
http://hpc.sagepub.com
Applications

Performance Computing
International Journal of High

DOI: 10.1177/1094342006068404
 2006; 20; 517 International Journal of High Performance Computing Applications

Pushpinder Kaur Chouhan, Holly Dail, Eddy Caron and Frédéric Vivien
 Automatic Middleware Deployment Planning On Clusters

http://hpc.sagepub.com/cgi/content/abstract/20/4/517
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing Applications Additional services and information for

 http://hpc.sagepub.com/cgi/alerts Email Alerts:

 http://hpc.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://hpc.sagepub.com

517AUTOMATIC DEPLOYMENT PLANNING

AUTOMATIC MIDDLEWARE
DEPLOYMENT PLANNING
ON CLUSTERS

Pushpinder Kaur Chouhan
Holly Dail
Eddy Caron
Frédéric Vivien
ÉCOLE NORMALE SUPÉRIEURE DE LYON, FRANCE,
(EDDY.CARON@ENS-LYON.FR)

Abstract

The use of remotely distributed computing resources as a
single system offers great potential for compute-intensive
applications. Increasingly, users have access to hundreds
or thousands of machines at once and wish to utilize those
resources concurrently. To provide a reasonable user
experience, such systems must provide an effective, scal-
able scheduling system. Unfortunately, the great majority
of job schedulers are centralized and many do not scale
well to thousands or even hundreds of nodes.

In this paper we study how distributed scheduling sys-
tems can be designed most effectively; we focus on the
problem of selecting an optimal arrangement of schedulers,
or a deployment, for hierarchically organized systems. We
show that the optimal deployment is a complete spanning
d-ary tree; this result conforms with results from the sched-
uling literature. More importantly, we present an approach
for determining the optimal degree d for the tree. To test our
approach, we use DIET, a middleware system that uses
hierarchical schedulers. We develop detailed performance
models for DIET and validate these models in a real-world
environment. Finally, we demonstrate that our approach
selects deployments that are near-optimal in practice.

Key words: Deployment, grid middleware, hierarchical
scheduler, cluster computing

1 Introduction

In the past five years, it has become feasible to use very
large collections of distributed computing resources as a
single large computational resource. In fact, this trend has
become so predominant that dozens of such grids have
been created. Therefore, users increasingly have access to
hundreds or thousands of machines at once and are devel-
oping applications that can utilize a large amount of com-
putational power concurrently.

However, making effective use of such large collec-
tions of machines is not simple. Users typically rely on
software designed to automate many aspects of managing
a distributed application on distributed resources. Sched-
ulers are a key component of such systems; the scheduling
service matches user requests with available resources
and may also negotiate amongst competing users and
keep track of the status and expected performance of
resources.

Schedulers should ideally provide fast response time to
users and good system throughput. To be usable on these
newly available systems composed of hundreds or some-
times thousands of machines, schedulers must be highly
scalable. Unfortunately, the great majority of existing grid
schedulers are based on a centralized design and many do
not provide sufficient scalability. In fact, many sched-
uler designers note the need for distributed scheduling
approaches and suggest that they plan to work on distrib-
uted approaches in their own future work.

We are interested in whether a distributed scheduling
system could provide better scalability. As a test case, we
look at the Distributed Interactive Engineering Toolbox
(DIET, see Caron and Desprez 2006). DIET is a network
enabled server (NES) environment that provides clients
simplified access to computational servers. DIET is com-
pelling for our purposes because a distributed scheduling
approach has already been incorporated into the system
and is readily available in the public software toolkit. Fig-
ure 1 shows two experiments performed with DIET with
the scheduler either in a distributed arrangement or in a
centralized arrangement. These experiments were per-
formed using 151 nodes of the Orsay cluster of Grid’5000
(Capello et al. 2005), a set of distributed computational
resources in France. In the first test, one node is dedicated
to a centralized scheduler that is used to manage schedul-
ing for the remaining 150 nodes, which are dedicated
computational nodes servicing requests. In the second
test, three nodes are dedicated to scheduling and are used
to manage scheduling for the remaining 148 nodes, which
are dedicated to servicing computational requests. The
three-node scheduler used a hierarchical arrangement
with one top-level node and two children.

In this test, the centralized scheduler is able to com-
plete 22867 requests in the allotted time of about 1400

The International Journal of High Performance Computing Applications,
Volume 20, No. 4, Winter 2006, pp. 517–530
DOI: 10.1177/1094342006068404
© 2006 SAGE Publications

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

518 COMPUTING APPLICATIONS

seconds, while the hierarchical scheduler is able to com-
plete 36307 requests in the same amount of time. The
distributed configuration performed significantly better,
despite the fact that two of the computational servers are
dedicated to scheduling and are not available to service
computational requests. Note that the DIET scheduler is
designed to allow distributed configurations, and is there-
fore not perfectly optimized for a centralized configuration.
Although it would be interesting to compare a centralized-
only scheduler as well, we nevertheless feel that these
results are compelling. At least for the DIET toolkit, and
most likely for other schedulers as well, distributing the
task of scheduling can improve performance in large
resource environments. However, the optimal arrange-
ment of schedulers is unknown. Should we have dedicated
four machines to scheduling in the above experiment?
Perhaps ten? It is clearly impossible to test all possible
arrangements for a given environment; we need an auto-
mated approach to determine a good deployment.

We predict that scheduler designers will increasingly
be focusing on developing and using distributed scheduling
solutions. However, little is known about how to find the
best distributed arrangement, or deployment, of schedul-
ers. While middleware designers often note that the prob-
lem of deployment planning is important, only a few
algorithms exist (Kichkaylo, Ivan, and Karamcheti 2003;
Caron, Chouhan, and Legrand 2004; Kichkaylo and Kar-
amcheti 2004) for efficient and automatic deployment
planning. Questions such as “which resources should
be used?”, “how many resources should be used?”, “what
arrangement should be used”, and “should the fastest
and best-connected resource be used for a scheduler or
as a computational resource?” remain difficult to answer.
Varela, Ciancarini, and Taura (2005) state the need for

adaptive middleware technologies for grid environ-
ments. Technologies are needed that can select resources
from the grid for a better fit to the users’ expectations
and that can do proper configuration of the selected
resources.

