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Minimal enclosing parallelepiped in 3D

Résumé : Nous étudions le problème de la recherche d'un parallélépipède de volume
minimal englobant un ensemble donné de n points d'un espace de dimension trois.
Nous démontrons deux propriétés mathématiques de ces parallélépipèdes à partir
desquelles nous élaborons deux algorithmes de complexité théorique en O(n6). Nos
expériences montrent que la complexité en pratique de notre algorithme le plus rapide
est en O(n2) (au moins quand n est inférieur à 105). Nous présentons également notre
application en biologie structurale.

Mots-clé : Géométrie algorithmique, parallélépipèdes, bioinformatique.



Plus petit parallélépipède englobant en 3D 3

1 Introduction

It is sometimes useful to circumscribe a complex three-dimensional shape with a
simpler shape, of minimum volume. Solutions for this problem are known if one is
looking for the minimal volume enclosing ball or ellipsoid [10], cylinder [5], tetrahe-
dron [12], or rectangular box [2]. Our original motivation was to approximate the
surface of a protein with a set of regular shapes in the hope of �nding some �outstand-
ing faces� of the protein, e.g. responsible of interactions with other proteins. From
biological considerations, parallelepipeds seemed more suitable for our problem. So,
in this paper we show how to compute a parallelepiped of minimal volume enclosing
a three-dimensional shape or set of points. Our algorithms rely on mathematical
properties inspired by the properties satis�ed in the plane by the minimal enclosing
parallelogram [7�9].

In Section 2 we prove two mathematical properties of minimal enclosing paral-
lelepipeds. From these properties, we derive two algorithms in Section 3. In Section
4, we report the experiments we performed on these algorithms. Finally, in Section 5,
we give an insight of our biological motivation: we apply our technique to a protein
and discuss the result.

2 Mathematical properties

First, we remark that the minimal volume parallelepiped enclosing a set S of points
is the minimal volume parallelepiped enclosing the convex hull of S as the convex
hull of S is the smallest convex enclosing S. Then, the �rst theorem states that each
pair of opposite faces of the minimal enclosing parallelepiped must �ush a face or
two edges of the convex hull (and not just a face as in 2D). In this paper we never
consider degenerated sets of points, i.e. included in a plane.

Theorem 1 For any set of points of convex hull C there exists a minimal enclosing

parallelepiped P such that, for any pair of opposite faces of P, either one of the faces
contains a face of C or both faces contain an edge of C and the two edges are not

parallel.

Proof We consider a set of points of convex hull C and one of its minimal enclosing
parallelepiped P. Any face F of P contains at least one vertex of C: otherwise
it would be possible to move F closer to its opposite face to obtain an enclosing
parallelogram of smaller volume.

RR n�4685



4 F. Vivien, N. Wicker

To prove the theorem, we suppose that P does not satisfy the property stated
by the theorem and we show that we can build an enclosing parallelogram satisfying
the property and at least as small as P. As, by hypothesis, P does not satisfy the
property stated by the theorem, there exist two opposite faces F1 and F2 of P such
that none of them contain a face of C and if both contain an edge of C, both edges
are parallel. We denote by P1 (resp. P2) the plane containing F1 (resp. F2).

A parallelepiped is de�ned by its eight vertices. It is also de�ned by the three
pairs of parallel planes that contain its faces. We will call these planes the supporting
planes. Let us consider a pair of supporting planes p1 and p2, i.e. two supporting
planes corresponding to opposite faces of P. We take two parallel lines, d1 and d2,
the �rst included in p1 and the second in p2. We rotate p1 around d1 and p2 around
d2 with a same angle. This way, we obtain a new pair of parallel planes which
de�nes, with the four remaining supporting planes of P, a new parallelepiped. This
new parallelepiped may or may not be an enclosing parallelepiped for C. We say that
we have rotated the pair of supporting planes fp1; p2g.

We �rst study the freedom we have to rotate the pair of supporting planes
fP1;P2g while the obtained parallelepiped remains enclosing for C.

The possibility to rotate some supporting planes

We consider the number nv of vertices of C belonging to either of the two faces
F1 and F2:

nv � 5: one of the two faces contains at least three vertices and thus a face of C.
This is impossible by de�nition of F1 and F2.

nv = 4: by de�nition of F1 and F2, both faces contain an edge of C and these two
edges are parallel. We denote by d1 (respectively d2) the line of P1 (resp. P2)
containing the edge of C \F1 (resp. C \F2). Then one can (slightly) rotate, in
any direction, P1 and P2 of a same angle around d1 and d2 while transforming
P into another parallelepiped enclosing C, as long as the angle of the rotation
remains small. Indeed, we can rotate the pair of supporting planes fP1;P2g
until one of the rotated planes touch a new vertex of C.

nv = 3: because of our hypothesis, one face contains a single vertex of C and the
other one an edge of C. Without any loss of generality, we denote by F1 the
face containing the edge. We de�ne d1 as previously and d2 as the line of
P2 containing C \ F2 and parallel to d1. Then one can (slightly) rotate, in
any direction, P1 and P2 of a same angle around d1 and d2, under the same
conditions than previously.

