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Abstract: This paper is devoted to scheduling a large collection of independent tasks onto a
large distributed heterogeneous platform, which is composed of a set of servers. Each server
is a processor cluster equipped with a file repository. The tasks to be scheduled depend upon
(input) files which initially reside on the server repositories. A given file may well be shared
by several tasks. For each task, the problem is to decide which server will execute it, and
to transfer the required files (those which the task depends upon) to that server repository.
The objective is to find a task allocation, and to schedule the induced communications, so
as to minimize the total execution time. The contribution of this paper is twofold. On the
theoretical side, we establish complexity results that assess the difficulty of the problem. On
the practical side, we design several new heuristics, including an extension of the min-min
heuristic to the decentralized framework, and several lower cost heuristics, which we compare
through extensive simulations.

This report is a revised version of the LIP research report no. 2003-49 / INRIA research
report no. 4976, which it replaces.

Key-words: Scheduling, heterogeneous clusters, grid, independent tasks, file-sharing,
heuristics.

This text is also available as a research report of the Laboratoire de l’Informatique du Parallélisme
http://www.ens-lyon.fr/LIP.



Ordonnancement de tâches partageant des fichiers
provenant d’entrepôts de données distribués (version

révisée)

Résumé : Dans cet article, nous nous intéressons à l’ordonnancement d’un grand ensemble
de tâches indépendantes sur une plate-forme hétérogène distribuée composée d’un ensemble
de serveurs. Chaque serveur est une grappe de processeurs doté d’un entrepôt de données.
Les tâches à ordonnancer dépendent de fichiers (d’entrée) qui sont initialement stockés dans
les entrepôts. Un fichier donné peut être partagé par plusieurs tâches. Pour chaque tâche,
notre problème est de décider sur quel serveur l’exécuter, et de transférer les fichiers néces-
saires (ceux dont dépend la tâche) vers l’entrepôt de ce serveur. L’objectif est de trouver
une allocation des tâches, et un ordonnancement des communications induites, qui min-
imisent le temps total d’exécution. La contribution de cet article est double. Sur le plan
théorique, nous établissons de nouveaux résultats de complexité qui caractérisent la difficulté
du problème. Sur le plan pratique, nous proposons plusieurs nouvelles heuristiques, dont
une extension de l’heuristique min-min aux plates-formes distribuées et des heuristiques de
moindre coût, que nous comparons grâce à des simulations.

Ce rapport est une version révisée du rapport de recherche no 2003-49 du LIP / no 4976
de l’INRIA, qu’il remplace.

Mots-clés : Ordonnancement, clusters hétérogènes, grilles de calcul, tâches indépendantes,
partage de fichiers, heuristiques.
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1 Introduction

In this paper, we are interested in scheduling independent tasks onto collections of heteroge-
neous clusters. These independent tasks depend upon files (corresponding to input data, for
example), and difficulty arises from the fact that some files may well be shared by several
tasks. Initially, the files are distributed among several server repositories. Because of the
computations, some files must be replicated and sent to other servers: before a task can be
executed by a server, a copy of each file that the task depends upon must be made avail-
able on that server. For each task, we have to decide which server will execute it, and to
orchestrate all the file transfers, so that the total execution time is kept minimum.

This paper is a follow-on of two series of work, by Casanova, Legrand, Zagorodnov, and
Berman [3, 4] on one hand, and by Giersch, Robert, and Vivien [8, 9] on the other hand. In [3,
4], Casanova et al. target the scheduling of tasks in APST, the AppLeS Parameter Sweep
Template [1]. APST is a grid-based environment whose aim is to facilitate the mapping
of applications to heterogeneous platforms. Typically, an APST application consists of a
large number of independent tasks, with possible input data sharing (see [4, 3] for a detailed
description of a real-world application). By large we mean that the number of tasks is usually
at least one order of magnitude larger than the number of available computing resources.
When deploying an APST application, the intuitive idea is to map tasks that depend upon
the same files onto the same computational resource, so as to minimize communication
requirements. Casanova et al. have considered three heuristics designed for completely
independent tasks (no input file sharing) that were proposed in [10]. They have modified
these three heuristics (originally called min-min, max-min, and sufferage in [10]) to adapt
them to the additional constraint that input files are shared between tasks.

