
1

Supplementary material for the article:
Offline and online scheduling

of concurrent bag-of-tasks applications
on heterogeneous platforms

Anne Benoit, Member, IEEE, Loris Marchal, Jean-François Pineau, Student Member, IEEE,
Yves Robert, Fellow, IEEE, Frédéric Vivien, Member, IEEE

CONTENTS

I Equivalence between non-emptiness of Polyhedron and achievable stretch (Theorem 1) 2

II Binary search 4

II-A Proof of Theorem 2 . 4

II-B Binary search with stretch-intervals . 4

II-B.1 Within a stretch-interval . 5

II-B.2 Binary search among stretch intervals . 7

III Quasi-optimality for more realistic bounded multiport models 8

III-A Without simultaneous start: the BMP-FC model . 8

III-B Atomic execution of tasks: the BMP-AC model . 8

III-C Asymptotic optimality . 9

IV Asymptotic optimality for the one-port model 11

IV-A Property of the one-dimensional load-balancing schedule . 11

IV-B Asymptotic optimality . 12

V Complete simulation results 15

References 15

Anne Benoit is with ENS Lyon, University of Lyon and LIP
Loris Marchal is with CNRS, University of Lyon and LIP
Jean-Fran cois Pineau is with ENS Lyon, University of Lyon and LIP
Yves Robert is with ENS Lyon, University of Lyon and LIP
Frédéric Vivien is with INRIA, University of Lyon and LIP
LIP laboratory, UMR 5668, ENS Lyon – CNRS – INRIA – UCBL, Lyon, France

2

I. EQUIVALENCE BETWEEN NON-EMPTINESS OF POLYHEDRON AND ACHIEVABLE STRETCH (THEOREM 1)

We first recall the definition of the polyhedron (K) and the meaning of the constraints which makes it:

All tasks sent by the master. The first set of constraints ensures that all the tasks of a given application Ak are

actually sent by the master:

∀ 1 ≤ k ≤ n,
∑

1≤j≤2n−1
tj ≥ r(k)

tj+1 ≤ d(k)

p∑
u=1

ρ
(k)
M→u(tj , tj+1)× (tj+1 − tj) = Π(k). (1)

Non-negative buffers. Each buffer should always have a non-negative size:

∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p,∀1 ≤ j ≤ 2n, B(k)
u (tj) ≥ 0. (2)

Buffer initialization. At the beginning of the computation of application Ak, all corresponding buffers are empty:

∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p, B(k)
u (r(k)) = 0. (3)

Emptying Buffer. After the deadline of application Ak, no tasks of this application should remain on any node:

∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p, B(k)
u (d(k)) = 0. (4)

Task conservation. During time-interval [tj , tj+1], some tasks of application Ak are received and some are con-

sumed (computed), which impacts the size of the buffer:

∀ 1 ≤ k ≤ n,∀1 ≤ j ≤ 2n− 1,∀1 ≤ u ≤ p,

B(k)
u (tj+1) = B(k)

u (tj) +
(
ρ

(k)
M→u(tj , tj+1)− ρ(k)

u (tj , tj+1)
)× (

tj+1 − tj
)

(5)

Bounded computing capacity. The computing capacity of a node should not be exceeded on any time-interval:

∀1 ≤ j ≤ 2n− 1,∀1 ≤ u ≤ p,

n∑
k=1

ρ(k)
u (tj , tj+1)

w(k)

s
(k)
u

≤ 1. (6)

Bounded link capacity. The bandwidth of each link should not be exceeded:

∀1 ≤ j ≤ 2n− 1,∀1 ≤ u ≤ p,

n∑
k=1

ρ
(k)
M→u(tj , tj+1)

δ(k)

bu
≤ 1. (7)

Limited sending capacity of master. The total outgoing bandwidth of the master should not be exceeded:

∀1 ≤ j ≤ 2n− 1,

p∑
u=1

n∑
k=1

ρ
(k)
M→u(tj , tj+1)

δ(k)

BW
≤ 1. (8)

Non-negative throughputs.

∀1 ≤ u ≤ p,∀1 ≤ k ≤ n,∀1 ≤ j ≤ 2n− 1, ρ
(k)
M→u(tj , tj+1) ≥ 0 and ρ(k)

u (tj , tj+1) ≥ 0. (9)

The convex polyhedron (K) can then be defined by the previous constraints.{
ρ

(k)
M→u(tj , tj+1), ρ(k)

u (tj , tj+1), ∀k, u, j such that 1 ≤ k ≤ n, 1 ≤ u ≤ p, 1 ≤ j ≤ 2n− 1

under the constraints (1), (2), (3), (4), (5), (6), (7), (8) and (9)
(K)

The problem of the existence of a schedule with maximum stretch S turns now into checking whether the

polyhedron is empty and, if not, into finding a point in the polyhedron, which is expressed by the following

Theorem.

Theorem 1: Under the totally fluid model, Polyhedron (K) is not empty if and only if there exists a schedule

with stretch S.

Proof: ⇒ Assume that the polyhedron is not empty, and consider a point in (K), given by the values of the

ρ
(k)
M→u(tj , tj+1) and ρ

(k)
u (tj , tj+1). We construct a schedule which obeys exactly these values. During time-interval

3

[tj , tj+1], the master sends tasks of application Ak to processor Pu with rate ρ
(k)
M→u(tj , tj+1), and this processor

computes these tasks at a rate ρ
(k)
u (tj , tj+1).

To prove that this schedule is valid under the fluid model, and that it has the expected stretch, we define ρ
(k)
M→u(t)

as the instantaneous communication rate, and ρ
(k)
u (t) as the instantaneous computation rate. Then the (fractional)

number of tasks of Ak sent to Pu in interval [0, T] is∫ T

0
ρ

(k)
M→u(t)dt

With the same argument as in the previous remark, applied on interval [0, T], we have

B(k)
u (T) =

∫ T

0
ρ

(k)
M→u(t)dt−

∫ T

0
ρ(k)

u (t)dt

Since the buffer size is positive for all tj and evolves linearly in each interval [tj , tj+1], it is not possible that a

buffer has a negative size, so ∫ T

0
ρ(k)

u (t)dt ≤
∫ T

0
ρ

(k)
M→u(t)dt

Hence data is always received before being processed.

With the constraints of Polyhedron (K), it is easy to check that no processor or no link is over-utilized and

the outgoing capacity of the master is never exceeded. All the deadlines computed for stretch S are satisfied by

construction, so this schedule achieves stretch S.

