
Scheduling Concurrent Bag-of-Tasks
Applications on Heterogeneous Platforms

Anne Benoit, Member, IEEE, Loris Marchal, Jean-François Pineau, Student Member, IEEE,

Yves Robert, Fellow, IEEE, and Frédéric Vivien, Member, IEEE

Abstract—Scheduling problems are already difficult on traditional parallel machines, and they become extremely challenging on

heterogeneous clusters. In this paper, we deal with the problem of scheduling multiple applications, made of collections of independent

and identical tasks, on a heterogeneous master-worker platform. The applications are submitted online, which means that there is no a

priori (static) knowledge of the workload distribution at the beginning of the execution. The objective is to minimize the maximum

stretch, i.e., the maximum ratio between the actual time an application has spent in the system and the time this application would have

spent if executed alone. On the theoretical side, we design an optimal algorithm for the offline version of the problem (when all release

dates and application characteristics are known beforehand). We also introduce a heuristic for the general case of online applications.

On the practical side, we have conducted extensive simulations and MPI experiments, showing that we are able to deal with very large

problem instances in a few seconds. Also, the solution that we compute totally outperforms classical heuristics from the literature,

thereby fully assessing the usefulness of our approach.

Index Terms—Scheduling and task partitioning, online computation, parallelism and concurrency, measurement, evaluation,

modeling, simulation of multiple-processor systems.

Ç

1 INTRODUCTION

SCHEDULING problems are already difficult on traditional
parallel machines. They become extremely challenging

on heterogeneous clusters, even when embarrassingly
parallel applications are considered. For instance, consider
a bag-of-tasks application [1], i.e., an application made of a
collection of independent and identical tasks, to be sched-
uled on a master-worker platform. Although simple, this
kind of framework is typical of a large class of problems,
including parameter sweep applications [2] and BOINC-like
computations [3]. If the master-worker platform is homo-
geneous, i.e., if all workers have identical CPUs and same
communication bandwidths to/from the master, then
elementary greedy strategies, such as purely demand-driven
approaches, will achieve an optimal throughput. On the
contrary, if the platform gathers heterogeneous processors,
connected to the master via different speed links, then the
previous strategies are likely to fail dramatically. This is
because it is crucial to select which resources to enroll before
initiating the computation [4], [5].

In this paper, we still target fully parallel applications,
but introduce a much more complex (and more realistic)
framework than scheduling a single application. We

envision a situation where users, or clients, submit several
bag-of-tasks applications to a heterogeneous master-worker
platform, using a classical client-server model. Applications
are submitted online, which means that there is no a priori
(static) knowledge of the workload distribution at the
beginning of the execution. When several applications are
executed simultaneously, they compete for hardware (net-
work and CPU) resources.

What is the scheduling objective in such a framework? A
greedy approach would execute the applications sequen-
tially in the order of their arrival, thereby optimizing the
execution of each application onto the target platform. Such a
simple approach is not likely to be satisfactory for the clients.
For example, the greedy approach may delay the execution
of the second application for a very long time, while it might
have taken only a small fraction of the resources and few
time steps to execute it concurrently with the first one. More
strikingly, both applications might have used completely
different platform resources (being assigned to different
workers) and would have run concurrently at the same
speed as in exclusive mode on the platform. Sharing
resources to execute several applications concurrently has
two key advantages: 1) from the clients’ point of view, the
response time (the delay between the arrival of an applica-
tion and the completion of its last task) is expected to be
much smaller and 2) from the resource usage perspective,
different applications will have different characteristics, and
are likely to be assigned different resources by the scheduler.
Overall, the global utilization of the platform will increase.
The traditional measure to quantify the benefits of con-
current scheduling on shared resources is the maximum
stretch or maximum slowdown. The stretch of an application
is defined as the ratio of its response time under the
concurrent scheduling policy over its response time in
dedicated mode, i.e., when it is the only application executed
on the platform. The objective is then to minimize the

202 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 2, FEBRUARY 2010

. A. Benoit and Y. Robert are with ENS Lyon, University of Lyon, and LIP,
46 allee d’Italie, 69007 Lyon, France.
E-mail: {Anne.Benoit, Yves.Robert}@ens-lyon.fr.

. L. Marchal is with CNRS, University of Lyon, and LIP, 46 allee d’Italie,
69007 Lyon, France. E-mail: Loris.Marchal@ens-lyon.fr.

. J.-F. Pineau is with LIRMM, 161 rue Ada 34392 Montpellier Cedex 5
France. E-mail: Jean-Francois.Pineau@lirmm.fr.

. F. Vivien is with INRIA, University of Lyon, and LIP, 46 allee d’Italie,
69007 Lyon, France. E-mail: Frederic.Vivien@inria.fr.

Manuscript received 28 May 2008; revised 18 Jan. 2009; accepted 28 May
2009; published online 24 July 2009.
Recommended for acceptance by F. Lombardi.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-05-0235.
Digital Object Identifier no. 10.1109/TC.2009.117.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

maximum stretch of any application, thereby enforcing a fair
trade-off between all applications.

The aim of this paper is to provide a scheduling strategy
which minimizes the maximum stretch of several concurrent
bag-of-tasks applications which are submitted online. Our
scheduling algorithm relies on complicated mathematical
tools but can be computed in time polynomial of the problem
size. On the theoretical side, we prove that our strategy is
optimal for the offline version of the problem (when all
release dates and application characteristics are known
beforehand). We also introduce a heuristic for the general
case of online applications. On the practical side, we have
conducted MPI experiments and extensive simulations,
showing that we are able to deal with very large problem
instances in a few seconds. Also, the solution that we compute
totally outperforms classical heuristics from the literature,
thereby fully assessing the usefulness of our approach.

The rest of the paper is organized as follows: Section 2
describes the platform and application models. Section 3 is
devoted to the derivation of the optimal solution in the offline
case, and Section 4 to the presentation of our heuristic for the
online case. In Section 5, we report our set of simulations and
MPI experiments, and compare our solution against several
classical heuristics from the literature. Section 6 is devoted to
an overview of related work. Finally, we state some
concluding remarks in Section 7.

2 FRAMEWORK

In this section, we outline the model for the target platforms,
as well as the characteristics of the applicative framework.
Next, we survey steady-state scheduling techniques and
introduce the maximum stretch objective function.

2.1 Platform Model

We target a heterogeneous master-worker platform (see
Fig. 1), also called star network or single-level tree in the
literature.

The master Pmaster is located at the root of the tree, and
there are p workers Pu (1 � u � p). The link between Pmaster

and Pu has a bandwidth bu. We assume a linear cost model;
hence, it takes X=bu time units to send (respectively,
receive) a message of size X to (respectively, from) Pu.
The computational speed of worker Pu is su, meaning that it
takes X=su time units to execute X floating point opera-
tions. Without any loss of generality, we assume that the
master has no processing capability. Otherwise, we can
simulate the computations of the master by adding an extra
worker paying no communication cost.

2.1.1 Communication Models

Traditional scheduling models enforce the rule that compu-
tations cannot progress faster than processor speeds would

allow: Limitations of computation resources are well taken
into account. Curiously, these models do not make similar
assumptions for communications: in the literature, an
arbitrary number of communications may take place at any
time step [6], [7], [8]. In particular, a given processor can send
an unlimited number of messages in parallel, and each of
these messages is routed as if it was alone in the system (no
sharing of resources). Obviously, these models are not
realistic, and we need to better take communication resources
into account. To this purpose, we present two different
models, which cover a wide range of practical situations.

Under the bounded multiport communication model [9],
the master can send/receive data to/from all workers at a
given time step. However, there is a limit on the amount of
data that the master can send per time unit, denoted as BW.
In other words, the total amount of data sent by the master
to all workers each time unit cannot exceed BW. Intuitively,
the bound BW corresponds to the bandwidth capacity of
the master’s network card; the flow of data out of the card
can be either directed to a single link or split among several
links indifferently, hence the multiport hypothesis. The
bounded multiport model fully accounts for the hetero-
geneity of the platform, as each link has a different
bandwidth. Simultaneous sends and receives are allowed
(all links are assumed bidirectional, or full duplex).

Another more restricted model is the one-port model [10],
[11]. In this model, the master can send data to a single
worker at a given time so that the sending operations have
to be serialized. Suppose, for example, that the master has a
message of size X to send to worker Pu. We recall that the
bandwidth of the communication link between both
processors is bu. If the transfer starts at time t, then the
master cannot start another sending operation before time
tþX=bu. Usually, a processor is supposed to be able to
perform one send and one receive operation at the same
time (this hypothesis is not relevant in our study, as the
master processor is the only one sending data).

The one-port model seems to fit the performance of some
current MPI implementations, which serialize asynchronous
MPI sends as soon as message sizes exceed a few hundreds of
kilobytes [12]. However, recent multithreaded communica-
tion libraries such as MPICH [13], [14] allow for initiating
multiple concurrent send and receive operations, thereby
providing practical realizations of the multiport model.

Finally, for both the bounded multiport and the one-port
models, we assume that computation can be overlapped by
independent communication, without any interference.

2.1.2 Computation Models

We propose two models for the computation. Under the
fluid computation model, we assume that several tasks can
be executed at the same time on a given worker, with a
time-sharing mechanism. Furthermore, we assume that we
totally control the computation rate for each task. For
example, suppose that two tasks A and B are executed on
the same worker at respective rates � and �. During a time
period �t, � ��t units of work of task A and � ��t units of
work of task B are completed. These computation rates may
be changed at any time during the computation of a task.

Our second computation model, the atomic computation
model, assumes that only a single task can be computed on

BENOIT ET AL.: SCHEDULING CONCURRENT BAG-OF-TASKS APPLICATIONS ON HETEROGENEOUS PLATFORMS 203

Fig. 1. A star network.

a worker at any given time, and this execution cannot be

stopped before its completion (no preemption).
Under both computation models, a worker can only start

computing a task once it has completely received the

message containing the task. However, for the ease of proofs,

we add a variant to the fluid computation model, called

synchronous start computation: in this model, the computa-

tion on a worker can start at the same time as the reception of

the task starts, provided that the computation rate is smaller

than, or equal to, the communication rate (the communica-

tion must complete before the computation). This models the

fact that in several applications, only the first bytes of data
are needed to start executing a task. In addition, the

theoretical results of this paper are more easily expressed

under this model, which provides an upper bound on the

achievable performance.