As pointed out, the number of tasks to schedule is expected to be very large, and special
attention should be devoted to keeping the cost of the scheduling heuristics reasonably low.
In [8, 9], Giersch et al. have introduced several new heuristics, which are shown to perform
as efficiently as the best heuristics in [3, 4] although their cost is an order of magnitude
lower.

However, all the previous references restrict to a very special case of the scheduling
problem: they assume the existence of a master processor, which serves as the repository for
all files. The role of the master is to distribute the files to the processors, so that they can
execute the tasks. The objective for the master is to select which file to send to which slave,
and in which order, so as to minimize the total execution time. This master-slave paradigm
has a fundamental limitation: communications from the master may well become the true
bottleneck of the overall scheduling scheme.

In this paper, we deal with the most general instance of the scheduling problem: we
assume a fully decentralized system, where several servers, with different computing capa-
bilities, are linked through an interconnection network. To each server is associated a (local)
data repository. Initially, the files are stored in one or several of these repositories (some
files may be replicated). After having decided that server Si will execute task Tj , the input
files for Tj that are not already available in the local repository of Si will be sent through
the network. Several file transfers may occur in parallel along disjoint routes.

RR n° 5124



4 A. Giersch, Y. Robert, F. Vivien

The contribution of this paper is twofold. On the theoretical side, we establish a com-
plexity result that assesses the difficulty of the problem. On the practical side, we design
several heuristics. The first heuristic is the extension of the min-min heuristic to the decen-
tralized framework. This extension turns out to be surprisingly difficult, and we detail both
the problems encountered, and the solution that was provided. The next heuristics aim at
retaining the good performances of the min-min variants while reducing the computational
cost by an order of magnitude.

The rest of the paper is organized as follows. The next section (Section 2) is devoted to
the precise and formal specification of our scheduling problem, which we denote as TSFDR

(Tasks Sharing Files from Distributed Repositories). Next, in Section 3, we establish a com-
plexity result, namely the NP-completeness of the very specific instance of the problem where
all files have the same size, all tasks have negligible (zero) cost, and all communication links
have identical bandwidth. After this theoretical result, we move to the design of polynomial
heuristics. In Section 4, we start with the implementation of the min-min heuristic. We
detail the difficulties linked to the routing, and to the ordering of the communications; then
we design two algorithms to schedule a set of communications whose target destination is
the same server (Section 4.2), a crucial step in the implementation of the min-min heuristic
(Section 4.3). In Section 5 we deal with the design of low-cost polynomial-time heuristics
to solve the TSFDR problem. We report some experimental data in Section 6. Finally, we
state some concluding remarks in Section 7.

2 Framework

In this section, we formally state the optimization problem to be solved. We also work out
a toy example.
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File

Task

T1 T2 T3 T4 T5 T6 T7 T8 T9

F1 F2 F3 F4 F5 F6 F7 F8 F9F10 F11

T10

Figure 1: Bipartite graph gathering the relations between the files and the tasks.

2.1 Tasks and Files

The problem is to schedule a set of n tasks T = {T1, T2, . . . , Tn}. Theses tasks have different
sizes: the weight of task Tj is tj , 1 ≤ j ≤ n. There are no dependence constraints between
the tasks, so they can be viewed as independent (a task never takes as input the result of
the computation of another task).