⇐ Now we prove that if there exists a schedule S1 with stretch S, Polyhedron (K) is not empty. We consider

such a schedule, and we call ρ
(k)
M→u(t) (and ρ

(k)
u (t)) the communication (and computation) rate in this schedule for

tasks of application Ak on processor Pu at time t. We compute as follows the average values for communication

and computation rates during time interval [tj , tj+1]:

ρ
(k)
M→u(tj , tj+1) =

∫ tj+1

tj

ρ
(k)
M→u(t)dt

tj+1 − tj
and ρ(k)

u (tj , tj+1) =

∫ tj+1

tj

ρ(k)
u (t)dt

tj+1 − tj
.

In this schedule, all tasks of application Ak are sent by the master, so∫ d(k)

r(k)

ρ
(k)
M→u(t)dt = Π(k).

With the previous definitions, Equation (1) is satisfied. Along the same line, we can prove that the task conservation

constraints (Equation (5)) are satisfied. Constraints on buffers (Equations 3, 4 and 2) are necessarily satisfied by

the size of the buffer in schedule S1 since it is feasible. Similarly, we can check that the constraints on capacities

are verified.

4

II. BINARY SEARCH

The following algorithm describes a binary search to find the optimal stretch.

Algorithm 1: Binary search

begin
Sinf ← 1
Ssup ← Smax

while Ssup − Sinf > ε do
S ← (Ssup + Sinf)/2
if Polyhedron (K) is empty then
Sinf ← S

else
Ssup ← S

return Ssup

end

A. Proof of Theorem 2

The following theorem proves that this algorithm reaches the optimal stretch with a given precision ε.

Theorem 2: For any ε > 0, Algorithm 1 computes a stretch S such that there exists a schedule achieving S and

S ≤ Sopt + ε, where Sopt is the optimal stretch. The complexity of Algorithm 1 is O(log Smax

ε).
Proof: We prove that at each step, the optimal stretch is contained in the interval [Sinf,Ssup] and Ssup is

achievable. This is obvious at the beginning. At each step, we consider the set of constraints for a stretch S in

the interval. If the corresponding polyhedron is empty, Theorem 1 tells us that stretch S is not achievable, so the

optimal stretch is greater than S. If the polyhedron is not empty, there exists a schedule achieving this stretch, thus

the optimal stretch is smaller than S.

The size of the work interval is divided by 2 at each step, and we stop when this size is smaller than ε. Thus

the number of steps is O(log Smax

ε). At the end, Sopt ∈ [Sinf,Ssup] with Ssup −Sinf ≤ ε, so that Ssup ≤ Sopt + ε, and

Ssup is achievable.

B. Binary search with stretch-intervals

In this section, we present another method to compute the optimal stretch in the offline case. This method is

based on a linear program built from the constraints of the convex polyhedron (K) with the minimization of the

stretch as objective. To do this, we need that other parameters (especially the deadlines) are functions of the stretch.

Recall that the deadlines of the applications are computed from their release date and the targeted stretch S:

d(k) = r(k) + S ×MS∗(k).

Figure 1 represents the evolution of the deadlines d(k) over the targeted stretch S: each deadline is an affine

function in S. For the sake of readability, the time is represented on the x axis, and the stretch on the y axis.

Special values of stretches S1,S2, . . . ,Sm are represented on the figure. These critical values of the stretch are

points where the ordering of the release dates and deadlines of the applications is modified:

• When S is such a critical value, some release dates and deadlines have the same values;

• When S varies between two such critical values, i.e., when Sa < S < Sa+1, then the ordering of the release

dates and the deadlines is preserved.

To simplify our notations, we add two artificial critical values corresponding to the natural bound of the stretch:

S1 = 1 and Sm = ∞.

Our goal is to find the optimal stretch by slicing the stretch space into a number of intervals. Within each interval

defined by the critical values, the deadlines are linear functions of the stretch. We first show how to find the best

stretch within a given interval using a single linear program, and then how to explore the set of intervals with a

binary search, so as to find the one containing the optimal stretch.

5

d1

d3

t

r3r2r1S

d2

S4S3

S2S1 = 1

S5

Fig. 1. Relation between stretch and deadlines

1) Within a stretch-interval: In the following, we work on one stretch-interval, called [Sa,Sb]. For all values of

S in this interval, the release dates r(k) and deadlines d(k) are in a given order, independent of the value of S. As

previously, we note {tj}j=1...2n = {r(k), d(k)}, with tj ≤ tj+1. As the values of the tj may change when S varies,

we write tj = αjS + βj . This notation is general enough for all r(k) and d(k):

• If tj = r(k), then αj = 0 and βj = r(k).

• If tj = d(k), then αj = MS∗(k) and βj = r(k).

Note that like previously, some tj might be equal, and especially when the stretch reaches a bound of the stretch-

interval (S = Sa or S = Sb), that is a critical value. For the sake of simplicity, we do not try to discard the empty

time-intervals, to avoid the renumbering of the epochal times.

When we rewrite the constraints defining the convex polyhedron (K) with these new notations, we obtain

quadratic constraints instead of linear constraints. To avoid this, we introduce new notations. Instead of considering

the instantaneous communication and computation rates, we use the total amount of tasks sent or computed during

a given time-interval. Formally we define A
(k)
M→u(tj , tj+1) to be the fractional number of tasks of application Ak

sent by the master to processor Pu during the time-interval [tj , tj+1]. Similarly, we denote by A
(k)
u (tj , tj+1) the

fractional number of tasks of application Ak computed by processor Pu during the time-interval [tj , tj+1]. Of course,

these quantities are linked to our previous variables. Indeed, we have:

A
(k)
M→u(tj , tj+1) = ρ

(k)
M→u(tj , tj+1)× (tj+1 − tj)

A(k)
u (tj , tj+1) = ρ(k)

u (tj , tj+1)× (tj+1 − tj)

with tj+1 − tj = (αj+1 − αj)S + (βj+1 − βj).
We also introduce I(‖), the set of time-intervals where application Ak can be executed:

I(‖) = {[tj , tj+1], such that tj ≥ r(k) and tj+1 ≤ d(k)}
Note that for the stretch range [Sa,Sb] where we are working, these sets of time-intervals does not change even if

the bounds of the time-intervals vary.