2.1.3 Proposed Platform Model Taxonomy

We summarize here the various platform and application

models under study:

. Bounded multiport with fluid computation and
synchronous start (BMP-FC-SS). This is the utter-
most simple model: communication and computa-
tion start at the same time, communication and
computation rates can vary over time within the
limits of link and processor capabilities. We include
this model in our study because it provides a good
and intuitive framework to understand the results
presented here. This model also provides an upper
bound on the achievable performance, which we use
as a reference for other models.

. Bounded multiport with fluid computation (BMP-
FC). This model is a step closer to reality, as it allows
computation and communication rates to vary over
time, but it imposes that a task input data are
completely received before its execution can start.

. Bounded multiport with atomic computation
(BMP-AC). In this model, two tasks cannot be
computed concurrently on a worker. This model
takes into account the fact that controlling precisely
the computing rate of two concurrent applications is
practically challenging, and that it is sometimes
impossible to run simultaneously two applications
because of memory constraints.

. One-port model with atomic computation (OP-AC).
This is the same model as the BMP-AC, but with one-
port communication constraint on the master. It
represents systems where concurrent sends are not
allowed.

In the following, we mainly focus on the variants of the

bounded multiport model.
There is a hierarchy among all the multiport models:

intuitively, in terms of hardness,

BMP-FC-SS < BMP-FC < BMP-AC:

Formally, a valid schedule for BMP-AC is valid for BMP-FC

and a valid schedule for BMP-FC is valid for BMP-FC-SS.

This is why studying BMP-FC-SS is useful for deriving

upper bounds for all other models.

2.2 Application Model

We consider n bag-of-tasks applications Ak, 1 � k � n. The
master Pmaster holds the input data of each application Ak

upon its release time. Application Ak is composed of a set of
�ðkÞ independent, same size tasks. In order to completely
execute an application, all its constitutive tasks must be
computed (in any order).

We let wðkÞ be the amount of computations (expressed in
flops) required to process a task ofAk. The speed of a worker
Pu may well be different for each application, depending
upon the characteristics of the processor and upon the type
of computations needed by each application. To take this
into account, we refine the platform model and add an extra
parameter, using sðkÞu instead of su in the following. In other
words, we move from the uniform machine model to the
unrelated machine model of scheduling theory [7]. The time
required to process one task of Ak on processor Pu is thus
wðkÞ=sðkÞu . Each task of Ak has a size �ðkÞ (expressed in bytes),
which means that it takes a time �ðkÞ=bu to send a task ofAk to
processor Pu (when there are no other ongoing transfers).
For simplicity, we do not consider any return message:
either we assume that the results of the tasks are stored on
the workers, or we merge the return message of the current
task with the input message of the next one (and update the
communication volume accordingly).

2.3 Steady-State Scheduling

Assume for a while that a unique bag-of-tasks application,
Ak is executed on the platform. If �ðkÞ, the number of
independent tasks composing the application, is large
(otherwise, why would we deploy Ak on a parallel
platform?), we can relax the problem of minimizing the
total execution time. Instead, we aim at maximizing the
throughput, i.e., the average (fractional) number of tasks
executed per time unit. We design a cyclic schedule that
reproduces the same schedule every period, except possibly
for the very first (initialization) and last (cleanup) periods.
It is shown in [4], [15] how to derive an optimal schedule
for throughput maximization. The idea is to characterize
the optimal throughput as the solution of a linear program
over rational numbers, which is a problem with polynomial
time complexity.

Throughout the paper, we denote by �ðkÞu the throughput
of worker Pu for application Ak, i.e., the average number of
tasks of Ak that Pu executes each time unit. In the special
case where application Ak is executed alone in the
platform, we denote by ��ðkÞu the value of this throughput
in a solution which maximizes the total throughput:
��ðkÞ ¼

Pp
u¼1 �

�ðkÞ
u .

We write the following linear program (see (1)), which
enables us to compute an asymptotically optimal schedule.
The maximization of the throughput is bounded by three
types of constraints:

. The first set of constraints states that the processing
capacity of Pu is not exceeded.

. The second set of constraints states that the bandwidth
of the link from Pmaster to Pu is not exceeded.

. The last constraint states that the total outgoing
capacity of the master is not exceeded.

204 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 2, FEBRUARY 2010

MAXIMIZE ��ðkÞ ¼
Xp
u¼1

��ðkÞu SUBJECT TO

8 1 � u � p; ��ðkÞu
wðkÞ

s
ðkÞ
u

� 1;

8 1 � u � p; ��ðkÞu
�ðkÞ

bu
� 1;Xp

u¼1

��ðkÞu

�ðkÞ

BW
� 1:

8>>>>>>>>><
>>>>>>>>>:

ð1Þ

The formulation in terms of a linear program is simple
when considering a single application. In this case, a closed-
form expression can be derived. The first two sets of
constraints can be transformed into

8 1 � u � p ��ðkÞu � min
sðkÞu
wðkÞ

;
bu
�ðkÞ

� �
:

Then, the last constraint can be rewritten:

Xp
u¼1

��ðkÞu � BW

�ðkÞ
:

So that the optimal throughput is

��ðkÞ ¼ min
BW

�ðkÞ
;
Xp
u¼1

min
sðkÞu
wðkÞ

;
bu
�ðkÞ

� �()
:

It can be shown [4], [15] that any feasible schedule under
one of the multiport models has to enforce the previous
constraints. Hence, the optimal value ��ðkÞ is an upper bound
of the achievable throughput. Moreover, we can construct an
actual schedule, based on an optimal solution of the linear
program and which approaches the optimal throughput. For
example, the following procedure builds an optimal sche-
dule for the BMP-FC-SS model (bounded multiport commu-
nication with fluid computation and synchronous start):

. While there are tasks to process on the master, send
tasks to processor Pu with rate ��ðkÞu .

. As soon as processor Pu starts receiving a task, it
processes at the rate ��ðkÞu .

Due to the constraints of the linear program, this schedule is
always feasible and optimal, not only among periodic
schedules, but also more generally among all possible
schedules. When considering the most constrained BMP-
AC model (bounded multiport communication with atomic
computation), we have to change the computation policy
into:

. Processor Pu processes its tasks one at a time and in
the order it has (completely) received each of them.

The execution time of this schedule differs from the
minimum execution time by a constant factor, independent
of the total number of tasks �ðkÞ to process [4]. This allows
us to accurately approximate the total execution time, also
called makespan, as:

MS�ðkÞ ¼ �ðkÞ

��ðkÞ
:

We often use MS�ðkÞ as a comparison basis to approx-
imate the makespan of an application when it is alone on
the computing platform. If MS

ðkÞ
opt is the optimal makespan

for this single application, then we have

MS
ðkÞ
opt �Mk �MS�ðkÞ �MS

ðkÞ
opt;

where Mk is a fixed constant, independent of �ðkÞ.

2.4 Stretch

We come back to the original scenario, where several
applications are executed concurrently. Because they com-
pete for resources, their throughput will be lower. Equiva-
lently, their execution rate will be slowed down. Informally,
the stretch [16] of an application is its slowdown factor.

Let rðkÞ be the release date of application Ak on the
platform. Its execution will terminate at time CðkÞ �
rðkÞ þMSðkÞ, where MSðkÞ is the earliest time at which all
�ðkÞ tasks of Ak are completed. Because there might be other
applications running concurrently to Ak during part or
whole of its execution, we expect that MSðkÞ �MS�ðkÞ. We
define the average throughput �ðkÞ achieved by Ak during its
(concurrent) execution using the same equation as before:

MSðkÞ ¼ �ðkÞ

�ðkÞ
:

In order to process all applications fairly, we would like to
ensure that their actual (concurrent) execution is as close as
possible to their execution in dedicated mode. The stretch of
application Ak is its slowdown factor

Sk ¼
MSðkÞ

MS
ðkÞ
opt

� MSðkÞ

MS�ðkÞ
¼ �

�ðkÞ

�ðkÞ
:

Our objective function is defined as the max-stretch S, which
is the maximum of the stretches of all applications:

S ¼ max
1�k�n

Sk:

Minimizing the max-stretch S ensures that the slowdown
factor is kept as low as possible for each application, and
that none of them is unduly favored by the scheduler.

3 THE OFFLINE CASE

In this section, we present an asymptotically optimal
algorithm for the minimization of the maximum stretch of
several bag-of-tasks applications in the offline case, that is,
when application release dates and characteristics are
known in advance. In this section, we therefore assume
that all characteristics of the n applications Ak, 1 � k � n,
are known in advance.

3.1 Set of Possible Schedules

The scheduling algorithm is the following. Given a
candidate value for the max-stretch, we have a procedure
to determine whether there exists a solution that can achieve
this value. The optimal value can then be found using a
binary search on possible values.

Consider a candidate value S for the max-stretch. If this
objective is feasible, all applications will have a max-stretch
smaller than S, hence:

8 1 � k � n; MSðkÞ

MS�ðkÞ
� S ()

8 1 � k � n; CðkÞ ¼ rðkÞ þMSðkÞ � rðkÞ þ S �MS�ðkÞ:

BENOIT ET AL.: SCHEDULING CONCURRENT BAG-OF-TASKS APPLICATIONS ON HETEROGENEOUS PLATFORMS 205

Thus, given a candidate value S, we define deadline:

dðkÞ ¼ rðkÞ þ S �MS�ðkÞ; ð2Þ

for each application Ak, 1 � k � n. This means that if each

application is completed before its deadline, then the

expected max-stretch is reached. If this is not possible, no

solution is found, and a larger max-stretch should be tried

by the binary search.

