
http://hpc.sagepub.com
Applications

Performance Computing
International Journal of High

DOI: 10.1177/1094342006061887
 2006; 20; 31 International Journal of High Performance Computing Applications

Hélène Renard, Yves Robert and Frédéric Vivien
 Data Redistribution Algorithms for Heterogeneous Processor Rings

http://hpc.sagepub.com/cgi/content/abstract/20/1/31
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing Applications Additional services and information for

 http://hpc.sagepub.com/cgi/alerts Email Alerts:

 http://hpc.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://hpc.sagepub.com

31DATA REDISTRIBUTION ON RINGS

DATA REDISTRIBUTION ALGORITHMS
FOR HETEROGENEOUS PROCESSOR
RINGS

Hélène Renard
Yves Robert
Frédéric Vivien

LIP, UMR CNRS–INRIA–UCBL 5668, ENS LYON,
FRANCE (YVES.ROBERT@ENS-LYON.FR)

Abstract

We consider the problem of redistributing data on homo-
geneous and heterogeneous rings of processors. The
problem arises in several applications, after each invoca-
tion of a load-balancing mechanism (but we do not discuss
the load-balancing mechanism itself). We provide algo-
rithms that aim at optimizing the data redistribution, both
for unidirectional and bidirectional rings. One major contri-
bution of the paper is that we are able to prove the opti-
mality of the proposed algorithms in all cases except that
of a bidirectional heterogeneous ring, for which the prob-
lem remains open.

Key words: heterogeneous rings, data redistribution algo-
rithms, load balancing

1 Introduction

In this paper, we consider the problem of redistributing
data on a heterogeneous ring of processors. The problem
typically arises when a load-balancing phase must be initi-
ated. Because of variations either in the resource perform-
ances (CPU speed, communication bandwidth) or in the
system/application requirements (completed tasks, new
tasks, migrated tasks, etc.), data must be redistributed
between participating processors so that the current (esti-
mated) load is better balanced. We do not discuss the load-
balancing mechanism itself (we take it as external, be it a
system, an algorithm, an oracle, or whatever). Rather we
aim at optimizing the data redistribution induced by the
load-balancing mechanism.

We adopt the following abstract view of the problem.
There are n participating processors P1, P2, …, Pn. Each
processor Pk initially holds Lk atomic data items. The
load-balancing system/algorithm/oracle has decided that
the new load of Pk should be Lk – δk. If δk > 0, this means
that Pk now is overloaded and should send δk data items
to other processors; if δk < 0, Pk is underloaded and
should receive – δk data items from other processors. Of

course there is a conservation law: δk = 0. The goal is to

determine the required communications and to organize
them (what we call the data redistribution) in minimal time.

We assume that the participating processors are arranged
along a ring, either unidirectional or bidirectional, and either
with homogeneous or heterogeneous link bandwidths;
hence a total of four different frameworks to deal with.
There are two main contexts in which processor rings are
useful. The first context is that of many applications which
operate on ordered data, and where the order needs to be
preserved. Think of a large matrix whose columns are dis-
tributed among the processors, but with the condition that
each processor operates on a slice of consecutive columns.
An overloaded processor Pi can send its first columns to
the processor Pj that is assigned the slice preceding its
own slice (and Pj would append these columns to the end
of its slice). Similarly, Pi can send its last columns to the
processor which is assigned the next slice. Obviously,
these are the only possibilities. In other words, the ordered
unidimensional data distribution calls for a unidimen-
sional arrangement of the processors, i.e. along a ring.

The second context that may call for a ring is the sim-
plicity of the programming. Using a ring, either unidirec-
tional or bidirectional, allows for a simpler management
of the data to be redistributed. Data intervals can be main-
tained and updated to characterize each processor load.
Finally, we observe that parallel machines with a rich but
fixed interconnection topology (hypercubes, fat trees,
grids, to quote a few) are on the decline. Heterogene-
ous cluster architectures, which we target in this paper,

k 1=

n

∑

The International Journal of High Performance Computing Applications,
Volume 20, No. 1, Spring 2006, pp. 31–43
DOI: 10.1177/1094342006061887
© 2006 SAGE Publications

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

32 COMPUTING APPLICATIONS

have a largely unknown interconnection graph, including
gateways, backbones, and switches, and modeling the
communication graph as a ring is a reasonable, if con-
servative, choice.

As stated above, we discuss four cases for the redistri-
bution algorithms. We delay the formal statement of the
redistribution problems until Section 2, but we summarize
the main results as follows. In the simplest case, that of a
unidirectional homogeneous ring, we derive an optimal
algorithm, and we prove its correctness in full detail.
Because the target architecture is quite simple, we are
able to provide explicit (analytical) formulae for the number
of data sent/received by each processor. The same holds
true for the case of a bidirectional homogeneous ring, but
the algorithm becomes more complicated. When assum-
ing heterogeneous communication links, we still derive
an optimal algorithm for the unidirectional case, but we
have to use an asynchronous formulation. However, we
are only able to solve the bidirectional case in the special
case of light redistributions. We point out that one major
contribution of the paper is the design of optimal algo-
rithms, together with their formal proof of correctness; to
the best of our knowledge, this is the first time that opti-
mal algorithms have been introduced.

The rest of the paper is organized as follows. In Section 2
we formally state the optimization problem. For homoge-
neous networks (all links have same capacity), the opti-
mal algorithms are described in Section 3 (unidirectional
ring) and in Section 5 (bidirectional ring). For heterogeneous
networks, the optimal asynchronous unidirectional algo-
rithm is presented in Section 4, and the linear-program-
ming based optimal algorithm for light redistributions on
bidirectional links is explained in Section 6. Section 7 is
devoted to a survey of related work. In Section 8, we over-
view some simulation results that confirm the usefulness
of data redistributions. Finally, in Section 9 we conclude
the paper and highlight future work directions.

Due to page limits, we were not able to include all the
proofs in this paper. The missing proofs can be found in
Renard, Robert, and Vivien (2004a).

2 Framework

We consider a set of n processors P1, P2, …, Pn arranged
along a ring. The successor of Pi in the ring is Pi + 1, and
its predecessor is Pi – 1, where all indices are taken mod-
ulo n. For 1 ≤ k, l ≤ n, Ck, l denotes the slice of consecu-
tive processors Ck, l = Pk, Pk + 1, …, Pl – 1, Pl.

We denote by ci, i + 1 the capacity of the communication
link from Pi to Pi + 1. In other words, it takes ci, i + 1 time
units to send an atomic data item from processor Pi to
processor Pi + 1. In the case of a bidirectional ring, ci, i – 1 is
the capacity of the link from Pi to Pi – 1. We use the one-
port model for communications; at any given time, there

are at most two communications involving a given proces-
sor, one sent and the other received. A given processor can
simultaneously send and receive data, so there is no restric-
tion in the unidirectional case. However, in the bidirectional
case, a given processor cannot simultaneously send data
to its successor and its predecessor; neither can it receive
data from both sides. This is the only restriction induced
by the model: any pair of communications that does not
violate the one-port constraint can take place in parallel.

