
International Journal of Parallel Programming , Vol . 26, No. 3, 1998

On the Removal of Anti- and
Output-Dependences1

Pierre-Yves Calland,2 Alain Darte,2 Yves Robert,2 and
FreÂ deÂ ric Vivien2

In this paper we build upon results of Padua and Wolfe, (1) who introduced two
graph transformations to break dependence paths including anti- and output-
dependences. We first formalize these two transformations. Then, given a loop
nest, we aim at determining which statements should be transformed so as to
break artificial dependence paths involving anti- or output-dependences. The
problem of finding the minimum number of statements to be transformed is
shown to be NP-complete, and we propose two efficient heuristics.

KEY WORDS: Node splitting; anti-dependences;output-dependences;depen-
dence graph, NP-completeness, heuristics.

1. INTRODUCTION

Flow dependences are the only `̀ true’’ dependences of a program. Anti-
dependences and output-dependences are due to storage re-use and can be
eliminated at the price of more memory usage. Removing anti- and output-
dependences may prove very useful to break data dependence cycles and
thereby enabling vectorization and/or improving parallelization.

Many papers have been devoted to the problem of eliminating anti-
and output-dependences. Proposed methods include `̀ array data flow
analysis,’’ (2, 3) `̀ array privatization,’’ (4) `̀ variable expansion,’’ (5) `̀ variable
renaming’’ and `̀node splitting.’’(1) See the survey papers of Banerjee

285

0885-7458/98/0600-0285$15.00/0 Ñ 1998 Plenum Publishing Corporation

1 Supported by the CNRS-ENS Lyon-INRIA Project ReMaP. Pierre-Yves Calland is
supported by a grant of ReÂ gion Rhône-Alpes.

2 Laboratoire LIP, URA CNRS 1398, EÂ cole Normale SupeÂ rieure de Lyon, F-69364 Lyon
Cedex 07. E-mail: {Firstname.Lastname}@lip.ens-lyon.fr.

et al., (6) and Bacon et al., (7) as well as the books of Wolfe, (8) and Zima, (9)

for further references.
Removing all memory-based or `̀ false’’ (i.e., anti- and output-)

dependences may have a prohibitive cost.(10) A complete removal of false
dependences is usually achieved, if feasible, via conversion of the original
program into single assignment form. This turns out to be unnecessarily
costly. Indeed, there are some memory-based dependences whose removal
will not improve the parallelization.

In this paper we build upon results of Padua and Wolfe, (1) who intro-
duce two graph transformations to break dependence paths including anti-
and output-dependences. Our motivation is threefold:

· formalize Padua and Wolfe’s transformations (which were only
stated through examples in their original paper);

· analyze their potential to break dependence paths or cycles;

· identify the minimum number of transformations required to break
all `̀ spurious’’ dependence cycles (see Sections 3 and 4 for a more
precise statement) .

The rest of the paper is organized as follows. In Section 2 we formally
define and study these two transformations. Then, given a loop nest, we
aim at determining which statements should be transformed so as to break
artificial paths involving anti- or output-dependences. In Section 3 we
prove that Padua and Wolfe’s transformations can be repeatedly applied to
break all `̀ spurious’’ dependence cycles. The price to pay is some extra
memory overhead (a new temporary array) each time a transformation is
applied to a statement. Unfortunately, the problem of finding the minimum
number of statements to be transformed is shown to be difficult: in Section 4,
we prove it is NP-complete in the strong sense. This justifies the introduction
of heuristics in Section 5. Finally, we give some conclusions in Section 6.

2. GRAPH TRANSFORMATIONS

2.1. Two Well-Known Elementary Transformations

Padua and Wolfe(1) propose two transformations to break data
dependence cycles in the presence of anti- or output-dependences. These
transformations are best illustrated with the original examples of their paper.

2.1.1. Anti Dependences

Example 1. Consider Fig. 1. There is a flow-dependence from S 1 to
S2 because S 1 writes a(i) and S 2 uses it immediately after. There is also an

286 Calland, Darte, Robert, and Vivien

Fig. 1. Example 1 and its dependence graph before transformation.

anti-dependence from S 2 to S 1 because a(i+ 1) must be read in S 2 before
being written in S 1 at the next iteration. As a consequence, there is a data
dependence cycle, as illustrated in Fig. 1. [Note: In all figures, flow-, anti-
and output-dependences edges are labeled with a `̀ f ,’’ a `̀a ’’ and a `̀o ’’
respectively.] This cycle can be broken by inserting a new assignment to a
compiler temporary array as shown in Fig. 2.

There is now an extra dependence (the flow of the temporary from S ¢2
to S 2) but the new dependence graph has no cycle (see Fig. 2). Therefore
the new loop can be directly vectorized:

2.1.2. Output Dependences

In the presence of a data dependence cycle due to an output-
dependence, a similar transformation can be performed.

Example 2. Consider Fig. 3. There is an output-dependence from
S2 to S 1 because a(i+ 1) is written in S 2 before being rewritten in S 1 at
the next iteration. We still have a flow-dependence from S 1 to S 2 because
of a(i), hence the dependence graph of Fig. 3. Now, adding a temporary
array leads to the program in Fig. 4. The new loop has no cycles (see
Fig. 4) and therefore can be vectorized.

To summarize this section, we see that both transformations have
broken a cycle in the dependence graph, thereby enabling vectorization
and/or improving parallelization. Of course the price to pay is an increase

Fig. 2. Example 1 and its dependence graph after transformation.

287Removal of Anti- and Output Dependences

Fig. 3. Example 2 and its dependence graph before transformation.

in the memory requirements. In both cases, we have used an extra temporary
array.

Padua and Wolfe(1) have described their transformations only through
an example. In Sections 2.2 and 2.3, we formally define both transforma-
tions, and we discuss their respective usefulness.

2.2. The First Transformation

2.2.1. Defining the Transformation

Padua and Wolfe have transformed Example 1 by introducing a tem-
porary array to store the value contained in the memory location that
generates the anti-dependence that prevents vectorization.