Once a candidate stretch value S has been chosen, we

divide the total execution time into time intervals whose

bounds are epochal times, that is, applications’ release dates

or deadlines. Epochal times are denoted tj 2 frð1Þ; . . . ;

rðnÞg [fdð1Þ; . . . ; dðnÞg, such that tj � tjþ1, 1 � j � 2n� 1.

(Some release dates and deadlines may be equal, leading to

empty time intervals, for example, if there exists j such that

tj ¼ tjþ1; we do not try to remove these empty time intervals

so as to keep simple indices.) Our algorithm consists in

running each application Ak during its whole execution

window ½rðkÞ; dðkÞ	, but with a different throughput on each

time interval ½tj; tjþ1	 such that rðkÞ � tj and tjþ1 � dðkÞ.
Note that contrarily to the steady-state operation with

only one application, in the different time intervals, the

communication throughput may differ from the computa-

tion throughput: when the communication rate is larger

than the computation rate, extra tasks are stored in a

buffer. On the contrary, when the computation rate is

larger, tasks are extracted from the buffer and processed.

We introduce new notations to take both rates, as well as

buffer sizes, into account:

. �
ðkÞ
M!uðtj; tjþ1Þ denotes the communication through-

put from the master to the worker Pu during time

interval ½tj; tjþ1	 for application Ak, i.e., the average

number of tasks of Ak sent to Pu per time units

during that interval.
. �ðkÞu ðtj; tjþ1Þ denotes the computation throughput of

worker Pu during time interval ½tj; tjþ1	 for applica-

tion Ak, i.e., the average number of tasks of Ak

computed by Pu per time units during that interval.
. BðkÞu ðtjÞ denotes the (fractional) number of tasks of

application Ak stored in a buffer on Pu at time tj.

We write the (linear) constraints that must be satisfied

by the previous variables. Our aim is to find a schedule

with minimum stretch satisfying those constraints. Later,

based on rates satisfying these constraints, we show how to

construct a schedule achieving the corresponding stretch.

. All tasks sent by the master. The first set of
constraints ensures that all the tasks of a given
application Ak are actually sent by the master: 8 1 �
k � n;

X
1�j�2n�1

tj � rðkÞ

tjþ1 � dðkÞ

Xp
u¼1

�
ðkÞ
M!uðtj; tjþ1Þ � ðtjþ1 � tjÞ ¼ �ðkÞ: ð3Þ

. Nonnegative buffers. Each buffer should always
have a nonnegative size:

8 1 � k � n; 8 1 � u � p; 8 1 � j � 2n; BðkÞu ðtjÞ � 0:

ð4Þ

. Buffer initialization. At the beginning of the
computation of application Ak, all corresponding
buffers are empty:

8 1 � k � n; 8 1 � u � p; BðkÞu
�
rðkÞ
�
¼ 0: ð5Þ

. Emptying buffer. After the deadline of application
Ak, no tasks of this application should remain on
any node:

8 1 � k � n; 8 1 � u � p; BðkÞu
�
dðkÞ
�
¼ 0: ð6Þ

. Task conservation. During time interval ½tj; tjþ1	,
some tasks of application Ak are received and some
are consumed (computed), which impacts the size of
the buffer:

8 1 � k � n; 8 1 � j � 2n� 1; 8 1 � u � p;
BðkÞu ðtjþ1Þ ¼ BðkÞu ðtjÞ

þ
�
�
ðkÞ
M!uðtj; tjþ1Þ � �ðkÞu ðtj; tjþ1Þ

�
� ðtjþ1 � tjÞ:

ð7Þ

. Bounded computing capacity. The computing
capacity of a node should not be exceeded on any
time interval:

8 1�j�2n�1; 8 1�u�p;
Xn
k¼1

�ðkÞu ðtj; tjþ1Þ
wðkÞ

s
ðkÞ
u

� 1:

ð8Þ

. Bounded link capacity. The bandwidth of each link
should not be exceeded:

8 1�j�2n� 1; 8 1�u�p;
Xn
k¼1

�
ðkÞ
M!uðtj; tjþ1Þ

�ðkÞ

bu
� 1:

ð9Þ

. Limited sending capacity of the master. The total
outgoing bandwidth of the master should not be
exceeded:

8 1 � j � 2n� 1;
Xp
u¼1

Xn
k¼1

�
ðkÞ
M!uðtj; tjþ1Þ

�ðkÞ

BW
� 1:

ð10Þ

. Nonnegative throughputs.

8 1 � u � p;8 1 � k � n; 8 1 � j � 2n� 1;

�
ðkÞ
M!uðtj; tjþ1Þ � 0 and �ðkÞu ðtj; tjþ1Þ � 0:

ð11Þ

206 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 2, FEBRUARY 2010

We obtain a convex polyhedron K defined by the
previous constraints. The problem turns now into checking
whether the polyhedron is empty and, if not, into finding a
point in the polyhedron:

�
ðkÞ
M!uðtj; tjþ1Þ; �ðkÞu ðtj; tjþ1Þ; 8 k; u; j such that

1 � k � n; 1 � u � p; 1 � j � 2n� 1;
and all previous constraints are satisfied:

8<
: ðKÞ

3.2 Number of Tasks Processed

At first sight, it may seem surprising that in this set of linear
constraints, we do not have an equation establishing that
all tasks of a given application are eventually processed.
Indeed, such a constraint can be derived from the constraints
related to the number of tasks sent from the master and the
size of buffers. Consider the constraints on task conservation
(7) on a given processor Pu, and for a given application Ak;
these equations can be written:

8 1 � j � 2n� 1; BðkÞu ðtjþ1Þ �BðkÞu ðtjÞ ¼�
�
ðkÞ
M!uðtj; tjþ1Þ � �ðkÞu ðtj; tjþ1Þ

�
� ðtjþ1 � tjÞ:

If we sum all these constraints for all time interval bounds
between tstart ¼ rðkÞ and tstop ¼ dðkÞ, we obtain

BðkÞu ðtstopÞ �BðkÞu ðtstartÞ ¼X
½tj ; tjþ1 	

tj � rðkÞ

tjþ1 � dðkÞ

�
�
ðkÞ
M!uðtj; tjþ1Þ � �ðkÞu ðtj; tjþ1Þ

�
� ðtjþ1 � tjÞ:

Due to Constraints (5) and (6), we know that BðkÞu ðtstartÞ ¼ 0
and BðkÞu ðtstopÞ ¼ 0. So, the overall number of tasks sent to a
processor Pu is equal to the total number of tasks computed:X

½tj ; tjþ1 	

tj � rðkÞ

tjþ1 � dðkÞ

�
ðkÞ
M!uðtj; tjþ1Þ �

�
tjþ1 � tj

�
¼

X
½tj ; tjþ1 	

tj � rðkÞ

tjþ1 � dðkÞ

�ðkÞu ðtj; tjþ1Þ �
�
tjþ1 � tj

�
:

This is true for all processors, and Constraint (3) tells us that
the total number of tasks sent for application Ak is �ðkÞ, so:

Xp
u¼1

X
½tj ; tjþ1 	

tj � rðkÞ

tjþ1 � dðkÞ

�ðkÞu ðtj; tjþ1Þ �
�
tjþ1 � tj

�
¼ �ðkÞ:

Therefore, in any solution in Polyhedron (K) all tasks of
each application are processed.

3.3 Bounding Buffer Sizes

The size of the buffers could also be bounded by adding
constraints:

8 1 � u � p; 8 1 � j � 2n;
Xn
k¼1

BðkÞu ðtjÞ�ðkÞ �Mu;

where Mu is the size of the memory available on node Pu.
We bound the needed memory only at time interval bounds,

but the above argument can be used to prove that the buffer
size on Pu never exceeds Mu. We choose not to include this
constraint in our basic set of constraints, as this buffer size
limitation only applies to the fluid model. Indeed, we have
earlier proved that limiting the buffer size for independent
tasks scheduling leads to NP-complete problems [17].

3.4 Equivalence between Nonemptiness of
Polyhedron K and Achievable Stretch

Finding a point in Polyhedron K allows us to determine
whether the candidate value for the stretch is feasible.
Depending on whether Polyhedron K is empty, the binary
search is continued with a larger or smaller stretch value.

. If the polyhedron is not empty, then there exists a
schedule achieving stretch S. S becomes the upper
bound of the binary search interval and the search
proceeds.

. On the contrary, if the polyhedron is empty, then it
is not possible to achieve S. S becomes the lower
bound of the binary search.

This binary search is described below. For now, we
concentrate on stating that the polyhedron is not empty if
and only if the stretch S is achievable.

Note that the previous study assumes a fluid framework,
with flexible computing and communicating rates. This is
particularly convenient for the totally fluid model (BMP-
FC-SS) and we prove below that the algorithm computes the
optimal stretch under this model. The strength of our
method is that this study is also valid for the other models.
The results are slightly different, leading to asymptotic
optimality results, and the proofs are slightly more
involved, as we will see in Section 3.6. However, this
technique allows us to approach optimality.

Theorem 1. Under the totally fluid model (BMP-FC-SS),
Polyhedron K is not empty if and only if there exists a
schedule with stretch S.

The detailed proof of this result is available in the Web
supplementary material, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TC.2009.117. It consists
first in proving that any schedule must satisfy the
constraints defining Polyhedron K, and then, in building
a valid schedule from a given point in the polyhedron.

In practice, to know if the polyhedron is empty or to
obtain a point in K, we can use classical tools for linear
programs, just by adding a fictitious linear objective
function to our set of constraints. Some solvers allow the
user to limit the number of refinement steps once a point is
found in the polyhedron; this could be helpful to reduce the
running time of the scheduler.

3.5 Binary Search

To find the optimal stretch, we perform a binary search. We
first present a simple approximated search using the
emptiness of Polyhedron (K) to determine whether it is
possible to achieve the current stretch. Then, we present an
optimal but more involved search.