We rewrite the set of constraints with these new notations:

Total number of tasks. We make sure that all tasks of application Ak are sent by the master:

∀ 1 ≤ k ≤ n,
∑

1≤j≤2n−1
tj ≥ r(k)

tj+1 ≤ d(k)

p∑
u=1

A
(k)
M→u(tj , tj+1) = Π(k) (10)

Non-negative buffer. Each buffer should always have a non-negative size:

∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p,∀1 ≤ j ≤ 2n, B(k)
u (tj) ≥ 0 (11)

6

Buffer initialization. At the beginning of the computation of application Ak, all corresponding buffers are empty:

∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p, for tj = r(k), B(k)
u (tj) = 0 (12)

Emptying Buffer. After the deadline of application Ak, no tasks of this application should remain on any node:

∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p, for tj = d(k), B(k)
u (tj) = 0 (13)

Task conservation. During time-interval [tj , tj+1], some tasks of application Ak are received and some are con-

sumed (computed), which impacts the size of the buffer:

∀ 1 ≤ k ≤ n,∀1 ≤ j ≤ 2n−1,∀1 ≤ u ≤ p, B(k)
u (tj+1) = B(k)

u (tj)+A
(k)
M→u(tj , tj+1)−A(k)

u (tj , tj+1) (14)

Bounded computing capacity. The computing capacity of a node should not be exceeded on any time-interval:

∀1 ≤ j ≤ 2n− 1,∀1 ≤ u ≤ p,
n∑

k=1

A(k)
u (tj , tj+1)

w(k)

s
(k)
u

≤ (αj+1 − αj)S + (βj+1 − βj) (15)

Bounded link capacity. The bandwidth of each link should not be exceeded:

∀1 ≤ j ≤ 2n− 1,∀1 ≤ u ≤ p,

n∑
k=1

A
(k)
M→u(tj , tj+1)

δ(k)

bu
≤ (αj+1 − αj)S + (βj+1 − βj) (16)

Limited sending capacity of master. The total outgoing bandwidth of the master should not be exceeded:

∀1 ≤ j ≤ 2n− 1,

p∑
u=1

n∑
k=1

A
(k)
M→u(tj , tj+1)δ(k) ≤ BW× (

(αj+1 − αj)S + (βj+1 − βj)
)

(17)

We also add a constraint to bound the objective stretch to be in the targeted stretch-interval:

Sa ≤ S ≤ Sb (18)

Even if the bounds of the sum on the time-intervals in Equation (10) seem to depend on S, the set of intervals

involved in the sum does not vary as the order of the tj values is fixed for Sa ≤ S ≤ Sb. With the objective of

minimizing the stretch, we get the following linear program.

(LP)

{
MINIMIZE S ,

UNDER THE CONSTRAINTS (10), (11), (12), (13), (14), (15), (16), (17), (18)

Solving this linear program allows to find the minimum possible stretch in the stretch-interval [Sa,Sb]. If the

minimum stretch computed by the linear program is Sopt > Sa, this means that there is not better possible stretch

in [Sa,Sb], and thus there is no better stretch for all possible values. On the contrary, if Sopt = Sa, we cannot

conclude: Sa may be the optimal stretch, or the optimal stretch is smaller than Sa. In this case, the binary search

is continued with smaller stretch values. At last, if there is no solution to the linear program, then there exists no

possible stretch smaller or equal to Sb, and the binary search is continued with larger stretch values. This binary

search and its proof are described below.

When Sa < Sopt ≤ Sb, we can prove that Sopt is the optimal stretch.

Theorem 3: The linear program (LP) finds the optimal stretch provided that the optimal stretch is in]Sa,Sb].
Proof: The proof highly depends on Theorem 1. First, consider an optimal solution of the linear program (LP).

We compute

ρ
(k)
M→u(tj , tj+1) =

A
(k)
M→u(tj , tj+1)

(αj+1 − αj)S + (βj+1 − βj)
and ρ(k)

u (tj , tj+1) =
A

(k)
u (tj , tj+1)

(αj+1 − αj)S + (βj+1 − βj)
.

These variables constitute a valid solution of the set of constraints of Theorem 1 for S = Sopt. Therefore there

exists a schedule achieving stretch Sopt.

Assume now that there exists a schedule with stretch S such that Sa < S < Sb. Due to Theorem 1, there exists

values for ρ
(k)
M→u(tj , tj+1) and ρ

(k)
u (tj , tj+1) satisfying the corresponding set of constraints for S. Then we compute

7

A
(k)
M→u(tj , tj+1) = ρ

(k)
M→u(tj , tj+1)×

(
(αj+1 − αj)S + (βj+1 − βj)

)
A(k)

u (tj , tj+1) = ρ(k)
u (tj , tj+1)×

(
(αj+1 − αj)S + (βj+1 − βj)

)
A

(k)
M→u(tj , tj+1) and A

(k)
u (tj , tj+1) constitute a solution of the linear program (LP) with objective value S. As the

objective value Sopt found by the linear program is minimal among all possible solutions, we have Sopt ≤ S.

2) Binary search among stretch intervals: We assume that we have computed the bounds of the stretch intervals:

S1, . . . ,Sm. The binary search to reach the optimal stretch works as follows:

Algorithm 2: Binary search among stretch-intervals

begin
L← 1 and U ← max

while U − L > 1 do

M ←
⌊

L + U

2

⌋
Solve the linear program (LP) for interval [SM ,SM+1]
if there is a solution with objective value Sopt then

if Sopt > SM then
return Sopt

else
U ← M

else
L← M

Solve the linear program (LP) for interval [SL,SU]
return the objective value Sopt of the solution

end

Theorem 4: Algorithm 2 finds the optimal stretch value in a polynomial number of steps.

Proof: This algorithm performs a binary search among the m stretch-intervals. Thus, the number of steps of

this search is O(log m) and each step consists in solving a linear program, which can be done in polynomial time.

We prove that the optimal stretch is always contained in the interval [SL,SU]. This is obviously true in the

beginning. On a stretch-interval [SM ,SM+1], the minimum possible stretch Sopt is computed. If Sopt > SM , thanks

to Theorem 3, we know that Sopt is the optimal stretch. If there is no solution, no stretch values in the stretch-

interval [SM ,SM+1] is feasible, so the optimal stretch is in [SM+1,SU]. If Sopt = SM , then the optimal stretch

smaller or equal than SM . Thus, the optimal stretch is still contained in [SM ,SM+1] after one iteration. If we exit

while loop without having return the optimal stretch, then U = L + 1 and the optimal stretch is contained in the

stretch-interval [SL,SU]. We compute this value with the linear program and return it.