INRIA



Plus petit parallélépipède englobant en 3D 5

nv = 2: each face contains exactly one vertex of C. We randomly peak any vector
v in P1 to de�ne the direction of d1 and d2: d1 (resp. d2) is then the line of P1

(resp. P2) parallel to v and containing C \ F1 (resp. C \ F2). Then one can
(slightly) rotate, in any direction, P1 and P2 of a same angle around d1 and
d2, under the same conditions than previously.

Building an enclosing parallelogram smaller than P

From what precedes, whatever the case, one can (slightly) rotate, in any direction,
P1 and P2 of a same angle around d1 and d2 while transforming P into another par-
allelepiped, P 0, enclosing C. We now compute the volume of the new parallelepiped
P 0. In the following, given two points I and J , IJ denotes the vector from point I
to point J and IJ the algebraic measure.

A
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Figure 1: Original parallelepiped and the rotation.
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Figure 2: Detail of Figure 1.
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6 F. Vivien, N. Wicker

Figure 1 shows the original parallelepiped and the new face F
0

1 = (B0F 0G0C 0)
obtained from the rotation of P1 by an angle of � around d1. We use the notations
de�ned on Figure 1. S1;t (resp. S1;b) is the intersection of d1 with the line (BC)
(resp. (FG)). In order to ease the computations, we measure the rotation around
d1 and d2 not by an angle measured in a plane orthogonal to d1 but in the plane
(ABCD). � is the angle de�ned by the vectors S1;tC and S1;tC0.

The volume of the parallelepiped P is equal to: vol(P) = j(CB ^ CD):CGj.
The volume of P 0 is equal to: vol(P 0) = j(C0

B
0 ^ C0

D
0):C0

G
0j. To explicit the

value of vol(P 0), we need to explicit the values of C0
B

0, C0
D

0, and C0
G

0. We start
with C0

D
0.

The value of C0
D

0. C
0
D

0 = C0
C+CD+DD0. To compute the value of C0

D
0

we focus on Figure 2, which is a magni�cation of Figure 1. We denote by � the angle
de�ned by the vectors CB and CD. Then cos(�� Æ) = CHt

CC0 and cos(�Æ) = CHt
CS1;t

.
As the sum of the angles in a triangle is equal to �, Æ = �

2 +�, and:

CC 0 =
cos(Æ)

cos(�� Æ)
CS1;t =

cos(�2 +�)

cos((���)� �
2 )
CS1;t = �

sin(�)

sin(���)
CS1;t;

and, uCD denoting the unitary vector of same direction and orientation than CD,

CC
0 = �

sin(�)

sin(���)
CS1 ;t :uCD:

Symmetrically, we have for DD0 (S2;t (resp. S2;b) being the intersection of d2 with
the line (DA) (resp. (HE))): DD0 = � sin(�)

sin(���)DS2 ;t :uCD: Gathering these two
results, we obtain:

C
0
D

0 = C0
C +CD +DD0 = CD +

sin(�)

sin(���)
(CS1;t �DS2;t):uCD:

The values of C0B0 and C0G0. C0B0 = C0C +CB+BB0. Thus, as C0C and
BB0 are parallel to uCD, there exists a value x such that: C0B0 = CB + x:uCD.
Symmetrically, there exists a value y such that C0G0 = CG+ y:uCD.

INRIA



Plus petit parallélépipède englobant en 3D 7

The volume of P 0. Collecting the previous results, we have:

(C0B0 ^C0D0):C0G0 = ((CB + x:uCD)

^(CD + sin(�)
sin(���) (CS1;t �DS2;t):uCD):(CG + y:uCD)

= CB ^CD:CG

+ sin(�)
sin(���) (CS1;t �DS2;t)(CB ^ uCD:CG)

=
�
1 + sin(�)

sin(���)
(CS1;t�DS2;t)

jjCDjj

�
CB ^CD:CG:

Therefore:

vol(P 0) =

����1 + sin(�)

sin(���)

(CS1;t �DS2;t)

jjCDjj

���� vol(P): (1)

We have two cases to consider, depending whether (CS1;t �DS2;t) is null:

1. CS1;t �DS2;t 6= 0. sin(�) is obviously non null, knowing the de�nition of �.
For very small values of �, sin(� � �) has the same sign than sin(�). As we
can chose � to be either strictly negative or strictly positive (see the discussion
above), we chose for � a very small value such that �sin(�)(CS1;t�DS2;t) < 0.
Then vol(P 0) < vol(P) and we have built an enclosing parallelogram of (strictly)
smaller volume.