The lower bound on the achievable stretch is 1. The initial
upper bound for this binary search is also quite naive. For the

BENOIT ET AL.: SCHEDULING CONCURRENT BAG-OF-TASKS APPLICATIONS ON HETEROGENEOUS PLATFORMS 207

sake of simplicity, we consider that all applications are
released at time 0 and terminate simultaneously. This is
clearly a worst case scenario. Recall that the throughput for a
single application on the whole platform can be computed as:

��ðkÞ ¼ min
BW

�ðkÞ
;
Xp
u¼1

min
sðkÞu
wðkÞ

;
bu
�ðkÞ

� �()
:

Then, the execution time for application Ak is simply
�ðkÞ=��ðkÞ. We consider that all applications terminate at
time

P
k �ðkÞ=��ðkÞ so that the worst stretch is

Smax ¼ max
k

�ðkÞ=��ðkÞP
k �ðkÞ=��ðkÞ

:

Determining the termination criterion of the binary
search, that is the minimum gap � between two possible
stretches, is quite involved, and not very useful in practice.
We focus here on the case where this precision � is given by
the user.

Suppose that we are given � > 0. The binary search is
conducted using Algorithm 1. This algorithm approaches
the optimal stretch, as stated by the following theorem. The
proof of the theorem is available in the Web supplementary
material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TC.2009.117.

Theorem 2. For any � > 0, Algorithm 1 computes a stretch S
such that there exists a schedule achieving S and
S � Sopt þ �, where Sopt is the optimal stretch. The complex-
ity of Algorithm 1 is Oðlog Smax

� � CÞ, where C is the
complexity of finding a solution in Polyhedron K.

In fact, one can find the optimal stretch in polynomial
time. First, recall that the application deadlines are defined
by the application release dates and the targeted stretch S:

dðkÞ ¼ rðkÞ þ S �MS�ðkÞ:

Each deadline is thus an affine function in S, as depicted in
Fig. 2. We call critical values of the stretch the values for
which the relative ordering of the application release dates
and deadlines changes,

. When S is such a critical value, some release dates
and deadlines have the same value.

. When S varies between two consecutive critical
values, i.e., when Sa < S < Saþ1, then the ordering
of the release dates and deadlines is preserved.

To simplify our notations, we add two artificial critical
values corresponding to our bounds on the stretch: S1 ¼ 1

and Sm ¼ Smax.
Our goal is to find the optimal stretch by slicing the

stretch space into the intervals defined by the critical values.
Within each interval, the deadlines are linear functions of
the stretch (and release dates are constant). We first show
how to find the best stretch within a given interval using a
single linear program, and then, how to explore the set of
intervals with a binary search, so as to find the one
containing the optimal stretch.

3.5.1 Within a Stretch Interval

In the following, we work on one stretch interval, called as
½Sa;Sb	. For all values of S in this interval, the release
dates rðkÞ and deadlines dðkÞ are in a given order,
independent of the value of S. As previously, we note
ftjgj¼1...2n ¼ frðkÞ; dðkÞg, with tj � tjþ1. As the values of the
tjs may change when S varies, we write tj ¼ �jS þ �j.
This notation is general enough:

. If tj ¼ rðkÞ, then �j ¼ 0 and �j ¼ rðkÞ.

. If tj ¼ dðkÞ, then �j ¼MS�ðkÞ and �j ¼ rðkÞ.
Note that like previously, two tjs may be equal, especially
for critical values (S ¼ Sa or S ¼ Sb). For the sake of
simplicity, we do not try to discard the empty time
intervals, to avoid the renumbering of the epochal times.

When we rewrite the constraints defining the convex

polyhedron K with the above notations, we obtain

quadratic constraints instead of linear constraints. To avoid

this, we introduce new notations. Instead of considering the

instantaneous communication and computation rates, we

use the total amount of tasks sent or computed during a

given time interval. Formally, we define A
ðkÞ
M!uðtj; tjþ1Þ to

be the fractional number of tasks of application Ak sent by

the master to processor Pu during the time interval ½tj; tjþ1	.
Similarly, we denote by AðkÞu ðtj; tjþ1Þ the fractional number

of tasks of application Ak computed by processor Pu during

the time interval ½tj; tjþ1	. Of course, these quantities are

linked to our previous variables. Indeed, we have

A
ðkÞ
M!uðtj; tjþ1Þ ¼ �ðkÞM!uðtj; tjþ1Þ � ðtjþ1 � tjÞ;
AðkÞu ðtj; tjþ1Þ ¼ �ðkÞu ðtj; tjþ1Þ � ðtjþ1 � tjÞ;

with tjþ1 � tj ¼ ð�jþ1 � �jÞS þ ð�jþ1 � �jÞ. All constraints
can be rewritten with these new notations; the two instances
below exemplify all rewriting cases:

208 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 2, FEBRUARY 2010

Fig. 2. Relation between stretch and deadlines.

. Task conservation.

8 1 � k � n; 8 1 � j � 2n� 1; 8 1 � u � p;
BðkÞu ðtjþ1Þ ¼ BðkÞu ðtjÞ þA

ðkÞ
M!uðtj; tjþ1Þ �AðkÞu ðtj; tjþ1Þ:

. Bounded computing capacity.

8 1 � j � 2n� 1; 8 1 � u � p;Xn
k¼1

AðkÞu ðtj; tjþ1Þ
wðkÞ

s
ðkÞ
u

� ð�jþ1 � �jÞS þ ð�jþ1 � �jÞ:

We finally add a constraint to force the objective stretch to
be in the targeted stretch interval:

Sa � S � Sb: ð12Þ

We thus rewrite as above all the constraints defining
Polyhedron (K), and then, we add the new constraint 12.
This way, we obtain a linear program enabling us to
check what is the minimal achievable stretch in the
interval ½Sa;Sb	, if any.

3.5.2 Overall Binary Search

The linear program we just described is used as a building
brick for our exact binary search. For the interval ½Sa;Sb	, if
the minimum stretch computed by the linear program is
Sopt > Sa, this means that there is no better possible stretch
in ½Sa;Sb	, and thus, there is no better stretch overall. On the
contrary, if Sopt ¼ Sa, we cannot conclude: Sa may be the
optimal stretch, or the optimal stretch may be smaller than
Sa. In this case, the binary search is continued with smaller
stretch values. At last, if there is no solution to the linear
program, then there exists no possible stretch smaller than
or equal to Sb, and the binary search is continued with
larger stretch values. As the number of critical values is at
worst quadratic in the number of applications, the overall
binary search runs in time polynomial in the size of the
problem. (For more details, see the Web supplementary
material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TC.2009.117.)

3.6 Quasi Optimality for More Realistic Bounded
Multiport Models

In this section, we briefly explain how the previous optimality
result can be adapted to the other bounded multiport models
presented in Section 2.1.3 (refer to the Web supplementary
material, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TC.2009.117, for a detailed description of all technical results
and their proofs). We detail the case of the one-port model in
the next section. As expected, the more realistic the model, the
less tight the optimality guaranty. Fortunately, we are always
able to reach asymptotic optimality: our schedules get closer to
the optimal as the number of tasks per application increases.

We describe the delay induced by each model in
comparison to the fluid model: starting from a schedule
S1 which is optimal under the fluid model (BMP-FC-SS), the
idea is to build a schedule S2 with comparable performance
under a more constrained scenario.

We assess the delay induced by each model. Given the
stretch S, we can compute a deadline dðkÞ for each

application Ak. By moving to more constrained models,
we will not be able to ensure that the finishing time MSðkÞ is
smaller than dðkÞ. We call lateness for application Ak the
quantity maxf0;MSðkÞ � dðkÞg, that is the time between the
due date of an application and its real termination.

From a schedule valid under the totally fluid model
(BMP-FC-SS), we can build a schedule

. under the BMP-FC model, where the maximum
lateness for each application is

max
1�u�p

Xn
k¼1

wðkÞ

s
ðkÞ
u

;

. under the BMP-AC model where the maximum
lateness for each application is

max
1�u�p

2n�
Xn
k¼1

wðkÞ

s
ðkÞ
u

:

We are then able to show that the previous schedules are
close to the optimal, when applications are composed of a
large number of tasks. To establish such an asymptotic
optimality, we have to prove that the gap computed above
gets negligible when the number of tasks gets larger. At first
sight, we would have to study the limit of the application
stretch when �ðkÞ is large for each application. However, if
we simply increase the number of tasks in each application
without changing the release dates and the task character-
istics, then the problem looks totally different: any schedule
is running for a very long time, and the time separating the
release dates is negligible in front of the whole duration of
the schedule. This behavior is not meaningful for our study.

To study the asymptotic behavior of the system, we
rather change the granularity of the tasks: we show that
when applications are composed of a large number of
small-size tasks, then the maximal stretch is close to the
optimal one obtained with the fluid model. To take into
account the application characteristics, we introduce the
granularity g, and redefine the application characteristics
with this new variable:

�ðkÞg ¼
�ðkÞ

g
; wðkÞg ¼ g� wðkÞ and �ðkÞg ¼ g� �ðkÞ:

When g ¼ 1, we get back to the previous case. When g < 1,
there are more tasks but they have smaller communication
and computation size. For any g, the total communication
and computation amount per application is kept the same;
thus, it is meaningful to consider the original release dates.

Our goal is to study the case g! 0. Note that under the
totally fluid model (BMP-FC-SS), the granularity has no
impact on the performance (or the stretch). Indeed, the fluid
model can be seen as the extreme case where g ¼ 0. The
optimal stretch under the BMP-FC-SS Sopt does not depend
on g.

Theorem 3. When the granularity is small, the schedule
constructed above for the BMP-FC (respectively, BMP-AC)
model is asymptotically optimal for the maximum stretch, that is

lim
g!0
S ¼ Sopt;

BENOIT ET AL.: SCHEDULING CONCURRENT BAG-OF-TASKS APPLICATIONS ON HETEROGENEOUS PLATFORMS 209

where S is the stretch of the BMP-FC (respectively, BMP-AC)
schedule, and Sopt the stretch of the optimal fluid schedule.