The issue of deployment planning for arbitrary arrange-
ments of distributed schedulers is too broad to address in
one paper; therefore we focus on hierarchical arrange-
ments. A hierarchy is a simple and effective distribution
approach and has been chosen by a variety of middleware
environments as their primary distribution approach (Hal-
deren, Overeinder, and Sloot 1998; Dandamudi and Ayachi
1999; Santoso et al. 2001; Caron and Desprez 2006). Before
trying to optimize deployment planning on arbitrary, dis-
tributed resource sets, we target a smaller sub-problem
that has previously remained unsolved: what is the opti-
mal hierarchical deployment on a cluster with hundreds to
thousands of nodes? This problem is not as simple as it
may sound: one must decide how many resources should
be used in total, how many should be dedicated to schedul-
ing or computation, and which hierarchical arrangement
of schedulers is more effective (i.e. more schedulers near
the servers, near the root agent, or a balanced approach).
For instance, we have observed this problem directly in
building a DIET deployment on a large Korean cluster at
the School of Aerospace and Mechanical Engineering
(Seoul National University) which has more than 500 CPUs
(Park et al. 2004).

The goal of this paper is to provide an automated deploy-
ment planning approach that determines a good deployment
for hierarchical scheduling systems in homogeneous clus-
ter environments. We consider that a good deployment is
one that maximizes the steady-state throughput of the sys-
tem, i.e. the number of requests that can be scheduled,
launched, and completed by the servers in a given time
unit. In this context, this paper makes the following con-
tributions. We first show that the optimal arrangement of
agents is a complete spanning d-ary tree; this result agrees
with existing results in load-balancing and routing from
the scheduling and networking literature. More impor-
tantly, our approach automatically derives the optimal
theoretical degree d for the tree. To test our approach, we
use DIET. We develop the first detailed performance mod-
els available for scheduling and computation in the DIET
system and validate these models in a real-world environ-
ment. We then present real-world experiments demon-
strating that the deployments automatically derived by
our approach are in practice nearly optimal and perform
significantly better than other reasonable deployments.
We believe that this work can be easily applied to grids
composed of clusters of clusters and that this work is an
important first step towards effective deployment plan-
ning on large collections of distributed, heterogeneous
resources.

Fig. 1 Comparison of requests completed by a cen-
tralized DIET scheduler versus a three agent distrib-
uted DIET scheduler.

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

519AUTOMATIC DEPLOYMENT PLANNING

The rest of this article is organized as follows. Section 2
presents related work on the subject of deployment and
deployment planning. In Section 3 the architectural model
and a validation of optimal deployment shape are pre-
sented. Section 4 gives an overview of DIET and describes
the performance models we developed for DIET. Section 5
presents experiments that validate this work. Finally, Sec-
tion 6 concludes the paper and describes future work.

2 Related Work

A deployment is the mapping of a middleware platform
across many resources. Deployment can be broadly divided
in two categories: software deployment and system deploy-
ment. Software deployment maps and distributes a collec-
tion of software components on a set of resources and can
include activities such as configuring, installing, updat-
ing, and adapting a software system. Examples of tools
that automate software deployment include SmartFrog
(Goldsack and Toft 2001), Distributed Ant (Goscinski
and Abramson 2004), and Software Dock (Hall, Heim-
bigner, and Wolf 1999). System deployment involves
assembling physical hardware as well as organizing and
naming whole nodes and assigning activities such as mas-
ter and slave. Examples of tools that facilitate this process
include the Deployment Toolkit (Daughetee and Kazim
2004), Warewulf1, and Kadeploy (Martin and Richard
2001). Although these toolkits can automate many of the
tasks associated with deployment, they do not automate
the decision process of finding an appropriate mapping of
specialized middleware components to resources so that
the best performance can be achieved from the system.

To the best of our knowledge, no deployment algorithm
or model has been given for arranging the components of
a problem solving environment (PSE) in such a way as to
maximize the number of requests that can be treated in a
time unit. In Lacour, Perez, and Priol (2004), software
components based on the CORBA component model are
automatically deployed on the computational Grid. The
CORBA component model contains a deployment model
that specifies how a particular component can be installed,
configured and launched on a machine. The authors note
a strong need for deployment planning algorithms, but to
date they have focused on other aspects of the system.
Our work is thus complementary.

Caron, Chouhan, and Legrand (2004) presented a heu-
ristic approach for improving deployments of hierarchi-
cal NES systems in heterogeneous Grid environments. The
approach is iterative; in each iteration, mathematical
models are used to analyze the existing deployment,
identify the primary bottleneck, and remove the bottleneck
by adding resources in the appropriate area of the system.
The techniques given by Caron, Chouhan, and Legrand
(2004) are heuristic and iterative in nature and can only

be used to improve the throughput of a deployment that
has been defined by other means; the current work pro-
vides an optimal solution to a more limited case and does
not require a predefined deployment as input.

Optimizing deployments is an evolving field. Kichkaylo,
Ivan, and Karamcheti (2003), proposed an algorithm
called Sikitei to address the Component Placement Prob-
lem (CPP). This work leverages existing AI planning tech-
niques and the specific characteristics of CPP. The Sikitei
approach focuses on satisfying component constraints for
effective placement, but does not consider detailed but
sometimes important performance issues such as the effect
of the number of connections on a component’s perform-
ance.

The Pegasus System (Singh et al. 2005) frames work-
flow planning for the Grid as a planning problem. The
approach is interesting for overall planning when one can
consider that individual elements can communicate with
no performance impact. Our work is more narrowly focused
on a specific style of assembly and interaction between
components, and has a correspondingly more accurate
view of performance to guide the deployment decision
process.

3 Platform Deployment

3.1 Platform Architecture

This section defines our target platform architecture; Fig-
ure 2 provides a useful reference for these definitions.

Software system architecture We consider a service-
provider software system composed of three types of ele-
ments: a set of client nodes � that require computations, a
set of server nodes � that are providers of computations,
and a set of agent nodes � that provide coordination of
client requests with service offerings via service localiza-
tion, scheduling, and persistent data management. The
arrangement of these elements is shown in Figure 2. We
consider only hierarchical arrangements of agents com-
posed of a single top-level root agent and any number of
agents arranged in a tree below the root agent. Server
nodes are leaves of the tree, but may be attached to any
agent in the hierarchy, even if that agent also has children
that are agents.

Since the use of multiple agents is designed to distrib-
ute the cost of services such as scheduling, there is no
performance advantage to having an agent with a single
child. The only exception to this policy is for the root-
level agent with a single server child; this “chain” cannot
be reduced.

We do not consider clients to be part of the hierarchy
nor part of the deployment; this is because at the time of
deployment we do not know where clients will be
located. Thus a hierarchy can be described as follows. A

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

520 COMPUTING APPLICATIONS

server s � has exactly one parent that is always an agent
a �; a root agent a � has one or more child agents
and/or servers and no parents. Non-root agents a �
have exactly one parent and two or more child agents
and/or servers.

