution such as

Algorithm 1, each time one of the n query-sequences has a

large processing time, all the other processors will be idle

most of the time. As we have no way to forecast or prevent

this overly lengthy processing, we must be able to supply

workers with new query-sequences while waiting for the

output of one of the original n queries.

In an attempt to smoothen both the master’s workload

and the irregularities in query-sequence processing times,

the master does not send a single query-sequence by worker

but several. We further refine this behaviour to circum-

vent, with a single mechanism, the two problems we just

described. In our actual settings, the master starts comput-

ing a new batch of query sequences as soon as it has re-

ceived the results for at least 50 % of the query-sequences

of a given worker. Furthermore, the master sends a new

batch of query-sequences to a worker only if it has fewer

query-sequences left to process than it received in its last

batch.

3.2.3 Potential processor heterogeneity

This is simply taken into account by the initial sampling

of the platform. We time the processing on all workers of

two randomly chosen sequences. The query-sequences are

then distributed to workers proportionally to their recorded

speeds. This evaluation of processing speed is not perfect.

However, discrepancies in the recorded speeds cannot have

a cumulative impact because of the mechanism put in place

in Section 3.2.2 to cope with the potential lateness of work-

ers.

3.2.4 Master load and communication bottlenecks

The load of the master is hard to predict. It depends on

the size of the sequence database, the ease in identify-

ing independent query-sequences, the frequency of query-

sequences with a large processing time, etc. A worst case

may be right after the master finally received the output of

a query-sequence with large processing time, resulting in

a long backload of results to be incorporated. In order for

the master not to be a bottleneck, we have to decide how to

propagate the database updates. Indeed the master may send

either the updated database or just updating instructions to

all workers. The first approach is communication-intensive

and requires more work from the master (the databases used

in Section 4 already had a size of 360 MB, and we need to

process databases with more than 2 GB). The second ap-

proach is computation intensive and requires all workers to

perform the exact same computation. Therefore it trades

computation replication for communications. The specifi-

cation of a database update is rather small: just two inte-

gers per updated sequence (start and end point of cut subse-

quence). We chose the second approach because it leads to

far less communications and puts less burden on the master.

A potential efficiency bottleneck would be the syn-

chronization of master and workers through communica-

tions. To avoid such a problem the overall execution was

76

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

as loosely coupled as possible. In addition to the par-

tial de-synchronization described in Section 3.2.2, we use

asynchronous communications and each worker is multi-

threaded, one thread dealing with the processing of query-

sequences and the other one dealing with all communica-

tions (receiving new sequences and sending back results).

3.2.5 Other considerations

Memory requirements. It is increasingly common to have

several processors and/or cores per cluster nodes. Ideally

we would start a number of workers per node matching the

computing means present. However the available memory

per node will be here a limiting factor. Indeed in addition

to the high memory cost of PSI-BLAST, we keep the whole

database in memory in order to avoid long update phases.

The amount of available memory will therefore limit the

number of workers per node. Theoretically, it could have

been possible to run one thread per core, each processing

a different query-sequence while sharing the same memory

mapping of the sequence database. However the current

implementation of PSI-BLAST does not allow for this. It is

also possible to start PSI-BLAST with only one query but

several computing threads, which we do, however this op-

tion induced only limited increase in efficiency. During the

experiments in Section 4, we limited the load to one worker

per node even though the nodes had 2 to 4 cores each.

Input/Output issues. MKDOM2 in its current implemen-

tation relies heavily on disks. Between each iteration the

input FASTA file is read and modified to remove all sub-

sequences that have been recruited into domain families.

Some of these operations are mandatory and required by

the fact that BLAST itself is a file-based process. How-

ever, some of these operations can be avoided by keeping

the dataset in memory in a sorted data structure. Sending

several queries at once to the workers also diminishes the

number of database updates and helps reduce disk usage.

Similarly, grouping queries into batches helps rationalize

network usage by sending fewer larger messages across.