The proof of this theorem is available in the Web
supplementary material, which can be found on the Compu-
ter Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TC.2009.117 (as Theorem 7).

3.7 Asymptotic Optimality for the One-Port Model

To establish an asymptotic optimality result for the one-port
model, we: 1) modify constraints to deal with the one-port
communication model instead of the bounded multiport one;
2) transform a fluid schedule into an atomic one where file
transfers (and task computations) are serialized and applica-
tions do not terminate much later than in the reference fluid
schedule; 3) prove that the obtained schedule, valid under
the one-port model, is asymptotically optimal: when the
granularity of tasks tends to zero, the achieved maximum
stretch tends to the optimal one.

3.7.1 Modifying Constraints to Deal with the One-Port

Communication Model

We cannot simply extend the results obtained for the fluid
model to the one-port model since the parameters for
modeling communications are not the same. Actually, the
one-port model limits the time spent by a processor (here,
the master) to send data, whereas the multiport model
limits its bandwidth capacity. Thus, we have to modify the
corresponding constraints. Constraint 10 is then replaced by

8 1 � j � 2n� 1;
Xp
u¼1

Xn
k¼1

�
ðkÞ
M!uðtj; tjþ1Þ

�ðkÞ

bu
� 1: ð10-bÞ

The set of constraints corresponding to the scheduling
problem under the one-port model, for a maximum stretch
S, are gathered by the definition of Polyhedron ðK1Þ:

�
ðkÞ
M!uðtj; tjþ1Þ; �ðkÞu ðtj; tjþ1Þ; 8 k; u; j such that

1 � k � n; 1 � u � p; 1 � j � 2n� 1; and ð3Þ; ð4Þ;
ð5Þ; ð6Þ; ð7Þ; ð8Þ; ð9Þ; ð10-bÞ; and ð11Þ are satisfied:

8<
: ðK1Þ

As previously, the existence of a point in the polyhedron
is linked to the existence of a schedule with stretch S.
However, we have no fluid model which could perfectly
follow the behavior of the linear constraints. Thus, we only
target asymptotic optimality. To do that, we need some
special schedule transformations.

3.7.2 Basic Schedule Transformations

We define two schedule transformations taking as input a
fluid scheduleSfluid scheduling n applicationsA1, . . . ,An on a
single resource. These transformations have the following
properties: With the first transformation, no taskT terminates
later under the modified schedule than under Sfluid. With the
second transformation, no task T starts earlier under the
modified schedule than under Sfluid. (All details and proofs
are available in the Web supplementary material, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TC.2009.117.) These
two transformations are defined as follows: We denote by tk
the time needed by the resource to process one task of Ak at

full speed. Under fluid schedule Sfluid, each application Ak is
devoted a share �k of the resource such that

Pn
k¼1 �k � 1.

From Sfluid, we build an atomic model schedule S1D using a
1D load-balancing algorithm [18]: at any time step, if nk is the
number of tasks of applicationAk already scheduled, the next
task to be scheduled is the one minimizing ðnkþ1Þ�tk

�k
.

We can prove that under schedule S1D, a task T does not
terminate later than under Sfluid. S1D is useful when we want
to construct an atomic model schedule that is a schedule
without preemption, in which task results are available no
later than in a fluid schedule. On the contrary, it can be useful
to ensure that no task starts earlier in an atomic model
schedule than in the original fluid schedule. Here is a
procedure to construct a schedule with the latter property.

1. From Sfluid of makespan M, we build a schedule S�1
fluid

by reversing time: a task beginning at time b and
finishing at time f in Sfluid is scheduled to start at
time M � f and to terminate at time M � b in S�1

fluid,
and is processed at the same rate as in Sfluid.

2. We apply the 1D load-balancing algorithm [18] to
S�1

fluid, leading to schedule S�1
1D . We know that a task T

does not terminate later in S�1
1D than in S�1

fluid.
3. We transform S�1

1D by reverting time one last time:
we obtain the schedule S�2

1D . A task beginning at
time b and finishing at time f in S�1

1D starts at time
M � f and finishes at time M � b in S�2

1D . We can
prove that under schedule S�2

1D , a task T does not
terminate sooner than under Sfluid. Note that S�1

1D

may have a makespan smaller that M (if the resource
was not totally used in the original schedule Sfluid).
In this case, our method automatically introduces
idle time in the 1D schedule, to avoid to start a task
too early.

3.7.3 Schedule for the One-Port Model

Theorem 4. 1) If there exists a schedule valid under the one-port
model with stretch S1, then Polyhedron ðK1Þ is not empty for
S1 and 2) Conversely, if Polyhedron ðK1Þ is not empty for the
stretch objective S2, then there exists a schedule valid for the
problem under the one-port model with parameters �ðkÞg , �ðkÞg ,
and wðkÞg , as defined in Section 3.6, whose stretch S is such
that limg!0 S ¼ S2.

The nontrivial part of the theorem is the second one. We
now sketch how to construct such a schedule. (All details
can be found in the Web supplementary material, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TC.2009.117,
as Theorem 8.)

We start from a point in Polyhedron ðK1Þ. During each
interval ½tj; tjþ1	 and for each worker Pu, we proceed as
follows:

1. We define a fluid model schedule Sf from the point
in Polyhedron ðK1Þ: the tasks of any application are
sent and processed at the rates defined by the point
in ðK1Þ.

2. We transform both the communication schedule and
the computation schedule using 1D load-balancing
algorithms. We first round down the number of

210 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 2, FEBRUARY 2010

tasks of Ak that are sent during interval ½tj; tjþ1	 to
Pu, ncomm

u;j;k . The number of tasks ncomp
u;j;k that can be

computed on Pu during ½tj; tjþ1	 is bounded both by
the number of tasks processed in the fluid model
schedule, and by the number of tasks received
during this time interval plus the number of
remaining tasks.

The first ncomm
u;j;k tasks sent in schedule Sf are

organized with the 1D load-balancing algorithm

into S1D, while the last ncomp
u;j;k tasks executed in

schedule Sf are organized with the inverse 1D load-

balancing algorithm S�2
1D . This gives us a schedule

for the sending of ncomm
u;j;k tasks and the computation

of ncomp
u;j;k tasks.

3. Next, computations are shifted: for each application
Ak, the computation of the first task of Ak is
discarded (the processor is kept idle instead of
computing this task), and we replace the computa-
tion of task i by the computation of task i� 1.

4. Finally, at time dðkÞ, some tasks of application Ak are
still not processed, and some may even not have
been received yet. We serialize the sending opera-
tions of all the yet missing tasks. Then, some tasks
remain to be processed on each processor. We then
compute (at full speed) all these tasks.

The proof of validity of the obtained schedule comes from
the fact that a task does not start earlier in S�2

1D than in Sf ,
and completes no later in S1D than in Sf . Therefore, the data
needed for the execution of a given task are received in
time. To assess its performance, we show that the lateness
of any application Ak is at most:

Xn
k¼1

Xp
u¼1

ð2n� 1Þ � �ðkÞ
bu

þ max
1�u�p

ð4n� 1Þ � w
ðkÞ

s
ðkÞ
u

 !
:

Therefore, as in Theorem 3, when the granularity becomes
small, the stretch of the obtained schedule becomes as close
as we want to that of the schedule we started from.

4 ONLINE SETTING

We now move to the study of the online setting. Because we
target an online framework, the scheduling policy needs to
be modified upon the completion of an application, or upon
the arrival of a new one. Resources will be reassigned to the
various applications in order to optimize the objective
function. The scheduler is making best use of its partial
knowledge of the whole process (we know neither the
release date, nor the number of tasks, nor the characteristics
of the next application to arrive into the system). The idea is
to make use of our study of the offline case. When a new
application is released, we recompute the achievable max-
stretch using the binary search described in the offline case.
However, we cannot pretend to optimality as we now have
only limited information on the applications.

When a new applicationAknew
arrives at time Tnew ¼ rðknewÞ,

we consider the applications A0, . . . , Aknew�1, released before

Tnew. We call �
ðkÞ
rem the (fractional) number of tasks of

application Ak remaining at the master at time Tnew. For the

sake of simplicity, we do not consider the applications that are

totally processed, and thus, have �
ðkÞ
rem 6¼ 0 for all applications.

For the new application, we have �
ðknewÞ
rem ¼ �ðknewÞ. We also

consider as parameters the state BðkÞu ðTnewÞ of the buffers at

time Tnew. We also have BðknewÞ
u ðTnewÞ ¼ 0.

As previously, we compute the optimal max-stretch
using Algorithm 1. For a given objective S, we have a
convex polyhedron defined by the linear constraints, which
is nonempty if and only if stretch S is achievable. The
constraints are slightly modified in order to fit the online
context. First, we recompute the deadlines of the applica-
tions: dðkÞ ¼ rðkÞ þ S �MS�ðkÞ. Note that now, all release
dates are smaller than Tnew, and all deadlines are larger than
Tnew. We sort the deadlines by increasing order and denote
by tj the set of ordered deadlines: ftjg ¼ fdðkÞg [fTnewg
such that tj � tjþ1. The constraints are the same as the ones
used for Polyhedron K, except the constraint on the number
of tasks processed, which is updated to account for the
remaining number of tasks to be processed.

As described for the offline setting, a binary search
allows us to find the optimal max-stretch. Note that this
“optimality” concerns only the time interval ½Tnew;þ1	,
assuming that no other application will be released after
Tnew. This assumption will not hold true, in general; hence,
our schedule will be suboptimal (which is the price to pay
without information about future released applications).
The stretch achieved for the whole application set is
bounded by the maximum of the stretches obtained by
the binary search each time a new application is released.

5 MPI EXPERIMENTS AND SIMGRID SIMULATIONS

We have conducted several experiments in order to compare
our algorithms to reference scheduling strategies. We first
present the reference scheduling heuristics, and then, detail
the platforms and applications used for the experiments.
Finally, we expose and comment the numerical results.