Request definition We consider a system that proc-
esses requests as follows. A client c � first generates a
scheduling request that contains information about the
service required by the client and meta-information about
any input data sets, but does not include the actual input
data. The scheduling request is submitted to the root
agent, which checks the scheduling request and forwards
it on to its children. Other agents in the hierarchy perform
the same operation until the scheduling request reaches
the servers. We assume that the scheduling request is for-
warded to all servers, though this is a worst case scenario
as filtering may be done by the agents based on request
type. Therefore servers may or may not make predictions
about performance for satisfying the request, depending
on the exact system. For example, DIET agents maintain
a table describing which services are available via which
children, although the agent does not know exactly which
SeD has the service, just which child it can use to contact
SeDs with a given service. DIET agents use this informa-
tion to limit the portions of the tree that must participate
in scheduling any given request.

Servers that can perform the service then generate a
scheduling response. The scheduling response is forwarded
back up the hierarchy and the agents sort and select amongst
the various scheduling responses. It is assumed that the
time required by an agent to select amongst scheduling
responses increases with the number of children it has,

but is independent of whether the children are servers or
agents. Finally, the root agent forwards the chosen sched-
uling response (i.e. the selected server) to the client.

The client then generates a service request which is
very similar to the scheduling request but includes the
full input data set, if any is needed. The service request is
submitted by the client to the chosen server. The server
performs the requested service and generates a service
response, which is then sent back to the client. A com-
pleted request is one that has completed both the sched-
uling and service request phases and for which a
response has been returned to the client.

Resource architecture The target resource architec-
tural framework is represented by a weighted graph G =
(�, �, w, B). Each vertex v in the set of vertices � repre-
sents a computing resource with computing power w in
MFlop/second. Each edge e in the set of edges � repre-
sents a resource link between two resources with edge
cost B given by the bandwidth between the two nodes in
Mb/second. We do not consider latency in data transfer
costs because our model is based on steady-state schedul-
ing techniques (Beaumont et al. 2004). For the sake of
simplicity we consider symmetric bandwidths. Usually,
the latency is paid once for each of the communications
that take place. In steady-state scheduling, however, as a
flow of messages takes place between two nodes, the
latency is paid only one time (when the flow is initially
established) for the whole set of messages. Therefore
latency will have an insignificant impact on our model
and so we do not take it into account.

Deployment assumptions We consider that at the
time of deployment we do not know the client locations

Fig. 2 Platform deployment architecture and execution phases.

∈
∈ ∈

∈

∈

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

521AUTOMATIC DEPLOYMENT PLANNING

or the characteristics of the client resources. Thus clients
are not considered in the deployment process and, in par-
ticular, we assume that the set of computational resources
used by clients is disjoint from �.

A valid deployment thus consists of a mapping of a
hierarchical arrangement of agents and servers onto the
set of resources �. Any server or agent in a deployment
must be connected to at least one other element; thus a
deployment can have only connected nodes. A valid
deployment will always include at least the root-level
agent and one server. Each node v � can be assigned to
either exactly one server s, exactly one agent a, or the
node can be left idle. Thus if the total number of agents is
|�|, the total number of servers is |�|, and the total
number of resources is |�|, then |�| + |�| |�|.

3.2 Optimal Deployment

Our objective in this section is to find an optimal deploy-
ment of agents and servers for a set of resources �. We
consider an optimal deployment to be a deployment that
provides the maximum throughput ρ of completed
requests per second. When the maximum throughput can
be achieved by multiple distinct deployments, the pre-
ferred deployment is the one using the least resources.

As described in Section 3.1, we assume that at the time
of deployment we do not know the locations of clients or
the rate at which they will send requests. Thus it is
impossible to generate an optimized, complete schedule.
Instead, we seek a deployment that maximizes the steady-
state throughput, i.e. the main goal is to characterize the
average activities and capacities of each resource during
each time unit.

We define the scheduling request throughput in
requests per second, ρsched, as the rate at which requests are
processed by the scheduling phase (see Section 3.1).
Likewise, we define the service throughput in requests
per second, ρservice, as the rate at which the servers can
produce the services required by the clients. The follow-
ing lemmas lead to a proof of an optimal deployment
shape of the platform.

Lemma 1. The completed request throughput ρ of a
deployment is given by the minimum of the scheduling
request throughput ρsched and the service request through-
put ρservice.

ρ = min(ρsched, ρservice)

Proof. A completed request has, by definition, completed
both the scheduling request and the service request phases.

Case 1: ρsched ρservice. In this case requests are sent to
the servers at least as fast as they can be serviced by the
servers, so the overall rate is limited by ρservice.

Case 2: ρsched < ρservice. In this case the servers are left
idle waiting for requests and new requests are processed
by the servers faster than they arrive. The overall through-
put is thus limited by ρsched.

The degree of an agent is the number of children
directly attached to it, regardless of whether the children
are servers or agents.

Lemma 2. The scheduling throughput ρsched is limited by
the throughput of the agent with the highest degree.

Proof. As described in Section 3.1, we assume that the
time required by an agent to manage a request increases
with the number of children it has; the agent does more
work forwarding incoming requests and sorting outgoing
requests when it has more children. Thus, agent through-
put decreases with increasing agent degree and the agent
with the highest degree will provide the lowest through-
put. Since we assume that scheduling requests are for-
warded to all agents and servers, a scheduling request is
not finished until all agents have responded. Thus ρsched is
limited by the agent providing the lowest throughput,
which is the agent with the highest degree.

Lemma 3. The service request throughput ρservice increases
as the number of servers included in a deployment
increases.

Proof. The service request throughput is a measure of the
rate at which servers in a deployment can generate
responses to client service requests. Since agents do not
participate in this process, ρservice is independent of the
agent hierarchy. The computational power of the servers
is used for both (1) generating responses to scheduling
queries from the agents and (2) providing computational
services for clients. For a given value of ρsched the work
performed by a server for activity (1) is independent of
the number of servers. The work performed by each server
for activity (2) is thus also independent of the number of
servers. Thus the work performed by the servers as a
group for activity (2) increases as the number of servers
in the deployment increases.

Definition 1. A Complete Spanning d-ary (CSD) tree is a
tree that is both a complete d-ary tree and a spanning tree.

For deployment, leaves are servers and all other nodes
are agents. A degree d of one is useful only for a deploy-
ment of a single root agent and a single server. Note that
for a set of resources � and degree d, a large number of
CSD trees can be constructed. However, with a given
homogeneous resource set of size |�|, all such CSD trees
are equivalent as they provide exactly the same number

∈

≤

≥

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

522 COMPUTING APPLICATIONS

of agents and servers, and thus provide exactly the same
performance.

Definition 2. A dMax set is the set of all trees for which
the maximum degree is equal to dMax.

Theorem 1. In a dMax set, all dMax CSD trees have
optimal throughput.

