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Ordonnancement de tâches partageant des �chiers sur

clusters h�et�erog�enes

R�esum�e : Cet article est consacr�e �a l'ordonnancement d'un grand ensemble de
tâches ind�ependantes sur clusters h�et�erog�enes. Les tâches d�ependent de �chiers
(d'entr�ee) qui r�esident initialement sur un processeur mâ�tre. Un �chier donn�e peut
être partag�e par plusieurs tâches, Le rôle du mâ�tre est de distribuer les �chiers aux
processeurs de mani�ere �a ce qu'ils puissent ex�ecuter les tâches. L'objectif, pour le
mâ�tre, est de s�electionner quel �chier envoyer �a quel esclave, et dans quel ordre,
a�n de minimiser le temps d'ex�ecution total. La contribution de cet article est
double. D'un point de vue th�eorique, nous �etablissons des r�esultats de complexit�e
�evaluant la diÆcult�e du probl�eme. D'un point de vue pratique, nous concevons
plusieurs nouvelles heuristiques qui se montrent aussi performantes que les meilleures
heuristiques de [4, 3] bien que leur coût soit d'un ordre de grandeur inf�erieur.

Mots-cl�e : Ordonnancement, clusters h�et�erog�ene, grilles de calcul, tâches ind�epen-
dantes, partage de �chiers, heuristiques.



Scheduling tasks sharing �les on heterogeneous clusters 3

1 Introduction

In this paper, we are interested in scheduling independent tasks onto heterogeneous
clusters. These independent tasks depend upon �les (corresponding to input data,
for example), and diÆculty arises from the fact that some �les may well be shared
by several tasks.

This paper is motivated by the work of Casanova et al. [4, 3], who target the
scheduling of tasks in APST, the AppLeS Parameter Sweep Template [2]. APST
is a grid-based environment whose aim is to facilitate the mapping of application
to heterogeneous platforms. Typically, an APST application consists of a large

number of independent tasks, with possible input data sharing. By large we mean
that the number of tasks is usually at least one order of magnitude larger than the
number of available computing resources. When deploying an APST application,
the intuitive idea is to map tasks that depend upon the same �les onto the same
computational resource, so as to minimize communication requirements. Casanova
et al. [4, 3] have considered three heuristics designed for completely independent
tasks (no input �le sharing) that were proposed in [8]. They have modi�ed these
three heuristics (originally called Min-min, Max-min, and Su�erage in [8]) to adapt
them to the additional constraint that input �les are shared between tasks. As was
already pointed out, the number of tasks to schedule is expected to be very large, and
special attention should be devoted to keeping the cost of the scheduling heuristics
reasonably low.

In this paper, we restrict to the same special case of the scheduling problem as
Casanova et al. [4, 3]: we assume the existence of a master processor, which serves
as the repository for all �les. The role of the master is to distribute the �les to
the processors, so that they can execute the tasks. The objective for the master is
to select which �le to send to which slave, and in which order, so as to minimize
the total execution time. This master-slave paradigm has a fundamental limitation:
communications from the master may well become the true bottleneck of the overall
scheduling scheme. Allowing for inter-slave communications, and/or for distributed
�le repositories, should certainly be the subject of future work. However, we believe
that concentrating on the simpler master-slave paradigm is a �rst but mandatory
step towards a full understanding of this challenging scheduling problem.

The contribution of this paper is twofold. On the theoretical side, we establish
complexity results that assess the diÆculty of the problem. On the practical side,
we design several new heuristics, which are shown to perform as eÆciently as the
best heuristics in [4, 3] although their cost is an order of magnitude lower.

RR n�4819



4 A. Giersch, Y. Robert, F. Vivien

The rest of the paper is organized as follows. The next section (Section 2) is
devoted to the precise and formal speci�cation of our scheduling problem, which we
denote as TasksSharingFiles. Next, in Section 3, we state complexity results,
which include the NP-completeness of the very speci�c instance of the problem
where all �les and tasks have the same size. Then, Section 4 deals with the design
of low-cost polynomial-time heuristics to solve the TasksSharingFiles problem.
We report some experimental data in Section 5. Finally, we state some concluding
remarks in Section 6.

2 Framework

In this section, we formally state the optimization problem to be solved.
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T1 T2 T3 T4 T6 T7 T8 T9 T10T5 T11 T12 T13

File

Task

Figure 1: Bipartite graph gathering the relations between the �les and the tasks.

2.1 Tasks and �les

The problem is to schedule a set of n tasks T = fT1; T2; : : : ; Tng. Theses tasks have
di�erent sizes: the weight of task Tj is tj , 1 � j � n. There are no dependence
constraints between the tasks, so they can be viewed as independent.

However, the execution of each task depends upon one or several �les, and a
given �le may be shared by several tasks. Altogether, there are m �les in the set
F = fF1; F2; : : : ; Fmg. The size of �le Fi is fi, 1 � i � m. We use a bipartite graph
G = (V; E) to represent the relations between �les and tasks. The set of nodes in
the graph G is V = F [ T , and there is an edge ei;j : Fi ! Tj in E if and only if
task Tj depends on �le Fi. Intuitively, �les Fi such that ei;j 2 E correspond to some
data that is needed for the execution of Tj to begin. The processor that will have
to execute task Tj will need to receive all the �les Fi such that ei;j 2 E before it can

INRIA



Scheduling tasks sharing �les on heterogeneous clusters 5

start the execution of Tj. See Figure 1 for a small example, with m = 9 �les and
n = 13 tasks. For instance1, task T1 depends upon �les F1 and F2.