Each processor Pk initially holds Lk atomic data items.
After redistribution, Pk will hold Lk – δk atomic data
items. We call δk the “unbalance” of Pk. We denote by δk, l
the total unbalance of the processor slice Ck, l: δk, l = δk +
δk + 1 + … + δl – 1 + δl.

Because of the conservation law of atomic data items,

δk = 0. Obviously the unbalance cannot be larger than

the initial load: Lk ≥ δk. In fact, we suppose that any proc-
essor holds at least one data item, both initially (Lk ≥ 1)
and after the redistribution (Lk ≥ 1 + δk); otherwise we
would have to build a new ring from the subset of resources
still involved in the computation.

3 Homogeneous Unidirectional Ring

In this section, we consider a homogeneous unidirec-
tional ring. Any processor Pi can only send data items
to its successor Pi + 1, and ci, i + 1 = c for all i [1, n]. We
first derive a lower bound on the running time of any
redistribution algorithm. Then, we present an algorithm
achieving this bound (hence optimal), and we prove its
correctness.

3.1 Lower Bound

We have the following bound on the optimal redistribu-
tion time:

Lemma 1. Let τ be the optimal redistribution time. Then

(1)

Proof. The processor slice Ck,k + l = Pk, Pk + 1, …, Pk + l – 1,
Pk + l has a total unbalance of δk, k + l = δk + δk + 1 + … +
δk + l – 1 + δk + l. If δk,k + l > 0, δk,k + l data items must be sent
from Ck,k + l to the other processors. The ring is unidirec-
tional, so Pk + l is the only processor in Ck,k + l with an out-
going link. Furthermore, Pk + l needs a time equal to δk,k + lc
to send δk,k + l data items. Therefore, in any case, a redistri-
bution scheme cannot take less than δk,k + l c to redistribute
all data items. We have the same type of reasoning for the
case δk,k + l < 0. �

k 1=

n

∑

∈

τ max δk k 1+,
1 k n,≤ ≤

0 l n 1–≤ ≤

c.≥

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

33DATA REDISTRIBUTION ON RINGS

3.2 An Optimal Algorithm

Algorithm 1 is an optimal solution to our problem. We first
prove its correctness (Lemma 3). Secondly, we prove its
optimality (Lemma 4). Intuitively, if step 6 of this algo-
rithm is always feasible, then each execution of step 3 has
exactly a length of c, and the algorithm will meet the time
bound of Lemma 1.

First, we point out that the slice Cstart, end is well defined
in step 2 of the algorithm: for any slice with an unbalance
δ, the slice made up from the remaining processors has the
opposite unbalance – δ. Next, we state the particular role
of the processor Pstart:

Lemma 2. Processor Pstart receives no data items during
the execution of Algorithm 1.

Proof. We prove the result by contradiction. Suppose
that at a given iteration s processor Pstart receives some
data items. Then the predecessor of Pstart in the ring, Pstart – 1,
sends a data item at this iteration. Thus, Pstart – 1 being
a sender, by the condition at step 5 of Algorithm 1,

δstart,start–1 = δstart + j ≥ s. However, due to the conserva-

tion law, δi = 0. Hence, 0 ≥ s, the desired contradiction.

To prove that Algorithm 1 is correct, we must show
that during each iteration, any processor required to send
a data item in step 6 actually holds at least one data item
at this iteration. In other words, we must prove that no
processor is asked to send a data item that it does not cur-
rently own. Let L be the load of Pi at the end of iteration
s of Algorithm 1:

Lemma 3. During iteration s of loop 3, if Pi sends a data
item, then L ≥ 1.

Proof. We prove Lemma 3 by induction. By definition of
unbalances (see Section 2), we know that each processor
Pi in the ring initially holds an amount of L = Li ≥ 1 data
items. Thus, the result holds for s = 1.

Now we suppose that the result holds until a certain
iteration s (included), and we focus on iteration s + 1.
There are two cases to consider depending whether proc-
essor Pi is supposed to receive a data item during itera-
tion s + 1 or not:

1. If processor Pi is both a sender and a receiver dur-
ing iteration s + 1, then Pi is both a sender and a
receiver during iteration s by the condition at step 5
of Algorithm 1. Then the load of Pi after iteration s
was the same as before that iteration and L = L
We conclude using the induction hypothesis.

2. If processor Pi is a sender but not a receiver dur-
ing iteration s + 1, we must verify that Pi does not
send a data item that it does not hold. Because Pi
is a sender we have by the condition at Step 5 of
Algorithm 1:

. (2)

Furthermore, Pi has sent a data item during each
of the previous iterations.

During iteration s + 1, Pi is not a receiver.
Thus, Pi – 1 is not a sender during this iteration,
and, by the condition at step 5 of Algorithm 1,
we have δstart, i – 1 < s + 1. During each iteration
from 1 to δstart, i – 1, Pi – 1 has sent a data item (see
below for the proof that δstart, start + j ≥ 0 for all j
[0, n – 1]). Hence, during each of these iterations,
Pi was both a sender and a receiver, and neither its
load nor its unbalance changed.

During each iteration from 1 + δstart, i – 1 to s,
processor Pi was a sender but not a receiver. So
both its load and its unbalance decrease by one
during each of these iterations. Hence

. (3)

However, δi + δstart, i – 1 = δstart, i. So equation 3 is
equivalent to L = Li – δi + δstart, i – s. From equa-
tion (2) we know that δstart, i – s ≥ 1. In Section 2,
we assumed that Li ≥ 1 + δi. So, L ≥ 2.

The above proof relies on the property that, for any
value of j [0, n – 1], δstart, start + j ≥ 0. We now prove this
result by contradiction. Hence we suppose that there
exists a value j such that δstart, start + j < 0. We have two
cases to consider, as follows.

Algorithm 1. Redistribution algorithm for homogene-
ous unidirectional rings.

j 0=

n 1–

∑

i 1=

n

∑

i
s

i
s 1–

i
0

i
s

i
s 1–

δstart,i s 1+≥

∈

Li
s Li s δstart, i 1––()–=

i
s

i
s

∈

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

34 COMPUTING APPLICATIONS

1. j + start [start, end]. Then δstart, end = δstart, start + j +
δstart + j + 1, end and δstart, end < δstart + j + 1, end which con-
tradicts the maximality of Cstart, end.

2. j + start [start, end]. Then δstart, j + start = δstart, end +
δ1 + end, j + start. So δstart, end < – δ1 + end, j + start. How-
ever, as the sum of unbalances is null by defini-
tion, the sum of unbalances of C1 + end, j + start is
equal to the opposite of the sum of unbalances
of Cj + 1 + start, end. Hence, δstart, end < δj + 1 + start, end,
which contradicts the maximality of Cstart, end.
���

We have proved the correction of Algorithm 1. We
still have to prove that when it terminates, the entire
redistribution has actually been performed.