Dispensible queries. The first iteration of a PSI-BLAST

search is a classical BLAST search. If this first iteration does

not yield any result, the PSI-BLAST search stops. The ad-

jacency matrix being calculated from a BLAST search, we

know that sequences that do not share any similarities with

the rest of the database will not return any match but them-

selves with PSI-BLAST as well. For these queries we know

the output of the PSI-BLAST without running the query.

However they may still be recruited by other queries. We

cannot eliminate them from the start, but when they turn up

as query-sequences, we avoid the PSI-BLAST calculation

and construct a domain family with a single sequence.

l

l

l

l

l
l

l
l l l l l l l

0 10 20 30 40

0
2

0
0

6
0

0
1

0
0

0

Number of worker nodes

P
ro

c
e

s
s
in

g
 t

im
e

 (
m

in
)

(a) running times

l
l

l
l

l

l

l

l

l

l

l

l
l

l

0 10 20 30 40

5
1

0
1

5
2

0
2

5

Number of worker nodes

S
p

e
e

d
u

p

(b) speedups

Figure 4. Processing times and speedups

for a medium scale test set encompass-

ing all protein sequences from 32 archaeal

genomes (21.5 MB). The running time of MK-

DOM2 (x) is given for reference.

4 Experimental evaluation

We implemented and MPI MKDOM2 in C++ using

MPICH2 [10] and tested it on clusters of GRID’5000 [1],

a nation-wide platform of 5,000 processors dedicated to

research in grid computing. We first evaluated perfor-

mance and speed-ups on a medium scale set comprising

all 73,951 protein sequences extracted from 32 archaeal

genomes (21.5 MB). We then proceeded with a large scale

test consisting of all 950,216 protein sequences in release 03

of the HOGENOM database [12]. This 340 MB dataset cov-

ers all proteins from 263 genomes, including a wide range

of different organisms.

4.1 Medium scale test case

Figure 4 shows running times and speedups achieved

by MPI MKDOM2 for the processing of the medium scale

archaeal test set. This experiment was carried out on a

cluster comprising homegeneous nodes, each with 2 pro-

cessors (AMD opteron 2.4 GHz) and 2 GB of main mem-

ory. The maximum speedup of 20 was obtained with 30

worker nodes. In this case the speedup is constrained by the

fact that the running times of individual queries are short

(0.36 seconds in average). The overhead costs inherent

to the distributed algorithm, in particular communication

costs, become too expensive compared to the cost of the

actual computation. Moreover the short run times of atomic

processes make load balancing more difficult to achieve be-

tween master and worker nodes. The master must validate

the results received from the worker nodes and process the

database accordingly in order to prepare new independent

query batches. The efficiency of the parallelization is bound

to decrease severely whenever the cost of this master pro-

cess exceeds the cost of individual PSI-BLAST runs.

With one worker node, the distributed algorithm per-

formed 14 % faster than the original sequential algorithm.

77

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

This is due to the fact that MPI MKDOM2 is a complete

rewrite of MKDOM2 which also incorporates some opti-

mizations over the original code. For instance, the fact that

the database is kept sorted in memory at any times allows

for faster updates, limiting the number of accesses to the

FASTA file on disk.

4.2 Large scale processing

Figure 5 shows traces of the processing of the larger

340 MB dataset from 263 genomes in HOGENOM re-

lease 03. MPI MKDOM2 was run on these data for 19 hours

on 153 nodes, on a heterogeneous cluster comprising 2 cat-

egories of nodes: 118 dual processor, dual core nodes (Intel

Xeon 5110, 1.6 GHz) with 2 GB of main memory and 36

dual processor nodes (AMD opteron 2.0 GHz) with 2 GB

of RAM as well. During this time, 46 % of the database

was processed. With a large database such as this, worst

case run times are exacerbated: the maximum individual

run time reached 9,965 s (Fig. 5c), an extreme challenge for

the parallel process. Although rare, these extreme running

times resulted in the build-up of very long queues on the

master node: there was an average of 27,000 results await-

ing validation at any given time (Fig. 5b). This imposes very

strong constraints on the master node and could be expected

to severely affect load balancing.