8

III. QUASI-OPTIMALITY FOR MORE REALISTIC BOUNDED MULTIPORT MODELS

In this section, we explain how the previous optimality result can be adapted to the other bounded multiport

models presented in Section II-A.3 of the manuscript. As expected, the more realistic the model, the less tight the

optimality guaranty. Fortunately, we are always able to reach asymptotic optimality: our schedules get closer to the

optimal as the number of tasks per application increases.

We describe the delay induced by each model in comparison to the fluid model: starting from a schedule optimal

under the fluid model (BMP-FC-SS), the idea to build a schedule with comparable performance under a more

constrained scenario.

In the following, we consider a schedule S1, with stretch S, valid under the totally fluid model (BMP-FC-SS).

For the sake of simplicity, we consider that this schedule has been built from a point in Polyhedron (K) as explained

in the previous section: the computation and communication rates (ρ
(k)
u (tj , tj+1) and ρ

(k)
M→u(tj , tj+1)) are constant

during each interval, and are defined by the coordinates of the point in Polyhedron (K).

We assess the delay induced by each model. Given the stretch S, we can compute a deadline d(k) for each

application Ak. By moving to more constrained models, we will not be able to ensure that the finishing time

MS(k) is smaller than d(k). We call lateness for application Ak the quantity max{0, MS(k)−d(k)}, that is the time

between the due date of an application and its real termination. Once we have computed the maximum lateness for

each model, we show how to obtain asymptotic optimality in Section III-C.

A. Without simultaneous start: the BMP-FC model

We consider here the BMP-FC model, which differs from the previous model only by the fact that a task cannot

start before it has been totally received by a processor.

Theorem 5: From schedule S1, we can build a schedule S2 obeying the BMP-FC model where the maximum

lateness for each application is max
1≤u≤p

n∑
k=1

w(k)

s
(k)
u

.

Proof: From the schedule S1, valid under the fluid model (BMP-FC-SS), we aim at building S2 with a similar

stretch where the execution of a task cannot start before the end of the corresponding communication. We first

build a schedule as follows, for each processor Pu (1 ≤ u ≤ p):

1) Communications to Pu are the same as in S1;

2) By comparison to S1, the computations on Pu are shifted for each application Ak: the computation of the

first task of Ak is not really performed (Pu is kept idle instead of computing this task), and we replace the

computation of task i by the computation of task i− 1.

Because of the shift of the computations, the last task of application Ak is not executed in this schedule at time

d(k). We complete the construction of S2 by adding some delay after deadline d(k) to process this last task of

application Ak at full speed, which takes a time w(k)

s
(k)
u

. All the following computations on processor Pu (in the next

time-intervals) are shifted by this delay.

The lateness for any application Ak on processor Pu is at most the sum of the delays for all applications on this

processor,
∑n

k=1
w(k)

s
(k)
u

, and the total lateness of Ak is bounded by the maximum lateness between all processors:

lateness(k) ≤ max
1≤u≤p

n∑
k=1

w(k)

s
(k)
u

An example of such a schedule S2 is shown on Figure 2 (on a single processor).

B. Atomic execution of tasks: the BMP-AC model

We now move to the BMP-AC model, where a given processor cannot compute several tasks in parallel, and the

execution of a task cannot be preempted: a started task must be completed before any other task can be processed.

Theorem 6: From schedule S1, we can build a schedule S3 obeying the BMP-AC model where the maximum

lateness for each application is

max
1≤u≤p

2n×
n∑

k=1

w(k)

s
(k)
u

.

9

ρ

r(0)

1

0

d(0)
t

1 2 3 4 5 6 87 9 10 11

(a) Schedule S1 (BMP-FC-SS model)

��
��
��

��
��
�� ����

ρ

r(0)

1

0

d(0)
t

1 2 3 4 5
11

6 7 8 109

(b) Schedule S2 (BMP-FC model)

Fig. 2. Example of the construction of a schedule S2 for BMP-FC model from a schedule S1 for BMP-FC-SS model. We plot only the
computing rate. Each box corresponds to the execution of one task.

Proof: Starting from a schedule S1 valid under the fluid model (BMP-FC-SS), we want to build S3, valid in

BMP-AC. We take here advantage of the properties described in Section IV-A of one-dimensional load-balancing

schedules, and especially of S−2
1D . Schedule S3 is built as follows:

1) Communications are kept unchanged;

2) We consider the computations taking place in S1 on processor Pu during time-interval [tj , tj+1]. A rational

number of tasks of each application may be involved in the fluid schedule. We first compute the integer number

of tasks of application Ak to be computed in S3:

nu,j,k =
⌊
ρ(k)

u (tj , tj+1)× (tj+1 − tj)
⌋
.

The first nu,j,k tasks of Ak scheduled in time-interval [tj , tj+1] on Pu are organized using the transformation

to build S−2
1D in Section IV-A.

3) Then, the computations are shifted as for S2: for each application Ak, the computation of the first task of

Ak is not really performed (the processor is kept idle instead of computing this task), and we replace the

computation of task i by the computation of task i− 1.

Lemma 2 proves that, during time-interval [tj , tj+1], on processor Pu, a computation does not start earlier in S3

than in S1. As S1 obeys the totally fluid model (BMP-FC-SS), a computation of S1 does not start earlier than the

corresponding communication, so a computation of task i of application Ak in S1 does not start earlier than the

finish time of the communication for task i− 1 of Ak. Together with the shifting of the computations, this proves

that in S3, the computation of a task does not start earlier than the end of the corresponding communication, on

each processor.

Because of the rounding down to the closest integer, on each processor Pu, at each time-interval, S3 computes

at most one task less than S1 of application Ak. Moreover, one more task computation of application Ak is not

performed in S3 due to the computation shift. On the whole, as there are at most 2n − 1 time-intervals, at most

2n tasks of Ak remain to be computed on Pu at time d(k). The delay for application Ak is:

lateness(k) ≤ max
1≤u≤p

2n×
n∑

k=1

×w(k)

s
(k)
u

.

This is obviously not the most efficient way to construct a schedule for the BMP-AC model: in particular,

each processor is idle during each interval (because of the rounding down). It would certainly be more efficient

to sometimes start a task even if it cannot be terminated before the end of the interval. This is why for our

experiments, we implemented on each worker a greedy schedule with Earliest Deadline First Policy instead of this

complex construction. However, we can easily prove that this construction has an asymptotic optimal stretch, unlike

other greedy strategies.