The access to a(i+ 1) in statement S 2 of Example 1 is an access to a
precise memory location and the reading of a value which is necessary to
the computation. There is absolutely no need to access the memory loca-
tion a(i+ 1) in S 2 : one only needs to access a memory location where has
already been stored a copy of (the value stored in) a(i+ 1). Therefore,
Padua and Wolfe have split the access to a(i+ 1) into two parts: in the new
statement S ¢2 they access the memory location a(i+ 1) , and copy the value
stored there in another memory location, using a temporary array; then in
the original statement S 2 they replace the access to the memory location
a(i+ 1) by the access to the temporary array. So to speak, they have
separated the access to the memory location and the subsequent use of the
read value.

We formally define Padua and Wolfe’s first transformation in Fig. 5.
The transformation [lhs and rhs stands for `̀ left-hand side’’ and `̀ right-hand
side’’ respectively] is applied on any read access in the statement, namely

Fig. 4. Example 2 and its dependence graph after transformation.

288 Calland, Darte, Robert, and Vivien

Fig. 5. Formal definition of Padua and Wolfe’s first transformation.

here the access to rhs(g(i)) . A new statement and a temporary array are
introduced. The temporary array is a new array which is used nowhere else
in the program. [Note that we can also apply the transformation to a read
access in the left-hand side of statement S k , i.e., to a read access inside the
function f (i) itself.]

Before going further, we point out that this transformation can be
applied to a multidimensional loop nest. Our discussion is presented for a
single loop, but all results extend to several (possibly non perfectly) nested
loops.

2.2.2. Applying the Transformation

The goal of this transformation is to break some dependence paths
which go through statement S k . Indeed, consider S k before the transforma-
tion (Fig. 5). There can be flow-, anti- and output-dependences coming into
or going out of S k , hence six kinds of dependence edges in the dependence
graph [In Fig. 8 f in stands for an incoming flow-dependence, f out stands for
an outgoing flow-dependence, and so on.] Clearly, since we have mani-
pulated the right-hand side of S k , the transformation may only modify
incoming flow- and outgoing anti-dependences. We have to discuss the
impact of the transformation on such dependence edges. Of course there is
a new flow-dependence f new from S ¢k to S k .

· Incoming flow-dependence (Fig. 6). Data item rhs(g(i)) read in
statement Sk was previously produced in the left-hand side of another
statement S l . After the transformation, this data item is read in the
right-hand side of statement S ¢k . Thus there is a flow-dependence
from S l to S ¢k .

Fig. 6. Incoming flow-dependence before and after transformation.

289Removal of Anti- and Output Dependences

Fig. 7. Outgoing anti-dependence before and after transformation.

· Outgoing anti-dependence (Fig. 7). Data item rhs(g(i)) read in the
right-hand side of statement S k is later written in another statement
S l . After the transformation, this data item is read in the right-hand
side of statement S ¢k . Thus there is an anti-dependence from S ¢k to S l .

Note that incoming flow- or outgoing anti-dependences that are not
related to rhs(g(i)) (but to another data access in the right-hand side of S k)
are not modified by the transformation. For instance, there is an incoming
flow-dependence to S 2 in Example 1. But this dependence is not due to
a(i+ 1), which is the target of the transformation; rather it is due to a(i) ,
which is not concerned by the transformation: hence this incoming flow-
dependence from S 1 to S 2 is not modified by the transformation.

The impact of the transformation is summarized in Fig. 8. Self loops
are processed as the other edges. Consider for instance a self anti-depen-
dence loop on statement S k : since it comes from S k and goes to S k , it will
be replaced by an anti-dependence edge coming from S ¢k and going
to S k .

From the point of view of breaking paths, the transformation of a
given statement S may be useful if it has an incoming anti- or output-
dependence edge, and an outgoing anti-dependence edge (see Fig. 8 again):

? Ð Ð ®a , o
S Ð ® a ?

Fig. 8. A statement S with incoming and outgoing dependences, before and
after Padua and Wolfe’s first transformation.

290 Calland, Darte, Robert, and Vivien

The transformation is also useful if S has an incoming flow-dependence and
an outgoing anti-dependence, provided that the two dependences are due to
two different read accesses in S . Again, this is illustrated by Example 1: the
incoming flow-dependence in S 2 is due to accessing a(i) , while the outgoing
anti-dependence is due to a(i+ 1).

2.3. The second transformation

We formalize Padua and Wolfe’s second transformation, and we study
its consequences on dependence graphs. Then we discuss in detail the scope
and applicability of the transformation.

2.3.1. Defining the Transformation

Consider the following loop:

and assume we want to remove some anti- and output-dependences due to
the access to the array lhs in statement Sk (say because there are cycles due
to such dependences in the dependence graph). What would be the effect
on the dependence graph of a transformation like:

Note that we simply evaluate the right-hand side into a new tem-
porary array temp which we copy back to lhs. We replace any access to an
array element lhs(g(i)) that depends upon the value calculated in statement
S ¢k by an access temp(g(i)) . To be able to do so, we need to know what are
the statement instances which depend upon the value calculated in state-
ment S ¢k , hence we have to rely on a powerful dependence analyzer such
as Tiny, (11) Petit, (12) Partita, (13) PAF, (14) or PIPS (15)(to quote but a few) .

2.3.2. Applying the Transformation

As before, we have to describe the impact of the transformation on each
type of incoming and outgoing dependence edges. Consider statement S k :

291Removal of Anti- and Output Dependences

there are six kinds of dependence arrows (see Fig. 15) , which we discuss
successively later. Of course there is a new flow-dependence f new from S ¢k
to S k .

· Incoming flow-dependence (Fig. 9). One of the data read in the
right-hand side of statement S k was previously produced in the left-
hand side of a statement S l . After the transformation, the data is
read in the right-hand side of statement S ¢k . Thus there is a flow-
dependence from S l to S ¢k .