INRIA
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However, the execution of each task depends upon one or several files, and a given file
may be shared by several tasks. Altogether, there are m files in the set F = {F1, F2, . . . , Fm}.
The size of file Fi is fi, 1 ≤ i ≤ m. We use a bipartite graph G = (V, E) to represent the
relations between files and tasks. The set of nodes in the graph G is V = F ∪ T , and there
is an edge ei,j : Fi → Tj in E if and only if task Tj depends on file Fi. Intuitively, files Fi

such that ei,j ∈ E contain data needed as input for the execution of task Tj . The processor
that will have to execute task Tj will need to receive all the files Fi such that ei,j ∈ E before
it can start the execution of Tj . See Figure 1 for a small example, with m = 11 files and
n = 10 tasks. For instance, task T1 depends upon files F1, F2, and F5, and file F5 is an
input to all tasks T1 to T10.

To summarize, the bipartite graph G = (V, E), where each node in V = F∪T is weighted
by fi or tj , and where edges in E represent the relations between the files and the tasks,
gathers all the information on the application.

S4

F4

S5

F3

F2F1

S1

F11F10

S2

F4 F9

S3

F8

F7F5

Figure 2: Platform graph, with the initial distribution of files to the server repositories.

2.2 Platform Graph

The tasks are scheduled and executed on an heterogeneous platform composed of a set
of servers, which are linked through a platform graph P = (S,L). Each node in S =
{S1, . . . , Ss} is a server, and each link li,j ∈ L represents a communication link from server
Si to server Sj . We assume that the graph P is connected, i.e., that there is a path between
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6 A. Giersch, Y. Robert, F. Vivien

any server pair. By default, we assume that all links are bidirectional, hence P is undirected,
but we could easily deal with oriented links.

Each server Si = (Ri, Ci) is composed of a local repository Ri, associated to a local
computational cluster Ci. The files needed by the computations (the tasks) are stored in the
repositories. We assume that a file may be duplicated, and thus simultaneously stored on
several repositories. We make no restriction on the possibility of duplicating the files, which
means that each repository is large enough to hold a copy of all the files. See Figure 2 for
an example of platform.

For a cluster to be able to process a task, the corresponding repository must contain all
the files that the task depends upon. With the previous notations: for cluster Ci to be able
to process task Tj , repository Ri must hold all files Fk such that ek,j ∈ E . Therefore, before
Ci can start the execution of Tj , the server Si must have received from the other server
repositories all the files that Tj depends upon, and which were not already stored in Ri. For
communications, we use the one-port model: at any given time-step, there are at most two
communications involving a given server, one sent and the other received.

As for the cost of communications, consider first the case of adjacent servers in the
platform graph. Suppose that server Si sends the file Fj (stored in its repository Ri) to
another server Sk, to which it is directly linked by the network link li,k = l. We denote
by bl the bandwidth of the link l, so that fj/bl time-units are required to send the file.
Next, for communications involving distant servers, we use a store-and-forward model: we
route the file from one server to the next one, leaving a copy of the file in the repository of
each intermediate server. The cost is the sum of the costs of the adjacent communications.
Leaving copies of transferred files on intermediate servers multiplies the number of potential
sources for each file and is likely to accelerate the processing of the next tasks, hence the
store-and-forward model seems quite well-suited to our problem.

Finally, we suppose that when the necessary files are on a server repository, they are
available for free on its cluster. In other words, we assume no communication time between
a cluster and its associated repository: the cost of intra-cluster messages is expected to be
an order of magnitude lower than that of inter-cluster ones. We also assume that the only
communication costs are due to the communication of files. Indeed, we consider no migration
cost for assigning a task to a cluster. In another model, one could imagine that the code of
a task originally lies on a repository and that it should also be sent to the repository linked
to the cluster the task is assigned to. This model can easily be embedded in ours as one
only need to add to our bipartite graph of relations between files and tasks some “virtual
files” representing the task codes.

As for computation costs, each cluster Ci is composed of heterogeneous processors. More
precisely, Ci gathers ci processors Ci,k, 1 ≤ k ≤ ci. The speed of processor Ci,k is si,k,
meaning that tj/si,k time-units are needed to execute task Tj on Ci,k. A coarser approach
is to view cluster Ci as a single computational resource of cumulative speed

∑ci

k=1 si,k. We
easily model the situation where a given server is composed of a single repository but has
no computational capability: we simply create a (fake) cluster of null speed.