To summarize, the bipartite graph G = (V; E), where each node in V = F [T is
weighted by fi or tj, and where edges in E represent the relations between the �les
and the tasks, gathers all the information on the application.

...

P0

P1 P2 Pp

c1 cpc2

Master

Slave

(w1) (wp)(w2)

Figure 2: Heterogeneous fork-graph.

2.2 Platform graph

The tasks are scheduled and executed on a master-slave heterogeneous platform.
We consider a fork-graph (see Figure 2) with a master-processor P0 and p slaves Pi,
1 � i � p. Each slave Pq has a (relative) computing power wq: it takes tj:wq time-
units to execute task Tj on processor Pq. We let P = fP0; P1; P2; : : : ; Ppg denote
the platform graph.

The master processor P0 initially holds all the m �les in F . The slaves are
responsible for executing the n tasks in T . Before it can execute a task Tj , a
slave must have received from the master all the �les that Tj depends upon. For
communications, we use the one-port model: the master can only communicate with
a single slave at a given time-step. We let cq denote the inverse of the bandwidth of
the link between P0 and Pq, so that fi:cq time-units are required to send �le Fi from
the master to slave Pq. We assume that communications can overlap computations
on the slaves: a slave can process one task while receiving the �les necessary for the
execution of another task.

Coming back to the example of Figure 1, assume that we have a two-slave sched-
ule such that tasks T1 to T6 are executed by slave P1, and tasks T7 to T13 are

1In this example all tasks depend upon two �les exactly. This is because we will re-use the

example later in Section 3.2. In the general case, each task depends upon an arbitrary number of

�les.

RR n�4819



6 A. Giersch, Y. Robert, F. Vivien

executed by slave P2. Overall, P1 will receive six �les (F1 to F4, F6 and F7), and
P2 will receive �ve �les (F5 to F9). In this schedule, �les F6 and F7 must be sent to
both slaves.

To summarize, we assume a fully heterogeneous master-slave paradigm: slaves
have di�erent speeds and links have di�erent capacities. Communications from the
master are serial, and may well become the major bottleneck.

2.3 Objective function

The objective is to minimize the total execution time. The execution is terminated
when the last task has been completed. The schedule must decide which tasks will
be executed by each slave. It must also decide the ordering in which the master
sends the �les to the slaves. We stress two important points:

� some �les may well be sent several times, so that several slaves can indepen-
dently process tasks that depend upon these �les

� a �le sent to some processor remains available for the rest of the schedule. If
two tasks depending on the same �le are scheduled on the same processor, the
�le must only be sent once.

We letTasksSharingFiles(G;P) denote the optimization problem to be solved.
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Figure 3: Complexity results for the problem of scheduling tasks sharing �les.
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3 Complexity

Most scheduling problems are known to be diÆcult [9, 5]. However, some particular
instances of the TasksSharingFiles optimization problem have a polynomial com-
plexity, while the decision problems associated to other instances are NP-complete.
We outline several results in this section, which are all gathered in Figure 3. In Fig-
ure 3, the pictographs read as follows: for each of the six case studies, the leftmost
diagram represents the application graph, and the rightmost diagram represents the
platform graph. The application graph is made up of �les and tasks which all have
the same sizes in situations (a), (b) and (c), while this is not the case in situations
(d), (e) and (f). Tasks depend upon a single (private) �le in situations (a), (b), (d),
(e), which is not the case in situations (c) and (f). As for the platform graph, there
is a single slave in situations (d) and (f), and several slaves otherwise. The platform
is homogeneous in cases (a) and (e), and heterogeneous in cases (b) and (c). The
six situations are discussed in the text below.

3.1 With a single slave

The instance of TasksSharingFiles with a single slave turns out to be more diÆ-
cult than we would think intuitively. In the very special case where each task depends
upon a single non-shared �le, i.e. n = m and E reduces to n edges ei;i : Fi ! Ti, the
problem can be solved in polynomial time (this is situation (d) of Figure 3). Indeed,
it is equivalent to the two-machine ow-shop problem, and the algorithm of John-
son [7] can be used to compute the optimal execution time. According to Johnson's
algorithm we �rst schedule the tasks whose communication time (the time needed to
send the �le) is smaller than (or equal to) the execution time in increasing order of
the communication time. Then we schedule the remaining tasks in decreasing order
of their execution time.

At the time of this writing, we do not know the complexity of the general instance
with one slave (situation (f) of Figure 3). Because Johnson's algorithm is quite
intricate, we conjecture that the decision problem associated to the general instance,
where �les are shared between tasks, is NP-complete. We do not even know what
the complexity is when �les are shared between tasks, but all tasks and �les have
the same size.