· Incoming anti-dependence (Fig. 10). A statement S l reads lhs(f(i))
before S k writes it. After the transformation, lhs(f(i)) is still read by
S l and is still written by S k . Thus, the anti-dependence from S l to S k

is left unchanged.

· Incoming output-dependence (Fig. 11). A statement S l writes
lhs(f(i)) before S k writes it. After the transformation lhs(f(i)) is
still written by S l and by S k . So, there is an output-dependence from
S l to S k .

· Outgoing flow-dependence (Fig. 12). A statement S l reads the value
of lhs(f(i)) produced by S k . Thus the access to lhs in S l , denoted
lhs(g(i)), was replaced by an access to temp, denoted temp(g(i)).
Now, as temp(f(i)) is written by S ¢k , there is a flow-dependence
from S ¢k to S l .

· Outgoing anti-dependence (Fig. 13). One of the data read in the
right-hand side of statement S k is written afterwards in a statement
S l . After the transformation this data is read in the right-hand side
of statement S ¢k . Thus there is an anti-dependence from S ¢k to S l .

· Outgoing output-dependence (Fig. 14). A statement S l writes
lhs(f(i)) after S k writes it. After the transformation, lhs(f(i)) is still
written by S l and by S k . Thus, there is an output-dependence from
S k to S l .

The impact of the transformation is summarized in Fig. 15. From the
point of view of breaking paths, the transformation of a given statement S
may be useful if it has an incoming anti- or output-dependence edge, and
an outgoing flow- or anti-dependence edge (see Fig. 15 again):

? Ð Ð ®a , o
S Ð Ð ®f , a

?

We come back to the usefulness of the transformation in Section 3. Before-
hand, we refine our analysis of its applicability.

292 Calland, Darte, Robert, and Vivien

Fig. 9. Incoming flow-dependence before and after transformation.

Fig. 10. Incoming anti-dependence before and after transformation.

Fig. 11. Incoming output-dependence before and after transformation.

Fig. 12. Outgoing flow-dependence before and after transformation.

Fig. 13. Outgoing anti-dependence before and after transformation.

293Removal of Anti- and Output Dependences

Fig. 14. Outgoing output-dependencebefore and after transformation.

2.3.3. Scope and Applicability of the Transformation

2.3.3.1. On the necessity of statement Sk . After the transforma-
tion, why do we need to keep statement S k (which is a copy into lhs now) ?
If we delete S k , we have done nothing but a renaming. This is valid if and
only if none of the values stored in array lhs by S k is used outside the loop
nest, e.g., written in an output; if this is the case, executing S k is a pure time
loss. In other words, if at least one of the values written by S k is re-used
later in the program then we must keep this statement, else we should
delete it. Now, if statement S k is kept, where to place it in the new code?
Figure 16 shows three valid possibilities for Example 2. The first solution is
the one proposed in our formal definition, the second is the original solu-
tion found by Padua and Wolfe, and the third involves two loops instead
of one (the copy statement is moved outside the original loop). In the
example, the first two solutions are equivalent, but this is not always the
case: statement S k cannot always be pushed at the end of the loop body.
One can update lhs at the end of the loop body only if there is no output-
dependence outgoing of statement S k (a dependence outgoing of statement
Sk is always an output-dependence, see Fig. 15). If there is a dependence

Fig. 15. A statement S with incoming and outgoing dependences before
and after transformation.

294 Calland, Darte, Robert, and Vivien

Fig. 16. Three different versions of Example 2 after transformation.

from S k to another statement S l then lhs must be updated before the
execution of S l .

The third transformation (with two loops) has three drawbacks: (i)
more loops may imply more control; (ii) if loops can be made parallel, a
barrier synchronization must be added after the first loop, which can be
expensive; (iii) if we keep S k near S ¢k , we ensure that the value temp (f (i))
still resides in the cache (but we lose this property when using loop dis-
tribution). On the other hand, the third transformation may prove useful
if the code contains a cycle of output-dependences which prevents parallel-
ization. In this case, we might end up with a parallel computational loop,
and a sequential loop involving all the S k (copy) statements.

We illustrate the problems of moving statement S k with Fig. 17. In this
example, S 1 (after the transformation) cannot be executed at the end of the
loop because the value of a is modified in the last statement. After the
transformation, the dependence graph does not contain dependence cycles
any more. The generated code may be rewritten as one HPF FORALL
loop (inside the loop body, the ordering of statements being S ¢1 , S 2 , S 1 ,
and S 3) or as two parallel loops (the first one containing S ¢1 and S 2 , and
the second one S 1 and S 3) . On the other hand, if array a is to be updated
independently (outside the loop), then we must split the initial loop into
three different parallel loops.

To conclude, it is always possible to update lhs using an external loop,
because after the transformation there is no flow-dependence going out of
Sk (see Fig. 15). This may speed up the computational loop, but the execu-
tion of the loop updating the lhs arrays may well outweigh the benefits!

Fig. 17. The leftmost loop is the initial code; the middle loop is the code obtained after our
transformation; in the rightmost loop nest, array a is updated outside the loop.

295Removal of Anti- and Output Dependences

Anyway, both solutions are possible, and loop distribution, which we chose
not to implement, can still be used for further optimizations.

Hypotheses. As already said, the transformation extends to multi-
dimensional loops. What really matters is the availability of a good depen-
dence analyzer capable of providing sources and sinks of all dependences
under consideration. We do have a restriction, however: to perform our
transformation, we must assume that the access function f to the left-hand
side array lhs of statement S k is injective. This is to prevent the occurrence
of self output-dependence loops on S ¢k . Note that Padua and Wolfe’s
second transformation has the same requirement.

Another hypothesis is that there are no dependences concerning the
access function f (i) of the left-hand side lhs(f (i)) of statement S k : indeed,
the function f may itself access variables that are accessed elsewhere in the
code. This is not an actual restriction of the transformation, however. We
explain how to handle such dependences in the Appendix.