2. CS1;t �DS2;t = 0. Then P and P 0 are two enclosing parallelepipeds of same
volume (whatever the value of �). We take for � the largest value possible.
The two new faces F 0

1 and F
0
2 contain by de�nition of d1 and d2 all the points

of F1 and F2 belonging to C. Because of the maximality of �, F 0
1[F

0
2 contains

at least one more point of C (and thus one more vertex of C) than F1 [ F2. If
P 0 satis�es the property stated by the theorem, we are happy. Otherwise, we
apply to P 0 the process we have applied to P to obtain P 0. This way we obtain
a new enclosing parallelogram P 00. As the number of vertices nv of (F1[F2)\C
is strictly increasing with this process, we shortly end up with a parallelepiped
of volume at most equal to vol(P) and which satis�es the property stated by
the theorem. Indeed, any parallelepiped with nv � 5 satis�es this property (as
we have shown above).

In both cases we obtain, may be after a few iterations, a parallelepiped enclosing S,
satisfying the desired property, and whose volume is less than or equal to the volume
of P. �

RR n�4685



8 F. Vivien, N. Wicker

Theorem 2 Let S be a set of points and C its convex hull. Let P be a minimal

volume parallelepiped enclosing S and which satis�es the property stated by Theorem

1. Let F1 and F2 be two opposite faces of P. Then, the projection of F1 \ C on F2

along the other faces of P has a non-null intersection with F2 \ C.

Proof We prove this result by contradiction. Thus we suppose that, P, a minimal
volume enclosing parallelepiped which satis�es the property stated by Theorem 1,
does not satisfy the property stated by Theorem 2. Then we show that we can build
an enclosing parallelepiped of strictly smaller volume. The proof rely on a careful
study of Equation 1. First, we remark that, because of its de�nition, the angle �
has a value strictly between 0 and �. Therefore sin(�) is always (strictly) positive.
� will be chosen small. Thus � and sin(�) will have the same sign. Also sin(���)
and sin(�) will have the same sign. If CS1;t �DS2;t is not null and if CS1;t �DS2;t

and sin(�) have opposite signs, i.e. if sin(�)(CS1;t�DS2;t) < 0, the volume of P 0 is
strictly smaller than that of P. We now show that, because of our hypotheses, there
always exist a rotation satisfying this property.

Let P 0 be projection of F2 \ C on F1 along the other faces of P. By hypothesis,
the intersection of P 0 and F1 \ C is empty. P 0 and F1 \ C are polyhedra as F1 \ C
(resp. F2 \ C) is either a single vertex, an edge, or a face of C. P 0 and F1 \ C are
two bounded (convex) polyhedra and, as their intersection is empty, there exists a
line d of F1 which separates them strictly: in F1, P 0 and F1 \ C lie on either sides
of d, none of them having some points in common with d (the dubious reader will
�nd in the Appendix the lemma 2 which proves the existence of d). We take for d1
the line of F1 parallel to d and containing a vertex of F1 \ C which is the closest to
P 0. We chose for d2 the line of F2 parallel to d and containing a vertex of F2 \ C
whose projection on F1 is a vertex of P 0 which is the closest to F1 \ C. We de�ne
S1;t and S2;t from d1 and d2 as previously. Then, CS1;t and DS2;t cannot be equal.
Otherwise, the projection of d2 on F1 would be equal to d1 which is impossible by
de�nition of d1, d2, and d (d would have points common to P 0 and F1 \ C).

Figure 3 (resp. 4) shows the case where CS1;t�DS2;t > 0 (resp. CS1;t�DS2;t <

0). In this case, one can rotate the pair of planes fP1;P2g of a same angle� < 0 (resp.
� > 0) around d1 and d2 respectively while the obtained parallelepiped remains
enclosing, and while (CS1;t �DS2;t) sin(�) < 0. Hence, the obtained parallelepiped
has a volume strictly smaller than P. �

The following lemma is a corollary of Theorem 2. This lemma states whether
two pairs of planes satisfying the condition of Theorem 1 can satisfy the condition

INRIA
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Figure 3: Case CS1;t �DS2;t > 0. The intersections of C and F1 and F2 are drawn
in bold. The projection P 0 of F2 \ C is drawn in dotted lines.
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Figure 4: Case CS1;t �DS2;t < 0. The intersections of C and F1 and F2 are drawn
in bold. The projection P 0 of F2 \ C is drawn in dotted lines.
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10 F. Vivien, N. Wicker

of Theorem 2, in which case we speak of compatible pairs of planes. This lemma is
thus a weak version of Theorem 2.