However, contrary to this expectation, MPI MKDOM2

behaved remarkably well under these conditions. The load

balancing between workers correctly played its role since

no difference in worker occupancy could be observed be-

tween the two kinds of nodes composing the cluster. More-

over, even when more than 40,000 results were in queue,

the master continued to swiftly provide independent query

sequences to the worker nodes. This resulted in a ho-

mogeneous and almost continuous activity of all workers

throughout the experiment (Fig. 5f). However some phases

could be observed during which the global worker occu-

pancy decreased. These phases seemed to correspond to

periods during which a large number of small queries had

to be processed, rendering load balancing between master

and workers more difficult. On average the parallel process

experienced little starvation of worker nodes, with an aver-

age raw processor occupancy of 86 %. Increasing the num-

ber of concurrent queries also increases the probability that

their results will overlap. Indeed the validation step detected

25 % of overlapping results that had to be discarded. Alto-

gether this resulted in 55 % useful computational time dur-

ing which workers actually performed PSI-BLAST searches

that accounted for the final result. This will be improved in

the future by cutting the maximal running time of individual

PSI-BLAST searches, resulting in shorter queues and fewer

result overlaps.

Finally, on this large HOGENOM dataset,

MPI MKDOM2 behaved as expected in terms of se-

quence processing. Despite the fact that the order in

which queries are considered in MPI MKDOM2 has been

loosened comparatively to MKDOM2, the typical query

size increased steadily over time, as it would have been ex-

pected from a stricter heuristic (Fig. 5d). We conclude that

MPI MKDOM2 constitutes an efficient parallel solution to

the automated domain extraction problem, able to tackle

large datasets and protein families (Fig. 5e). Therefore this

parallelization appears extremely promising for the future

maintenance of PRODOM, which would not be feasible

otherwise.

Acknowledgments The PRODOM project is supported by

the FP6 EMBRACE Network of Excellence, the FP7 IM-

PACT Research Infrastructure Programme and the France-

Israel Research Network Program in Bioinformatics. Ex-

periments were carried out using the Grid’5000 experimen-

tal testbed, an initiative from the French Ministry of Re-

search through the ACI GRID incentive action, INRIA,

CNRS and RENATER and other contributing partners (see

https://www.grid5000.fr).

References

[1] https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home.

[2] http://www.mpiblast.org/Docs.FAQ.html#other-blast, 4 June

2007.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.

Lipman. Basic local alignment search tool. J Mol Biol,

215(3):403–10, 1990.

[4] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang,

Z. Zhang, W. Miller, and D. J. Lipman. Gapped BLAST and

PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Res, 25(17):3389–402, 1997.

[5] C. Bru, E. Courcelle, S. Carrere, Y. Beausse, S. Dalmar, and

D. Kahn. The ProDom database of protein domain families:

more emphasis on 3D. Nucleic Acids Research, 33(Database

Issue):D212–D215, 2005.

[6] F. Corpet, J. Gouzy, and D. Kahn. Recent improvements of

the ProDom database of protein domain families. Nucleic

Acids Res, 27(1):263–7, 1999.

[7] A.E. Darling, L. Carey, and W. Feng. The Design, Imple-

mentation, and Evaluation of mpiBLAST. Proceedings of

Cluster World Conference & Expo, 2003.

[8] R. F. Doolittle and P. Bork. Evolutionarily mobile modules

in proteins. Sci Am, 269(4):50–6, 1993.

[9] J. Gouzy, F. Corpet, and D. Kahn. Whole genome protein

domain analysis using a new method for domain clustering.

Comput Chem, 23(3-4):333–40, 1999.