2.3.3.2. Comparing both transformations. The first transformation
can be applied for each read access in the original statement, but a new
temporary array must be introduced at each time. On the contrary, the
second transformation requires the use of a single temporary array per
statement: instead of storing in a temporary array the result of a single read
access, all read accesses are performed and the result of the computation is
stored in the temporary array. Later the value is copied from the tem-
porary back to the original array. Therefore, from the point of view of
memory requirements, the second transformation seems more interesting
than the first one.

We reported in our summary that the second transformation breaks
more dependence paths (all paths ? Ð Ð ®a , o

S Ð Ð ®f , a
?, against paths

? Ð Ð ®a, o
S Ð ® a ?). But we mentioned that the first transformation can also

break paths like ? Ð ® f S Ð ® a ? provided that both dependences f and a
apply to different data accesses. Fortunately, it turns out that the use of the
second transformation is enough to break all `̀ false dependence cycles’’ in
the dependence graph, as will be stated more formally in Section 3.1. Here
is a small example (see Fig. 18) to illustrate this point. There is a cycle of
dependences:

S 1 Ð ® f S 2 Ð ® f S 3 Ð ® a S 1 .

This cycle cannot be broken by the first transformation (even if we apply
it to each statement). However, applying the second transformation to S 1

does break the cycle.

296 Calland, Darte, Robert, and Vivien

Fig. 18. The leftmost code is the initial code, the middle code is obtained after applying the
first transformation to each statement, and the rightmost code is the outcome of the second
transformation applied to S 1 .

However, the second transformation does not subsume the first one.
Indeed, the second transformation can break the dependence cycle in
Example 1, just as the first transformation does: but it should be applied
to statement S 1 instead of statement S 2 .

3. MANIPULATING DEPENDENCE GRAPHS

In the rest of the paper we concentrate on Padua and Wolfe’s second
transformation, as formally defined (and modified) in Section 2.3.1. In this
section we show its usefulness to break `̀ false’ ’ cycles in dependence graphs.

3.1. Removing cycles

If we transform all the vertices of a dependence graph, then the only
cycles that may remain are pure flow-dependence cycles (only made up
with edges labeled f) or pure output-dependence cycles (only made up with
edges labeled o):

Theorem 1. Let G be the dependence graph of a loop nest L , and
let G ¢ be the graph obtained from G by transforming all vertices (state-
ments). Then a cycle C of G ¢ is only composed of flow-dependences or is
only composed of output-dependences. Furthermore, C corresponds to a
cycle that was already a cycle of G.

Proof. Figure 15 may help follow the proof. Assume that G ¢ has a
cycle C, and consider an arbitrary edge e of C. Then e corresponds either
to a flow-, an output- or an anti-dependence:

· e is an output-dependence edge. Then, according to Fig. 15, e is an
edge from a node S k to a node S l . As the only edges going out S l

are output-dependences, the edge following e in C is an output-
dependence edge. Thus C is only composed of output-dependence

297Removal of Anti- and Output Dependences

edges. Furthermore, all edges of C are also edges of G. Thus C is
also a cycle of G.

· e is an anti-dependence edge . Then e goes from a node S ¢k to a node
S l . As the only edges coming from S l are output-dependences, the
edge following e in C is an output-dependence edge. From the pre-
vious case (e is an output-dependence) , we conclude that C is only
composed of output-dependence edges. This contradicts the hypo-
thesis that e is an anti-dependence edge. Thus C contains no anti-
dependence edges.

· e is a flow-dependence edge . Then either e is a new flow edge from
a node S ¢k to the node S k , or e goes from a node S ¢k to a node S ¢l :

± ± e : S ¢k Ð Ð ®fnew S k . As the only edges coming from a node S k

are output-dependences, the edge following e in C is an
output-dependence edge. From the first case (e is an output-
dependence) , we conclude that C is only composed of out-
put-dependence edges. This contradicts the hypothesis that e
is a flow-dependence edge.

± ± e : S ¢k Ð ® f S ¢l . There can be flow- and anti-dependence edges
coming from a node S ¢l . However, the edge which follows e
in C cannot be an anti-dependence edge (because of the
conclusion of the case `̀ e is an anti-dependence’’) . Thus the
edge which follows e in C is a flow-dependence edge and C
is only composed of flow-dependence edges. Furthermore, a
flow-dependence edge e in C goes from a node S ¢k and to a
node S ¢l . Thus there is in G a flow-dependence edge from S k

to S l , and C corresponds to a cycle that was already a cycle
of G. e

In other words, pure flow-dependence cycles and pure output-depen-
dence cycles are not broken when transforming all vertices. But if the
original dependence graph contains no such cycles, then the transformed
graph is acyclic.

Determining the minimum number of vertices to transform (i.e., the
minimum number of temporary arrays to use) so that the new dependence
graph has only pure flow-dependence cycles and pure output-dependence
cycles turns out to be a difficult problem. In Section 4, we state this
problem formally and prove that it is NP-hard. This justifies the introduc-
tion of heuristics in Section 5. Beforehand, we work out an example, so as
to illustrate the second transformation and heuristics.

298 Calland, Darte, Robert, and Vivien

Fig. 19. The target dependence graph before transformation.

3.2. Target example

Consider the following loop nest:
The dependence graph is represented in Fig. 19. There are six

dependences in the loop:

3 flow-dependences from S 3 to S 2 (because of array a) , from S 2 to S 4

(because of array b) , and from S 4 to S 1 (because of array c) ,

2 anti-dependences from S 1 to S 2 (because of array b) and from S 3 to
S 4 (because of array c) ,

1 output-dependence from S 1 to S 3 (because of array a) .