Lemma 1 Let S be a set of points and C its convex hull. Let fP1;P2g and fP3;P4g
be two pairs of planes satisfying the property stated by Theorem 1 for S. Let Vi =
fvi1; :::; v

i
jVij
g be the vertices of Pi \ C, for any i 2 [1; 4]. Let n1;2 (resp. n3;4) be a

vector normal to P1 and P2 (resp. P3 and P4).

fP1;P2g and fP3;P4g can satisfy the property stated by Theorem 2 if and only if�
9(a; b) 2 V1 � V2; (b� a):n3;4 � 0; 9(c; d) 2 V1 � V2; (d� c):n3;4 � 0
9(e; f) 2 V3 � V4; (f � e):n1;2 � 0; 9(g; h) 2 V3 � V4; (h� g):n1;2 � 0:

This lemma, proved in the appendix, just mathematically states that the pair of
planes fP1;P2g contains a direction which maps a point of P3 \ C on a point of
P4 \ C, and reciprocally.

3 Algorithms

Using Theorem 1 we derive a rather simple algorithm. Then we re�ne it using Lemma
1.

3.1 A �rst algorithm

Theorem 1 tells us that there is at least one minimal volume enclosing parallelepiped
such that each of its faces is either parallel to a face of the convex hull or to two
non-parallel edges of this convex hull. Then, Algorithm 1 simply enumerates all the
possible triplets of orientation of the supporting planes, and search which one gives an
enclosing parallelepiped of minimal volume. The algorithm is rather straightforward:
after the computation of the convex hull, we build the pair of candidate supporting
planes de�ned by faces of the convex hull, then the pair of candidate supporting
planes de�ned by a pair of edges of the convex hull, and we test all the triplets
of pairs of candidate supporting planes. The volumes of the parallelepipeds are
computed using a formula proved in appendix (Lemma 3).

Theoretical complexity

Let n be the number of points in S. Its convex hull C contains v vertices with v � n.
If C was enforced to be simplicial, it contains exactly 2v�4 faces and 3v�6 edges [1].

INRIA



Plus petit parallélépipède englobant en 3D 11

Algorithm 1 Compute a minimal volume parallelepiped enclosing the set of points
S.
1: Compute the convex hull C of the set of points S
2: N = ; {The set of candidate supporting planes}
3: Let F be the set of all the faces of C
4: for each face f of F do

5: Find the vertex v of C which is the furthest from f

6: Associate to f the vector nf normal to f and linking f and v (v+nf is a point
of f)

7: N = N [ f(f; f � nf ; nf )g
8: Let E be the set of all the edges of C
9: for each pair fe1; e2g of elements of E do

10: if e1 and e2 are not parallel then
11: Build the planes f1 and f2 parallel to e1 and e2, f1 containing e1 and f2

including e2
12: Compute the vector nf1 normal to f1 (and thus to f2) such that f1+nf1 = f2
13: if C is enclosed in the space between the planes f1 and f2 then

14: N = N [ f(f1; f2; nf1)g
15: vol_min = +1
16: planes = ;
17: for each element (f1; f 01; n1) of N do

18: for each element (f2; f 02; n2) of N do

19: for each element (f3; f 03; n3) of N do

20: if n1 ^ n2:n3 6= 0 then

21: vol =
��� jjn1jj2jjn2jj2jjn3jj2n1^n2:n3

���
22: if vol < vol_min then

23: vol_min = vol
24: planes = ff1; f 01; f2; f

0
2; f3; f

0
3g

25: return planes

Then, the set N contains at most �(9v2) = O(n2) faces. Except for the loops, all
the operations in this algorithm are performed in constant time except for the steps
1, 5 and 13:

� Step 1: the computation of the convex hull costs O(n logn) [1];

� Step 5: to �nd the vertex which is the furthest from a face of the convex hull,
we need to scan all the vertices which costs at worst O(n);

RR n�4685



12 F. Vivien, N. Wicker

� Step 13: for this test we simply check that the direction of edge e1 (resp. e2)
has two scalar products of opposite signs with the normals to the two faces
of the convex hull containing e2 (resp. e1) (to see it, write that e1 ^ e2, the
normal to the new plane, is a convex combination of the normals to the two
faces, and take the scalar product with e1 or e2); hence a cost of O(1).

The overall theoretical complexity of this algorithm is thus at worst O(n6), where
n is the number of vertices of S, because of the search on all the triplets of elements
of N . More precisely, the complexity of this algorithm is in O(n log n+ v6), where
n is the number of vertices of S and v the number of vertices of its convex hull. We
will see in Section 4 that the complexity is far better in practice. Nevertheless, we
now use Lemma 1 to speed-up our algorithm.

3.2 A second algorithm

We use Theorem 2 to re�ne Algorithm 1. Theorem 2 gives us a condition for a triplet
of pairs of parallel planes to be an actual candidate for a minimal volume enclosing
parallelepiped. Of course, we do not want to enumerate anymore any triplets of pairs
of candidate parallel planes. Thus we use Lemma 1 to check whether two pairs of
candidate planes can be used together in a minimal enclosing parallelepiped. This
way we obtain Algorithm 2.