C. Asymptotic optimality

For the sake of the completeness of this section, we recall the motivation and the definition of the asymptotic

optimality, which are described in the manuscript, before detailing the proof of Theorem 7.

10

In this section, we show that the previous schedules are close to the optimal, when applications are composed

of a large number of tasks. To establish such an asymptotic optimality, we have to prove that the gap computed

above gets smaller when the number of tasks gets larger. At first sight, we would have to study the limit of the

application stretch when Π(k) is large for each application. However, if we simply increase the number of tasks in

each application without changing the release dates and the tasks characteristics, then the problem will look totally

different: any schedule will run for a very long time, and the time separating the release dates will be negligible

in front of the whole duration of the schedule. This behavior is not meaningful for our study.

To study the asymptotic behavior of the system, we rather change the granularity of the tasks: we show that

when applications are composed of a large number of small-size tasks, then the maximal stretch is close to the

optimal one obtained with the fluid model. To take into account the application characteristics, we introduce the

granularity g, and we redefine the application characteristics with this new variable:

Π(k)
g =

Π(k)

g
, w(k)

g = g × w(k) and δ(k)
g = g × δ(k).

When g = 1, we get back to the previous case. When g < 1, there are more tasks but they have smaller

communication and computation size. For any g, the total communication and computation amount per application

is kept the same, thus it is meaningful to consider the original release dates.

Our goal is to study the case g → 0. Note that under the totally fluid model (BMP-FC-SS), the granularity has no

impact on the performance (or the stretch). Indeed, the fluid model can be seen as the extreme case where g = 0.

The optimal stretch under the BMP-FC-SS Sopt does not depend on g.

Theorem 7: When the granularity is small, the schedule constructed above for the BMP-FC (respectively BMP-

AC) model is asymptotically optimal for the maximum stretch, that is

lim
g→0

S = Sopt

where S is the stretch of the BMP-FC (resp. BMP-AC) schedule, and Sopt the stretch of the optimal fluid schedule.

Proof: The lateness of the applications computed in Section III-A for the BMP-FC model, and in Section III-B

for the BMP-AC model, becomes smaller when the granularity increase: for the BMP-FC model, we have

lateness(k) ≤ max
1≤u≤p

n∑
k=1

w
(k)
g

s
(k)
u

−−−−→
g→0

0.

Similarly, for the BMP-AC model,

lateness(k) ≤ max
1≤u≤p

2n×
n∑

k=1

w
(k)
g

s
(k)
u

−−−−→
g→0

0.

Thus, when g gets close to 0, the stretch obtained by these schedules is close to Sopt.

11

IV. ASYMPTOTIC OPTIMALITY FOR THE ONE-PORT MODEL

A. Property of the one-dimensional load-balancing schedule

In this section, we introduce the one-dimension load-balancing algorithm, and interesting properties that can be

derived from schedules obtained using this algorithm.

In the next section, we compare the results obtained under the different communication and computation models

introduced in the manuscript. One of the major differences between these models is whether they allow –or

not– preemption and time-sharing. On the one hand, we study “fluid” models, where a resource (processor or

communication link) can be simultaneously used by several tasks, provided that the total utilization rate is below

one. On the other hand, we also study “atomic” models, where a resource can be devoted to only one task, which

cannot be preempted: once a task is started on a given resource, this resource cannot perform other tasks before

the first one is completed. In this section, we show how to construct a schedule without preemption from fluid

schedules, in a way that keeps the interesting properties of the original schedule. Namely, we aim at constructing

atomic-model schedules in which tasks terminate not later, or start not earlier, than in the original fluid schedule.

We consider a general case of n applications A1, . . . , An to be scheduled on the same resource, typically a given

processor, and we denote by tk the time needed to process one task of application Ak at full speed. We start from

a fluid schedule Sfluid where each application Ak is devoted a share αk of the resource, such that
∑n

k=1 αk ≤ 1.

Figure 3(a) illustrates such a schedule.

�����������
�����������
�����������
�����������

�������
�������
�������
�������
�������

�������
�������
�������
�������
������� ����������

����������
����������
����������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
������������������

�����������
�����������
�����������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

time

Ti

(a) fluid schedule Sfluid

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

����
����
����
����
����
����
����

����
����
����
����
����
����
����

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

T

time

(b) atomic schedule S1D

Fig. 3. Gantt charts for the proof illustrating the one-dimensional load-balancing algorithm.

From Sfluid, we build an atomic-model schedule S1D using a one-dimensional load-balancing algorithm [1], [2]:

at any time step, if nk is the number of tasks of application Ak that have already been scheduled, the next task to

be scheduled is the one which minimizes the quantity
(nk+1)×tk

αk
. Figure 3(b) illustrates the schedule obtained. We

now prove that this schedule has the nice property that a task is not processed later in S1D than in Sfluid.

Lemma 1: In the schedule S1D, a task T does not terminate later than in Sfluid.

Proof: First, we point out that tk/αk is the time needed to process one task of application Ak in Sfluid (with

rate αk). So nk×tk

αk
is the time needed to process the first nk tasks of application Ak. The scheduling decision which

chooses the application minimizing
(nk+1)×tk

αk
consists in choosing the task which is not yet scheduled and which

terminates first in Sfluid. Thus, in S1D, the tasks are executed in the order of their termination date in Sfluid. Note

that if several tasks terminate at the very same time in Sfluid, then these tasks can be executed in any order in S1D,

and the partial order of their termination date is still observed in S1D.

Tother

dfluid

Tbefore tki
Tbefore

d1D

tki

Then, consider a task Ti of a given application Aki
, its termination date dfluid in Sfluid, and its termination date

d1D in S1D. We call Sbefore the set of tasks which are executed before Ti in S1D. Because S1D executes the tasks

in the order of their termination date in Sfluid, Sbefore is made of tasks which are completed before Ti in Sfluid,

and possibly some tasks completed at the same time as Ti (at time dfluid). We denote by Tbefore the time needed to

process the tasks in Sbefore.

12

In S1D, we have d1D = Tbefore + tki
whereas in Sfluid, we have dfluid = Tbefore + tki

+ Tother where Tother is the

time spent processing tasks from other application than Ak and which are not completed at time dfluid, or tasks

completing at time dfluid and scheduled later than Ti in S1D. In S1D, we have d1D = Tbefore + tki
. Since Tother ≥ 0,

we have d1D ≤ dfluid.