RR n�4819



8 A. Giersch, Y. Robert, F. Vivien

3.2 With two slaves

With several slaves, some problem instances have polynomial complexity. First of
all, a greedy round-robin algorithm is optimal in situation (a) of Figure 3: each task
depends upon a single non-shared �le, all tasks and �les have the same size, and the
fork platform is homogeneous. If we keep the same hypotheses for the application
graph but move to heterogeneous slaves (situation (b) of Figure 3), the problem
remains polynomial, but the optimal algorithm becomes complicated: see [1] for a
description and proof.

The decision problem associated to the general instance of TasksSharingFiles
with two slaves writes as follows:

De�nition 1 (TSF2-Dec(G;P,p = 2,K)). Given a bipartite application graph G, a
heterogeneous platform P with two slaves (p = 2) and a time bound K, is it possible

to schedule all tasks within K time-steps?

Clearly, TSF2-Dec is NP-complete, even if there are no �les at all: in that
case, TSF2-Dec reduces to the scheduling of independent tasks on a two-processor
machine, which itself reduces to the 2-PARTITION problem [6] as the tasks have
di�erent sizes. This corresponds to situation (e) in Figure 3, where we do not even
need the private �les. However, this NP-completeness result does not hold in the
strong sense: in a word, the size of the tasks plays a key role in the proof, and there
are pseudo-polynomial algorithms to solve TSF2-Dec in the simple case when there
are no �les (see the pseudo-polynomial algorithm for 2-PARTITION in [6]).

The following theorem states an interesting result: in the case where all �les and
tasks have unit size (i.e. fi = tj = 1), the TSF2-Dec remains NP-complete. Note
that in that case, the heterogeneity only comes from the computing platform. This
corresponds to situation (c) in Figure 3.

Theorem 1. TSF2-Dec(G;P,p = 2,fi = tj = 1,K) is NP-complete.

Proof. Obviously, TSF2-Dec(G;P,p = 2,fi = tj = 1,K) belongs to NP. To prove its
completeness, we use a reduction from Clique, which is NP-complete [6]. Consider
an arbitrary instance I1 of Clique: given a graph Gc = (Vc; Ec), and a bound B,
is there a clique in Gc (i.e. a fully connected sub-graph) of size B? Without loss of
generality, we assume that jVcj � 9 and 6 � B(B � 1) < jEcj.

We construct the following instance I2 of TSF2-Dec(G;P,p = 2,fi = tj = 1,K).
We let F = Vc [ X and T = Ec [ fTyg (see Figure 4), which de�nes V = F [ T .
Here, X is a collection of x = jXj additional �les, so there is a total of jVcj+ x �les,

INRIA
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Figure 4: The bipartite application graph used in the proof.

2 4 9

731

6

8 5

Figure 5: The original graph Gc used to build the bipartite graph.

one per node in the original graph Gc and one per new �le in X. As for tasks, there
are as many tasks as edges in the original graph Gc, plus an additional task Ty.

The relations between tasks and �les are de�ned as follows. First, there is an
edge from each �le in F to task Ty; as a consequence, the slave processor that will
execute Ty will need to have received all the �les in F from the master before it can
begin the execution of Ty. Second, there is an edge from a node (�le) v 2 Vc � F to
a node (task) e 2 Ec � T if and only if v was one of the two end-points of edge e in
Gc. In the rightmost part of Figure 4, we recognize the bipartite graph of Figure 1,
with di�erent labels. In fact, the latter bipartite graph has been obtained from the
original graph Gc shown in Figure 5. The �les are the nodes in Gc, and the tasks
are the edges in Gc. this explains why each task (edge) exactly depends upon two
�les (the end-points of the edge). We see that Gc has a clique of size B = 4 (nodes
6 to 9).

As speci�ed in the problem, all �les and tasks have unit size. To complete the
description of the application, we let s = B(B�1)

2 , r = jEcj � s (note that s < r by
hypothesis), and we de�ne x = (3r� 1):jVcj � 2B+2. We check that x � 1: indeed,
s � 3, B � 3, jVcj � B and r � 4; we derive x � 9B + 2.

There remains to describe the computing platform. The characteristics of the
two slave processors are: w1 = 3jVcj, w2 = 3(r+1)jVcj�4

s
, c1 = 1 and c2 = 2. Note

that w2 > w1, because w2 �w1 = 3( r
s
� 1)jVcj+

3jVcj�4
s

> 0. Thus, w2 > 2. Finally,
we de�ne the scheduling bound: K = 2 + 3(r + 1)jVcj. Note that K = 6 + s:w2.

RR n�4819



10 A. Giersch, Y. Robert, F. Vivien

Clearly, the instance I2 can be constructed in time polynomial in the size of I1.
Now we have to show that I2 admits a solution if and only if I1 has one.