INRIA



Scheduling Tasks Sharing Files from Distributed Repositories (revised version) 7

2.3 Objective Function

The objective is to minimize the total execution time. The execution is terminated when
the last task has been completed. The schedule must decide which tasks will be executed
by each processor of each cluster, and when. It must also decide the ordering in which
the necessary files are sent from server repositories to server repositories. We stress three
important points:

� Some files may well be sent several times, so that several clusters can independently
process tasks that depend upon these files.

� A file sent to some repository remains available on it for the rest of the schedule; so, if
two tasks depending on the same file are scheduled on the same cluster, the file must
only be sent once.

� Initially, a file is available on one or several well-identified servers. But when routing a
file from one of these servers to another one, a copy is left on each intermediate server
repository. Hence all the intermediate servers, in addition to the server which was the
final destination of the file in the communication, become potential sources for the file.

We let TSFDR(G,P) (Tasks Sharing Files from Distributed Repositories) denote the
optimization problem to be solved.

S2 S3 S4 S5

F8

F7F5

S1

T9 T10

F1 F2

F3

F4 F9

F5F3

T4 T8 T6 T7 T5 T1 T2 T3

F10 F11

F5
F5F6

F5F4

Figure 3: Servers, for the platform graph of Figure 2, with tasks assigned to servers, and
the final location of the files. Duplicated files are shown in bold.

2.4 Working Out the Example

Consider the example presented in Figures 1 (application graph) and 2 (platform graph).
On Figure 2, we have also indicated the initial file distribution on the servers. Assume that
the task mapping was decided to be the following, as illustrated on Figure 3:

� Server S1 executes tasks T9 and T10

� Server S2 executes tasks T4 and T8

RR n° 5124



8 A. Giersch, Y. Robert, F. Vivien

� Server S3 executes tasks T6 and T7

� Server S4 executes task T5

� Server S5 executes tasks T1, T2, and T3.

We do not discuss here how to determine such a mapping, although we point out that this is
a difficult procedure, as shown later in the paper. Instead, we focus on the communications
that are required by the mapping. Here is the list of the files needed by each server:

� Server S1 needs files F5 and F10 for T9, and files F5, F10, and F11 for T10

� Server S2 needs files F3, F4, and F5 for T4, and files F5 and F9 for T8

� Server S3 needs files F5 and F7 for T6, and files F5, F7, and F8 for T7

� Server S4 needs files F4, F5, and F6 for T5

� Server S5 needs files F1, F2, and F5 for T1, files F2 and F5 for T2, and files F3 and F5

for T3.

Initially, S1 holds F10 and F11 in its repository, so it needs to receive only file F5. Note that
S1 needs to receive F5 only once, even though it executes two tasks that depend upon this
file. In fact, because each task depends upon F5, each server except S3 needs to receive F5.
In addition to F5, S2 needs to receive file F3; S3 does not need any extra file; S4 needs F4,
F5, and F6, while S5 only needs F5.

Since S3 is the only source for F5, we have to decide an ordering for scheduling the
transfers of F5 to the other processors. There are two routes from S3 to S2 in the platform,
through S4 or through S5, and we have to decide which one to use. Also, we have to (try
to) schedule independent communications in parallel: for instance the transfer of F5 from
S3 to S5 and the transfer of F4 from S2 to S4 can take place in parallel. We come back to
the different scenarios for routing and communication scheduling in Section 4.

3 Complexity

Most scheduling problems are known to be difficult [12, 5], and the TSFDR optimization
problem is no exception. Heterogeneity may come from several sources: files or tasks can
have different weights, while clusters or links can have different speeds. Simple versions of
these weighted problems already are difficult. For instance the decision problem associated
to the instance with no files and two single-processor clusters of equal speed already is
NP-complete: in that case, TSFDR reduces to the scheduling of independent tasks on a
two-processor machine, which itself reduces to the 2-Partition problem [7] as the tasks
have different weights. Conversely, mapping equal-size files and equal-size tasks on a single
server platform with two heterogeneous processors and two links of different bandwidths is
NP-hard too [9].