The previous property is useful when we want to construct an atomic-model schedule, that is a schedule without

preemption, in which task results are available no later than in a fluid schedule. On the contrary, it can be useful

to ensure that no task will start earlier in an atomic-model schedule than in the original fluid schedule. Here is a

procedure to construct a schedule with the latter property.

1) We start again from a fluid schedule Sfluid, of makespan M . We transform this schedule into a schedule S−1
fluid

by reversing the time: a task beginning at time b and finishing at time f in Sfluid is scheduled to start at time

M − f and to terminate at M − b in S−1
fluid, and is processed at the same rate as in Sfluid. Note that this is

possible since we have no precedence constraints between tasks.

2) Then, we apply the previous one-dimensional load-balancing algorithm on S−1
fluid, leading to the schedule S−1

1D .

Thanks to the previous result, we know that a task T does not terminate later in S−1
1D than in S−1

fluid.

3) Finally, we transform S−1
1D by reverting the time one last time: we obtain the schedule S−2

1D . A task beginning

at time b and finishing at time f in S−1
1D starts at time M − f and finishes at time M − b in S−2

1D . Note that

S−1
1D may have a makespan smaller that M (if the resource was not totally used in the original schedule Sfluid).

In this case, our method automatically introduces idle time in the one-dimensional schedule, to avoid that a

task is started too early.

Lemma 2: A task does not start sooner in S−2
1D than in Sfluid.

Proof: Consider a task T , call f1 its termination date in S−1
fluid, and f2 its termination date in S−1

1D . Thanks to

Lemma 1, we know that f2 ≤ f1. By construction of the reverted schedules, the starting date of task T in Sfluid is

M − f1. Similarly, its starting date in S−2
1D is M − f2 and we have M − f2 ≥M − f1.

B. Asymptotic optimality

In this section, we explain how to modify the study on multiport models to cope with the one-port model. We

cannot simply extend the result obtained for the fluid model to the one-port model (as we have done for the multiport

models) since the parameters for modeling communications are not the same. Actually, the one-port model limits

the time spent by a processor (here the master) to send data whereas the multiport model limits its bandwidth

capacity. Thus, we have to modify the corresponding constraints. Constraint (8) is replaced by the following one.

∀1 ≤ j ≤ 2n− 1,

p∑
u=1

n∑
k=1

ρ
(k)
M→u(tj , tj+1)

δ(k)

bu
≤ 1 (8-b)

Note that the only difference with Constraint (8) is that, now, we bound the time needed by the master to send

all data instead of the volume of the data itself. The set of constraints corresponding to the scheduling problem

under the one-port model, for a maximum stretch S, are gathered by the definition of Polyhedron (K1):{
ρ

(k)
M→u(tj , tj+1), ρ(k)

u (tj , tj+1), ∀k, u, j such that 1 ≤ k ≤ n, 1 ≤ u ≤ p, 1 ≤ j ≤ 2n− 1

under the constraints (1), (5), (3), (4), (2), (6), (7), (8-b), and (9)
(K1)

As previously, the existence of a point in the polyhedron is linked to the existence of a schedule with stretch

S. However, we have no fluid model which could perfectly follow the behavior of the linear constraints. Thus we

only target asymptotic optimality.

Theorem 8: (a) If there exists a schedule valid under the one-port model with stretch S1, then Polyhe-

dron (K1) is not empty for S1.

(b) Conversely, if Polyhedron (K1) is not empty for the stretch objective S2, then there exists a schedule valid

for the problem under the one-port model with parameters Π(k)
g , δ

(k)
g , and w

(k)
g , as defined in Section III-C,

whose stretch S is such that

lim
g→0

S = S2.

Proof:

13

(a) To prove the first part of the theorem, we prove that for any schedule with stretch S1, we can construct a

point in Polyhedron (K1). Given such a schedule, we denote by A
(k)
M→u(tj , tj+1) the total number of tasks of

application Ak sent by the master to processor Pu during interval [tj , tj+1]. Note that this may be a rational

number if there are ongoing transfers at times tj and/or tj+1. Similarly, we denote by A
(k)
u (tj , tj+1) the total

(rational) number of tasks of Ak processed by Pu during interval [tj , tj+1]. Then we compute:

ρ
(k)
M→u(tj , tj+1) =

A
(k)
M→u(tj , tj+1)

tj+1 − tj
and ρ(k)

u (tj , tj+1) =
A

(k)
u (tj , tj+1)
tj+1 − tj

.

As in the fluid case, we can also compute the state of the buffers based on these quantities:

B(k)
u (tj) =

∑
ti+1≤tj

A
(k)
M→u(ti, ti+1)−A(k)

u (ti, ti+1)

We can easily check that all constraints (1),(2), (3), (4), (5), (6), (7), and (8-b) are satisfied. Variables B
(k)
u (tj),

ρ
(k)
M→u(tj , tj+1), and ρ

(k)
u (tj , tj+1) define a point in Polyhedron (K1).

(b) From a point in Polyhedron (K1), we build a schedule which is asymptotically optimal, as defined in Section III-

C. During each interval [tj , tj+1], for each worker Pu, we proceed as follows.

1) We first consider a fluid-model schedule Sf following exactly the rates defined by the point in the

polyhedron: the tasks of application Ak are sent with rate ρ
(k)
M→u(tj , tj+1) and processed at rate ρ

(k)
u (tj , tj+1).

2) We transform both the communication schedule and the computation schedule using one-dimensional load-

balancing algorithms. We first compute the integer number of tasks that can be sent in the one-port schedule:

ncomm
u,j,k =

⌊
ρ

(k)
M→u(tj , tj+1)× (tj+1 − tj)

⌋
.