Theoretical complexity

The worst case complexity of Algorithms 1 and 2 is obviously the same. If we study
more carefully the algorithm and denote by v the number of vertices of the convex
hull, by e the number of faces built at steps 9 to 14, and by c the size of the largest of
the sets �compatible(f1; f

0
1; n1)�. Then steps 4 to 7 have a complexity of O(v2), steps

9 to 14 have a complexity of O(v2), steps 19 to 23 have a complexity of O((v + e)2)
(at least if C is simplicial), and steps 24 to 31 have a complexity of O((v + e)� c2).
Hence the overall complexity of

O(n log n+ (v + e)2 + v � c2) (2)

4 Experiments

We �rst compare the two algorithms on our application: we run the two algorithms
on all the 45 proteins we had. The results presented on Figure 5 show that Algorithm

INRIA



Plus petit parallélépipède englobant en 3D 13

Algorithm 2 Compute a minimal volume parallelepiped enclosing the set of points
S (optimized).
1: Compute the convex hull C of the set of points S
2: N = ; {The set of candidate supporting planes}
3: Let F be the set of all the faces of C
4: for each face f of F do

5: Find the vertex v of C which is the furthest from f

6: Associate to f the vector nf normal to f and linking f and v (v + nf is a point of f)
7: N = N [ f(f; f � nf ; nf )g
8: Let E be the set of all the edges of C
9: for each pair fe1; e2g of elements of E do

10: if e1 and e2 are not parallel then
11: Build the planes f1 and f2 parallel to e1 and e2, f1 containing e1 and f2 including

e2
12: Compute the vector nf1 normal to f1 (and thus to f2) such that f1 + nf1 = f2
13: if C is enclosed in the space between the planes f1 and f2 then

14: N = N [ f(f1; f2; nf1)g
15: vol_min = +1
16: planes = ;
17: for each element (f1; f

0
1
; n1) of N do

18: compatible(f1; f
0
1
; n1) = ;

19: for each element (f1; f
0
1
; n1) of N do

20: for each element (f2; f
0
2
; n2) of N do

21: if (f1; f
0
1
; n1) and (f2; f

0
2
; n2) satisfy Lemma 1 then

22: compatible(f1; f
0
1
; n1) = compatible(f1; f

0
1
; n1) [ f(f2; f 0

2
; n2)g

23: compatible(f2; f
0
2
; n2) = compatible(f2; f

0
2
; n2) [ f(f1; f 0

1
; n1)g

24: for each element (f1; f
0
1
; n1) of N do

25: for each element (f2; f
0
2
; n2) of compatible(f1; f

0
1
; n1) do

26: for each element (f3; f
0
3
; n3) of (compatible(f1; f

0
1
; n1) \ compatible(f2; f

0
2
; n2)) do

27: if n1 ^ n2:n3 6= 0 then

28: vol =
�
�
�
jjn1jj

2jjn2jj
2jjn3jj

2

n1^n2:n3

�
�
�

29: if vol < vol_min then

30: vol_min = vol
31: planes = ff1; f 0

1
; f2; f

0
2
; f3; f

0
3
g

32: return planes

2 is signi�cantly more e�cient than Algorithm 1 even for small inputs. These results
are con�rmed by Figure 6 which presents a comparison of the two algorithms on
larger and synthetic input sets (points randomly picked on a sphere).

RR n�4685



14 F. Vivien, N. Wicker

Algorithm 2 being far more e�cient, we focused on it. We wanted to determine
what was its complexity in practice. Thus we needed to run it on convex hulls with a
large number of vertices. As the proteins we had did not give us such examples �the
convex hull of our worst-case protein only had 94 vertices� we used synthetic data.
We randomly picked points on the surface of a sphere as for such sets of points the
convex hull is almost equal to the number of points in the set. Figure 7 shows the
result of the experiment for convex hulls containing up to 10 000 vertices. The graph
of the execution time Time(n) in function of the number n of vertices of the convex
hull �looks� quadratic. Indeed the graph of Time(n)/n2 is almost an horizontal line
(this graph is also displayed on Figure 7 but scaled up to be readable). To con�rm
this result we approximate the execution with a cubic function (using the nonlinear
least-squares Marquardt-Levenberg algorithm implemented in gnuplot). We exactly
found:

Time(n) � 2:15263� 10�11 �n3+2:09904� 10�06 �n2� 0:00101368�n+0:770604

with an asymptotic error of 21:18% on the cubic term, and of 3:188% on the quadratic
term. The corresponding graph is also drawn on Figure 7 but is hardly seen as it is
almost equal to the Time(n) graph. Even if this function is cubic, its cubic term has
almost no in�uence for convex hulls of up to 105 vertices as, until then, the quadratic
term is dominant. We tried to extend this result by running Algorithm 2 on larger
sets. The result is presented on Figure 8. There, the computed cubic approximation
as an even less important cubic term ((8:66169 � 10�14 � 8:503 � 10�13) � n3 for
(2:44779�10�06�5:343�10�08)�n2). This is not really surprising as the experimen-
tal uncertainties are rather important compared to this cubic term. Furthermore,
we only ran experiments up to 40 000 vertices as for such large convex hulls, the
algorithm already takes around one hour to run on our experimental platform (Intel
Xeon CPU running at 1.80 GHz and 512 MB of memory, C++ program compiled
with GNU g++ 3.0, the convex hulls being computed using the Qhull library [3]).