Lemma 4. When Algorithm 1 terminates after iteration
δmax, i.e. at time τ, the load of any processor Pi is equal to
Li – δi.

Proof. We prove by induction on the processor indices,
starting at processor Pstart, that any processor Pj has
the desired load of Lj – δj at any iteration s ≥ max0 ≤ i ≤ j
δstart, start + i.

As stated by Lemma 2, processor Pstart never receives
a data item during the algorithm execution. So, after
δstart, start = δstart iterations of loop 3, Pstart is never the receiver
or the sender of a data item. As required, Pstart exactly
holds Lstart – δstart data items, i.e. its initial load minus the
amount of data items sent.

We suppose the result proved up to a processor Pstart + l
(with l ≥ 0) included. We focus on processor Pstart + l + 1.
Using the induction hypothesis, we know that at any iter-
ation s ≥ max0 ≤ i ≤ l δstart, start + i, the total load of the slice
Cstart, start + l is equal to Li – δi.

During the execution of the whole algorithm, processor
Pstart + l + 1 has sent exactly δstart, start + l + 1 data items (remem-
ber that for any j [0, n – 1], δstart, start + j ≥ 0). All these
send operations took place before or during iteration
δstart, start + l + 1. Furthermore, Lemma 2 states that processor
Pstart never receives a data item during the execution. So,
the total load of the slice Cstart, start + l + 1 does not change
after iteration δstart, start + l + 1, and its total load is equal to its
initial total load minus the data items sent by processor
Pstart + l + 1: (Li) – δstart, start + l + 1. Therefore, after any
iteration s, where s ≥ max(max0≤i≤ lδ start,start+i δ start,start+l+1) =
max0 ≤ i ≤ l + 1δstart, start + i, we know the total load of the slices
Cstart, start + l and Cstart, start + l + 1. Therefore, we know the load
of processor Pstart + l + 1 at any step t ≥ s:

(4)

To conclude, we just need to remark that δmax = max0 ≤ i ≤ n – 1
δstart, start + i. �

The optimality of Algorithm 1 is a direct consequence
of the previous lemmas:

Theorem 1. Algorithm 1 is optimal.

4 Heterogeneous Unidirectional Ring

In this section we still suppose that the ring is unidirec-
tional but we no longer assume the communication paths
to have the same capacities. We build on the results of the
previous section to design an optimal algorithm (Algo-
rithm 2). In this algorithm, the amount of data items sent
by any processor Pi is exactly the same as in Algorithm 1
(namely δstart, i). However, as the communication links
have different capacities, we no longer have a synchronous
behavior. A processor Pi sends its δstart, i data items as soon
as possible, but we cannot express its completion time
with a simple formula. Indeed, if Pi initially holds more
data items than it has to send, we have the same behavior
as previously: Pi can send its data items during the time
interval [0, δstart, i ci, i + 1]. In contrast, if Pi holds fewer data
items than it has to send (Li < δstart, i), Pi still starts to send
some data items at time 0 but may have to wait to have
received some other data items from Pi – 1 to be able to for-
ward them to Pi + 1.

The asynchronousness of Algorithm 2 implies that it is
correct by construction. Furthermore, when the algorithm
terminates, the redistribution is complete (the proof is the

∈

∉

0 i l≤ ≤∑ 0 i l≤ ≤∑

∈

0 i l 1+≤ ≤∑

Lstart l 1+ +
t Lstart i+

0 i l 1+≤ ≤
∑

δstart, start l 1+ +–= Algorithm 2. Redistribution algorithm for heterogene-
ous unidirectional rings.

Lstart i+

0 i l≤ ≤

∑ δstart i+

0 i l≤ ≤

∑–

=

Lstart l 1+ + δLstart l 1+ +
.–=

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

35DATA REDISTRIBUTION ON RINGS

same as in Lemma 4). It remains to prove that the run-
ning time of Algorithm 2 is optimal. We first compute
this running time.

Lemma 5. The running time of Algorithm 2 is max0 ≤ l ≤ n –1
δstart, start + l cstart + l, start + l + 1.

The result of Lemma 5 is surprising. Intuitively, it
says that the running time of Algorithm 2 is equal to
the maximum of the communication times of all the
processors, if each of them initially stored locally all
the data items it will have to send throughout the execu-
tion of the algorithm. In other words, there is no for-
warding delay, whatever the initial distribution. The
proof of Lemma 5 is technical and can be omitted at first
reading.

Proof. We prove the result by contradiction, assuming
that the running time of Algorithm 2, denoted as tmax, is
strictly greater than max0 ≤ l ≤ n –1δstart, start + l cstart + l, start + l + 1
(we assume that the algorithm starts running at time 0).
Let Pi be any processor whose running time is tmax, i.e. let
Pi be any processor which terminates the emission of its
last data item at time tmax. By hypothesis, tmax > δstart, ici, i + 1.
Therefore, there is some time during the running time of
the algorithm at which processor Pi is not sending any data
items to processor Pi + 1. Let ti denote the latest time at
which Pi is not sending any data items. Then, by definition
of ti, from time ti until the completion of the algorithm,
processor Pi is continuously sending data items to Pi + 1.
Let ni denote the number of data items that Pi sends dur-
ing that interval. Note that we have tmax = ti + nici, i + 1. We
now prove by induction that for any value of j ≥ 1.

1. Processor Pi – j sends a data item to processor
Pi – j + 1 during the time interval [ti – ci – k, i – k + 1,
ti – ci – k, i – k + 1].

2. Between time ti – ci – k, i – k + 1 and the comple-
tion of the algorithm, processor Pi – j sends at least
j + ni data items to processor Pi – j + 1.

3. ci – j, i – j + 1 ≤ ci, i + 1.
4. Right before time ti – ci – k, i – k + 1, processor

Pi – j is not sending any data items to processor
Pi – j + 1 (it is idle in sending).

Once we have proved these properties, the contradiction
follows from considering processor Pstart. Processor Pstart only
sends data items that it initially holds (δstart = δstart, start ≤
Lstart), and receives no data items from its predecessor in
the ring. However, using the above properties, there is a
value of j ≥ 0 such that start = i – j, and between time ti –

ci – k, i – k + 1 and the completion of the algorithm, proc-
essor Pi – j – 1 sends at least j + 1 + ni data items to proces-
sor Pi – j = Pstart. Hence the contradiction.

The construction used in the proof is illustrated by
Figure 1. We start by proving the above properties for
j = 1.

1. By definition of ti, processor Pi is not sending
any data items to processor Pi + 1 right before time
ti. Because of the “as-soon-as” nature of the algo-
rithm, processor Pi is not holding a single data
item right before time ti and is waiting for proc-
essor Pi – 1 to send it one. Furthermore, the data
item that processor Pi started to send at time ti is
sent to it by processor Pi – 1 during the time inter-
val [ti – ci – 1, i, ti].

k 1=
j∑

k 1=

j 1–∑
k 1=
j∑

k 1=
j∑

k 1=

j 1+∑

Fig. 1 The construction used in the proof of Lemma 5.