Proof. We know by Lemma 1 that the throughput ρ of any
tree is limited by either its schedule request throughput
ρsched or its service request throughput ρservice. As Lemma 2
states that the scheduling request throughput ρsched is only
limited by the throughput of the agent with the highest
degree, all trees in a dMax set (as shown in Figure 3) have
the same scheduling request throughput ρsched. Thus, to
show that any dMax CSD tree is an optimal solution among
the trees in the dMax set, we must prove that the service
request throughput ρservice of any CSD tree is at least as
large as the ρservice of any other tree in the dMax set.

By Lemma 3, we know that the service request
throughput ρservice increases with the number of servers
included in a deployment. Given the limited resource set
size, |�|, the number of servers (leaf nodes) is largest for
deployments with the smallest number of agents (internal
nodes). Then, to prove the desired result we just have to
show that dMax CSD trees have the minimal number of
internal nodes among the trees in a dMax set.

Let us consider any optimal tree � in a dMax set. We
have three cases to consider.

1. � is a CSD tree. As all CSD trees (in the dMax set)
have the same number of internal nodes, all CSD trees
are optimal. QED.

2. � is not a CSD tree but all its internal nodes have a
degree equal to dMax, except possibly one. Then we
build a CSD tree having at most as many internal nodes
as �. Using case 1, this will prove the result.

Let h be the height of �. As � is not a CSD tree, from
our hypothesis on the degree of its internal nodes, � must
have a node at a height h < h – 1 which has strictly less
than dMax children. Let h be the smallest height at
which there is such a node, let � be such a node, and let
d be the degree of �. Then remove dMax – d children
from any internal node � at height h – 1 and add them as
children of �. Note that, whatever the value of d, among
� and � there is the same number of internal nodes
whose degree is strictly less than dMax before and after
this transformation. Then, through this transformation,
we obtained a new tree � whose internal nodes all have a
degree equal to dMax, except possibly one. Also, there is
the same number of leaf nodes in � and � . Therefore, �
is also optimal. Furthermore, if � is not a CSD tree, it has
one less node at level h whose degree is strictly less than
dMax ; if there are zero nodes at level h whose degree is
strictly less than dMax after the transformation then the
value to “h ” is increased. Repeating this transformation
recursively we will eventually end up with a CSD tree.

3. � has at least two internal nodes whose degree is
strictly less than dMax. Then, let us take two such nodes
� and � of degrees d and d . If d + d dMax, then we
remove all the children of � and make them children of
�. Otherwise, we remove dMax – d children of � and
make them children of �. In either case, the number of
leaf nodes in the tree before and after the transformation
is non-decreasing, and the number of internal nodes
whose degree is strictly less than dMax is (strictly)
decreasing. So, as for the original tree, the new tree is
optimal. Repeating this transformation recursively, we
will eventually end up with a tree dealt with by case 2.
Hence, we can conclude.

Theorem 2. A complete spanning d-ary tree with degree
d [1, |�|–1] that maximizes the minimum of the sched-
uling request and service request throughputs is an opti-
mal deployment.

Proof. This theorem is fundamentally a corollary of The-
orem 1. The optimal degree is not known a priori; it suf-
fices to test all possible degrees d [1, |�|–1] and to
select the degree that provides the maximum completed
request throughput.

Once an optimal degree best_d has been calculated
using Theorem 2, we can use the algorithm shown in Fig-
ure 4 to construct the optimal CSD tree. A few examples
will help clarify the results of our deployment planning
approach. Let us consider that we have 10 available nodes

Fig. 3 Deployment trees of dMax sets 4 and 6.

′
′

′

′

′

′ ′
′

′
′

′

′ ′ ′ ≤
′

′

∈

∈

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

523AUTOMATIC DEPLOYMENT PLANNING

(|�| = 10). Suppose best_d = 1. Algorithm 4 will construct
the corresponding best platform – a root agent with a sin-
gle server attached. Now suppose best_d = 4. Then Algo-
rithm 4 will construct the corresponding best deployment –
the root agent with four children, one of which also has
four children; the deployment has two agents, seven serv-
ers and one unused node because it can only be attached
as a chain. Note that we are not throwing away a useful
resource by this operation; our calculations predict that
there is no way to obtain better performance from the sys-
tem by including this resource because adding it cannot
simultaneously improve the scheduling and service per-
formance.

4 Implementation With DIET

To organize the nodes in an efficient manner and use the
nodes’ power efficiently is out of the scope of end users. That
is why end-users have to rely on specialized middleware,
such as Problem Solving Environments (PSE), to run their
applications. Some PSEs, for example NetSolve (Arnold
et al. 2001), Ninf (Nakada, Sato, and Sekiguchi 1999), or
DIET (Caron and Desprez 2006), already exist and are com-
monly called Network Enabled Server (NES) environments.
We illustrate our deployment approach by applying the
results to an existing hierarchical PSE called DIET.

4.1 DIET Overview

The Distributive Interactive Engineering Toolbox is built
around five main components. The Client is an applica-

tion that uses DIET to solve problems. Agents are used to
provide services such as data localization and scheduling.
These services are distributed across a hierarchy com-
posed of a single Master Agent (MA) and zero or more
Local Agents (LA). Server Daemons (SeD) are the leaves
of the hierarchy and may provide a variety of computa-
tional services. The MA is the entry point of the DIET
environment and thus receives all service requests from
clients. The MA forwards service requests onto other agents
in the hierarchy, if any exist. Once the requests reach the
SeDs, each SeD replies with a prediction of its own per-
formance for the request. Agents sort the response(s) and
pass on only the best response(s). Finally, the MA for-
wards the best server back to the client. The client then
submits its service request directly to the selected SeD.
The inclusion of LAs in a DIET hierarchy can provide
scalability and adaptation to diverse network environ-
ments, as will be demonstrated by the experiments pre-
sented in Section 5.

This description of the agent/server architecture focuses
on the common-case usage of DIET. An extension of this
architecture with several hierarchies and several MA is also
available (Caron et al. 2004). This multiMA architecture
uses JXTA peer-to-peer technology to allow the forward-
ing of client requests between MAs, and thus the sharing
of work between otherwise independent DIET hierarchies.

4.2 Request Performance Modeling

In order to apply the model defined in Section 3 to DIET,
we must have models for the scheduling throughput and
the service throughput in DIET. In this section we define
performance models to estimate the time required for
various phases of request treatment in DIET. These mod-
els will be used in the following section to create the
needed throughput models.

We make the following assumptions about DIET for
performance modeling. The MA and LA are considered
as having the same performance because their activities
are almost identical and in practice we observe only neg-
ligible differences in their performance. We assume that
the work required for an agent to treat responses from SeD-
type children and from agent-type children is the same.
DIET allows configuration of the number of responses
forwarded by agents; here we assume that only the best
server is forwarded to the parent.