Assume �rst that I1 has a solution, i.e. that Gc possesses a clique of size B. Let
C = fv1; v2; : : : ; vBg denote the B vertices in the clique of Gc. The intuitive idea is
the following: after sending to slave P2 the B �les corresponding to the B nodes in
C, P2 will be able to process the s tasks that correspond to the edges connecting the
nodes of C without receiving any extra �le from the master. The schedule is de�ned
as follows:

� First, at time-steps t = 0 and t = 1, two �les are sent by the master to P1.
These two �les are chosen so that they correspond to any two nodes va and vb
of Vc that are connected in Gc (i.e. the edge (va; vb) belongs to Ec) and that
do not both belong to the clique C: at time-step t = 2, P1 is able to start the
execution of the task that corresponds to the edge (va; vb). P1 terminates this
task at time-step 2 + w1 = 2 + 3jVcj.

� Next, the B �les that correspond to the clique C are sent to P2. As soon
as it has received two �les, P2 can start executing one task (the two �les
correspond to two connected nodes, therefore the task that represents the edge
between them is ready for execution). P2 has received the B �les at time-step
2c1 +Bc2 = 2+ 2B, i.e. before it completes the execution of the �rst task, at
time-step 2c1 + 2c2 + w2 = 6 + w2 > 6 + w1 = 6 + 3jVcj > 6 + 3B, because
B � jVcj. Therefore, P2 can process the s tasks corresponding to edges in the
clique C without interruption (i.e. without waiting to receive more �les), until
time-step 2c1 + 2c2 + s:w2 = 6 + s:w2 = K.

� Finally, after sending the B �les to P2, all �les but two are sent to P1: we
do not re-send the �rst two �les, but we send all the others, i.e. jVcj � 2 + x

�les. We send the jVcj � 2 �les corresponding to nodes in Vc before the x �les
corresponding to nodes in X. When P1 terminates its �rst task, at time-step
2 + 3jVcj, it has already received the �rst jVcj � 2 �les (the last one is received
at time-step 2c1 + Bc2 + (jVcj � 2)c1 = jVcj + 2B). P1 can process the r

tasks corresponding to edges in Gc that do not belong to the clique C without
interruption, until time-step 2c1 + rw1 = K � w1. At that time-step, P1 has
just received the x last �les, because (jVcj+x)c1+Bc2 = K�w1. P1 processes
then the last task Ty, and the scheduling terminates within K times-steps.

We have derived a valid solution to our scheduling instance I2.
Assume now that I2 has a solution. We proceed in several steps:

INRIA



Scheduling tasks sharing �les on heterogeneous clusters 11

1. Necessarily, P1 executes task Ty. Otherwise, P2 would execute it, but Ty
requires jVcj + x �les, and the time needed by P2 would be at least (jVcj +
x)c2 + w2 = 2(K � w1 � 2B) + w2 > 2(K � 5jVcj) > K (because K � 15jVcj),
a contradiction.

2. P1 cannot execute more than K�2c1
w1

= r + 1 tasks.

3. All �les sent by the master after time-step K � w1 are useless, because the
tasks that they might free for execution will not be terminated at time-step
K, neither by P1 nor by P2 (remember that w2 > w1). Because P1 executes
Ty, it receives jVcj+x �les. But K�w1 = (jVcj+x)c1+Bc2, so that P2 cannot
receive more than B tasks from the master.

4. P2 cannot execute more than s tasks, because K�2c2
w2

= K�6
w2

+ 2
w2

= s+ 2
w2

<

s+ 1.

Overall, a total of r + s+ 1 tasks are executed. Since P1 cannot execute more than
r + 1, and P2 more than s, they do execute r + 1 and s tasks respectively. But P2

executes s tasks and receives no more than B �les: these �les de�ne a clique of size
B in Gc, thereby providing a solution to I1.

4 Heuristics

In this section, we �rst recall the three heuristics used by Casanova et al. [4, 3]. Next
we introduce several new heuristics, whose main characteristic is a lower computa-
tional complexity.

4.1 Reference heuristics

Because our work was originally motivated by the paper of Casanova et al. [4, 3], we
have to compare our new heuristics to those presented by these authors, which we
call reference heuristics. We start with a description of these reference heuristics.

Structure of the heuristics. All the reference heuristics are built on the model
presented in Figure 6.

Objective function. For all the heuristics, the objective function is the same.
Objective(Tj, Pi) is indeed the minimum completion time (MCT) of task Tj if

RR n�4819



12 A. Giersch, Y. Robert, F. Vivien

1: S  T S is the set of the tasks that remain to be scheduled

2: while S 6= ; do
3: for each task Tj 2 S and each processor Pi do

4: Evaluate Objective(Tj, Pi)
5: Pick the \best" couple of a task Tj 2 S and a processor Pi according to

Objective(Tj, Pi)
6: Schedule Tj on Pi as soon as possible
7: Remove Tj from S

Figure 6: Structure of the reference heuristics.

mapped on processor Pi. Of course, the computation of this completion time takes
into account:

1. the �les required by Tj that are already available on Pi (we assume that any
�le that once was sent to processor Pi is still available and do not need to be
resent);

2. the time needed by the master to send the other �les to Pi, knowing what
communications are already scheduled;

3. the tasks already scheduled on Pi.