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

36 COMPUTING APPLICATIONS

2. Between time ti and the completion of the algo-
rithm, processor Pi sends ni data items to proces-
sor Pi + 1. By hypothesis, processor Pi holds at
least one data item after the completion of the
algorithm. As Pi holds no data item right before
time ti, then between the times ti – ci – 1, i and tmax,
Pi – 1 sends at least 1 + ni data items to Pi.

3. From what just precedes, and using the relation-
ship between ti, ni, and tmax, we have ti + nici, i + 1 =
tmax and tmax ≥ (ti – ci – 1, i) + (1 + ni)ci – 1, i, which
imply ci, i + 1 ≥ ci – 1, i, as ni is non-zero by definition.

4. Suppose that processor Pi – 1 is sending a data item
to processor Pi right before the time ti – ci – 1, i.
Then, at the earliest, this data item is received by
processor Pi at time ti – ci – 1, i. Due to the “as-soon-as”
nature of the algorithm, Pi forwards this data item
to processor Pi + 1 (as it forwards data items received
later). Pi finishes to forward this data item at time
ti – ci – 1, i + ci, i + 1 ≥ ti at the earliest. Therefore,
processor Pi has no reason not to be sending any
data item at time ti, which contradicts the defini-
tion of ti.

We now proceed to the general case of the induction.
We suppose that the property is proved up to a processor
Pi – j included (with j ≥ 1).

1. By induction hypothesis, processor Pi – j is not
sending any data items to processor Pi – j + 1 right
before time ti – ci – k, i – k + 1. Because of the “as-
soon-as” nature of the algorithm, processor Pi – j is
not holding a single data item right before this
time and is waiting for processor Pi – j – 1 to send
one. Furthermore, the data item that processor Pi – j
started to send at time ti – ci – k, i – k + 1 is sent to
it by processor Pi – j – 1 during the time interval [ti –

ci – k, i – k + 1, ti – ci – k, i – k + 1].
2. Between time ti – ci – k, i – k + 1 and the comple-

tion of the algorithm, processor Pi – j sends j + ni
data items to processor Pi – j + 1, by induction
hypothesis. By hypothesis, processor Pi – j holds at
least one data item after the completion of the
algorithm. As Pi – j holds no data item right before
time ti – ci – k, i – k + 1, then between the times ti –

ci – k, i – k + 1 and tmax, Pi – j – 1 sends at least 1 + j +
ni data items to Pi – j.

3. From what just precedes, and using the relation-
ship between ti, ni, and tmax, we have

Therefore,

and thus: ci, i + 1 ≥ ci – j – 1, i – j as, by induction
hypothesis, for any k [1, j], ci, i + 1 ≥ ci – k, i – k + 1.

4. Suppose that processor Pi – j – 1 is sending a data
item to processor Pi – j right before the time ti –

ci – k, i – k + 1. Then, at the earliest, this data
item is received by processor Pi – j at time ti –

ci – k, i – k + 1. Due to the “as-soon-as” nature of
the algorithm, Pi – j forwards this data item to proc-
essor Pi – j + 1 (as it forwards data items received
later). Pi – j finishes to forward this data item at time
ti – ci – j – 1, i – j – ci – k, i – k + 1 at the earliest. Then,
following the same line of reasoning, processor
Pi – j + 1 forwards it to Pi – j + 2, which receives it at
the earliest at time ti – ci – j – 1, i – j – ci – k, i – k + 1,
and so on. So, processor Pi receives this data item
at the earliest at time ti – ci – j – 1, i – j, and forwards it.
Then, it finishes to send it at the earliest at time ti –
ci – j – 1, i – j + ci, i + 1 ≥ ti, as we have seen that ci, i + 1 ≥
ci – j – 1, i – j. Therefore, processor Pi has no reason
not to be sending any data items at time ti, which
contradicts the definition of ti. Hence, processor
Pi – j – 1 is not sending any data item to processor
Pi – j right before the time ti – ci – k, i – k + 1. �

Theorem 2. Algorithm 2 is optimal.

Proof. Let τ denote the optimal redistribution time. Fol-
lowing the arguments used in the proof of Lemma 1 for
the homogeneous case in Section 3.1, we obtain the
lower bound:

We conclude using Lemma 5. �

5 Homogeneous Bidirectional Ring

In this section, we consider a homogeneous bidirectional
ring. All links have the same capacity but a processor can
send data items to its two neighbors in the ring; there exists
a constant c such that, for all i [1, n], ci, i + 1 = ci, i – 1 = c. We
proceed as for the homogeneous unidirectional case. We
first derive a lower bound on the running time of any
redistribution algorithm, and then we present an algo-
rithm attaining this bound.

5.1 Lower Bound

We have the following bound on the optimal redistribu-
tion time.

k 1=
j∑

k 1=
j∑

k 1=

j 1+∑ k 1=
j∑

k 1=
j∑

k 1=
j∑

k 1=

j 1+∑

ti nici i 1+,+ tmax= ≥

ti ci k i k– 1+,–

k 1=

j 1+

∑–

1 j ni+ +()ci j– 1 i j–,–+

nici i 1+, ci k i k– 1+,–

k 1=

j

∑+ j ni+()ci j– 1 i j–,–≥

∈

k 1=

j 1+∑

k 1=

j 1+∑

k 1=

j 1–∑

k 1=

j 2–∑

k 1=

j 1+∑

τ max δk k l+, ck l k l 1.+ +,+≥
1 k n 0, l n 1–≤ ≤ ≤ ≤

∈

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

37DATA REDISTRIBUTION ON RINGS

Lemma 6. Let τ be the optimal redistribution time. Then

. (5)

Proof. Consider any processor Pi with positive unbal-
ance (δi > 0). Even if processor Pi can send data items to
both of its neighbors, because of the one-port model, it
cannot send data items to both of them simultaneously.
So, it requires processor Pi at least a time of δic to send δi
data items, whatever the destinations of these data items.
We have a symmetric result for the case δi < 0. Hence a
first lower bound on the optimal redistribution time τ:

Now, consider any non-trivial slice of consecutive
processors Ck, l. By “non-trivial” we mean that the slice is
not reduced to a single processor (we have already con-
sidered that case) and that it does not contain all proces-
sors. We suppose that δk, l > 0. So, in any redistribution
scheme, at least δk, l data items must be sent by Ck, l. As
this slice is not reduced to a single processor, the two
processors at the extremities of the slice, Pk and Pl, can
simultaneously send data items to their neighbors outside
the slice, Pk – 1 and Pl + 1, respectively. Therefore, during
any time interval of length c, at most two data items can
be sent from the slice. So, it takes at least a time of c
for the slice Ck, l to send δk, l data items. Once again, the
reasoning is similar when receiving data items if δk, l < 0.
Hence a second lower bound on τ:

.