INRIA
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The aim of this section is to prove that the simple fact of deciding where to move the
files so as to execute the tasks is a difficult combinatorial problem, even in the un-weighted
version where all files have same size and all communication links have same bandwidth. We
even assume that all tasks have zero weight, or equivalently that all clusters have infinite
speed. We then have a mapping problem: we have to map the tasks to the clusters and, for
each task, to gather its required set of files (that are input of the task) on the repository of
the server it is mapped to, with the objective to minimize the number of communications
steps. All communications have unit-time, but independent communications, i.e., involving
distinct senders and distinct receivers, may well take place in parallel. Formally, we state
the decision problem associated to this very particular instance of TSFDR as follows:

Definition 1 (TSFDR-Move-Dec(G,P,K)). Given a bipartite application graph G =
(F ∪ T , E), a platform graph P = (S,L), assuming:

� uniform file sizes (fi = 1),

� homogeneous interconnection network (bi = 1),

� zero processing time (ti = 0 or sj = +∞),

and given a time bound K, is it possible to schedule all tasks within K time-steps?

Theorem 1. TSFDR-Move–Dec(G,P,K) is NP-complete.

Proof. Obviously, TSFDR-Move-Dec(G,P,K) belongs to NP. To prove its completeness,
we use a reduction from the well-known MinCut problem, which is NP-complete [7]. More
precisely we use a restriction of the MinCut problem where each vertex has a large degree,
but we show that this restriction, which we denote as MinCutLargeDegree, remains
NP-complete:

Definition 2 (MinCutLargeDegree(H,B)). Given a non-oriented graph H = (V,E),
with an even number of vertices, and a bound B, 1 ≤ B ≤ |V |, and assuming that each vertex
has a degree at least B+1, is there a partition V = V1∪V2 with |V1| = |V2| = |V |/2, such that
the number of crossing edges does not exceed B: |{e = (u, v) ∈ E | u ∈ V1, v ∈ V2}| ≤ B?

Lemma 1. MinCutLargeDegree(H,B) is NP-complete.

Proof. Obviously, MinCutLargeDegree(H,B) still belongs to NP. To prove its complete-
ness, we use a reduction from the original MinCut problem: consider an arbitrary instance
I1 of MinCut: given a graph H ′ = (V ′, E′), where |V ′| is even, and a bound B′, is there
a partition V ′ = V ′

1 ∪ V ′
2 with |V ′

1 | = |V ′
2 | = |V ′|/2, such that |{e = (u, v) ∈ E′ | u ∈

V ′
1 , v ∈ V ′

2}| ≤ B′? To construct an instance I2 of MinCutLargeDegree, we expend
each vertex v ∈ V ′ so as to form a “private” clique of size B′ + 2, so that each vertex
has a degree at least B′ + 1. The edges of the cliques are the only ones added. Formally,
V = {vi,k, 1 ≤ i ≤ |V ′|, 0 ≤ k ≤ B′ + 1}, and E = {(vi,0, vj,0) | (vi, vj) ∈ E′} ∪ {(vi,k, vi,k′) |
0 ≤ k 6= k′ ≤ B′+1, 1 ≤ i ≤ |V ′|}. Intuitively, vi,0 corresponds to the original vertex vi ∈ V ′

RR n° 5124



10 A. Giersch, Y. Robert, F. Vivien

and vi,j , j ≥ 1, is a new vertex (in the clique). Finally, we let B′ = B. Clearly, the size of
I2 is polynomial in the size of I1.

Assume first that I1 has a solution, i.e., an equal-size partition V ′ = V ′
1 ∪ V ′

2 with no
more than B′ crossing edges. We let V1 = {vi,k | 0 ≤ k ≤ B + 1, vi ∈ V1}, and we let the
other vertices in V2. This leads to an equal-size partition of V . The number of crossing
edges is the same, because each clique has been mapped on the same side of the partition,
and there are no other edges involving new vertices. Hence a solution to I2.