Chosen task. The heuristics only di�er by the de�nition of the \best" couple (Tj ,
Pi). More precisely, they only di�er by the de�nition of the \best" task. Indeed, the
\best" task Tj is always mapped on its most favorable processor (denoted P (Tj)),
i.e. on the processor which minimizes the objective function:

Objective(Tj ; P (Tj)) = min
1�q�p

Objective(Tj ; Pq):

Here is the criterion used for each reference heuristic:

Min-min: the \best" task Tj is the one minimizing the objective function when
mapped on its most favorable processor:

Objective(Tj ; P (Tj)) = min
Tk2S

min
1�l�p

Objective(Tk; Pl):

Max-min: the \best" task is the one whose objective function, on its most favorable
processor, is the largest:

Objective(Tj ; P (Tj)) = max
Tk2S

min
1�l�p

Objective(Tk; Pl):

INRIA



Scheduling tasks sharing �les on heterogeneous clusters 13

Su�erage: the\best" task is the one which will be the most penalized if not mapped
on its most favorable processor but on its second most favorable processor, i.e.
the \best" task is the one maximizing:

min
Pq 6=P (Tj)

Objective(Tj ; Pq)�Objective(Tj ; P (Tj)):

Su�erage II and Su�erage X: these are re�ned version of the Su�erage heuris-
tic. The penalty of a task is no more computed using the second most favorable
processor but by considering the �rst processor inducing a signi�cant increase
in the completion time. See [4, 3] for details.

Computational complexity. The loop on Step 3 of the reference heuristics com-
putes the objective function for any pair of processor and task. For each processor,
this computation has a worst case complexity of O(jSj + jEj), where E is the set of
the edges representing the relations between �les and tasks (see Section 2.1). Indeed,
each remaining task must be considered and in the worst case computing the objec-
tive function for a single task has a cost proportional to jEj (see for example task Ty
in Figure 4). Hence, the overall complexity of the heuristics is: O(p:n2 + p:n:jEj).
The complexity is even worse for Su�erage II and Su�erage X, as the processors
must be sorted for each task, leading to a complexity of O(p:n2: log p+ p:n:jEj).

4.2 Structure of the new heuristics

When designing new heuristics, we took special care to decreasing the computational
complexity. The reference heuristics are very expensive for large problems. We
aimed at designing heuristics which are an order of magnitude faster, while trying
to preserve the quality of the scheduling produced.

In order to avoid the loop on all the pairs of processors and tasks of Step 3 of the
reference heuristics, we need to be able to pick (more or less) in constant time the
next task to be scheduled. Thus we decided to sort the tasks a priori according to
an objective function. However, since our platform is heterogeneous, the task char-
acteristics may vary from one processor to the other. For example, Johnson's [7]
criterion which splits the tasks into two sets (communication time smaller than, or
greater than, computation time) depends on the processors characteristics. There-
fore, we compute one sorted list of tasks for each processor. Note that this sorted
list is computed a priori and is not modi�ed during the execution of the heuristic.

Once the sorted lists are computed, we still have to map the tasks to the proces-
sors and to schedule them. The tasks are scheduled one-at-a-time. When we want
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14 A. Giersch, Y. Robert, F. Vivien

to schedule a new task, on each processor Pi we evaluate the completion time of the
�rst task (according to the sorted list) which has not yet been scheduled. Then we
pick the pair task/processor with the lowest completion time. This way, we obtain
the structure of heuristics presented in Figure 7.

1: for any processor Pi do
2: for any task Tj 2 T do

3: Evaluate Objective(Tj, Pi)
4: Build the list L(Pi) of the tasks sorted according to the value of Objec-

tive(Tj , Pi)
5: while there remain tasks to schedule do

6: for any processor Pi do
7: Let Tj be the �rst unscheduled task in L(Pi)
8: Evaluate CompletionTime(Tj, Pi)
9: Pick the couple of a task Tj and a processor Pi minimizing Completion-

Time(Tj , Pi)
10: Schedule Tj on Pi as soon as possible
11: Mark Tj as scheduled

Figure 7: Structure of the new heuristics.

We still have to de�ne the objective functions used to sort the tasks. This is the
object of the next section.

4.3 The objective functions

The intuition behind the following four objective functions is quite obvious:

Duration: we just consider the overall execution time of the task as if it was the
only task to be scheduled on the platform:

Objective(Tj ; Pi) = tj :wi +
X

ek;j2E

fk:ci:

The tasks are sorted by increasing objectives, which mimics the Min-min
heuristic.

Payo�: when mapping a task, the time spent by the master to send the required
�les is payed by all the (waiting) processors as the master can only send �les
to a single slave at a time, but the whole system gains the completion of the
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task. Hence, the following objective function encodes the payo� of scheduling
the task Tj on the processor Pi:

Objective(Tj ; Pi) =
tjP

ek;j2E
fk
:

The tasks are sorted by decreasing payo�s. Furthermore, the order of the tasks
does not depend on the processor, so only one sorted list is required with this
objective function. Note that the actual objective function to compute the
payo� of scheduling task Tj on processor Pi would be: Objective(Tj ; Pi) =

tj :wiP
ek;j2E

fk:ci
; as the factors wi and wi do not change the relative order of the

tasks on a given processor, we just dropped these factors.