Note that Tiny (11) does find the six dependences listed above (see
Table I). In fact Tiny finds a seventh dependence (the second one in
Table I), but recognizes that this dependence is killed. Indeed, we might
have found a flow dependence from S 1 to S 2 because a(i+ 5) is written in
S1(i) (the ith instance of S 1) and used in S 2(i+ 6). But meanwhile, a(i+ 5)
is re-written in S 3(i+ 5), and it is this new value which is used in S 2(i+ 6),
hence the source of the dependence for using a(i+ 5) in S 2(i) is S 3(i+ 5)
rather than S 1(i) . In other words, this flow-dependence is overlapped by
the succession of the output-dependence from S 1 to S 3 and of the flow-
dependence from S 3 to S 2 . It turns out, in our example, that it is of
tremendous importance to have an accurate dependence analyzer capable
of detecting that this seventh dependence is a spurious one. Otherwise we

Table I. The Dependencies Found by Tiny

anti S1 b(2i+ 2) ® S2 b(2i)
flow S1 a(i+ 5) ® S2 a(i 2 1) [killed]
output S1 a(i+ 5) ® S3 a(i)
flow S2 b(2i) ® S4 b(2i 2 4)
anti S3 c(i+ 5) ® S4 c(i)
flow S3 a(i) ® S2 a(i 2 1)
flow S4 c(i) ® S1 c(i 2 3)

299Removal of Anti- and Output Dependences

Fig. 20. The target dependence graph after
transforming S 2 and S 3 .

would have considered that there is a pure flow-dependence cycle in the
dependence graph!

Consider the effect of transforming vertices S 2 and S 3 in the
dependence graph. The new graph G ¢ is represented in Fig. 20.

To illustrate the impact of transforming vertices S 2 and S 3 , we can
rewrite the loop using the two temporary arrays a-temp (introduced to
transform S 3) and b-temp (introduced to transform S 2) :

Note that conditional statements are required to process dependences
coming from several sources (another possibility would be to use loop
peeling) .

Finally, it is important to point out that we have broken all depen-
dence cycles using only two temporary arrays. Other techniques such as
converting the code into single assignment form would have achieved the
same result at twice the price (introducing four temporaries).

300 Calland, Darte, Robert, and Vivien

4. NP-COMPLETENESS

In this section we prove that the problem of determining the minimal
number of statements to split with our transformation is NP-hard. First,
we formally state the problem and then we prove that the associated deci-
sion problem is NP-complete by reduction from the 3-SAT satisfiability
problem. This theoretical result states the complexity of the problem and
motivates the search for efficient heuristics (see Section 5). We point out
that in the proof we use loop nests with anti-dependences only. Even with
this simple assumption, the problem still exhibits hard complexity.

4.1. Problem statement

Let G= (V , E, l) be the dependence graph of a loop nest L . Vertices
represent statements. Edges represent dependences between statements. The
label of an edge is given by the function l : E ® { f , a, o} (flow, anti- or
output-dependence). Our problem is to determine the minimum number of
statements which we should transform using the transformation of Fig. 15
so that there remains only pure flow-dependence cycles and pure output-
dependence cycles. We need some definition to formulate the associated
decision problem:

Definition 1.

· Given a loop nest L (and its dependence graph G= (V , E, l)) and a
nonnegative integer bound K, can we find no more than K vertices
of G such that transforming these vertices leads to a graph G ¢ where
there remains only pure flow-dependence cycles and pure output-
dependence cycles? (if the answer is yes, we say that L Î PURE-
CYCL (K)).

· A loop nest L is admissible iff its dependence graph G= (V , E, l)
only contains anti-dependence edges:

; e Î E, l (e)= a

· Given an admissible loop nest L (and its dependence graph G=
(V , E, l) where ; e Î E, l (e)= a) and a nonnegative integer bound K,
can we find no more than K vertices of G such that transforming
these vertices leads to an acyclic graph G ¢ (if the answer is yes, we
say that L Î NO-CYCL (K)) .

301Removal of Anti- and Output Dependences

We will prove that NO-CYCL is NP-complete in the strong sense, and
therefore that PURE-CYCL is NP-complete in the strong sense. We use a
reduction from a graph-theoreticproblem that formalizes our transformation:

Definition 2. Let G= (V , E) be a directed graph. Transforming
s Î V amounts to create a new graph G ¢ = (V ¢ , E ¢) such that

1. G ¢ has a new vertex s¢ : V ¢ = V n {s ¢ }

2. E ¢ has a new edge e= (s ¢ , s)

3. let e= (u, v) Î E:

(a) if u Þ s then e Î E ¢

(b) if u= s, e is replaced by an edge e ¢ = (s ¢ , v) Î E ¢

Note that the transformation of several vertices of a graph can be per-
formed in any order. We state the following decision graph-theoretic
problem:

Definition 3. Given a graph G= (V , E) and a nonnegative integer
bound K, can we find no more than K vertices of G such that transforming
these vertices leads to an acyclic graph G ¢ (if the answer is yes, we say that
L Î GRAPH-CYCL (K)) .

We first prove that GRAPH-CYCL is NP-complete, by using a reduc-
tion from the satisfiability problem 3SAT . Then we show that NO-CYCL
is NP-complete.

Theorem 2. GRAPH-CYCL is NP-complete (in the strong sense).

Proof. First, GRAPH-CYCL belongs to NP: given a graph G=
(V , E) , a bound K, and the list of the vertices to be transformed, we can
check in polynomial time whether the new graph G ¢ is acyclic (this can be
done even in linear time O (|V |+ |E |) by traversing it).

We use a reduction from the satisfiability problem 3SAT . An instance
of the 3SAT problem(16) consists of a Boolean expression B in conjunctive
normal form,

B= n
t

i= 1

C i

· where C j= l
1
j Ú l

2
j Ú l

3
j , 1 < j < t, is a clause

· where each literal l k
j is a variable or its negation in the set of

variables X= {x1 ,..., xr}

302 Calland, Darte, Robert, and Vivien

The associated decision problem is represented as follows: does there
exist a value assignment w : X ® {true, false} such that B evaluates to true
under w? (we say B Î 3SAT) .