The code and the experimental results can be down-
loaded from: http://graal.ens-lyon.fr/~lmarchal/cbs3m/.

5.1 Reference Scheduling Heuristics

In this section, we present strategies that are able to
schedule multiple applications in an online setting. Most
of these strategies are simple and wait for an application to
terminate before scheduling another application. Although
these strategies may be far from the optimal scheduling in a
number of cases, they are representative of existing Grid
schedulers. We first outline policies for selecting the set of
applications to be executed:

. First in first out (FIFO). Applications are computed
in the order of their release dates.

. Shortest processing time (SPT). When an application
terminates (or the first application is released), the
application with the smallest processing time is
scheduled (the processing time is approximated by
MS�, see Section 2.3).

. Shortest remaining processing time (SRPT). At each
release date or termination date, the application with
the smallest remaining processing time is scheduled.
The remaining processing time is the time needed to
process the remaining tasks of the application (and is
approximated as previously).

BENOIT ET AL.: SCHEDULING CONCURRENT BAG-OF-TASKS APPLICATIONS ON HETEROGENEOUS PLATFORMS 211

. Shortest weighted remaining processing time
(SWRPT). This strategy is very similar to SRPT , but
the remaining processing time of the released applica-
tions is weighted with MS�, that is the application
with the smallest ratio between the remaining
processing time and the total processing time is
scheduled first. In practice, it gives small applications,
i.e., in term of MS�, a priority against large applica-
tions which are almost finished, which is better in
order to minimize the ratio between the response time
of the application and the time this application would
have spent if executed alone (MS�).

The importance and relevance of the above heuristics are
outlined in Section 6. Once an application is selected, several
policies exist for scheduling its tasks onto the platform:

. Round-robin (RR). All workers are selected in a
cyclic way.

. Minimum completion time (MCT). Given a task of the
application, we select the worker that will finish this
task the earliest, given the current load of the platform.

. Demand driven (DD). Workers are themselves asking
for a task to compute as soon as they become idle.

The four application selection policies and the three
resource selection rules lead to 12 different greedy algo-
rithms. We also test a more sophisticated algorithm:

. Master worker for multiple applications (MWMAs).
This algorithm computes on each time interval a
steady-state strategy to schedule the available appli-
cations, as presented in [19]. All available applica-
tions are running at the same time, and each
application is given a different fraction of the
platform according to its weight. This weight can
be derived from: 1) the remaining number of tasks of
the applications (variant called MWMA NBT) or
2) the remaining processing time of the applications
(variant called MWMA MS). Both variants are
compared in the experiments.

In addition to the previous scheduling strategies, we
have implemented several heuristics based on our static
algorithm, called Clever Burst Steady-State Stretch Mini-
mization (CBS3M) in the following. As emphasized in
Section 3.7.3, the fluid solution of the CBS3M algorithm
needs to be adapted to cope with the one-port model.
Rather than literally implementing Section 3.7.3, which is
best suited to compute theoretical bounds, we first imple-
ment a 1D load-balancing algorithm for the master’s
sending operations, and then, we test two variants for the
workers to choose the next task to compute among those
they have received: FIFO and Earliest Deadline First (EDF).
In such a way, we first implemented the online version of
the algorithm, as described in Section 4, which gives the
strategy CBS3M � ONLINE (with �¼FIFOjEDF). As a
comparison basis, we also add a strategy, CBS3M � ROFF
(�¼FIFOjEDF) with all information about future submis-
sions: this strategy runs the CBS3M algorithm under a
rounded offline model: the algorithm has a complete
information and computes the whole schedule at the
beginning (as described in Section 3), but is then adapted
(rounded) to the one-port model.

Both the CBS3M and the MWMA strategies make use of
linear programs to compute their schedule. These linear
programs are solved using glpk, the Gnu Linear Program-
ming Kit [20].

5.2 Experimental Settings

In order to test and compare our heuristics, we perform both
simulations and real experiments. Simulations are con-
ducted using the SimGrid [21] simulator, while experiments
make use of the MPICH-2 communication library [22].

Communication and computation sizes are generated by
transmitting random data, or by computing random matrix
products, as described below; no real application is used. In
particular, this allows us to emulate a heterogeneous plat-
form: we have full freedom to slow down some communica-
tions by transmitting the same data several times, and some
computations by performing several times the same task.

The use of MPI to perform communications leads us to
serialize the communications, and to abandon the multiport
model in favor of the one-port model. Thus, we use the
adaptation of our theoretical study for the one-port model
(as described in the Web supplementary material, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TC.2009.117)
in order to determine the optimal max-stretch and the
solutions of the CBS3M strategies.

Our theoretical study is fully general, allowing computing
times to be unrelated: a processor can process different
applications with different speeds. However, for sake of
simplicity, we consider in the experiments and the simula-
tions that we have uniform processors: the processing time of
a task depends only on its size (depending on the applica-
tion) and the speed of the processor, not on the application.
As we target a heterogeneous master-worker platform, we
generate several platform scenarios. The computing speeds
are uniformly distributed in interval ½�; 10:�	, where � is the
reference speed. Similarly, the link bandwidths are uni-
formly distributed in interval ½�; 10:�	, where � is the
reference bandwidth.

The experiments are conducted on a cluster composed of
nine processors. The master is a SuperMicro server 6013PI,
with a P4 Xeon 2.4 GHz processor, and the workers are all
SuperMicro servers 5013-GM, with P4 2.4 GHz processors.
All nodes have 1 GB of memory and are running Linux.
They are connected with a switched 10 Mbps Fast Ethernet
network.

Even if we totally control the platform parameters
(computing speeds and bandwidths), when these character-
istics are needed by a heuristic to take scheduling decisions,
the parameters are measured within the program by sending
a small message, or performing a small task. This is true both
in the MPI implementation and the simulations.

The time needed to measure the platform characteristics
and take scheduling decisions is taken into account in the
experiments (but not in the simulations). This phase usually
takes a few seconds in the experiments (up to 1 minute) for
scenarios of a few hours, and thus, represents less than
1 percent of the total running time.

5.3 Applications

A bag-of-tasks application is described by its release date,
its number of tasks, and the communication and computa-
tion sizes of each task. For our experiments and simulations,

212 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 2, FEBRUARY 2010

we randomly generated the applications, with the following
constraints in order to be realistic:

1. The release dates of the applications follow a log-
normal distribution as suggested in [23].

2. The total amount of communications and computa-
tions for an application is randomly chosen with a
log-normal distribution between realistic bounds,
and then, split into tasks. The parameters used in the
generation of the applications for the experiments
and the simulations are described in Table 1.

The number of tasks for one application is upper bounded
by the minimum amount of communication and computa-
tion allowed for one task.

5.4 Results

In this section, we describe the results obtained on all
different platforms, experimental or simulated.

5.4.1 Simulation Results

In this section, we detail the results of the simulations. We
run 1,000 simulations based on the parameters described in
Table 1. Fig. 3 presents the results of all heuristics for the
max-stretch metric, whereas Fig. 4 shows the evolution of

some heuristics (the best ones) over the load of the scenario.
Here, the load is characterized with the optimal theoretical
achievable max-stretch in the fluid model: we consider that
a scenario where the optimal max-stretch is 6 is twice as
loaded as a scenario with an optimal max-stretch of 3. All
results are relative to the optimal max-stretch, which is
computed in the offline case. A relative max-stretch of
1.5 means that the corresponding strategies achieve a max-
stretch which is 1.5 times the optimal one, thus with a
degradation of 50 percent.

The CBS3M heuristics perform very well for the max-
stretch: CBS3M_EDF_ONLINE achieves the best max-stretch
between all heuristics in 64 percent of the simulations. This
heuristic performs significantly better than all other heur-

istics: it has an average max-stretch of 1.163 times the optimal
max-stretch, the lowest standard deviation (0.118), and the
minimum worst case (1.93) among all heuristics.

The good results of the CBS3M heuristics can be
explained by the fact that they make very good use of the
platform, by scheduling simultaneously several applica-
tions when it is possible, for example, when the commu-
nication medium has still some free bandwidth after
scheduling the most critical application. All other heuristics

BENOIT ET AL.: SCHEDULING CONCURRENT BAG-OF-TASKS APPLICATIONS ON HETEROGENEOUS PLATFORMS 213

TABLE 1
Parameters for the MPI Experiments and for the SimGrid Simulations

Fig. 3. Simulation results: Relative max-stretch of all heuristics in the simulations.

(except MWMA) are limited to scheduling only one
application at a time, leading to an overall bad utilization
of the computing platform.

In Fig. 4, one can notice that surprisingly, the offline
version of CBS3M is not always better than the online
version. The offline version knows the future, and thus,
should achieve better performance. However, it suffers from
discrepancies between the actual characteristics of the
platform and those of the platform model. The online version
is able to circumvent this problem as it takes into account the
work effectively processed to recompute the schedule at each
new application arrival. This gain of reactivity compensates
for the loss due to the lack of knowledge of the future.

We also observe that resource selection is important on
heterogeneous platforms, as the strategies which have the
worst relative max-stretch are the ones using round-robin
or demand-driven policies.

Another observation is the relatively bad results of
the involved MWMA strategies (MWMA_NBT and
MWMA_MS): although they schedule several applications
concurrently on the platforms, they use a somewhat wrong
computation of the priorities, leading to poor results.

In the Web supplementary material, which can be found
on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TC.2009.117, we plot

the results of the best heuristics for other objectives: sum-
stretch, makespan, max, and sum-flow. Quite surprisingly,
CBS3M also gives the best average results for the makespan
and the max-flow objectives. With respect to sum-flow,
CBS3M gives the best results for light-loaded scenarios,
whereas SRPT and SWRPT give better results for high-
loaded scenarios. Finally, CBS3M is outperformed by SRPT
and SWRPT for sum-stretch.