Advance: to keep a processor busy, we need to send it all the �les required by
the next task that it will process, before it ends the execution of the current
task. Hence the execution of the current task must be larger than the time
required to send the �les. We tried to encode this requirement by considering
the di�erence of the computation- and communication-time of a task. Hence
the objective function:

Objective(Tj ; Pi) = tj :wi �
X

ek;j2E

fk:ci:

The tasks are sorted by decreasing objectives.

Johnson: we sort the tasks on each processor as Johnson does for a two-machine
ow shop (see Section 3.1).

Communication: as the communications may be a bottleneck we consider the
overall time needed to send the �les a task depends upon as if it was the only
task to be scheduled on the platform:

Objective(Tj ; Pi) =
X

ek;j2E

fk:

The tasks are sorted by increasing objectives, like for Duration. As for Payo�,
the sorted list is processor independent, and only one sorted list is required
with this objective function. This simple objective function is inspired by
the work in [1] on the scheduling of homogeneous tasks on an heterogeneous
platform.
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Computation: symmetrically, we consider the execution time of a task as if it was
not depending on any �le:

Objective(Tj ; Pi) = tj:

The tasks are sorted by increasing objectives, like for Duration. As for Payo�,
the sorted list is processor independent, and only one sorted list is required
with this objective function. This simple objective function is the counterpart
(for computations) of the previous one (for communications).

4.4 Additional policies

In the de�nition of the previous objective functions, we did not take into account
the fact that the �les are potentially shared between the tasks. Some of them will
probably be already available on the processor where the task is to be scheduled, at
the time-step we would try to schedule it. Therefore, on top of the previous objective
functions, we add the following additional policies. The goal is (to try) to take �le
sharing into account.

Shared: In the evaluation of the communication times performed for the objective
functions, we replace the sum of the �le sizes by the weighted sum of the �le
sizes divided by the number of tasks depending on these �les. In this way, we
obtain new objective functions which have the same name than the previous
one plus the tag \shared". Here are the mathematical expressions for the �rst
three objectives:

Duration-shared:

Objective(Tj ; Pi) = tj:wi +
X

ek;j2E

fk

jfTl j ek;l 2 Egj
:ci:

Payo�-shared:

Objective(Tj ; Pi) =
tjP

ek;j2E
fk

jfTl j ek;l2Egj

:

Advance-shared:

Objective(Tj ; Pi) = tj:wi �
X

ek;j2E

fk

jfTl j ek;l 2 Egj
:ci:
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We do not give the mathematical expression for Johnson-shared, because it
is cumbersome (but not diÆcult): as for Johnson, we have to split the tasks
onto two subsets.

Readiness: for a given processor Pi, and at a given time, the \ready" tasks are the
ones whose �les are already all on Pi. Under the Readiness policy, if there is
any ready task on processor Pi at Step 7 of the heuristics, we pick one ready
task instead of the �rst unscheduled task in the sorted list L(Pi).

Locality: in order to try to decrease the amount of �le replication, we (try to) avoid
mapping a task Tj on a processor Pi if some of the �les that Tj depends upon
are already present on another processor. To implement this policy, we modify
Step 7 of the heuristics. Indeed, we no longer consider the �rst unscheduled
task in L(Pi), but the next unscheduled task which does not depend on �les
present on another processor. If we have scanned the whole list, and if there
remains some unscheduled tasks, we restart from the beginning of the list with
the original task selection scheme (�rst unscheduled task in L(Pi)).

Finally, we obtain as many as 48 variants, since any combination of the three
additional policies may be used for the six base objective functions.

4.5 Computational complexity

Computing the value of an objective function for all tasks on all processors has
a cost of O(p:(n + jEj)). So the construction of all the sorted lists has a cost of
O(p:n: log n + p:jEj), except for Payo� and Payo�-shared which only require a
single sorted list and whose complexity is thus O(n: log n + jEj). The execution of
the loop at Step 5 of the heuristics (see Figure 7) has an overall cost of (p:n:jEj).
Hence the overall execution time of the heuristics is:

O(p:n:(log n+ jEj))

We have replaced the term n2 in the complexity of the reference heuristics by the
term n logn. The experimental results will assert the gain in complexity. Note that
all the additional policies can be implemented without increasing the complexity of
the base cases.
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5 Experimental results

In order to compare our heuristics and the reference heuristics, we have simulated
their executions on randomly built platforms and graphs. We have conducted a very
large number of experiments, which we summarize in this section.

5.1 Experimental platforms

Processors: we have recorded the computational power of the di�erent computers
used in our laboratories (in Lyon and Strasbourg). From this set of values, we
randomly pick values whose di�erence with the mean value was less than the
standard deviation. This way we de�ne a realistic and heterogeneous set of 20
processors.

Communication links: the 20 communication links between the master and
the slave are built along the same principles as the set of processors.

Communication to computation cost ratio: The absolute values of the com-
munication link bandwidths or of the processors speeds have no meaning (in
real life they must be pondered by application characteristics). We are only
interested by the relative values of the processors speeds, and of the commu-
nication links bandwidths. Therefore, we normalize processor and commu-
nication characteristics. Also, we arbitrarily impose the communication-to-
computation cost ratio, so as to model three main types of problems: compu-
tation intensive (ratio=0.1), communication intensive (ratio=10), and inter-
mediate (ratio=1).