Here is an example that we shall use throughout the proof: t= 3, r= 4,
and

B= (x1 Ú Ø x2 Ú x4) Ù (Ø x1 Ú x3 Ú Ø x4) Ù (x2 Ú Ø x3 Ú Ø x4)

Given B, we have to construct an instance g(B) of our problem (i.e.,
a graph G= (V , E) and a bound K) such that g(B) Î GRAPH-CYCL (K) Û
B Î 3SAT . Furthermore, the construction function g must be polynomial in
the size of B, i.e., in the number of clauses t and of variables r.

Construction . To help the reader follow the construction, we give
intuitive names to the nodes of the graph.

There are 2 3 t 3 r vertices in G. For each variable x i we introduce a
widget W i made of 2 3 t vertices. These vertices are labeled T (i, j) and
F(i, j), 1 < j < t (see Fig. 21). Intuitively, vertex T (i, j) or F(i, j) will be
used if variable x i appears in clause C j : we use vertex T (i, j) if variable x i

is un-negated in clause C j , otherwise we use vertex F(i, j) . As illustrated in
Fig. 21, the widget is a complete bipartite graph: there is an edge from any
vertex T (i, j) to every vertex F(i, k) and vice-versa, with 1 < j, k < t, which
leads to 2 3 t2 edges per widget.

Widgets are connected according to clauses. Consider clause C1 in the
example: C1= x1 Ú Ø x2 Ú x4 . We link vertices T (1, 1), F(2, 1) and
T (4, 1) so as to make a cycle T (1, 1) ® F(2, 1) ® T (4, 1) ® T (1, 1) in the
dependence graph G (see Fig. 22). Similarly, since C2= Ø x1 Ú x3 Ú Ø x4 ,

Fig. 21. The widget W 1 .

303Removal of Anti- and Output Dependences

Fig. 22. Connecting widgets from the clauses.

we link vertices F(1, 2) , T (3, 2) and F(4, 2) to make another cycle in G.
Therefore, for each clause we add 3 edges to E, leading to a total of
2 3 r 3 t2+ 3 3 t edges in the graph. Clearly, the dependence graph G does
have a size polynomial in r and t.

Finally, we let K= r3 t, hence we ask the question whether it is
possible to transform half the vertices so that the resulting graph G ¢ has no
cycle.

Equivalence. Now we prove that g(B) Î GRAPH-CYCL (K) Û B Î
3SAT . Assume first that B Î 3SAT , and let w : X ® {true, false} be a value
assignment such that B evaluates to true under w. If variable x i is assigned
to true (i.e., w(x i) = true) , then in the widget W i we transform the t vertices
T (i, j) , 1 < j < t, otherwise we transform the t vertices F(i, j) , 1 < j < t.
Therefore we do transform K= r 3 t vertices in total.

Transforming all the T (i, *) vertices or all the F(i, *) vertices ensures
that there does not remain any cycle internal to the widget W i . Indeed,
since the widget is bipartite, all internal cycles go at least through a T and
through a F node, and one of them is transformed, thereby breaking the
cycle.

There remains to prove that the cycles due to the connection of the
widgets are broken too. Since B Î 3SAT , each clause C j evaluates to true
under the assignment w. Hence there is at least one variable x i in C j whose
assignment w(x i) raises C j to true. If x i appears un-negated in C j then
w(x i) = true and we transform vertex T (i, j) . By construction, the cycle due
to clause C j goes through vertex T (i, j) and therefore is broken. The
reasoning is similar with F(i, j) if x i appears negated in C j . Hence there
remains no cycle in G ¢ , and g(B) Î GRAPH-CYCL (K) .

Conversely, let g(B) Î GRAPH-CYCL (K) , i.e., assume that it is
possible to transform at most K= r 3 t vertices so that the resulting graph
G ¢ has no cycle. We have to build a value assignment w such that B
evaluates to true under w.

Consider a widget W i . Since there does not remain any cycle in G ¢ , at
least all the vertices T (i, j) , 1 < j < t, or all the vertices F(i, j) , 1 < j < t,

304 Calland, Darte, Robert, and Vivien

must have been transformed. Otherwise, there would remain a vertex
T (i, j0) and a vertex F(i, j1) that have not been transformed, and the cycle
of length 2: T (i, j0) ® F(i, j1) ® T (i, j0) would not have been broken. Since
at most K= r 3 t vertices are transformed in total, and since at least t
vertices per widget are transformed, then exactly t vertices are transformed
per widget, either all the T (i, *) or all the F(i, *) .

According to this discussion, there are exactly t vertices transformed in
widget W i , namely either the t vertices T (i, j) , 1 < j < t or the t vertices
F(i, j), 1 < j < t. We derive a truth assignment function w by letting
w(x i) = true if the transformed vertices are the T (i, *) and w(x i) = false if
the transformed vertices are the F(i, *). We have to show that w is a value
assignment such that B evaluates to true under w. Consider a clause C j ,
1 < j < t. The cycle of G linking the three jth nodes of the widgets W i such
that variable x i appears in C j has been broken. Hence at least one of these
nodes has been transformed, say the one corresponding to variable x i0 .
This transformed node can be either T (i0 , j) or F(i0 , j) , depending upon
whether x i0 appears un-negated or negated in C j . But if we have trans-
formed T (i0 , j) then w(x i) = true, and if we have transformed F(i0 , j)
then w(x i) = false. Therefore C j evaluates to true under w, and so does B.
Consequently, B Î 3SAT , and the proof is complete. e

Theorem 3. NO-CYCL is NP-complete (in the strong sense).

Proof. First, NO-CYCL belongs to NP: consider an admissible loop
nest L and its dependence graph G= (V , E) . If the vertices to be trans-
formed are given, we can check in polynomial time whether the new graph G ¢
is acyclic (this can be done even in linear time O(|V |+ |E |) by traversing
it).

We use a reduction from GRAPH-CYCL . Given a graph G= (V , E) ,
we construct an admissible loop nest L whose dependence graph is G.