The number of tasks that can be computed on Pu in this time-interval is bounded both by the number of

tasks processed in the fluid-model schedule, and by the number of tasks received during this time-interval

plus the number of remaining tasks:

ncomp
u,j,k = min

{ ⌊
ρ(k)

u (tj , tj+1)× (tj+1 − tj)
⌋

, ncomm
u,j,k +

j−1∑
i=1

(
ncomm

u,i,k − ncomp
u,i,k

) }

Consider a fluid-model schedule based on the value ρ
(k)
u (tj , tj+1) and ρ

(k)
M→u(tj , tj+1), for each time-interval

[ti, ti+1] preceding the current one (i ≤ j). By rounding down the number of tasks received by Pu in each

of these time-intervals, we potentially decrease the available number of tasks available for computation

by j (the maximum number of preceding time-intervals). This allows us to give an upper bound for the

difference between the theoretical number of tasks processed (in the fluid-model schedule) and the actual

number, under the one-port model:

ncomp
u,j,k ≥ ρ(k)

u (tj , tj+1)× (tj+1 − tj)− j

The first ncomm
u,j,k tasks sent in schedule Sf are organized with the one-dimensional load-balancing algorithm

into S1D, while the last ncomp
u,j,k tasks executed in schedule Sf are organized with the inverse one-dimensional

load-balancing algorithm S−2
1D (see Section IV-A).

3) Then, the computations are shifted: for each application Ak, the computation of the first task of Ak is not

really performed (the processor is kept idle instead of computing this task), and we replace the computation

of task i by the computation of task i− 1.

The proof of the validity of the obtained schedule is very similar to the proof of Theorem 6 for the BMP-AC

model: we use the fact that a task does not start earlier in S−2
1D than in Sf , and no later in S1D than in Sf to

prove that the data needed for the execution of a given task are received in time.

At time d(k), some tasks of application Ak are still not processed, and some may even not be received yet.

Let us denote by Lk the number of time-intervals between r(k) and d(k), that is time-intervals where tasks of

application Ak may be processed (Lk ≤ 2n − 1). Because of the rounding of the numbers of tasks sent, at

most one task is not transmitted in each interval, for each application. At time d(k), we thus have at most Lk

14

tasks of application Ak to be sent to each processor Pu. We have to serialize the sending operations, which

takes a time at most
n∑

u=1

Lk × δ(k)

bu

Then, the number of tasks remaining to be processed on processor Pu is upper bounded by 2Lk +1: at most Lk

are received late because of the rounding of the number of tasks received, at most Lk tasks are received but not

computed because we also round the number of tasks processed, and one more task may also remain because

of the computation shift. The computation (at full speed) of all these tasks takes at most a time (2Lk +1)w(k)

s
(k)
u

on processor Pu. Overall, the delay induced on all processors for finishing application Ak can be bounded by:

n∑
u=1

Lk × δ(k)

bu
+ max

1≤u≤p
(2Lk + 1)× w(k)

s
(k)
u

.

As Lk ≤ 2n− 1, the lateness of any application Ak is thus:

lateness(k) ≤
∑

k

(
n∑

u=1

(2n− 1)× δ(k)

bu
+ max

1≤u≤p
(4n− 1)× w(k)

s
(k)
u

)
.

As in the proof of Theorem 7, when the granularity becomes small, the stretch of the obtained schedule

becomes as close to S2 as we want.

15

V. COMPLETE SIMULATION RESULTS

In Figures 4, 5, 6 and 7, we present the complete simulation results regarding metrics that are not our main

objective, that is: sum-stretch, makespan, max-flow and sum-flow.

Algorithm minimum average (± stddev) maximum (fraction of best result)

FIFO RR 2.064 6.783 (± 3.210) 30.7 (the best in 0.0 %)
FIFO MCT 1.322 2.754 (± 0.670) 6.45 (the best in 0.0 %)
FIFO DD 2.064 6.783 (± 3.210) 30.7 (the best in 0.0 %)
SPT RR 1.019 2.942 (± 1.221) 10.1 (the best in 0.0 %)

SPT MCT 1.000 1.182 (± 0.183) 2.53 (the best in 2.4 %)
SPT DD 1.019 2.942 (± 1.221) 10.1 (the best in 0.0 %)

SRPT RR 1.007 2.607 (± 1.071) 8.93 (the best in 0.0 %)
SRPT MCT 1.000 1.045 (± 0.098) 1.92 (the best in 25.5 %)

SRPT DD 1.007 2.607 (± 1.071) 8.93 (the best in 0.0 %)
SWRPT RR 1.000 2.596 (± 1.068) 8.96 (the best in 0.1 %)

SWRPT MCT 1.000 1.038 (± 0.098) 1.92 (the best in 60.1 %)
SWRPT DD 1.000 2.596 (± 1.068) 8.96 (the best in 0.1 %)

MWMA NBT 1.051 2.013 (± 0.644) 5.41 (the best in 0.0 %)
MWMA MS 1.663 4.183 (± 1.269) 11.5 (the best in 0.0 %)

CBS3M FIFO ONLINE 1.000 1.294 (± 0.208) 2.16 (the best in 0.4 %)
CBS3M EDF ONLINE 1.000 1.201 (± 0.190) 2.08 (the best in 20.2 %)

CBS3M FIFO ROFF 1.000 1.332 (± 0.227) 2.57 (the best in 0.1 %)
CBS3M EDF ROFF 1.000 1.272 (± 0.214) 2.49 (the best in 3.8 %)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 4 5 6 7 8 9 10 11 12

av
er

ag
e

su
m

_s
tre

tc
h

/ b
es

t s
um

_s
tre

tc
h

load (optimal stretch)

SRPT_MCT
SWRPT_MCT
MWMA_NBT

CBS3M_EDF_OFFLINE
CBS3M_EDF_ONLINE

Fig. 4. Sum-stretch of all heuristics in the simulations, and its evolution for the best heuristics in under different load conditions.

REFERENCES

[1] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert. A proposal for a heterogeneous cluster ScaLAPACK (dense linear
solvers). IEEE Trans. Computers, 50(10):1052–1070, 2001.

[2] P. Boulet, J. Dongarra, Y. Robert, and F. Vivien. Static tiling for heterogeneous computing platforms. Parallel Computing, 25:547–568,
1999.