When client requests are sent to the agent hierarchy,
DIET is optimized such that large data items like matrices
are not included in the problem parameter descriptions
(only their sizes are included). These large data items are
included only in the final request for computation from
client to server. As stated earlier, we assume that we do
not have a priori knowledge of client locations and request
submission patterns. Thus, we assume that needed data is

Fig. 4 Algorithm to construct an optimal tree.

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

524 COMPUTING APPLICATIONS

already in place on the servers and we do not consider
data transfer times.

The following variables will be of use in our model def-
initions. Sreq is the size in Mb of the message forwarded
down the agent hierarchy for a scheduling request. This
message includes only parameters and not large input data
sets. Srep is the size in Mb of the reply to a scheduling request
forwarded back up the agent hierarchy. Since we assume
that only the best server response is forwarded by agents, the
size of the reply does not increase as the response moves
up the tree. Wreq is the amount of computation in MFlop
needed by an agent to process one incoming request.
Wrep(d) is the amount of computation in MFlop needed by
an agent to merge the replies from its d children. Wpre is
the amount of computation in MFlop needed for a server
to predict its own performance for a request. Wapp is the
amount of computation in MFlop needed by a server to
complete a service request for app service. The provision
of this computation is the main goal of the DIET system.

Agent communication model To treat a request, an
agent receives the request from its parent, sends the
request to each of its children, receives a reply from each
of its children, and sends one reply to its parent. By
Lemma 2, we are concerned only with the performance of
the agent with the highest degree, d. Given the bandwidth
B in Mb/second, the time in seconds required by an agent
for receiving all messages associated with a request from
its parent and children is shown in equation 1. Similarly,
the time in seconds required by an agent for sending all
messages associated with a request to its children and par-
ent is shown in equation 2.

agent_receive_time = (1)

agent_send_time = (2)

Server communication model Servers have only one
parent and no children, so the time in seconds required by
a server for receiving messages associated with a sched-
uling request and the time in seconds required by a server
for sending messages associated with a request to its par-
ent is shown in equation 3 and equation 4 respectively.

server_receive_time = (3)

 server_send_time = (4)

Agent computation model Agents perform two activ-
ities involving computation: the processing of incoming
requests and treatment of replies. There are two activities
in the treatment of replies: a fixed cost Wfix in MFlops and
a cost Wsel that is the amount of computation in MFlops

needed to process the server replies, sort them, and select
the best server. Given a resource computing power w in
MFlop/second, the time in seconds required by the agent
for request processing is given by the following equation.

agent_comp_time = ,

where Wrep(d) = Wfix + Wsel · d

Server computation model Servers also perform two
activities involving computation: performance prediction
as part of the scheduling phase and provision of applica-
tion services as part of the service phase. Let us consider
a deployment with a set of servers � and the activities
involved in completing |�| requests at the server level. All
servers complete |�| prediction requests and each server
will complete one service request phase, on average. As a
whole, the servers as a group require the (Wpre · |�| +
Wapp)/w time in seconds to complete the � requests. We
divide by the number of requests |�| to obtain the average
time required per request by the servers as a group.

server_comp_time =

4.3 Steady-State Throughput Modeling

In this section we present models for scheduling and
service throughput in DIET. We consider two different
theoretical models for the capability of a computing resource
to do computation and communication in parallel.

Send or receive or compute, single port: In this model,
a computing resource has no capability for parallelism: it can
either send a message, receive a message, or compute. Only
a single port is assumed: messages must be sent serially
and received serially. This model may be reasonable for
systems with small messages as these messages are often
quite CPU intensive. As shown in the following equation,
the scheduling throughput in requests per second is then
given by the minimum of the throughput provided by the
servers for prediction and by the agents for scheduling.

Sreq d S⋅ rep+
B

d Sreq Srep+⋅
B

Srep

B

Srep

B

Wreq Wrep d()+
w

Wpre Wapp �⁄+
w

ρ min=
1

Wpre

w

Sreq

B

Srep

B
--------+ +







,

1
Sreq d Srep⋅+

B

d Sreq⋅ Srep+
B

Wreq Wrep d()+

w
-----------------------------------+ +

1

Sreq

B

Srep

B

Wpre

Wapp

�
-----------+

w
----------------------------+ +









---,

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

525AUTOMATIC DEPLOYMENT PLANNING

Send || receive || compute, single port: In this model,
it is assumed that a computing resource can send mes-
sages, receive messages, and do computation in parallel.
We still only assume a single port-level: messages must
be sent serially and they must be received serially. Thus,
for this model throughput can be calculated as follows.

5 Experimental Results

In this section we present experiments designed to test
the ability of our deployment model to correctly identify
good real-world deployments.

5.1 Experimental Design

Software: DIET 2.0 is used for all deployed agents and
servers; GoDIET (Caron, Chouhan, and Dail 2006) ver-
sion 2.0.0 is used to perform the actual software deploy-
ment.

Job types In general, at the time of deployment, one
can know neither the exact job mix nor the order in
which jobs will arrive. Instead, one has to assume a par-
ticular job mix, define a deployment, and eventually cor-
rect the deployment after launch if it wasn’t well-chosen.
For these tests, we consider the Dgemm application, a
simple matrix multiplication provided as part of the
Basic Linear Algebra Subprograms (BLAS) package. For

example, when we state that we use Dgemm 100, it signi-
fies that we use matrix multiplication with square matrices
of dimensions 100 × 100. For each specific throughput
test we use a single problem size; since we are testing
steady-state conditions, the performance obtained should
be equivalent to that one would attain for a mix of jobs
with the same average execution time.

Workload Measuring the maximum throughput of a
system is non-trivial: if too little load is introduced the
maximum performance may not be achieved, if too much
load is introduced the performance may suffer as well. A
unit of load is introduced via a script that runs a single
request at a time in a continual loop. We then introduce
load gradually by launching one client script every sec-
ond. We introduce new clients until the throughput of the
platform stops improving; we then let the platform run
with no addition of clients for 10 minutes. Results pre-
sented are the average throughput during this 10 minute
period. This test is hereafter called a throughput test.

Resources The experiments were performed on two
similar clusters. The first is a 55-node cluster at the École
Normale Supérieure in Lyon, France. Each node includes
dual AMD Opteron 246 processors at 2 GHz, a cache size
of 1024 KB, and 2 GB of memory. We used GCC 3.3.5
for all compilations and the Linux kernel version was 2.6.8.
All nodes are connected by a Gigabit Ethernet. We meas-
ured network bandwidth using the Network Weather Serv-
ice (Wolski, Spring, and Hayes 1999). Using the default
NWS message size of 256 KB we obtain a bandwidth of
909.5 Mb/s; using the message size sent in DIET of 850
bytes we obtain a bandwidth of 20.0 Mb/s.