One can wonder whether these results are in�uenced by the type of synthetic
data we used. Therefore, we studied the execution time of Algorithm 2 on purely
random sets of points containing up to 150 000 points. Figure 9 presents the graph
Time(n) in function of the number n of vertices of the convex hull and the graph of
Time(n)/n2 (scaled up). In this �gure, the execution time does not take into account
the time needed to compute the convex hull (when it is included in all other �gures).
The reason of this removal is quite simple: even with large sets of points, the size of
the convex hull is rather small (less than 250 vertices) but most of the time is spent
in its computation because of the size of the input sets. The graphs have the desired
shape. But the convex hulls are too small for the graphs to be conclusive.
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From our experiments we can conclude that Algorithm 2 as an apparent com-
plexity of

O(n logn+ v2)

where n is the number of points in the sets S, and v is the number of vertices
of the convex hull. This seems at least true for input sets whose convex hull as
up to 105 vertices, which seems to be the only input sets that may be processed
in a reasonable time (we may even wonder whether so large convex hulls exist in
practice). This result is quite coherent with Equation 2 when we remark that in all
our examples we have found that e � v (with the notations of Section 3.2).
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Figure 5: Comparison of the execu-
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5 Application to proteins

Our initial motivation is to approximate the �surface� of a protein with a set of
regular shapes. We hope to be able to discover, by this method, the �faces� of the
protein responsible of its interactions with other biological objects, when such faces
actually exist. Once we have approximated a protein by its minimal volume enclosing
parallelepiped, we consider the �composition� of each of the six faces of the minimal
volume enclosing parallelepiped.

A protein is a sequence of amino-acids. The two main characteristics of amino-
acids are whether they are electrically charged 1 and whether they are attracted

1The electrically charged amino-acids are: aspartic acid, glutamic acid, lysine, arginine, and
histidine.
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Figure 10: The PPAR protein with
its minimal volume enclosing paral-
lelepiped.

by water (hydrophile amino-acids) or repulsed (hydrophobic amino-acids) 2. So we
consider the composition of the faces of our parallelepiped in terms of electrically
charged and hydrophobic amino-acids. The composition of a face is the set of the

2The hydrophobic amino-acids are: leucine, isoleucine, valine, methionine, phenylalanine, tyro-
sine, and tryptophan.
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amino-acids whose center of gravity is close to the face (less than 2.4 Å away from
the face in our model).

We chose to illustrate our work with a protein which is a nuclear receptor. A
nuclear receptor initiates the transcription of some part of the DNA when it is
activated by a certain molecule called its ligand. More important for us, nuclear
receptors are known to have a large interaction face: we want to check whether we
are able to rediscover this interaction face.

We chose the nuclear receptor protein called PPAR (Peroxisome Proliferator-

Activated Receptor). This protein is involved in the metabolism of glucose, lipids,
and cholesterol. PPAR is presented on Figure 10 with its minimal volume enclosing
parallelepiped 3. The composition of the parallelepiped faces is summarized in Figure
12 (the numbering of the parallelepiped faces is presented on Figure 11). From
biological considerations, faces 5 and 6 do not �contain� enough amino-acids to be
signi�cant. Among the remaining faces, Face 1 is the one containing the smallest
percentage of hydrophobic amino-acid and the one containing the biggest percentage
of electrically charged amino-acids. Face 1 as thus an outstanding composition (the
amino-acids belonging to Face 1 are drawn the darkest on Figure 11). Actually, Face
1 corresponds to the dimerisation interface of PPAR: thanks to this interface, PPAR
can form an heterodimer with the protein RXR (Retinoid X Receptor). Therefore,
we were able to re-discover PPAR interface.

We do not claim from the above example that our method enables us to predict
anything: we only presented this example to give an insight to our motivation and
application. In the general case, we cut a protein in sub-pieces (if necessary) and we
approximate each sub-piece with its minimal volume enclosing parallelepiped. The
whole description of this work goes far beyond the scope of this paper.

3

4

5

6
2

1

Figure 11: Numbering of the parallelepiped faces.