So let G= (V , E) be given. All edges in G must correspond to anti-
dependences in the loop nest L . To each vertex v Î V we associate a linear
array tab.v of size 100 (say). We build the loop nest L as a single loop sur-
rounding |V | statements. There is one statement S v per vertex v, whose left-
hand side is simply tab.v(i)= For each edge e= (u, v) Î E we obtain an
anti-dependence from S u to S v by inserting a reference to tab.v(i+ 1) in the
right-hand side of S u as follows:

305Removal of Anti- and Output Dependences

The loop nest L is clearly admissible, as there are neither flow- nor
output-dependences in its dependence graph G. This construction is clearly
polynomial in the size of G, and the result follows immediately. e

Corollary 1. PURE-CYCL is NP-complete (in the strong sense).

5. HEURISTICS

In this Section we briefly sketch some heuristics to find out which
vertices of the dependence graph G= (V , E) of a loop nest should be trans-
formed so that there remains only pure cycles in G ¢ . We give two heuristics,
both quite natural. The first one might be exponentially expensive in the
worst case, but could be of interest for small dependence graphs. The
second one always requires a polynomial time. It runs in time O (t2(|V |+
|E |)) , where t is the number of transformed vertices, hence a worst case
bound O (|V |2 (|V |+ |E |)) .

5.1. A heuristic based on the hypergraph of the cycles of G

Maybe the most natural heuristic is to build the hypergraph H=
(V , F) of the cycles of G. F is defined as a collection of subsets f Ì V , where
each f is the set of the vertices of an elementary cycle C of G. See Fig. 23
for the hypergraph H of our target example. We mark each vertex v in f
as breakable if C is broken when v is transformed, i.e., v is marked
breakable if the incoming edge of v in C is an anti- or output-dependence,
and the outgoing edge a flow- or anti-dependence.

Once H is built, we apply a greedy strategy and transform the vertex
v0 which belongs to, and is breakable for, the maximal number of subsets
f Î F. We delete all cycles that were going through v0 and for which v0 was

Fig. 23. Hypergraph of the
target example. The three ele-
mentary cycles are shown with
different arrow formats.

306 Calland, Darte, Robert, and Vivien

Fig. 24. Hypergraph of the target example (a) before transfor-
mation; and (b) after transformation of node S 3 .

breakable. We redo the operation until there remains no cycle in the graph
with breakable vertices. [Note: Here is a small improvement: search
whether there exists a subset f Î F which contains a single breakable vertex
v; if such a vertex exists then transform it (because we have to break it later
on anyway to delete the cycle) ; else search a vertex which belongs to and
is breakable for the maximal number of subsets f Î F.]

The drawback of this heuristic is its high cost in the worst case.
Although this is unlikely to happen, the number of cycles can be exponen-
tial in the size O (|V |+ |E |) of the graph, and the construction of H might
therefore have a prohibitive cost.

5.1.1. The Heuristic Applied to the Target Example

We show here the transformation of the target example of Section 3.2
using this heuristic. Figure 24 shows the hypergraph corresponding to the
dependence graph of Fig. 19. The table in Fig. 25 shows for each vertex
how many elementary cycles include it as a breakable vertex.

According to this table, the heuristic first transforms node S 3 . The hyper-
graph of the new graph is shown in Fig. 24. As the hypergraph still contains
breakable nodes, and as S 2 is the only breakable node, the heuristic transform
S2 and stops. We obtain the same result as in Section 3.2 (see Fig. 20).

5.2. A Polynomial-Time Heuristic

Transforming a vertex may be useful only if the corresponding statement
has an incoming anti- or output-dependence, and an outgoing flow- or

Fig. 25. Number of circuits which
include a vertex as breakable .

307Removal of Anti- and Output Dependences

anti-dependence. For each vertex v of the dependence graph we can count
its `̀ utility,’’ i.e., the number Util(v) of pairs (e in , eout) such that

1. e in Î E, e in : ? ® v and l (e in) Î {a, o}

2. eout Î E, eout : v ® ? and l (eout) Î { f , a}

We transform one of the vertices v such that Util(v) is maximal.
We obtain a graph G ¢ . Remove from G ¢ all the edges which are not in a
strongly connected component. If there is at least an anti-dependence edge
in G ¢ or if G ¢ includes an elementary circuit which contains both an output-
dependence edge and a flow-dependence edge, we apply recursively the
heuristic on G ¢ .

The strongly connected components of G ¢ can be built in O(|V |+ |E |) .
To check the presence of an elementary circuit which contains an output-
dependence edge and a flow-dependence edge, we consider a vertex v with
an incoming output-dependence and an outgoing flow-dependence. If there
is a path from a vertex reached by an outgoing flow-dependence of v to a
vertex from which starts an incoming output-dependence of v, and if this
path does not include v, then G ¢ contains at least one nonpure circuit. One
can check the existence of such a path in one `̀ smart’’ graph traversal, and
thus in time O(|V |+ |E |) . As there are |V | nodes, the total complexity of
this circuit checking is O(|V |(|V |+ |E |)) .

In the worst case, all nodes will be transformed and the heuristic com-
plexity is O(|V |2 (|V |+ |E |)).

5.2.1. The Polynomial-Time Heuristic on the Target Example

We show in Table II the processing of the target example of Sec-
tion 3.2 by the polynomial heuristic. Table II shows the value of Util for
each of the graph vertices.

Once again, S 3 is transformed first. The new graph has one strongly
connected component with an anti-dependence (from S 1 to S 2) : the
heuristic is applied once again. The new value of Util is then depicted in
Table III.

Thus the polynomial-time heuristic transforms S 2 . We retrieve the
same result as before.

Table II. Values of Util for Each
of the Graph Vertices

S1 S 2 S3 S4

Util(v) 0 1 2 1

308 Calland, Darte, Robert, and Vivien

Table III. The New Values
of Util

S 1 S2 S4

Util(v) 0 1 0

6. CONCLUSIONS

In this paper we have formalized Padua and Wolfe’s transforma-
tions, (1) to eliminate dependence paths including anti- and output-edges.
We have stated a complexity result that shows the difficulty of the problem,
even in the restricted framework that we have considered.