The second cluster is a 140-node cluster at Sophia in
France. The nodes are physically identical to the ones at
Lyon but are running the Linux kernel version 2.4.21 and
all compilations were done with GCC 3.2.3. The machines
at Sophia are linked by 6 different Cisco Gigabit Ethernet
switches connected with a 32 Gbps bus.

5.2 Model Parameterization

Table 1 presents the parameter values we used for DIET
in the models for ρsched and ρservice. Our goal was to
parameterize the model using only easy-to-collect micro-
benchmarks. In particular, we sought to use only values

ρ min=
1

max
Wpre

w

Sreq

B

Srep

B
--------, , 

 
--







,

1

max
Sreq d Srep⋅+

B

d Sreq⋅ Srep+
B

Wreq Wrep d()+

w
-----------------------------------, , 

 

1

max
Sreq

B

Srep

B

Wpre
Wapp

�
-----------+

w
----------------------------, ,

 
 
 
 

--











--,

Table 1
Parameter values

Components Wreq Wfix Wsel Wpre Srep Sreq

(KFlop) (KFlop) (KFlop) (KFlop) (Kb) (Kb)

Agent 32 10 9.6 – 6.4 5.3

SeD – – – 6.4 6.4 5.3

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

526 COMPUTING APPLICATIONS

that can be measured using a few clients executions. The
alternative was to base the model on actual measure-
ments of the maximum throughput of various system ele-
ments; while we have these measurements for DIET, we
felt that the experiments required to obtain such measure-
ments were difficult to design and run and their use
would prove an obstruction to the application of our
model for other systems.

To measure message sizes Sreq and Srep we deployed a
Master Agent (MA) and a single Dgemm server (SeD) on
the Lyon cluster and then launched 100 clients serially.
We collected all network traffic between the MA and the
SeD machines using tcpdump and analyzed the traffic to
measure message sizes using the Ethereal Network Pro-
tocol analyzer2. This approach provides a measurement
of the entire message size including headers. Using the
same MA-SeD deployment, 100 client repetitions, and
the statistics collection functionality in DIET (Caron and
Desprez 2006), we then collected detailed measurements
of the time required to process each message at the MA
and SeD level. The parameter Wrep depends on the number
of children attached to an agent. We measured the time
required to process responses for a variety of star deploy-
ments including an MA and different numbers of SeDs.
A linear data fit provided a very accurate model for the
time required to process responses versus the degree of
the agent with a correlation coefficient of 0.997. We thus
use this linear model for the parameter Wrep. Finally, we
measured the capacity of our test machines in KFlops
using a mini-benchmark extracted from Linpack and
used this value to convert all measured times to estimates
of the KFlops required.

The computational cost of the requests can be calcu-
lated either by using modeling techniques like the ones

we have used above, or by using an automatic perform-
ance prediction tool such as FAST (Desprez, Quinson,
and Suter 2001).

5.3 Throughput Model Validation

This section presents experiments testing the accuracy of
the DIET agent and server throughput models presented
in Section 4.3. First, we examine the ability of the models
to predict agent throughput and, in particular, to predict
the effect of an agent’s degree on its performance. To test
agent performance, the test scenario must be clearly
agent-limited. Thus we selected a very small problem size
of Dgemm 10. To test a given agent degree d, we deployed
an MA and attached d SeDs to that MA; we then ran a
throughput test as described in Section 5.1. The results
are presented in Figure 5. We verify that these deploy-
ments are all agent-limited by noting that the throughput
is lower for a degree of two than for a degree of 1 despite
the fact that the degree two deployment has twice as
many SeDs.

Figures 5 (a) and (b) present model predictions for the
serial and parallel models, respectively. In each case three
predictions are shown using different values for the net-
work bandwidth. The values of 20 Mb/s and 909.5 Mb/s
are the values obtained with NWS. Comparison of pre-
dicted and measured throughput leads us to believe that
these measurements of the network bandwidth are not
representative of what DIET actually obtains. This is not
surprising given that DIET uses very small messages and
network performance for this message size is highly sen-
sitive to the communication layers used. The third band-
width in each graph is chosen to provide a good fit of the
measured and predicted values. For the purposes of the

Fig. 5 Measured and predicted platform throughput for Dgemm size 10.

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

527AUTOMATIC DEPLOYMENT PLANNING

rest of this paper we will use the serial model with a
bandwidth of 190 Mb/s because it provides a better fit
than the parallel model. In the future we plan to investi-
gate other measurement techniques for bandwidth that
may better represent the bandwidth achieved when send-
ing many very small messages as is done by DIET.

Next, we test the accuracy of throughput prediction for the
servers. To test server performance, the test scenario must
be clearly SeD-limited. Thus we selected a relatively large
problem size of Dgemm 1000. To test whether performance
scales as the number of servers increases, we deployed an
MA and attached different numbers of SeDs to the MA.
The results are presented in Figure 6. Only the serial
model with a bandwidth of 190 Mb/s is shown; in fact, the
results with the parallel model and with different band-
widths are all within 1% of this model since the commu-
nication is overwhelmed by the solve phase itself.

5.4 Deployment Selection Validation

In this section we present experiments that test the effec-
tiveness of our deployment approach in selecting a good
deployment. For each experiment, we select a cluster, define
the total number of resources available, and define a
Dgemm problem size. We then apply our deployment algo-
rithms to predict which CSD tree will provide the best
throughput and we measure the throughput of this CSD
tree in a real-world deployment. We then identify and test
a suitable range of other CSD trees including the star, the
most popular middleware deployment arrangement.

Figure 7 shows the predicted and actual throughput for
a Dgemm size of 200 where 25 nodes in the Lyon cluster
are available for the deployment. Our model predicts that
the best throughput is provided by CSD trees with degrees
of 12, 13 and 14. These trees have the same predicted
throughput because they have the same number of SeDs
and the throughput is limited by the SeDs. Experiments
show that the CSD tree with degree 12 does indeed pro-
vide the best throughput. The model prediction overesti-
mates the throughput; we believe that there is some cost
associated with having multiple levels in a hierarchy that
is not accounted for in our model. However, it is more
important that the model correctly predicts the shape of
the graph and identifies the best degree than that it cor-
rectly predicts absolute throughput.