16

Algorithm minimum average (± stddev) maximum (fraction of best result)

FIFO RR 1.343 2.716 (± 0.684) 5.31 (the best in 0.0 %)
FIFO MCT 1.000 1.329 (± 0.202) 2.11 (the best in 0.1 %)
FIFO DD 1.343 2.716 (± 0.684) 5.31 (the best in 0.0 %)
SPT RR 1.325 2.714 (± 0.685) 5.33 (the best in 0.0 %)

SPT MCT 1.000 1.329 (± 0.202) 2.1 (the best in 0.0 %)
SPT DD 1.325 2.714 (± 0.685) 5.33 (the best in 0.0 %)

SRPT RR 1.325 2.714 (± 0.686) 5.32 (the best in 0.0 %)
SRPT MCT 1.000 1.328 (± 0.202) 2.1 (the best in 0.0 %)
SRPT DD 1.325 2.714 (± 0.686) 5.32 (the best in 0.0 %)

SWRPT RR 1.322 2.715 (± 0.686) 5.32 (the best in 0.0 %)
SWRPT MCT 1.000 1.328 (± 0.202) 2.1 (the best in 0.0 %)
SWRPT DD 1.322 2.715 (± 0.686) 5.32 (the best in 0.0 %)

MWMA NBT 1.000 1.079 (± 0.070) 1.45 (the best in 4.6 %)
MWMA MS 1.000 1.078 (± 0.067) 1.42 (the best in 2.1 %)

CBS3M FIFO ONLINE 1.000 1.029 (± 0.029) 1.17 (the best in 7.5 %)
CBS3M EDF ONLINE 1.000 1.004 (± 0.006) 1.05 (the best in 35.0 %)
CBS3M FIFO ROFF 1.000 1.018 (± 0.023) 1.22 (the best in 17.6 %)
CBS3M EDF ROFF 1.000 1.003 (± 0.006) 1.07 (the best in 53.0 %)

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 4 5 6 7 8 9 10 11 12

av
er

ag
e

m
ak

es
pa

n
/ b

es
t m

ak
es

pa
n

load (optimal stretch)

SRPT_MCT
SWRPT_MCT
MWMA_NBT

CBS3M_EDF_OFFLINE
CBS3M_EDF_ONLINE

Fig. 5. Makespan of all heuristics in the simulations, and its evolution for the best heuristics in under different load conditions.

17

Algorithm minimum average (± stddev) maximum (fraction of best result)

FIFO RR 1.146 3.097 (± 1.135) 10.2 (the best in 0.0 %)
FIFO MCT 1.000 1.281 (± 0.258) 2.83 (the best in 14.4 %)

FIFO DD 1.146 3.097 (± 1.135) 10.2 (the best in 0.0 %)
SPT RR 1.386 3.282 (± 1.222) 10.9 (the best in 0.0 %)

SPT MCT 1.002 1.460 (± 0.287) 3.09 (the best in 0.0 %)
SPT DD 1.386 3.282 (± 1.222) 10.9 (the best in 0.0 %)

SRPT RR 1.386 3.289 (± 1.225) 10.9 (the best in 0.0 %)
SRPT MCT 1.003 1.473 (± 0.306) 4.28 (the best in 0.0 %)
SRPT DD 1.386 3.289 (± 1.225) 10.9 (the best in 0.0 %)

SWRPT RR 1.382 3.291 (± 1.225) 10.9 (the best in 0.0 %)
SWRPT MCT 1.000 1.477 (± 0.309) 4.28 (the best in 0.1 %)
SWRPT DD 1.382 3.291 (± 1.225) 10.9 (the best in 0.0 %)

MWMA NBT 1.000 1.181 (± 0.153) 1.99 (the best in 7.0 %)
MWMA MS 1.000 1.261 (± 0.189) 2.32 (the best in 1.1 %)

CBS3M FIFO ONLINE 1.000 1.054 (± 0.061) 1.52 (the best in 5.8 %)
CBS3M EDF ONLINE 1.000 1.031 (± 0.057) 1.48 (the best in 23.2 %)
CBS3M FIFO ROFF 1.000 1.037 (± 0.058) 1.48 (the best in 21.6 %)
CBS3M EDF ROFF 1.000 1.023 (± 0.055) 1.48 (the best in 48.7 %)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 4 5 6 7 8 9 10 11 12

av
er

ag
e

m
ax

_f
lo

w
 /

be
st

 m
ax

_f
lo

w

load (optimal stretch)

SRPT_MCT
SWRPT_MCT
MWMA_NBT

CBS3M_EDF_OFFLINE
CBS3M_EDF_ONLINE

Fig. 6. Max-flow of all heuristics in the simulations, and its evolution for the best heuristics in under different load conditions.

18

Algorithm minimum average (± stddev) maximum (fraction of best result)

FIFO RR 1.644 4.020 (± 1.567) 16.3 (the best in 0.0 %)
FIFO MCT 1.134 1.652 (± 0.264) 3.33 (the best in 0.0 %)
FIFO DD 1.644 4.020 (± 1.567) 16.3 (the best in 0.0 %)
SPT RR 1.196 2.811 (± 1.081) 9.21 (the best in 0.0 %)

SPT MCT 1.000 1.149 (± 0.171) 2.32 (the best in 3.5 %)
SPT DD 1.196 2.811 (± 1.081) 9.21 (the best in 0.0 %)

SRPT RR 1.079 2.704 (± 1.048) 9.03 (the best in 0.0 %)
SRPT MCT 1.000 1.105 (± 0.151) 2.23 (the best in 32.1 %)

SRPT DD 1.079 2.704 (± 1.048) 9.03 (the best in 0.0 %)
SWRPT RR 1.079 2.706 (± 1.049) 9.03 (the best in 0.0 %)

SWRPT MCT 1.000 1.108 (± 0.152) 2.23 (the best in 15.4 %)
SWRPT DD 1.079 2.706 (± 1.049) 9.03 (the best in 0.0 %)

MWMA NBT 1.000 1.404 (± 0.217) 2.29 (the best in 0.1 %)
MWMA MS 1.359 2.333 (± 0.355) 3.7 (the best in 0.0 %)

CBS3M FIFO ONLINE 1.000 1.122 (± 0.101) 1.62 (the best in 1.4 %)
CBS3M EDF ONLINE 1.000 1.065 (± 0.090) 1.53 (the best in 35.6 %)

CBS3M FIFO ROFF 1.000 1.120 (± 0.103) 1.67 (the best in 0.3 %)
CBS3M EDF ROFF 1.000 1.087 (± 0.101) 1.66 (the best in 18.7 %)

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 4 5 6 7 8 9 10 11 12

av
er

ag
e

su
m

_f
lo

w
 /

be
st

 s
um

_f
lo

w

load (optimal stretch)

SRPT_MCT
SWRPT_MCT
MWMA_NBT

CBS3M_EDF_OFFLINE
CBS3M_EDF_ONLINE

Fig. 7. Sum-flow of all heuristics in the simulations, and its evolution for the best heuristics in under different load conditions.