We just gather the previous two lower-bounds to obtain
the desired bound. �

5.2 An Optimal Algorithm

Algorithm 3 is a recursive algorithm which defines com-
munication patterns designed so as to decrease the value
of δmax (computed at step 1) by one from one recursive
call to another. The intuition behind Algorithm 3 is the
following.

1. Any non-trivial slice Ck, l such that =
δmax and δk, l ≥ 0 must send two data items per
recursive call, one through each of its extremities.

2. Any non-trivial slice Ck, l such that =
δmax and δk, l ≤ 0 must Greceive two data items per
recursive call, one through each of its extremities.

3. Once the mandatory communications specified by
the two previous cases are defined, we take care of
any processor Pi such that |δi| = δmax. If Pi is
already involved in a communication due to the
previous cases, everything is settled. Otherwise, we
have the freedom to choose whom Pi will send a
data item to (case δi > 0) or whom Pi will receive a
data item from (case δi < 0). To simplify the algo-
rithm we decide that all these communications
will take place in the direction from Pi to Pi + 1.

Algorithm 3 is initially called with the parameter s = 1.
For any call to Algorithm 3, all the communications take
place in parallel and exactly at the same time, because the
communication paths are homogeneous by hypothesis.
One very important point about Algorithm 3 is that this
algorithm is a set of rules which only specify which proc-
essor Pi must send a data item to which processor Pj, one
of its immediate neighbors. Therefore, whatever the number
of rules deciding that there must be some data item sent
from a processor Pi to one of its immediate neighbor Pj,
only one data item is sent from Pi to Pj to satisfy all these
rules.

To prove that Algorithm 3 is optimal, we show that the
set of rules is consistent, i.e. that it respects the one-port
model, and that the value δmax (computed at step 1) decreases
by one at each recursive call.

Lemma 7. Algorithm 3 satisfies to all the one-port con-
straints.

Lemma 8. Algorithm 3 terminates in exactly

recursive calls.

The optimality of Algorithm 3 is then a simple corol-
lary of Lemma 8 and of the lower bound defined by
equation (5) (the missing proofs can be found in Renard,
Rober, and Vivien 2004a).

Theorem 3. Algorithm 3 is optimal.

6 Heterogeneous Bidirectional Ring

In this section, we consider the most general case, that of
a heterogeneous bidirectional ring. We do not know any
optimal redistribution algorithm in this case. However, if
we assume that each processor initially holds more data
than it needs to send during the whole execution of the
algorithm (what we call a light redistribution), then we suc-
ceed in deriving an optimal solution.

τ max max δi , max δi i l+,

2

1 i n≤ ≤
1 l n 1–≤ ≤

1 i n,≤ ≤

≥ c

τ max δi
1 i n≤ ≤

 c.≥

δk l,
2

τ max δi i l+,

2

1 k n 1, l n 1–≤ ≤ ≤ ≤

c≤

δk l, 2⁄

δk l, 2⁄

max max δi , max δi i l+,

2

1 i n≤ ≤ 1 i n≤ ≤ 1, l n 1–≤ ≤

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

38 COMPUTING APPLICATIONS

6.1 Light Redistribution

Throughout this section, we suppose that we have a light
redistribution: we assume that the number of data items
sent by any processor throughout the redistribution algo-
rithm is less than or equal to its original load. There are
two reasons for a processor Pi to send data: (i) because it
is overloaded (δi > 0); (ii) because it has to forward some
data to another processor located further in the ring. If Pi
initially holds at least as many data items as it will send
during the whole execution, then Pi can send at once all

these data items. Otherwise, in the general case, some
processors may wait to have received data items from a
neighbor before being able to forward them to another
neighbor.

6.1.1 Solution by Integer Linear Programming Under
the “light redistribution” assumption, we can build an inte-
ger linear program to solve our problem (see system 6).
Let S be one of its solutions, and denote by Si, i + 1 the
number of data items that processor Pi sends to processor
Pi + 1. Similarly, Si, i – 1 is the number of data items that Pi

Algorithm 3. Redistribution algorithm for homogeneous bidirectional rings (for step s).

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

39DATA REDISTRIBUTION ON RINGS

sends to processor Pi – 1. In order to ease the writing of the
equations, we impose in the first two equations of system
6 that Si, i + 1 and Si, i – 1 are non-negative for all i, which
imposes the use of other variables Si + 1, i and Si – 1, i for the
symmetric communications. The third equation states
that after the redistribution, there is no more unbalance.
We denote by τ the execution time of the redistribution.
For any processor Pi, due to the one-port constraints, τ
must be greater than the time spent by Pi to send data
items (fourth equation) or spent by Pi to receive data
items (fifth equation). Our aim is to minimize τ; hence the
system:

(6)

Lemma 9. Any optimal solution of system 6 is feasible,
for example using the following schedule: for any i [1, n],
Pi starts sending data items to Pi + 1 at time 0 and, after the
completion of this communication, starts sending data
items to Pi – 1 as soon as possible under the one-port model.

Proof. We have to show that we are able to schedule the
communications defined by any optimal solution (S, τ)
of system 6 so that the redistribution takes a time no
greater than τ. For any i [1, n], we schedule at time 0 all
emissions from Pi to Pi + 1. This communication is done in
time Si, i + 1ci, i + 1: because of the “light redistribution”
hypothesis, Pi already holds all the data items that it must
send. Because of the fourth equation of system 6, this
communication ends before the time τ.

For any value of i [1, n], we still have to schedule the
sending of data items from Pi to Pi – 1. We schedule this
communication as soon as possible; therefore, at time
max{Si, i + 1ci, i + 1, Si – 2, i – 1ci – 2, i – 1}, i.e. at the earliest time
when (i) Pi has ended sending data items to Pi + 1, and (ii)
Pi – 1 has stopped receiving data items from Pi – 2. There-
fore, the communication from Pi to Pi – 1 ends at the date:

max{Si, i+1ci, i + 1, Si – 2, i – 1ci –2, i – 1} + Si, i – 1ci, i –1

= max{ Si, i+1ci, i + 1 + Si, i – 1ci, i –1,

Si – 2, i – 1ci –2, i – 1 + Si, i – 1ci, i –1 (7)

Once again, this is true owing to the “light redistribution”
hypothesis: no processor needs to wait to have received
some data items before being able to send them to one of
its neighbors.

The first term of the “max” expression is the time
needed by Pi to send data items to both Pi + 1 and Pi – 1. This
term is less than or equal to τ because of the fourth equa-
tion of system 6. The second term of the “max” expres-
sion is the time needed by Pi – 1 to receive data items from
both Pi – 2 and Pi. This term is less than or equal to τ
because of the fifth equation of system 6. �

So far, we have not mathematically defined a condi-
tion for the “light redistribution” hypothesis to hold. In
fact, this is not mandatory: we use system 6 to find an opti-
mal solution to the problem. If, in this optimal solution,
for any processor Pi, the total number of data items sent
is less than or equal to the initial load (Si, i + 1 + Si, i – 1 ≤ Li),
we are under the “light redistribution” hypothesis and we
can use the solution of system 6 safely.