For the next experiment, we use the same problem size
of 200 but change the number of available nodes to 45
and the cluster to Sophia. We use the same problem size
to demonstrate that the best deployment is dependent on
the number of resources available, rather than just the
type of problem. The results are shown in Figure 8. The
model predicts that the best deployment will be a degree
eight CSD tree while experiments reveal that the best
degree is three. The model does however correctly pre-
dict the shape of the curve and selects a deployment that
achieves a throughput that is 87.1% of the optimal. By
comparison, the popular star deployment (degree 44)
obtains only 40.0% of the optimal performance.

For the last experiment, we again use a total of 45 nodes
from the Sophia cluster but we increase the problem size
to 310; we use the same resource set size to show that the

Fig. 6 Measured and predicted platform throughput
for Dgemm size 1000 (serial model with a bandwidth of
190 Mb/s).

Fig. 7 Predicted and measured throughput for differ-
ent CSD trees for Dgemm 200 with 25 available nodes
in the Lyon cluster.

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

528 COMPUTING APPLICATIONS

best deployment is also dependent on the type of workload
expected. The results are shown in Figure 9. In this test case,
the model predictions are generally much more accurate
than in the previous two cases; this is because ρservice is the
limiting factor over a greater range of degrees due to the
larger problem size used here. Our model predicts that the
best deployment is a 22 degree CSD tree while in experi-
mentation the best degree is 15. However, the deployment
chosen by our model achieves a throughput that is 98.5%
of that achieved by the optimal 15 degree tree. By com-
parison, the star and tri-ary tree deployments achieve only
73.8% and 24.0% of the optimal throughput.

Table 2 summarizes the results of these three experi-
ments by reporting the percentage of optimal achieved
for the tree selected by our model, the star, and the tri-ary
tree. The table also includes data for problem size 10, for
which an MA with one SeD is correctly predicted to be

optimal, and problem size 1000, for which a star deploy-
ment is correctly predicted to be optimal. These last two
cases represent the usage of the model in clearly SeD-
limited or clearly agent-limited conditions.

5.5 Model Forecasts

In the previous section we presented experiments demon-
strating that our model is able to automatically identify a
deployment that is close to optimal. In this section we use
our model to forecast optimal deployments for a variety
of scenarios. These forecasts can then be used to guide
future deployments at a larger scale than we were able to
test in these experiments. Table 3 summarizes model
results for a variety of problem sizes and a variety of
platform sizes for a larger cluster with the characteristics
of the Lyon cluster.

Fig. 8 Predicted and measured throughput for differ-
ent CSD trees for Dgemm 200 with 45 available nodes
in the Sophia cluster.

Fig. 9 Predicted and measured throughput for differ-
ent CSD trees for Dgemm 310 with 45 available nodes
in the Sophia cluster.

Table 2
A summary of the percentage of optimal achieved by the deployment selected by our model, a star
deployment, and a tri-ary tree deployment

Dgemm Nodes Optimal Model selected Our model Star Tri-ary

size |�| degree degree performance performance performance

10 21 1 1 100.0% 22.4% 50.5%

100 25 2 2 100.0% 84.4% 84.6%

200 45 3 8 87.1% 40.0% 100.0%

310 45 15 22 98.5% 73.8% 74.0%

1000 21 20 20 100.0% 100.0% 65.3%

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

529AUTOMATIC DEPLOYMENT PLANNING

6 Conclusion and Future Work

This paper has presented an approach for determining an
optimal hierarchical middleware deployment for a homo-
geneous resource platform of a given size. The approach
determines how many nodes should be used and in what
hierarchical organization with the goal of maximizing
steady-state throughput. We presented experiments val-
idating the DIET throughput performance models and
demonstrating that our approach can effectively build a
tree for deployment which is nearly optimal and which per-
forms significantly better than other reasonable deploy-
ments.

This article provides only the initial step for automatic
middleware deployment planning. We plan to test our
approach with experiments on larger clusters using a
variety of problem sizes as well as a mix of applica-
tions. While our current approach depends on a predicted
workload, it will be interesting to develop re-deployment
approaches that can dynamically adapt the deployment to
workload levels after the initial deployment. We also
plan to extend our work to grids composed of clusters of
clusters and test our model on multiMA hierarchies of
DIET. An obvious extension of this work would be to build,
for each of the clusters, a CSD tree as explained in this
paper, and then to connect these CSD trees in a hierarchi-
cal way. Our first test case will be the Grid’5000 testbed
which consists of about ten large clusters composed of
between 53 and 218 dual-processor nodes each. Our final
goal is to develop deployment planning and re-deploy-
ment algorithms for middleware on heterogeneous clus-
ters and Grids.

Acknowledgment

The authors would like to thank Frédéric Desprez and
Yves Robert for their insightful ideas and Stéphane
D’Alu for assistance with the Lyon cluster in Grid’5000.

This work has been supported by INRIA, CNRS, ENS
Lyon, UCBL, Grid’5000 from the French Department of
Research, and the INRIA associated team I-Arthur.

Author Biographies

Pushpinder Kaur Chouhan is a Ph.D. student at École
Normale Supérieure de Lyon. She received her Masters
in C.S. from ENS-Lyon, France in 2003. She did B.Tech.
from SLIET, India. Her research interests include grid
middleware, grid computing and problem solving envi-
ronments.

Holly Dail is a member of the GRAAL research team
at the ENS Lyon, France. She received her M.Sc. in Com-
puter Science in 2002 from the University of California
at San Diego and her B.Sc. in Physics and Oceanography
in 1996 from the University of Washington. Her research
interests focus on new approaches and algorithms for dis-
tributed computing and the application of these technolo-
gies to the domain sciences.

Eddy Caron is an assistant professor at École Normale
Supérieure de Lyon and holds a position with the LIP lab-
oratory (ENS Lyon, France). He is a member of GRAAL
project and technical manager for the DIET software
package. He received his Ph.D. in C.S. from University de
Picardie Jules Verne in 2000. His research interests
include parallel libraries for scientific computing on par-
allel distributed memory machines, problem solving envi-
ronments, and grid computing. See http://graal.ens-lyon.fr/
~ecaron for further information.

Frederic Vivien was born in 1971 in Saint-Brieuc,
France. He received the Ph.D. degree from École Nor-
male Supérieure de Lyon in 1997. From 1998 to 2002, he
had been an associate professor at Louis Pasteur Univer-
sity of Strasbourg. He spent the year 2000 working in the

Table 3
Predictions for the best degree d, number of agents used |�|, and number of servers used |�| for
different Dgemm problem sizes and platform sizes |�|. The platforms are assumed to be larger
clusters with the same machine and network characteristics as the Lyon cluster

 Dgemm size 10 100 500 1000

|�| d |�| |�| d |�| |�| d |�| |�| d |�| |�|

25 1 1 1 2 11 12 24 1 24 24 1 24

50 1 1 1 2 11 12 49 1 49 49 1 49

100 1 1 1 2 11 12 50 2 98 99 1 99

200 1 1 1 2 11 12 40 5 195 199 1 199

500 1 1 1 2 11 12 15 34 466 125 4 496

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

530 COMPUTING APPLICATIONS

Computer Architecture Group of the MIT Laboratory for
Computer Science. He is currently a full researcher from
INRIA. His main research interests are scheduling tech-
niques, parallel algorithms for clusters and grids, and
automatic compilation/parallelization techniques.