5.4.2 Experimental Results

We now move to the real experiments with MPI commu-
nications. The experiments were performed on 50 different
platform and application settings. As several heuristics
performed very poorly in the simulations, especially the
heuristics based on round-robin and demand-driven poli-
cies, and thus, would have lead to huge computation times,
we discarded them and restricted ourselves to a smaller set
of heuristics in order to get reasonable running times.

Once again, the performance of a given strategy is
measured through its relative max-stretch that is the ratio
between the obtained max-stretch and the theoretical
optimal max-stretch in the fluid model.

The results of the experiments are summarized in Fig. 5;
Fig. 6 presents the results for the best four strategies:
CBS3M using EDF policy, in both the offline and online
versions, MWMA_NBT and SWRPT. They are quite similar
to the simulation results: the four versions of CBS3M
achieve a better relative max-stretch than most other
strategies. Once again the online version performs generally
better than the offline version, as explained earlier. The
major difference concerns the MWMA strategies, which
perform much better than in the simulations. This can be
explained by the different scenarios used in experiments
and simulations: in order to avoid huge running times in
the experiments, we concentrate on simple scenarios, with
smaller applications, whereas in the simulations, we use
larger applications as simulations run for a short time even
with long simulated running times. To fully assess the
adequacy of the simulations and the experiments, we
decided to rerun the experimental scenarios within our
simulator, and to compare both results.

5.4.3 Simulations on Experimental Platforms

In this section, we check the accuracy of our simulations, by
“simulating the experiments”: we run simulations on the

214 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 2, FEBRUARY 2010

Fig. 4. Simulation results: Evolution of the relative max-stretch of best
heuristics in the simulations under different load conditions.

Fig. 5. MPI experiment results: Relative max-stretch of selected heuristics in the experiments.

same scenarios (platforms and application parameters) that

have been used for real experiments. Obviously, the

executions will differ, and we do not expect the results to

be strictly identical: the simulations do not account for the

dynamic nature of the platform used in real experiments.

Simulations do not take scheduling times into account and

rely on exact application/platform parameters, while

experiments can only rely on inaccurate predicted values.
In Fig. 7, we plot the distribution of the relative deviation

between the max-stretch obtained in the experiments and

the max-stretch obtained in the simulations, for all

strategies. The maximum deviation is 60.1 percent, but the

average deviation is only 8.9 percent, with a standard

deviation of 9.5 percent (the median value is 5.5 percent).

Overall, the accuracy of the simulations is satisfactory, and

even good if we keep in mind all possible sources of

differences between simulations and experiments.

6 RELATED WORK

Related literature can be classified into three main categories:

1) bag-of-tasks applications; 2) steady-state scheduling; and

3) flow-type objective functions and online scheduling.

1. Bag-of-tasks applications: Bag-of-tasks applications are
parallel applications whose tasks are all indepen-
dent. Their study is motivated by problems that are
addressed by collaborative computing efforts. Their
use goes from the pioneering project SETI@home
[24], to recent and active projects like OurGrid [25]
or BOINC [3]. Bag-of-tasks applications are well
suited for computational grids, because communica-
tion can easily become a bottleneck for tightly
coupled parallel applications. The use of bag-of-
tasks applications includes user-centric approaches
like APST [26] and system-centric approaches able to
run multiple applications, like Condor [27]. Most
work on scheduling bag-of-task applications con-
siders a single application [28], [29], [30]. As in our
study, Anglano and Canonico [31] consider several
applications arriving over time and target a flow-
based objective (sum-flow). However, communica-
tions are not taken into account in [31] and the

approach is knowledge-free when we assume that
we have a good knowledge on applications and try
to make the most of it.

2. Steady-state scheduling: While minimizing the make-
span is an NP-hard problem in most practical
situations [32], it turns out that the optimal steady-
state schedule can often be characterized very
efficiently, with low-degree polynomial complexity.
The steady-state approach has been pioneered by
Bertsimas and Gamarnik [33], and has been used
successfully in many situations [34]. In particular,
steady-state scheduling has been used to schedule
independent tasks on heterogeneous tree-overlay
networks [4], and adapted to cope with multiple
applications [19].

3. Flow-type objective functions and online scheduling: The
flow of a task is the time it spends in the system, that
is the time elapsed between its release date and its
completion time. The stretch of a task is therefore a
weighted form of its flow time, where the weight is
the inverse of the task running time, if it were alone
on the platform. Most of the existing work on stretch
minimization deals with the monoprocessor case. In
fact, there has been a lot of work on the performance
of simple list scheduling heuristics for the optimiza-
tion of flow-like metrics with preemption. We will
therefore first consider this work.

6.1 Flow Optimization

On a single processor, the max-flow is optimized by First-
Come First-Serve (FCFS) (see Bender et al. [16], for example),
and the sum-flow is optimized by the shortest remaining
processing time first (SRPT) [35].

Things are more difficult for stretch minimization. First,
any online algorithm which has a better competitive ratio
for sum-stretch minimization than FCFS is subject to
starvation, and is thus not a competitive algorithm for
max-stretch minimization [36]. In other words, the two
objective functions cannot be optimized simultaneously to
obtain a nontrivial competitive factor (FCFS is not taking
into account the weight of tasks in the objective).

6.2 Sum-Stretch Minimization

The complexity of the offline minimization of the sum-
stretch with preemption is still an open problem. At the
very least, this is a hint at the difficulty of this problem.
Bender et al. [37] designed a Polynomial Time Approxima-
tion Scheme (PTAS) for minimizing the sum-stretch with

BENOIT ET AL.: SCHEDULING CONCURRENT BAG-OF-TASKS APPLICATIONS ON HETEROGENEOUS PLATFORMS 215

Fig. 6. MPI experiment results: Evolution of the relative max-stretch of
the best heuristics in the simulations under different load conditions.

Fig. 7. Distribution of relative deviation between simulations and
experiments.

preemption. Chekuri and Khanna [38] proposed an approx-
imation scheme for the more general sum-weighted flow
minimization problem. On the online side, no online
algorithm has a competitive ratio less than or equal to
1.19484 for the minimization of sum-stretch [36].

6.3 Max-Stretch Minimization

Max-stretch can be optimally minimized in the offline case
[36], even on unrelated machines (either with preemption or
in the divisible load framework). The online case is far more
difficult. With only two task sizes, SWRPT is optimal [39].
However, as soon as there are at least three task sizes, no
algorithm has a competitive ration lower than 1

2 �
ffiffi
2
p
�1,

where � is the ratio of the largest to the smallest size of
tasks [36].

In fact, this latter work is the only one targeting max
stretch minimization in a multiprocessor environment. This
work is done in the divisible load framework, meaning that
applications can be arbitrarily divided in subtasks when in
the context of this paper, the granularity of the tasks of each
application is fixed independently of the scheduler. Further-
more, communications can be neglected for the applications
targeted in [36], while they play a major role in our case.

7 CONCLUSION

In this paper, we have studied the problem of scheduling
multiple applications, made of collections of independent
and identical tasks, on a heterogeneous master-worker
platform. Applications have different release dates. We
aimed at minimizing the maximum stretch, or equivalently
at minimizing the largest relative slowdown of each
application due to their concurrent execution. We derived
an optimal algorithm for the offline setting (when all
application sizes and release dates are known beforehand).
We have adapted this algorithm to an online scenario so
that it can react when new applications are released.

We have compared our new algorithms against classical
greedy heuristics, and also against some involved static
multiapplications strategies. Experiments were both run on
a real cluster, using MPI, and conducted through extensive
simulations, using SimGrid. Both experimental compari-
sons show a great improvement when using our CBS3M
strategy, which achieves an average worse max-stretch only
16 percent greater than the offline optimal max-stretch. To
the best of our knowledge, this work is the first attempt to
provide efficient scheduling techniques for multiple bag-of-
tasks applications in an online scenario.

Future work includes extending the approach to other
communication models (such as the contention model of
[40]) and more general platforms (such as multilevel trees).
It would also be very interesting to deal with more complex
applications, whose dependence graphs could be simple
pipeline or fork graphs, or even general DAGs. Another
direction is to investigate more dynamic settings, where
each computing resource could be enrolled in several
volunteer grids that compete (or cooperate?) for “their”
applications, and where both application and platform
parameters are subject to some uncertainties. The lessons
learned in this study (such as the usefulness of sharing
several applications on the same resource) should prove
valuable to tackle these important but difficult problems.

REFERENCES

[1] M. Adler, Y. Gong, and A.L. Rosenberg, “Optimal Sharing of Bags
of Tasks in Heterogeneous Clusters,” Proc. 15th ACM Symp.
Parallelism in Algorithms and Architectures (SPAA ’03), pp. 1-10,
2003.

[2] H. Casanova and F. Berman, “Parameter Sweeps on the Grid with
APST,” Proc. Grid Computing: Making the Global Infrastructure a
Reality, F. Berman, G. Fox, and T. Hey, eds., 2003.

[3] “BOINC: Berkeley Open Infrastructure for Network Computing,”
http://boinc.berkeley.edu, 2009.

[4] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y.
Robert, “Scheduling Strategies for Master-Slave Tasking on
Heterogeneous Processor Platforms,” IEEE Trans. Parallel and
Distributed Systems, vol. 15, no. 4, pp. 319-330, Apr. 2004.

[5] J. Dongarra, J.-F. Pineau, Y. Robert, and F. Vivien, “Matrix
Product on Heterogeneous Master-Worker Platforms,” Proc.
ACM SIGPLAN, pp. 53-62, 2008.

[6] T. Yang and A. Gerasoulis, “DSC: Scheduling Parallel Tasks on an
Unbounded Number of Processors,” IEEE Trans. Parallel and
Distributed Systems, vol. 5, no. 9, pp. 951-967, Sept. 1994.

[7] P. Brucker, Scheduling Algorithms. Springer-Verlag, 2004.
[8] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-Effective

and Low-Complexity Task Scheduling for Heterogeneous Com-
puting,” IEEE Trans. Parallel and Distributed Systems, vol. 13, no. 3,
pp. 260-274, Mar. 2002.