6.1.2 Solution Through Rational Linear Program-
ming Even if the “light redistribution” hypothesis holds,
we may wish to solve the redistribution problem with a
technique less expensive than integer linear programming
(which is potentially exponential). An idea would be to
first solve system 6 to find an optimal rational solution,
which can always be done in polynomial time, and then to
round up the obtained solution to find a “good” integer
solution. In fact, the following theorem shows that one of
the two natural ways of rounding always lead to an opti-
mal (integer) solution. The complexity of the light redis-
tribution problem is therefore polynomial.

Theorem 4. Let R be an optimal rational solution to the
redistribution problem. For any j in [1, n], Rj denotes the
number of data items that processor Pj sends to processor
Pj + 1 (using the notations of system 6, Rj = Sj, j + 1 – Sj + 1, j).
Let F be the integer solution defined by F1 = . Let G
be the integer solution defined by G1 = . Then:
(i) F and G are well defined by the single condition above;
(ii) either F or G is an optimal integer solution.

Proof. Lemma 10 states that F and G are both fully
defined. Lemma 11 states that there exists at least one
optimal integer solution E such that |E1 – R1| < 1. The
only two solutions satisfying these constraints are F and
G. Hence the result. �

Lemma 10. To fully define the number of data items sent
between processors in any redistribution scheme, we
only need to define, for a single given value of j [1, n],
the number of data items that processor Pj sends to proc-
essor Pj + 1.

Lemma 11. Let R be an optimal rational solution to the
redistribution problem: for any j in [1, n], Rj denotes the
number of data items processor Pj sends to processor Pj + 1.

MINIMIZE τ SUBJECT TO,
i Si i 1+, 0≥,∀
i Si i 1–, 0≥,∀
i Si i 1+, Si i 1–, Si 1 i,+ Si 1 i,–––+,∀
i Si i 1+, ci i 1+, Si i 1–, ci i 1–, τ≤+,∀
i Si 1 i,+ ci i 1+, Si 1 i,– ci i 1–, τ≤+,∀

δi=

∈

∈

∈

R1

R1

∈

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

40 COMPUTING APPLICATIONS

Then, there exists an optimal integer solution E to the
solution problem such that: |E1 – R1| < 1.

The missing proofs can be found in Renard, Robert,
and Vivien (2004a).

6.2 General Case

6.2.1 Lower Bound We have the following bound on
the optimal redistribution time.

Lemma 12. Let τ be the optimal redistribution time. Then:

Proof. Consider any processor Pi with positive unbal-
ance (δi > 0). Even if processor Pi can send data items to
both of its neighbors, because of the one-port model, it
cannot send data items to both of them simultaneously.
The best way for processor Pi to send δi data items is then
to send them using the fastest of its outgoing links. So, it
requires processor Pi at least a time of δi min{ci, i – 1, ci, i + 1}
to send δi data items, whatever the destinations of these
data items. We have a symmetric result for the case δi < 0.
Hence the first two inequations on τ.

Now, consider any non-trivial slice of consecutive
processors Ck, l. By “non-trivial” we mean that the slice is
not reduced to a single processor (we have already con-
sidered that case) and that it does not contain all proces-
sors. We suppose that δk, l > 0. So, in any redistribution
scheme, at least δk, l data items must be sent by Ck, l. As
this slice is not reduced to a single processor, the two
processors at the extremities of the slice, Pk and Pl, can
simultaneously send data items to their neighbors outside
the slice, Pk – 1 and Pl + 1 respectively. Therefore, during
the redistribution, processor Pk sends a certain amount i
[0, δk, l] of data items to processor Pk – 1, while processor
Pl sends the remaining data items to Pl + 1, which takes a
time max {i ≤ ck,k – 1, (δk, l – i) ≤ cl, l + 1}. Then we choose
for i a value which minimizes this time. We have a sym-

metric result for the case δk, l < 0. Hence the last two ine-
quations on τ. �

6.2.2 Heuristic Approaches We do not know whether
the bound given by Lemma 12 can always be reached,
but we have no counter-example proving that the bound
is not tight.

When the solution found by system 6 does not satisfy
the “light redistribution” hypothesis, there is the possibility
to modify the system to enforce it: we obtain system 6
which finds a solution which satisfies the “light redistribu-
tion” hypothesis, if one exists. However, there is no rea-
son a priori for the solution of system 6 to be optimal.

(8)

To conclude this section, we point out that the design
of an optimal algorithm in the most general case remains
open. Given the complexity of the lower bound, the prob-
lem looks very difficult to solve.

7 Related Work

Redistribution algorithms have been the focus of an abun-
dant literature. On the theoretical side, in the framework
of the high performance Fortran (Koelbel et al. 1994) com-
pilation, Kremer (1993) showed the NP-completeness of a
simple redistribution problem. This negative result shows
that optimal algorithms can be designed only for particu-
lar cases, such as the ring architecture in this paper. To the
best of our knowledge, no other redistribution algorithms
have been proven optimal, but several efficient algorithms
have been designed for rings (Hamdi and Lee 1995; Lee
and Hamdi 1995; Deelman and Szymanski 1998), trees or
hypercubes (Wu 1997). The elastic load balancing algo-
rithm designed in Miguet and Robert (1992) and Bevilac-
qua (1999) has led to data redistribution software used for
query processing (Brunie, Flory, and Kosch 1995) and med-
ical image analysis (Sarrut and Miguet 1999).

The block-cyclic distribution of data arrays plays a very
important role in scientific libraries (Blackford et al.
1997). In a CYCLIC(r) distribution over p processors,
blocks of r consecutive elements of the array are distrib-
uted to the processors in a wraparound fashion, and the
parameter r is chosen to optimize the granularity, i.e. the
computation-to-communication ratio. Because this gran-

τ max δk≥ min ck k 1–, ck k 1+,,{ }⋅
l k n δk 0>,≤ ≤

τ max δk≥ min ck k 1–, ck 1+ k,,{ }⋅
l k n δk 0<,≤ ≤

τ max ≥ min
1 k n,≤ ≤

1 l n 2– ,≤ ≤
δk k 1+, 0>

0 i δk k 1+,≤ ≤

max i ck k 1–, δk k l i–+,() ck l k l 1+ +,+⋅,⋅{ }

τ max ≥ min
1 k n,≤ ≤

1 l n 2– ,≤ ≤
δk k 1+, 0>

0 i δ– k k 1+,≤ ≤

max i ck 1– k, δ– k k l i–+,() ck l 1+ k l+,+⋅,⋅{ }.