Conversely, assume that I2 has a solution, i.e., an equal-size partition V = V1 ∪ V2 with
no more than B crossing edges. We claim that each clique has been mapped on the same
side of the partition. Otherwise, for a given index i, we would have b vertices vi,k ∈ V1 and
B + 2 − b vertices vi,k ∈ V2, with 1 ≤ b ≤ B + 1. But there are b · (B + 2 − b) > B crossing
edges linking these vertices, a contradiction. Now we easily derive the solution to I1: V ′

1 is
the set of vertices vi such that vi,0 ∈ V1, and similarly for V2. V1 and V2 are of equal size,
and each clique is mapped on the same set, so V1 and V2 have the same number of cliques,
hence V ′

1 and V ′
2 have same cardinal. Finally, all crossing edges are between cliques, hence

their number is the same in the partition V = V1 ∪ V2 as in the partition V ′ = V ′
1 ∪ V ′

2 ,
hence the result.

We now return to the proof of the completeness of TSFDR-Move–Dec(G,P,K). We
start from an arbitrary instance I1 of MinCutLargeDegree: given a graph H = (V,E),
where |V | is even, and a bound B, 1 ≤ B ≤ |V |, and assuming that each vertex has a
degree at least B + 1, is there a partition V = V1 ∪ V2 with |V1| = |V2| = |V |/2, such that
|{e = (u, v) ∈ E | u ∈ V1, v ∈ V2}| ≤ B? Let |V | = 2p, and (without loss of generality)
assume that p ≥ 3 and B ≤ p − 1. See Figure 4 for an illustration with p = 4 and B = 2.

We construct the following instance I2 of TSF2DR-Move-Dec(G,P,K). To each vi ∈
V we associate a file fi ∈ F . We also introduce a collection of new files:

� (p + 1) · B files xi,j , 1 ≤ i ≤ B, 1 ≤ j ≤ p + 1,

� (p − 2) · B files yi,j , 1 ≤ i ≤ B, 1 ≤ j ≤ p − 2,

� and p + 1 files zi, 1 ≤ i ≤ p + 1,

so that there is a total of m = 3p + 1 + B · (2p − 1) files in F .
As for tasks, there are as many tasks as edges in the original graph H, plus B additional

tasks, so that T comprises n = |E|+B tasks. More specifically, we create a task Ti,j for each
edge e = (vi, vj) ∈ E, and we add B tasks denoted as T ′

i , 1 ≤ i ≤ B. The relations between
tasks and files are defined as follows. First, if (vi, vj) ∈ E, there are two edges in E , one from
file fi to task Ti,j , and the other from fj to Ti,j . The files fi and fj are not the only inputs
of task Ti,j , which also depends upon all files zk. In other words, we add (p + 1) · |E| edges
(zk, Ti,j) in E . Then, the last B tasks T ′

i all have 2p− 1 input files: given i, there is an edge
from each xi,j and from each yi,j to T ′

i . In summary, there are (p + 3) · |E| + (2p − 1) · B
edges in E . See Figure 5 for an illustration.

There remains to describe the platform graph P. There are 2p + 2B + 2 servers in P,
which we denote Fi, for 1 ≤ i ≤ 2p, Xi and Yi, for 1 ≤ i ≤ B, and W1 and W2. There

INRIA
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f4f5

f6
f7f8

f1 f3

f2

Figure 4: The original graph in the MinCutLargeDegree instance.

is a communication link from each Fi to W1, to W2, and to each Xj , which amounts to
2p · (B + 2) links. There are B additional links, namely from Yi to Xi, hence a total of
2p · (B + 2) + B links in P. See Figure 6 for an illustration. The initial distribution of files
to server repositories is the following:

� file fi is stored in Fi, for 1 ≤ i ≤ 2p,

� files xi,j , 1 ≤ j ≤ p + 1, are stored in Xi, for 1 ≤ i ≤ B,

� files yi,j , 1 ≤ j ≤ p − 2, are stored in Yi, for 1 ≤ i ≤ B,

� and files zk, 1 ≤ k ≤ p+1, are duplicated B +2 times, to be stored in W1, in W2, and
in each Xi, 1 ≤ i ≤ B.