Note
1 http://www.warewulf-cluster.org/cgi-bin/trac.cgi

2 http://www.ethereal.com

References

Arnold, D., Agrawal, S., Blackford, S., Dongarra, J., Miller, M.,
Sagi, K., Shi, Z., and Vadhiyar, S. 2001. Users’ Guide to
NetSolve V1.4. UTK Computer Science Dept. Technical
Report CS-01-467, University of Tennessee, Knoxville,
TN. http://www.cs.utk.edu/netsolve/.

Beaumont, O., Legrand, A., Marchal, L., and Robert, Y. 2004.
Steady-state scheduling on heterogeneous clusters: why
and how? 6th Workshop on Advances in Parallel and
Distributed Computational Models, Santa Fe, New Mex-
ico.

Cappello, F., Caron, E., Dayde, M., Desprez, F., Jeannot, E.,
Jegou, Y., Lanteri, S., Leduc, J., Melab, N., Mornet, G.,
Namyst, R., Primet, P., and Richard, O. 2005. Grid’5000:
A large scale, reconfigurable, controlable and monitorable
Grid platform. In SC’05: Proceedings of the 6th IEEE/ACM
International Workshop on Grid Computing Grid’2005,
Seattle, USA, pp. 99–106.

Caron, E., Chouhan, P., and Legrand, A. 2004. Automatic
deployment for hierarchical network enabled server. The
13th Heterogeneous Computing Workshop, Santa Fe, New
Mexico, April, p. 109b (10 pages).

Caron, E., Chouhan, P. K., and Dail, H. 2006. Godiet: A deploy-
ment tool for distributed middleware on grid 5000.
EXPEGRID Workshop at HPDC2006, Paris, June, pp. 1–8.

Caron, E. and Desprez, F. 2006. DIET: A scalable toolbox to
build network enabled servers on the Grid. International
Journal of High Performance Computing Applications
20(3): 335–352.

Caron, E., Desprez, F., Petit, F., and Tedeschi, C. 2004.
Resource Localization Using Peer-To-Peer Technology for
Network Enabled Servers. Research report 2004-55, Lab-
oratoire de l’Informatique du Parallélisme (LIP), Decem-
ber.

Dandamudi, S. and Ayachi, S. 1999. Performance of hierarchi-
cal processor scheduling in shared-memory multiproces-
sor systems. IEEE Transactions on Computers 48(11):
1202–1213.

Daughetee, A. and Kazim, Z. 2004. Simplifying system deploy-
ment using the Dell OpenManage Deployment Toolkit.
Dell Power Solutions, October, pp. 108–110.

Desprez, F., Quinson, M., and Suter, F. 2001. Dynamic per-
formance forecasting for network enabled servers in an
heterogeneous environment. International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA 2001), June 25–28. CSREA Press.

Goldsack, P. and Toft, P. 2001. Smartfrog: a framework for
configuration. Large Scale System Configuration Work-
shop. National e-Science Centre UK. http://www.hpl.
hp.com/research/smartfrog/.

Goscinski, W. and Abramson, D. 2004. Distributed Ant: A sys-
tem to support application deployment in the Grid. Pro-
ceedings of the Fifth IEEE/ACM International Workshop
on Grid Computing, November, Pittsburgh, USA.

Halderen, A., Overeinder, B., and Sloot, P. 1998. Hierarchical
resource management in the polder metacomputing initia-
tive. Parallel Computing 24:1807–1825.

Hall, R. S., Heimbigner, D., and Wolf, A. L. 1999. A coopera-
tive approach to support software deployment using the
software dock. Proceedings of the 21st International Con-
ference on Software Engineering, May, Los Angeles, USA,
pp. 174–183. ACM Press.

Kichkaylo, T., Ivan, A., and Karamcheti, V. 2003. Constrained
component deployment in wide area networks using AI
planning techniques. International Parallel and Distrib-
uted Processing Symposium, April, Nice, France.

Kichkaylo, T. and Karamcheti, V. 2004. Optimal resource
aware deployment planning for component based distrib-
uted applications. The 13th High Performance Distributed
Computing, June, Honolulu, USA.

Lacour, S., Pérez, C., and Priol, T. 2004. Deploying CORBA
components on a Computational Grid: General principles
and early experiments using the Globus Toolkit. 2nd
International Working Conference on Component Deploy-
ment, May, Edinburgh, UK.

Martin, C. and Richard, O. 2001. Parallel launcher for cluster of
PC. Parallel Computing, Proceedings of the International
Conference, September, Naples, Italy.

Nakada, H., Sato, M., and Sekiguchi, S. 1999. Design and
implementations of Ninf: towards a global computing infra-
structure. Future Generation Computing Systems 15(5-6):
649–658.

Park, J. W., Park, S. H., Hwang, I. S., Moon, J. J., Yoon, Y.,
and Kim, S. J. 2004. Optimal blade system design of a
new concept vtol vehicle using the departmental comput-
ing grid system. ACM/IEEE Super Computing 2004 Con-
ference (SC’04), Pittsburgh, USA, p. 36.

Santoso, J., van Albada, G., Nazief, B., and Sloot, P. 2001.
Simulation of hierarchical job management for meta-
Computing systems. International Journal of Foundations
of Computer Science 12(5):629–643.

Singh, G., Deelman, E., Mehta, G., Vahi, K., Su, M.-H., Ber-
riman, G. B., Good, J., Jacob, J. C., Katz, D. S., Lazzarini,
A., Blackburn, K., and Koranda, S. 2005. The pegasus
portal: web based grid computing. SAC ‘05: Proceedings
of the 2005 ACM Symposium on Applied Computing, pp.
680–686, New York, NY. ACM Press.

Varela, C. A., Ciancarini, P., and Taura, K. 2005. Worldwide
computing: Adaptive middleware and programming tech-
nology for dynamic Grid environments. Scientific Pro-
gramming Journal 13(4):255–263. Guest Editorial.

Wolski, R., Spring, N., and Hayes, J. 1999. The Network
Weather Service: A distributed resource performance
forecasting service for metacomputing. The Journal of
Future Generation Computing Systems 15(5-6):757–768.

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