[9] B. Hong and V. Prasanna, “Distributed Adaptive Task Allocation
in Heterogeneous Computing Environments to Maximize
Throughput,” Proc. Int’l Symp. Parallel and Distributed Processing
(IPDPS ’04), 2004.

[10] P. Bhat, C. Raghavendra, and V. Prasanna, “Efficient Collective
Communication in Distributed Heterogeneous Systems,” Proc.
IEEE Int’l Conf. Distributed Computing Systems (ICDCS ’99), pp. 15-
24, 1999.

[11] P. Bhat, C. Raghavendra, and V. Prasanna, “Efficient Collective
Communication in Distributed Heterogeneous Systems,” J. Parallel
and Distributed Computing, vol. 63, no. 3, pp. 251-263, 2003.

[12] T. Saif and M. Parashar, “Understanding the Behavior and
Performance of Non-Blocking Communications in MPI,” Proc.
Euro-Par 2004: Parallel Processing, pp. 173-182, 2004.

[13] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-
Performance, Portable Implementation of the MPI Message
Passing Interface Standard,” Parallel Computing, vol. 22, no. 6,
pp. 789-828, Sept. 1996.

[14] N.T. Karonis, B. Toonen, and I. Foster, “MPICH-G2: A Grid-
Enabled Implementation of the Message Passing Interface,”
J. Parallel and Distributed Computing, vol. 63, no. 5, pp. 551-563, 2003.

[15] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert,
“Bandwidth-Centric Allocation of Independent Tasks on Hetero-
geneous Platforms,” Proc. Int’l Symp. Parallel and Distributed
Processing (IPDPS ’02), 2002.

[16] M.A. Bender, S. Chakrabarti, and S. Muthukrishnan, “Flow and
Stretch Metrics for Scheduling Continuous Job Streams,” Proc.
Symp. Discrete Algorithms (SODA ’98), pp. 270-279, 1998.

[17] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert, “Indepen-
dent and Divisible Tasks Scheduling on Heterogeneous Star-
Shaped Platforms with Limited Memory,” Proc. Euromicro Conf.
Parallel, Distributed and Network-Based Processing (PDP ’05),
pp. 179-186, 2005.

[18] P. Boulet, J. Dongarra, Y. Robert, and F. Vivien, “Static Tiling for
Heterogeneous Computing Platforms,” Parallel Computing, vol. 25,
no. 5, pp. 547-568, 1999.

[19] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal, and Y.
Robert, “Centralized versus Distributed Schedulers for Multiple
Bag-of-Task Applications,” IEEE Trans. Parallel and Distributed
Systems, vol. 19, no. 5, pp. 698-709, May 2008.

[20] “GNU Linear Programming Kit,” http://www.gnu.org/software/
glpk/, 2009.

[21] A. Legrand, L. Marchal, and H. Casanova, “Scheduling Distrib-
uted Applications: The SIMGRID Simulation Framework,” Proc.
IEEE/ACM Int’l Symp. Cluster Computing and the Grid (CCGrid ’03),
pp. 138-145, May 2003.

[22] W. Gropp, “MPICH2: A New Start for MPI Implementations,”
Proc. European PVM/MPI Users’ Group Meeting on Recent Advances
in Parallel Virtual Machine and Message Passing Interface, pp. 37-42,
2002.

[23] D.G. Feitelson, Workload Characterization and Modeling Book. John
Wiley and Sons, http://www.cs.huji.ac.il/feit/wlmod/, 2008.

216 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 2, FEBRUARY 2010

[24] SETI, http://setiathome.ssl.berkeley.edu, 2009.
[25] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J.

Sauvé, F.A.B. da Silva, C.O. Barros, and C. Silveira, “Running
Bag-of-Tasks Applications on Computational Grids: The MyGrid
Approach,” Proc. Int’l Conf. Parallel Processing (ICCP ’03), Oct.
2003.

[26] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman,
S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N.
Spring, A. Su, and D. Zagorodnov, “Adaptive Computing on the
Grid Using AppLeS,” IEEE Trans. Parallel and Distributed Systems,
vol. 14, no. 4, pp. 369-382, Apr. 2003.

[27] M. Litzkow, M. Livny, and M.W. Mutka, “Condor—A Hunter of
Idle Workstations,” Proc. Eighth Int’l Conf. Distributed Computing
Systems. pp. 104-111, 1988.

[28] F.A. da Silva, S. Carvalho, and E.R. Hruschka, “A Scheduling
Algorithm for Running Bag-of-Tasks Data Mining Applications on
the Grid,” Proc. Euro-Par 2004: Parallel Processing, pp. 254-262,
2004.

[29] C. Weng and X. Lu, “Heuristic Scheduling for Bag-of-Tasks
Applications in Combination with QoS in the Computational
Grid,” Future Generation Computer Systems, vol. 21, no. 1, pp. 271-
280, 2005.

[30] A. Sulistio and R. Buyya, “A Time Optimization Algorithm for
Scheduling Bag-of-Task Applications in Auction-Based Propor-
tional Share Systems,” Proc. 17th Int’l Symp. Computer Architecture
and High Performance Computing (SBAC-PAD ’05), pp. 235-242,
2005.

[31] C. Anglano and M. Canonico, “Scheduling Algorithms for
Multiple Bag-of-Task Applications on Desktop Grids: A
Knowledge-Free Approach,” Proc. Second Int’l Workshop Desktop
Grids and Volunteer Computing Systems (PCGRID ’08) Workshop
Colocated with Int’l Symp. Parallel and Distributed Processing
(IPDPS ’08), 2008.

[32] Scheduling Theory and Its Applications, P. Chrétienne, E.G.
Coffman, Jr., J.K. Lenstra, and Z. Liu, eds. John Wiley and Sons,
1995.

[33] D. Bertsimas and D. Gamarnik, “Asymptotically Optimal Algo-
rithms for Job Shop Scheduling and Packet Routing,” J. Algorithms,
vol. 33, no. 2, pp. 296-318, 1999.

[34] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert, “Steady-
State Scheduling on Heterogeneous Clusters,” Int’l J. Foundations
of Computer Science, vol. 16, no. 2, pp. 163-194, 2005.

[35] K. Baker, Introduction to Sequencing and Scheduling. Wiley, 1974.
[36] A. Legrand, A. Su, and F. Vivien, “Minimizing the Stretch When

Scheduling Flows of Divisible Requests,” J. Scheduling, vol. 11,
no. 5, pp. 381-404, 2008.

[37] M.A. Bender, S. Muthukrishnan, and R. Rajaraman, “Approxima-
tion Algorithms for Average Stretch Scheduling,” J. Scheduling,
vol. 7, no. 3, pp. 195-222, 2004.

[38] C. Chekuri and S. Khanna, “Approximation Schemes for
Preemptive Weighted Flow Time,” Proc. 34th Ann. ACM Symp.
Theory of Computing, pp. 297-305, 2002.

[39] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. Gehrke,
“Online Scheduling to Minimize Average Stretch,” Proc. IEEE
Symp. Foundations of Computer Science, pp. 433-442, 1999.

[40] O. Sinnen and L. Sousa, “Communication Contention in Task
Scheduling,” IEEE Trans. Parallel and Distributed Systems, vol. 16,
no. 6, pp. 503-515, June 2004.

Anne Benoit received the PhD degree from
the Polytechnical Institute of Grenoble (INPG)
in 2003. From 2003 to 2005, she was a
research associate in the School of Informatics,
University of Edinburgh, United Kingdom. She
is currently an associate professor at the
Laboratoire de l’Informatique du Parallélisme,
�Ecole Normale Supérieure, Lyon, France. Her
research interests include performance evalua-
tion, high-level parallel programming, and algo-

rithms and scheduling for distributed heterogeneous platforms. She is
the author of more than 15 papers published in international journals,
and more than 35 papers published in international conferences. She
is a member of the IEEE.

Loris Marchal received the PhD degree from
�Ecole Normale Supérieure de Lyon in 2006. He
is currently a CNRS researcher in the Computer
Science Laboratory (Laboratoire de l’Informa-
tique du Parallélisme) at ENS Lyon. His research
interest includes parallel algorithm design for
heterogeneous platforms and scheduling.

Jean-François Pineau received the PhD
degree from �Ecole Normale Supérieure de
Lyon in 2008. He is currently a postdoctorant
in the Computer Science Laboratory LIRM at
Montpellier. He is mainly interested in the
design of parallel algorithms for heterogeneous
platforms and in scheduling techniques. He is
a student member of the IEEE.

Yves Robert received the PhD degree from
the Institut National Polytechnique de Grenoble
in 1986. He is currently a full professor in the
Computer Science Laboratory LIP at ENS
Lyon. He is the author of five books, more
than 100 papers published in international
journals, and more than 150 papers published
in international conferences. His main research
interests are scheduling techniques and parallel
algorithms for multicore processors, clusters,

and grids. He served on many editorial boards, including the IEEE
Transactions on Parallel and Distributed Systems. He was the program
chair of HiPC ’06 in Bengaluru and IPDPS ’08 in Miami. He is a fellow
of the IEEE. He has been elected a senior member of the Institut
Universitaire de France in 2007.

Frédéric Vivien received the PhD degree from
�Ecole Normale Supérieure de Lyon in 1997.
From 1998 to 2002, he was an associate
professor at Louis Pasteur University, Stras-
bourg, France. He spent the year 2000 working
in the Computer Architecture Group of the MIT
Laboratory for Computer Science. He is cur-
rently a full researcher from INRIA, working at
the ENS Lyon. He is the author of one book,
more than 25 papers published in international

journals, and more than 35 papers published in international confer-
ences. His main research interests are scheduling techniques and
parallel algorithms for clusters and grids. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BENOIT ET AL.: SCHEDULING CONCURRENT BAG-OF-TASKS APPLICATIONS ON HETEROGENEOUS PLATFORMS 217