Finally, we let K = p for the scheduling bound. This completes the description of I2, whose
size is clearly polynomial in the size of I1. As specified in the problem, all files have unit
size, all communication links have unit bandwidth, and computation is infinitely fast.

Now we have to show that I2 admits a solution if and only if I1 has one. Assume first
that I1 has a solution, i.e., that there is a partition V = V1 ∪ V2 with |V1| = |V2| = p, such
that b = |{e = (u, v) ∈ E | u ∈ V1, v ∈ V2}| ≤ B. We decide to compute task T ′

i in server
Xi. For each edge (vi, vj) ∈ E such that both vi and vj belong to V1, we execute task Ti,j

in server W1. We make a similar decision if both vi and vj belong to V2, then executing
the task in W2. There remains b tasks to allocate, those corresponding to crossing edges.
Since b ≤ B, we assign one of these tasks to each of the first Xi servers, 1 ≤ i ≤ b. This
allocation implies B · (p − 2) + 2p + 2b communications, namely p − 2 for each task T ′

i , one
for each file fi to either W1 or W2, and two for each crossing edge. We have to orchestrate
these communications within K = p time-steps, without violating any one-port constraint.
Intuitively, W1 receives p files fi, where vi ∈ V1, and similarly for W2: these 2p messages
are independent and can be scheduled at any time-step. Each Xi receives p − 2 files yi,j

from Yi, so it has two time-slots left, exactly what is needed to receive the two files needed
to execute one crossing edge task. Each server Fi sends its file fi at most B + 1 times, one
time to one of the two W servers, and as many times as vi is an incident vertex to a crossing
edge. Rather than describing the schedule by extension, which would be cumbersome, we
resort to the big artillery: we build a bipartite graph with senders on one side (the F and
Y servers), receivers on the other side (the X and W servers), and we insert one edge for
each communication to be scheduled. As B + 1 ≤ p, the maximal degree of each node in
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Figure 5: The bipartite application graph used in the reduction.
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Figure 6: The platform graph used in the reduction.

the graph does not exceed p. König’s edge coloring theorem [11, chapter 20] ensures that
we can partition all the edges into p disjoint matchings, and we implement one matching
(which by definition involves independent communications) per time-step.

Overall, we obtain a valid scheduling to execute all tasks within p time-steps, hence a
solution to I2.

Assume now that I2 has a solution. We proceed in several steps:

1. Necessarily, server Xi executes task T ′
i . Otherwise, if another server would execute it,

the p+1 files xi,j (for all j) which reside in (the repository of) Xi should be transferred
to the other server; since Xi is the only source for these files, this would require p + 1
outgoing messages from Xi, which is impossible within p steps.

2. With the same reasoning, a server labeled F or Y cannot execute any of the tasks
Ti,j , because these tasks depend upon the p+1 files zk whose sources lie in the servers
labeled X, and in W1 and W2.

3. Because Xi executes T ′
i , it must receive the p−2 files yi,j (for all j), whose only source

is server Yi. Hence Xi can receive at most two other files during the p steps of the
schedule. As a consequence, Xi can execute at most one task Tj,k, if it indeed receive
the two missing files.

4. How many files fi have been received by W1 and W2? Let V1 denotes the set of the
files fi sent by the F servers to W1, and V2 those sent to W2. We do not know yet
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whether some files have been sent to both W1 and W2. But assume for a while that a
given file fi has neither been sent to W1 nor to W2. All the tasks Ti,j , where (i, j) ∈ E,
must have been executed elsewhere. The only candidates are servers labeled X. But
there are B of them, and each can execute at most one such task, while the degree of
vi in H is at least B + 1, a contradiction.