3We used the structure of PPAR proposed by Xu et al. [11] and denoted 1k74 in the Protein
Data Base.
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Face 1 2 3 4 5 6
Number of amino-acids 32 19 18 13 8 4
Hydrophobic amino-acids 6% 21% 22% 38% 0% 0%

Electrically charged amino-acids 50% 47% 44% 38% 62% 75%

Figure 12: Composition of the faces of the minimal volume parallelepiped enclosing
PPAR (cf. Figure 10).

6 Conclusion

We presented two mathematical properties of the minimal volume parallelepiped
enclosing a three-dimensional set of points S. Using these properties we designed
two algorithms of theoretical complexity O(n6), where n is the size of S (the number
of points it contains). Our experiments show that the practical complexity of our
quickest algorithm is O(n logn + v2) where n is the size of S and v the number of
vertices of its convex hull, at least when v is smaller than 105. Finally, we applied
our method to search for the interaction faces of a protein, our initial goal. Although
the application of this research to structural biology is in the preliminary stages, the
�rst results are promising.
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A Additional results and proofs

Proof of Lemma 1 For the two pairs of parallel planes to have a chance to satisfy
the property stated by Theorem 2, there must exist a point x in P1 \ C and a point
y in P2 \ C and a direction d in P3 such that the projection of x on P2 along d is
equal to y. In other words, the vector y � x must be parallel to P3. This property
is equivalent to (y � x):n3;4 = 0. We prove that this property is equivalent to the
system of Lemma 1.

The points of P1\C are exactly the convex combinations of the vertices of P1\C.
We use this property for the point x of P1 \ C and also for the point y in P2 \ C:

9�1 � 0; :::;9�jV1j � 0;

jV1jX
j=1

�j = 1; x =

jV1jX
j=1

�jv
1
j ; and

9�1 � 0; :::;9�jV2j � 0;

jV2jX
k=1

�k = 1; y =

jV2jX
k=1

�kv
2
k:

y � x =

jV2jX
k=1

�kv
2
k �

jV1jX
j=1

�jv
1
j =

jV2jX
k=1

0
@ jV1jX

j=1

�j

1
A�kv

2
k �

jV1jX
j=1

0
@ jV2jX

k=1

�k

1
A�jv

1
j ,

y � x =

jV2jX
k=1

jV1jX
j=1

�k�j(v
2
k � v1j );

and (y � x) is a convex combination of the values (v2k � v1j ). We have three cases to
consider:

� All the scalar products (v2k � v1j ):n3;4 are (strictly) positive (resp. negative).
Then, the scalar product (y � x):n3;4 is also (strictly) positive (resp. nega-
tive) and the two pairs of parallel planes cannot satisfy the property stated by
Theorem 2.

� At least one of the scalar products is null: the two pairs of parallel planes can
obviously satisfy the property.

� No scalar product is null, but there exist some values k1; k2; j1; j2 such that
(v2k1 � v1j1):n3;4 > 0 and (v2k2 � v1j2):n3;4 < 0. We de�ne the points x and y as
follows:

x =
j(v2k2 � v1j2):n3;4jv

1
j1
+ j(v2k1 � v1j1):n3;4jv

1
j2

j(v2k2 � v1j2):n3;4j+ j(v2k1 � v1j1):n3;4j
and
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y =
j(v2k2 � v1j2):n3;4jv

2
k1

+ j(v2k1 � v1j1):n3;4jv
2
k2

j(v2k2 � v1j2):n3;4j+ j(v2k1 � v1j1):n3;4j
:

One can check that x belongs to P1 \ C, y to P2 \ C and that (y� x):n3;4 = 0.

To obtain the desired property, we redo on the pair of planes fP3;P4g what we have
done on fP1;P2g. �

The following lemma is used in the proof of Theorem 1.

Lemma 2 Let A and B be two polytopes (bounded convex polyhedra) which have an

empty intersection. There exists an hyperplane which strictly separates A and B. In

other words, there exists an a�ne form x 7! �x + � which takes (strictly) negative
values on A and (strictly) positive values on B.

Proof Let C = A� B = fzj9x 2 A;9y 2 B; z = x� yg. C does not contain 0 as,
by hypothesis, A \B = ;.

C is convex. We take two points z1 = x1 � y1 and z2 = x2 � y2 of C (x1 2 A,
x2 2 A, y1 2 B and y2 2 B). Let � be any value in [0; 1]. �z1 + (1 � �)z2 =
(�x1 + (1 � �)x2) � (�y1 + (1 � �)y2). As A and B are convex (�x1 + (1 � �)x2)
belongs to A and (�y1 + (1 � �)y2) to B. Therefore, �z1 + (1 � �)z2 belongs to C
and C is convex.