Note that we have dealt with transformations which increase memory
requirements only by a factor proportional to the number of statements.
In the general case we also aim at suppressing output-dependence cycles,
which may require array expansions, thus changing the order of magnitude
for the memory requirements: e.g., for a single loop with k statements, we
might go from O(k 3 N) memory units to O (k 3 N2). Further work will be
devoted to the systematic study of such transformations.

APPENDIX: READ ACCESSES IN LEFT-HAND SIDES

When analyzing Padua and Wolfe’s second transformation in Sec-
tion 2.3.2, we have assumed that there was no read access in the left-hand
side of statements. This hypothesis prevents the existence of incoming flow-
dependences and outgoing anti-dependences on the left-hand side of
statements. We consider here such dependences:

· Incoming flow-dependence in the left-hand side (Fig. 26). One of the
data read in the left-hand side of statement S k was previously
produced in the left-hand side of another statement S l . This data is
used to compute the access function to array lhs in statement S k .
After the transformation, the data is used to compute the access
functions to array temp in S ¢k and to arrays lhs and temp in S k .
Thus there is one flow-dependence from S l to S ¢k , and there are two
dependences from S l to S k .

· Outgoing anti-dependence in the left-hand side (Fig. 27). One of the
data read in the left-hand side of statement S k is written afterwards
in another statement S l . This data is used to compute the access

309Removal of Anti- and Output Dependences

Fig. 26. Incoming flow-dependence before and after transformation.

Fig. 27. Outgoing anti-dependence before and after transformation.

Fig. 28. A statement with incoming and outgoing dependences before
and after transformation, with read in access functions.

Fig. 29. Outgoing anti-dependence before and after double transformation.

310 Calland, Darte, Robert, and Vivien

function to array lhs in statement S k . After the transformation, the
data is used to compute the access functions to array temp in S ¢k
and to arrays lhs and temp in S k . Thus there is one anti-dependence
from S ¢k to S l , and there are two dependences from S k to S l .

We summarize these results and those previously established (Sec-
tion 2.3.2) in Fig. 28. Looking at Fig. 28, we might think that the transfor-
mation of a statement may be useful only if it has an incoming anti- or out-
put-dependence edge, and an outgoing flow-dependence edge (see Fig. 15
again), because we now have anti-dependences going out of S . However,
these anti-dependences going out of S come from read access in array
access functions. To solve the problem, we should have previously applied
the first transformation to these faulty accesses before applying the second
transformation to the statement. The result of this double transformation
is shown on Fig. 29. The reader can check that the double transformation
breaks the same paths as before: ? Ð Ð ®a , o

S Ð Ð ®f , a
?. Theorem 1 still holds.

ACKNOWLEDGMENTS

We thanks the reviewers whose comments and suggestions have
greatly improved both the presentation and the contents of the paper.

REFERENCES

1. David A. Padua and Michael J. Wolfe, Advanced Compiler Optimizations for Supercom-
puters, Comm . ACM 29(12):1184 ± 1201 (December 1986) .

2. Paul Feautrier, Dataflow Analysis of Array and Scalar References, IJPP 20 (1):23 ± 51
(1991).

3. Dror E. Maydan, Saman P. Amarasinghe, and Monica Lam, Array Data-Flow Analysis
and Its Use in Array Privatization, Principles of Progr . Lang . (1993).

4. Junjie Gu, Zhiyan Li, and Gyungho Lee, Symbolic Array Dataflow Analysis for Array
Privatization and Program Parallelization, Supercomputing (1995) .

5. Thomas Brandes, The Importance of Direct Dependences for Automatic Parallelization,
Int’ l Conf . Supercomputing , pp. 407 ± 417 (1988).

6. Uptal Banerjee, Rudolph Eigenmann, Alexandru Nicolau, and D. A. Padua, Automatic
program parallelization, Proc . IEEE 81(2):211 ± 243 (1993).

7. David F. Bacon, Susan L. Graham, and Oliver J. Sharp, Compiler Transformations for
High-Performance Computing, ACM Computing Surveys 26(4):345 ± 420 (1994).

8. Michael Wolfe, High Performance Compilers for Parallel Computing , Addison-Wesley
Publishing Company (1996) .

9. Hans Zima and Barbara Chapman, Supercompilers for Parallel and Vector Computers ,
ACM Press (1990).

10. Pierre-Yves Calland, Alain Darte, Yves Robert, and FreÂ deÂ ric Vivien, Plugging Anti- and
Output-Dependence Removal Techniques into Loop Parallelization Algorithms, Parallel
Computing 23(1,2):251 ± 266 (1997) .

311Removal of Anti- and Output Dependences

11. Michael Wolfe, The Tiny Loop Restructuring Research Tool. In H. D. Schwetman, (ed.),
Int’ l. Conf . Parallel Processing , Volume II, CRC Press, pp. 46± 53 (1991).

12. William Pugh, Release 0.96 of petit. World Wide Web document, URL: http://www.cs.
umd.edu/projects/omega/petit.html.

13. SIMULOG S.A. FORESYS , Manuel de ReÂ feÂ rence (April 1994).
14. PRiSM SCPDP Team, Systematic Construction of Parallel and Distributed Programs,

World Wide Web document, URL: http://www.prism.uvsq.fr/english/parallel/paf/autom ±
us.html.

15. PIPS Team, Pips (interprocedural parallelizer for scientific programs). World Wide Web
document, URL: http://www.cri.ensmp.fr/ Ä pips/index.html.

16. Michael R. Garey and Davis S. Johnson, Computers and Intractability, a Guide to the
Theory of NP-Completeness, W. H. Freeman and Company (1991) .

312 Calland, Darte, Robert, and Vivien