∈

MINIMIZE τ SUBJECT TO,
i Si i 1+, 0≥,∀
i Si i 1–, 0≥,∀
i Si i 1+, Si i 1–, Si 1 i,+ Si 1 i,–––+,∀
i Si i 1+, ci i 1+, Si i 1–, ci i 1–, τ≤+,∀
i Si 1 i,+ ci i 1+, Si 1 i,– ci i 1–, τ≤+,∀
i Si i 1+, Si i 1–, Li≤+,∀

δi=

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

41DATA REDISTRIBUTION ON RINGS

ularity changes from one computational kernel to the other,
moving from a CYCLIC(r) distribution over p processors
to a CYCLIC(s) distribution over q processors is a very
useful redistribution procedure, which has been imple-
mented using a caterpillar algorithm in ScaLAPACK
(Prylli and Tourancheau 1997). Several papers, including
Kalns and Ni (1995), Thakur, Choudhary, and Ramanujam
(1996), Desprez et al. (1998), Park, Prasanna, and Raghav-
endra (1999), Garcia, Ayguadé, and Labarta (2001), Hsu
et al. (2001), and Knoop and Mehofer (2002), have dealt
with various optimizations of this redistribution procedure.
Along this line of research, automatic data redistribu-
tion tools are presented in Garcia, Ayguadé, and Labarta
(2001).

Even though we have not dealt with load-balancing
algorithms in this paper, we quote some key references on
the subject. For homogeneous platforms, see the collection
of papers (Shirazi, Hurson, and Kavi 1995), and for heter-
ogeneous clusters see chapter 25 in Buyya (1999). Sev-
eral authors (Nicol and Saltz 1988; Nicol and Reynolds
1990; Flaherty et al. 1997a; Watts and Taylor 1998; Hu
and Blake 1999) have proposed a mapping policy which
dynamically minimizes system degradation (including the
cost of remapping) for each computation step. Static strat-
egies aiming at distributing independent chunks of work
to two-dimensional processor grids are studied in Barbosa,
Tavares, and Padilha (2000) and Beaumont et al. (2001a).
Relaxing the geometrical constraints induced by two-dimen-
sional grids leads to irregular partitionings (Crandall and
Quinn 1993; Kaddoura, Ranka, and Wang 1996; Beaumont
et al. 2001b) that allow for good load balancing but are
much more difficult to implement. This approach has been
extended to three-dimensional problems (Flaherty et al.
1997b).

Finally, we briefly mention three sample applications
whose implementation can directly benefit from the redis-
tribution strategies designed in this paper. The analysis of
pulses propagating in a nonlinear medium calls for adap-
tive computational windows, and redistribution must
occur frequently as the computation progresses (Bourgeade
and Nkonga 2004). A two-level redistribution procedure
is advocated in Lan, Taylor, and Bryan (2001) for struc-
tured adaptive mesh refinement. A multilevel diffusion
re-partitioner is presented in Schloegel, Karypis, and Kumar
(1997, 2000) for irregular grid computations and has been
incorporated into the ParMetis library. Of course this short
list could be extended dramatically.

8 Simulation Results

Due to lack of space, we refer the reader to Renard, Rob-
ert, and Vivien (2004a, 2004b) for the details. As
expected, when the computation-to-communication ratio
is high, the best strategy is to use no redistribution, as the

cost is prohibitive. Conversely, when the computation-
to-communication ratio is low, it pays off to use many
redistributions, but not too many. As the ratio decreases,
all trade-offs can be found.

9 Conclusion

We have considered the problem of redistributing data on
rings of processors. For homogeneous rings, the problem
has been completely solved. Indeed, we have designed
optimal algorithms, and provided formal proofs of cor-
rectness, for both unidirectional and bidirectional rings.
The bidirectional algorithm turned out to be quite com-
plex, and requires a lengthy proof.

For heterogeneous rings, there remains further
research to be conducted. The unidirectional case was
easily solved, but the bidirectional case remains open.
Still, we have derived an optimal solution for light redis-
tributions, an important case in practice. The complexity
of the bound for the general case shows that designing an
optimal algorithm is likely to be a difficult task.

All our algorithms have been implemented and exten-
sively tested. As expected, the cost of data redistributions
may not pay off a little unbalance of the work in some cases.
Further work will aim at investigating how frequently
redistributions must occur in real-life applications.

Author Biographies

Hélène Renard is currently a Ph.D. student in the
Computer Science Laboratory LIP at ENS Lyon. She is
mainly interested in parallel algorithm design for hetero-
geneous platforms and in load-balancing techniques.

Yves Robert received a Ph.D. from Institut National
Polytechnique de Grenoble in 1986. He is currently a full
professor in the Computer Science Laboratory LIP at
ENS Lyon. He is the author of four books, 85 papers
published in international journals, and 110 papers pub-
lished in international conferences. His main research
interests are scheduling techniques and parallel algo-
rithms for clusters and grids. He is a senior member of
IEEE, and serves as an associate editor of IEEE Transac-
tions on Parallel and Distributed Systems.

Frédéric Vivien received a Ph.D. from École normale
supérieure de Lyon in 1997. From 1998 to 2002, he was
an associate professor at Louis Pasteur University of
Strasbourg. He spent the year 2000 working in the Com-
puter Architecture Group of the MIT Laboratory for
Computer Science. He is currently a full researcher from
INRIA. His main research interests are scheduling tech-
niques, parallel algorithms for clusters and grids, and
automatic compilation/parallelization techniques.

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

42 COMPUTING APPLICATIONS

References

Barbosa, J., Tavares, J., and Padilha, A. J. 2000. Linear algebra
algorithms in a heterogeneous cluster of personal comput-
ers. Proceedings of the 9th Heterogeneous Computing
Workshop (HCW 2000), Cancun, Mexico, May 1, IEEE
Computer Society Press, Los Alamitos, CA, pp. 147–159.

Beaumont, O., Boudet, V., Petitet, A., Rastello, F., and Robert,
Y. 2001a. A proposal for a heterogeneous cluster ScaLA-
PACK (dense linear solvers). IEEE Transactions on Com-
puters 50(10):1052–1070.

Beaumont, O., Boudet, V., Rastello, F., and Robert, Y. 2001b.
Matrix multiplication on heterogeneous platforms. IEEE
Transactions on Parallel and Distributed Systems 12(10):
1033–1051.

Bevilacqua, A. 1999. A dynamic load balancing method on a het-
erogeneous cluster of workstations. Informatica 23(1):49–56.

Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel,
J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G.,
Petitet, A., Stanley, K., Walker, D., and Whaley, R. C.
1997. ScaLAPACK Users’ Guide, SIAM, Philadelphia.

Bourgeade, A. and Nkonga, B. 2004. Dynamic load balancing
computation of pulses propagating in a nonlinear medium.
Journal of Supercomputing 28(3):279–294.

Brunie, L., Flory, A., and Kosch, H. 1995. New static schedul-
ing and elastic load balancing methods for parallel query
processing. of the Basque International Workshop on
Information Technology (BIWIT), San Sebastian, Spain,
July, IEEE Computer Society Press, Los Alamitos, CA.

Buyya, R. 1999. High Performance Cluster Computing. Volume
1: Architecture and Systems, Prentice-Hall, Upper Saddle
River, NJ.