5.2 Tasks graphs

We run the heuristics on the following four types of tasks graphs. In each case, the
size of the �les and tasks are randomly and uniformly taken between 0.5 and 5.

Two-one: each task depends on exactly two �les: one �le which is shared with
some other tasks, and one un-shared �le.

Random: each task randomly depends on 1 up to 50 �les.

Partitioned: this is a type of graph intermediate between the two previous ones;
the graph is divided into 20 chunks of 100 tasks, and on each chunk each task
randomly depends on 1 up to 10 �les. The whole graph contains at least 20
di�erent connected components.
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Scheduling tasks sharing �les on heterogeneous clusters 19

Forks: each graph contains 100 fork graphs, where each fork graph is made up of
20 tasks depending on a single and same �le.

Each of our graphs contains 2000 tasks and 2500 �les, except for the fork graphs
which also contain 2000 tasks but only 100 �les.

In order to avoid any interference between the graph characteristics and the
communication-to-computation cost ratio, we normalize the sets of tasks and �les
so that the sum of the task sizes equals the sum of the �le sizes.

5.3 Results

Heuristic Relative Standard Relative Standard
performance deviation cost deviation

Su�erage 1.110 0.1641 376.7 153.4

Min-min 1.130 0.1981 419.2 191.7

Computation+readiness 1.133 0.1097 1.569 0.4249

Computation+shared+readiness 1.133 0.1097 1.569 0.4249

Duration+locality+readiness 1.133 0.1295 1.499 0.4543

Duration+readiness 1.133 0.1299 1.446 0.3672

Payo�+shared+readiness 1.138 0.126 1.496 0.6052

Payo�+readiness 1.139 0.1266 1.246 0.2494

Payo�+shared+locality+readiness 1.145 0.1265 1.567 0.5765

Payo�+locality+readiness 1.145 0.1270 1.318 0.2329

Table 1: Relative performance and cost of the best ten heuristics.

Table 1 summarizes all the experiments. In this table, we report the best ten
heuristics, together with their cost. This is a summary of 12; 000 random tests
(1; 000 tests over all four graph types and three communication-to-computation cost
ratios). Each test involves 53 heuristics (5 reference heuristics and 48 combinations
for our new heuristics). For each test, we compute the ratio of the performance of all
heuristics over the best heuristic. The best heuristic di�ers from test to test, which
explains why no heuristic in Table 1 can achieve an average relative performance
exactly equal to 1. In other words, the best heuristic is not always the best of each
test, but it is closest to the best of each test in the average. The optimal relative
performance of 1 would be achieved by picking, for any of the 12; 000 tests, the best
heuristic for this particular case.
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20 A. Giersch, Y. Robert, F. Vivien

We see that Su�erage gives the best results: in average, it is within 11% of the
optimal. The next nine heuristics closely follow: they are within 13% to 14:5% of
the optimal. Out of these nine heuristics, only Min-min is a reference heuristic.
Clearly, the readiness policy has a major impact on the results.

In Table 1, we also report computational costs (CPU time needed by each heuris-
tic). The theoretical analysis is con�rmed: our new heuristics are an order of mag-
nitude faster than the reference heuristics.

As a conclusion, given their good performance compared to Su�erage, we be-
lieve that the eight new variants listed in Table 1 provide a very good alternative to
the costly reference heuristics.

We report more detailed performance data in Figures 8 and 9, which represent
a dual view of the experiments. We selected 24 representative variants of the 48
heuristics, and we report the totality of the corresponding data in the Appendix.
In Figure 8, we report the relative performance of these variants, averaging on all
graphs: this is to show the impact of the communication-to-computation cost ratio.
In Figure 9, we report the relative performance of the 24 variants, averaging on
communication-to-computation cost ratios: this is to show the impact of the graph
type. We state from Figure 8 that:

� the Advance heuristic and its variants perform badly

� when the communication-to-computation cost ratio is low, many heuristics are
not within 30% of the optimal; when it is high, the performance of all heuristics
is globally better (most of them are within 15% of the optimal). In the latter
case, it is likely that the communications from the master become the true
bottleneck of all scheduling strategies.

Similarly, we see from Figure 9 that:

� the Computation+readiness outperforms by 20% all the other heuristics,
including the reference heuristics, for the graphs of type Forks.

� however, the Duration+readiness gives more stable results for all types of
graphs.

Overall,Computation+readiness andDuration+readiness are the recommended
heuristics.
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Figure 8: Relative performances of the schedules produced by the di�erent heuristics
average on four types of graphs with a communication to computation ratio equal,
from top to bottom, to: 0.1, 1.0, and 10.
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6 Conclusion

In this paper, we have dealt with the problem of scheduling a large collection of
independent tasks, that may share input �les, onto heterogeneous clusters. On the
theoretical side, we have shown a new complexity result. On the practical side,
we have improved upon the heuristics proposed by Casanova et al. [4, 3]. We have
succeeded in designing a collection of new heuristics which have similar performances
but whose computational costs are an order of magnitude lower.