[10] William Gropp. Mpich2: A new start for MPI implemen-

tations. In Euro PVM/MPI, volume 2474 of LNCS, pages

37–42. Springer-Verlag, 2002.

78

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

[11] A. Heger and L. Holm. Exhaustive enumeration of protein

domain families. J Mol Biol, 328(3):749–67, 2003.

[12] Hogenom. http://pbil.univ-lyon1.fr/

databases/hogenom.php.

[13] E. Portugaly, A. Harel, N. Linial, and M. Linial. EVEREST:

automatic identification and classification of protein domains

in all protein sequences. BMC Bioinformatics, 7:277, 2006.

[14] S. Blanquart. Extraction et Classification Parallèle des

Domaines Protéiques. MÃ c©moire de m2, Université de

Rennes-1, 2004.

[15] J. Schultz, R. R. Copley, T. Doerks, C. P. Ponting, and

P. Bork. SMART: a web-based tool for the study of ge-

netically mobile domains. Nucleic Acids Res, 28(1):231–4,

2000.

[16] E. L. Sonnhammer, S. R. Eddy, E. Birney, A. Bateman, and

R. Durbin. Pfam: multiple sequence alignments and HMM-

profiles of protein domains. Nucleic Acids Res, 26(1):320–2,

1998.

[17] E. L. Sonnhammer and D. Kahn. Modular arrangement of

proteins as inferred from analysis of homology. Protein Sci,

3(3):482–92, 1994.

[18] http://www.expasy.uniprot.org/.

[19] D. B. Wetlaufer. Nucleation, rapid folding, and globular

intrachain regions in proteins. Proc Natl Acad Sci U S A,

70(3):697–701, 1973.

[20] J. C. Wootton and S. Federhen. Analysis of composition-

ally biased regions in sequence databases. Methods Enzymol,

266:554–71, 1996.

[21] C. H. Wu, R. Apweiler, A. Bairoch, D. A. Natale, W. C.

Barker, B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang,

R. Lopez, M. Magrane, M. J. Martin, R. Mazumder,

C. O’Donovan, N. Redaschi, and B. Suzek. The Uni-

versal Protein Resource (UniProt): an expanding universe

of protein information. Nucleic Acids Res, 34(Database

issue):D187–91, 2006.

[22] S. Yooseph, G. Sutton, D. B. Rusch, A. L. Halpern, S. J.

Williamson, K. Remington, J. A. Eisen, K. B. Heidelberg,

G. Manning, W. Li, L. Jaroszewski, P. Cieplak, C. S. Miller,

H. Li, S. T. Mashiyama, M. P. Joachimiak, C. van Belle, J. M.

Chandonia, D. A. Soergel, Y. Zhai, K. Natarajan, S. Lee, B. J.

Raphael, V. Bafna, R. Friedman, S. E. Brenner, A. Godzik,

D. Eisenberg, J. E. Dixon, S. S. Taylor, R. L. Strausberg,

M. Frazier, and J. C. Venter. The Sorcerer II Global Ocean

Sampling expedition: expanding the universe of protein fam-

ilies. PLoS Biol, 5(3):e16, 2007.

a)

b)

c)

d)

e)

f)

Figure 5. Large scale MPI MKDOM2 compu-

tation monitored over time. From top to

bottom: (a) Size of database in millions of

amino-acids. (b) Number of queries consid-

ered at a given time; the dark fringe accounts

for the queries currently being processed,

the light part represents the sequences al-

ready processed and awaiting validation. (c)

Running times of individual queries. (d)

Query sizes in amino-acids. (e) Numbers of

matching sequences returned by PSI-BLAST.

(f) Worker timeline; each horizontal line rep-

resents a worker activity through time. If the

line is dark the worker is busy, if the line is

light the worker is idle. The queries that the
workers were currently computing when they
were stopped do not appear in this diagram.
The blank line accounts for the master node.

79

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