C is a polytope. To prove it, we use Minkowski's representation of polytopes [6]:
there exists a set fv1; :::; vpg of vertices of A such that:

A =

(
x

�����x =

pX
i=1

�ivi;8i 2 [1; p]�i � 0;

pX
i=1

�i = 1

)
:

Symmetrically, we denote by fw1; :::; wqg the vertices of B. We show that C is
a polyhedron by showing that it admits as (not necessarily minimal) Minkowski's
representation the set V = fvi � wjg1�i�p;1�j�q. It is obvious that V is included in
C. By convexity of C, the polytope generated by V , which is the convex hull of V ,
is included in C. We still have to show that C is included in this polyhedron. Let
z = x � y be any point of C. x belongs to A and y to B. Thus, there exist some
values �1; :::; �p and �1; :::; �q such that:

8i �i � 0; 8j �i � 0;

pX
i=1

�i = 1;

qX
j=1

�j = 1; x =

pX
i=1

�ivi and y =

qX
j=1

�jwj :
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Hence:

z =

pX
i=1

�ivi �

qX
j=1

�jwj =

pX
i=1

0
@ qX

j=1

�j

1
A�ivi �

qX
j=1

 
pX
i=1

�i

!
�jwj:

Therefore:

z =

pX
i=1

qX
j=1

�i�j(vi �wj); with
X

(i;j)2[1;p]�[1;q]

�i�j = 1

and 8(i; j) 2 [1; p]� [1; q]; �i�j � 0 and : Thus z is a point of the polyhedron gener-
ated by V .

There exists a vector � such that 8x 2 C; �:x < 0. We show this property
by contradiction. Thus, we suppose that:

8�;9x 2 C; �:x � 0: (3)

C is a polyhedron. Therefore, by de�nition, there exists a set of m hyperplanes
aix+ bi � 0 such that: C = \mi=1fxjaix+ bi � 0g [6]. We suppose that there exists
a value i 2 [1;m] such that bi < 0. Then, for any element x of C, aix + bi � 0 ,
(�ai)x � bi < 0. Thus, for any element x of C, (�ai)x < 0 and � = (�ai) does
not satisfy Equation 3 and there is a contradiction. Thus, for any value i 2 [1;m],
bi � 0 and ai:0 � 0 � �bi. Thus, for any value i 2 [1;m], 0 belongs to the set
fxjaix+ bi � 0g and 0 belongs to C, which is impossible.

Building the strictly separating hyperplane. Let � be a vector satisfying the
property we just proved: 8x 2 C; �:x < 0. 8x 2 C; �:x < 0, 8y 2 A;8z 2 B;�y <

�z. A (resp. B) is a polyhedron. Thus any linear form over A (resp. B) reaches its
maximum (resp. minimum) on a vertex, and thus a point, of A (resp. B) [4]. Let yA
(resp. zB) be such a point. We have: 8y 2 A;8z 2 B; �y � �yA < �yB � �z. The
hyperplane de�ned by the equation: �x = �yA+�yB

2 strictly separates A and B. �

Lemma 3 (Another formula to compute the volume of a parallelepiped)

Let ABCDEFGH be a parallelepiped. Let n1 (resp. n2) (resp. n3) be a vector
normal to the pair of planes ((DAEH); (CBFG)) (resp. ((DCGH); (ABFE)))
(resp. ((ABCD); (HEFG))) whose norm is equal to the distance between these

two planes. Then, the volume of the parallelepiped ABCDEFGH is equal to: V =��� jjn1jj2jjn2jj2jjn3jj2n1^n2:n3

���.
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Proof The volume of the parallelepiped is equal to: V = j(HG ^HE):HDj. We
need to explicit the values of HG, HE, and HD as functions of n1, n2, and n3.
We start with HD. Because n1 and n2 are perpendicular to HD, the direction
of HD is equal to � n1^n2

jjn1^n2jj
. Let � be the angle de�ned by the vectors HD and

n3. As the triangle de�ned by H, D, and H + n3 is rectangle, jjHDjj = jjn3jj
j cos�j

hence: HD = � jjn3jj
cos�

n1^n2
jjn1^n2jj

. Besides, cos� = n1^n2
jjn1^n2jj

: n3
jjn3jj

, which implies: HD =

� jjn3jj2n1^n2
n1^n2:n3

. Similarly we obtain the values of HG and HE: HG = � jjn1jj2n2^n3
n1^n2:n3

and HE = � jjn2jj2n3^n1
n1^n2:n3

. Collecting these results we have:

V = jjn1jj2jjn2jj2jjn3jj2j(n2^n3)^(n3^n1):(n1^n2)j
jn1^n2:n3j3

= jjn1jj2jjn2jj2jjn3jj2j[((n2^n3):n1)n3�((n2^n3):n3)n1]:(n1^n2)j
jn1^n2:n3j3

= jjn1jj2jjn2jj2jjn3jj2j[((n2^n3):n1)n3]:(n1^n2)j
jn1^n2:n3j3

= jjn1jj2jjn2jj2jjn3jj2

jn1^n2:n3j

(using the formula u ^ (v ^w) = (u:w)v � (u:v)w). �
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