This work, as the one of Casanova et al., was limited to the master-slave paradigm.
It is intended as a �rst step towards addressing the challenging situation where

� input �les are distributed among several �le servers (several masters) rather
than being located on a single master,

� communication can take place between computational resources (slaves) in ad-
dition to the messages sent by the master(s): some slave may well propagate
�les to another slave while computing.

We hope that the ideas introduced when designing our heuristics will prove useful
for this diÆcult scheduling problem.
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Appendix

In this section, we provide the raw data generated by the experiments for the 24
representative variants that we have selected. In Figures 10 to 13, we plot the actual
execution times (makespans) for each graph type, with the three communication-to-
computation cost ratios from top to bottom in each �gure. Figures 14 to 17 are the
counterpart for relative execution times.

Next, we show in Figure 18 the total �le volume transferred from the master
to the slaves for graphs of types Forks. As expected, the best heuristics are those
which minimize the transfer of the same �le to several slaves. Finally, in Table 2 we
report the relative cost of each heuristic when solving the 12; 000 tests. For each of
the tests, the relative cost of a heuristic is the ratio of the CPU time required by
the heuristic and the minimum of the CPU times required by the heuristics.
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Duration 1.048 1.026 1.06 1.942 1.269

Duration+shared 1.057 1.842 1.076 2.092 1.517

Duration+readiness 1.152 1.395 1.244 1.991 1.446

Duration+locality 1.085 1.292 1.129 2.204 1.427

Payo� 1.032 1.182 1.057 1.01 1.07

Payo�+shared 1.04 2.151 1.073 1.018 1.321

Payo�+readiness 1.134 1.545 1.243 1.062 1.246

Payo�+locality 1.085 1.428 1.138 1.346 1.25

Advance 1.056 1.163 1.121 1.957 1.324

Advance+shared 1.064 1.937 1.116 2.11 1.557

Advance+readiness 1.159 1.405 1.281 2.015 1.465

Advance+locality 1.092 1.432 1.186 2.219 1.482

Johnson 1.138 1.357 1.187 2.382 1.516

Johnson+shared 1.148 2.277 1.191 2.16 1.694

Johnson+readiness 1.207 1.861 1.395 2.379 1.71

Johnson+locality 1.157 1.654 1.283 2.474 1.642

Communication 1.01 1.186 1.046 1.639 1.22

Communication+shared 1.021 2.152 1.062 1.647 1.471

Communication+readiness 1.111 1.466 1.232 1.791 1.4

Communication+locality 1.065 1.43 1.129 1.97 1.398

Computation 1.019 1.099 1.035 2.16 1.328

Computation+shared 1.019 1.099 1.035 2.162 1.329

Computation+readiness 1.123 1.763 1.269 2.119 1.569

Computation+locality 1.072 1.389 1.128 2.304 1.473

Min-min 220.3 728.8 388.4 339.2 419.2

Max-min 214 697.7 330.4 329.3 392.8

Su�erage 227.1 596.5 317 366.2 376.7

Su�erage II 476.2 736.9 532.4 974.2 679.9

Su�erage X 483.9 603.8 511.4 990.1 647.3

Table 2: Relative costs of the heuristics.
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Figure 9: Relative performances of the schedules produced by the di�erent heuristics
average on three communication to computation ratios, for the four types of graphs
(from top to bottom: Two-one, Random, Partitioned, and Forks).
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Figure 10: Execution times of the schedules produced by the di�erent heuristics on
the Two-one graphs with a communication to computation ratio equal, from top to
bottom, to: 0.1, 1.0, and 10.
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Figure 11: Execution times of the schedules produced by the di�erent heuristics on
the Random graphs with a communication to computation ratio equal, from top to
bottom, to: 0.1, 1.0, and 10.
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Figure 12: Execution times of the schedules produced by the di�erent heuristics on
the Partitioned graphs with a communication to computation ratio equal, from top
to bottom, to: 0.1, 1.0, and 10.
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Figure 13: Execution times of the schedules produced by the di�erent heuristics on
the Forks graphs with a communication to computation ratio equal, from top to
bottom, to: 0.1, 1.0, and 10.
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Figure 14: Relative performances of the schedules produced by the di�erent heuris-
tics on the Two-one graphs with a communication to computation ratio equal, from
top to bottom, to: 0.1, 1.0, and 10.
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Figure 15: Relative performances of the schedules produced by the di�erent heuris-
tics on the Random graphs with a communication to computation ratio equal, from
top to bottom, to: 0.1, 1.0, and 10.
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Figure 16: Relative performances of the schedules produced by the di�erent heuris-
tics on the Partitioned graphs with a communication to computation ratio equal,
from top to bottom, to: 0.1, 1.0, and 10.
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Figure 17: Relative performances of the schedules produced by the di�erent heuris-
tics on the Forks graphs with a communication to computation ratio equal, from
top to bottom, to: 0.1, 1.0, and 10.
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Figure 18: Total amount of �les (sum of sizes) transfered by the schedules produced
by the di�erent heuristics on the Forks graphs with a communication to computation
ratio equal, from top to bottom, to: 0.1, 1.0, and 10.
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