Crandall, P. E. and Quinn, M. J. 1993. Block data decomposi-
tion for data-parallel programming on a heterogeneous
workstation network. Proceedings of the IEEE Interna-
tional Symposium on High Performance Distributed Com-
puting (HPDC), Spokane, WA, July 20–23, IEEE Computer
Society Press, Los Alamitos, CA, pp. 42–49.

Deelman, E. and Szymanski, B. 1998. Dynamic load balancing
in parallel discrete event simulation for spatially explicit
problems. Proceedings of the Workshop on Parallel and
Distributed Simulation (PADS), Banff, Alberta, Canada,
May 26–29, IEEE Computer Society Press, Los Alamitos,
CA, pp. 46–53.

Desprez, F., Dongarra, J., Petitet, A., Randriamaro, C., and
Robert, Y. 1998. Scheduling block-cyclic array redistribu-
tion. IEEE Transactions on Parallel and Distributed Sys-
tems 9(2):192–205.

Flaherty, J. E., Loy, R. M., Özturan, C., Shephard, M. S., Szy-
manski, B. K., Teresco, J. D., and Ziantz, L. H. 1997a.
Parallel structures and dynamic load balancing for adap-
tive finite element computation. Applied Numerical Math-
ematics 26(1–2):241–263.

Flaherty, J. E., Loy, R. M., Shephard, M. S., Szymanski, B. K.,
Teresco, J. D., and Ziantz, L. H. 1997b. Adaptive local
refinement with octree load balancing for the parallel
solution of three-dimensional conservation laws. Journal
of Parallel and Distributed Computing 47(2):139–152.

Garcia, J., Ayguadé, E., and Labarta, J. 2001. A framework for
integrating data alignment, distribution, and redistribution

in distributed memory multiprocessors. IEEE Transac-
tions on Parallel and Distributed Systems 12(4):416–431.

Hamdi, M. and Lee, C. 1995. Dynamic load balancing of data
parallel applications on a distributed network. Proceed-
ings of ICS’95, ACM, New York, pp. 170–179.

Hsu, C., Chung, Y., Yang, D., and Dow, C. 2001. A generalized
processor mapping technique for array redistribution.
IEEE Transactions on Parallel and Distributed Systems
12(7):743–757.

Hu, Y. and Blake, R. 1999. Load balancing for unstructured
mesh applications. Parallel and Distributed Computing
Practices 2(3).

Kaddoura, M., Ranka, S., and Wang, A. 1996. Array decompo-
sition for nonuniform computational environments. Jour-
nal of Parallel and Distributed Computing 36:91–105.

Kalns, E. T. and Ni, L. M. 1995. Processor mapping techniques
towards efficient data redistribution. IEEE Transactions
on Parallel and Distributed Systems 6(12):1234–1247.

Knoop, J. and Mehofer, E. 2002. Distribution assignment place-
ment: effective optimization of redistribution costs. IEEE
Transactions on Parallel and Distributed Systems
13(6):628–647.

Koelbel, C. H., Loveman, D. B., Schreiber, R. S., Steele, G. L.
Jr., and Zosel, M. E. 1994. The High Performance Fortran
Handbook, MIT Press, Cambridge, MA.

Kremer, U. 1993. NP-completeness of dynamic remapping.
Proceedings of the 4th Workshop on Compilers for Paral-
lel Computers, Delft, the Netherlands. Also available as
Rice Technical Report CRPC-TR93330-S.

Lan, Z., Taylor, V., and Bryan, G. 2001. Dynamic load balanc-
ing of samr applications on distributed systems. Proceed-
ings of the ACM/IEEE conference on Supercomputing,
Denver, CO, November 10–16, IEEE Computer Society
Press, Los Alamitos, CA.

Lee, C. and Hamdi, M. 1995. Parallel image processing appli-
cations on a network of workstations. Parallel Computing
21:137–160.

Miguet, S. and Robert, Y. 1992. Elastic load balancing for
image processing algorithms. Parallel Computation, Lec-
ture Notes in Computer Science Vol. 591, H. Zima, editor,
Springer-Verlag, Berlin, pp. 438–451.

Nicol, D. and Reynolds, J. P. F. 1990. Optimal dynamic remap-
ping of data parallel computations. IEEE Transactions on
Computers 39(2):206–219.

Nicol, D. and Saltz, J. 1988. Dynamic remapping of parallel
computations with varying resource demands. IEEE Trans-
actions on Computers 37(9):1073–1087.

Park, N., Prasanna, V., and Raghavendra, C. 1999. A frame-
work for integrating data alignment, distribution, and
redistribution in distributed memory multiprocessors.
IEEE Transactions on Parallel and Distributed Systems
10(12):1217–1240.

Prylli, L. and Tourancheau, B. 1997. Fast runtime block-cyclic
data redistribution on multiprocessors. Journal of Parallel
Distributed Computing 45:63–72.

Renard, H., Robert, Y., and Vivien, F. 2004a. Data redistribu-
tion algorithms for homogeneous and heterogeneous proc-
essor rings. Research Report 5207, INRIA, May.

Renard, H., Robert, Y., and Vivien, F. 2004b. Data redistribu-
tion algorithms for homogeneous and heterogeneous proc-

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

43DATA REDISTRIBUTION ON RINGS

essor rings. Proceedings of High Performance Computing
(HiPC 2004), Bangalore, India, December 19–22, Lecture
Notes in Computer Science Vol. 3296, Springer-Verlag,
Berlin, pp. 123–132.

Sarrut, D. and Miguet, S. 1999. ARAMIS: a remote access
medical imaging system. Proceedings of the International
Symposium on Computing in Object-Oriented Parallel
Environments (ISCOPE 99), San Francisco, CA, Decem-
ber 8–10, Lecture Notes in Computer Science Vol. 1732,
Springer-Verlag, Berlin.

Schloegel, K., Karypis, G., and Kumar, V. 1997. Multilevel dif-
fusion schemes for repartitioning of adaptive meshes.
Journal of Parallel and Distributed Computing 47:109–124.

Schloegel, K., Karypis, G., and Kumar, V. 2000. A unified
algorithm for load-balancing adaptive scientific simula-

tions. Proceedings of Supercomputing 2000, Dallas, TX,
November 4–10, IEEE Computer Society Press, Los
Alamitos, CA.

Shirazi, B. A., Hurson, A. R., and Kavi, K. M. 1995. Schedul-
ing and Load Balancing in Parallel and Distributed Sys-
tems, IEEE Computer Society Press, Los Alamitos, CA.

Thakur, R., Choudhary, A., and Ramanujam, J. 1996. Efficient
algorithms for array redistribution. IEEE Transactions on
Parallel and Distributed Systems 7(6):587–594.

Watts, J. and Taylor, S. 1998. A practical approach to dynamic
load balancing. IEEE Transactions on Parallel and Dis-
tributed Systems 9(93):235–248.

Wu, M-Y. 1997. On runtime parallel scheduling for processor
load balancing. IEEE Transactions on Parallel and Dis-
tributed Systems 8(2):173–186.

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Frédéric Vivien on February 8, 2007 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