5. Therefore, each file fi has been sent either to W1 or to W2 (or both). But there is
a total of 2p files to send to two servers within p time-steps: each server can receive
at most p files. So no file has been sent twice. We conclude that V1 and V2 form a
partition of V , with |V1| = |V2| = p.

6. There remains to show that there are no more than B edges crossing the partition
V = V1 ∪ V2. But these crossing edges correspond to tasks that can only be executed
by the X servers, hence the result.

Finally, we have characterized the solution to I1.

4 Adapting the min-min Scheme

As the TSFDR scheduling problem is NP-complete, we look for polynomial heuristics to
solve it. Due to the presence of weights in tasks, in files, and in the platform graph, approxi-
mation algorithms are not likely to be feasible. Therefore, considering the work of Casanova
et al. [3, 4] for master-slave systems with a single server, we start by adapting the min-min
scheme. During this study, we will justify some of our assumptions and simplifications con-
cerning the communication model. Later, in Section 5, we introduce several new heuristics,
whose main characteristic is a lower computational complexity than that of the min-min
scheme.

This section is organized as follows. We recall the basic principle of the min-min heuristic
in Section 4.1. In Section 4.2, we detail the difficulties linked to the routing, and those related
to the ordering of the communications. Then we design two algorithms to schedule a set of
communications whose target destination is the same server, a crucial step when allocating
a new task to a server. We outline the final design of the min-min heuristic in Section 4.3.

4.1 Principle of the min-min Scheme

The principle of the min-min scheme is quite simple:

� While there remain tasks to be scheduled do

1. for each task Tk that remains to be scheduled, and each processor Ci,j in the
system, evaluate the Minimum Completion Time (MCT) of Tk if mapped on
Ci,j ;

2. pick a couple (Ci,j , Tk) with minimum MCT, and schedule the task Tk on the
processor Ci,j .
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The difficulty with this heuristic is to evaluate the Minimum Completion Time (MCT).
When trying to schedule a task on a given processor, one has to take into account which
required files already reside in the corresponding repository, and which should be routed
through the network of servers. It is straightforward to determine which communications
should take place. However, the scheduling of these communications is NP-complete in the
general case, as discussed below.

Once we have decided how to schedule the communications, there only remains to eval-
uate the computation time. We heuristically decide to view a whole cluster as a single
processor whose processing power is the sum of the processing powers of the cluster proces-
sors (the coarse-grain approach alluded to in Section 2.2). The start date for the execution
of the new task is set as the latest date between (1) the arrival of the last of the necessary
files, and (2) the end of the (coarse evaluation of the) computation of the tasks assigned so
far to the cluster. With this simplified coarse-grain view for computations, the only problem
we are left with is the scheduling of the communications.

4.2 Scheduling the Communications

As the tasks are allocated on processors one at a time, we deal with the situation where all
communications have the same destination (namely the server that will execute the task).
In this section, we first give some complexity results, and then we present two possible
algorithms to schedule the communications.

Complexity of Scheduling Communications with Free Routing

In the one-port model, if the routing in the platform graph is not fixed, then this simple
scheduling problem already is NP-hard. We first formally define the decision problem and
then prove its NP-completeness:

Definition 3 (CommSchedFreeRoute(P,M, D, T )). Given a platform graph P = (S,L),
a finite set M of communications of same destination D, and a time bound T , is there a
valid scheduling of the communications whose makespan is not greater than T? Each ele-
ment of M is a couple (Si, s) representing the communication of a file of size s, from the
server Si to the destination server D.

Theorem 2. CommSchedFreeRoute(P,M, D, T ) is NP-complete.

Proof. Obviously, CommSchedFreeRoute(P,M, D, T ) belongs to NP. To prove its com-
pleteness, we use a reduction from 2-Partition, which is NP-complete [7]. Consider an
arbitrary instance {a1, a2, . . . , an} of 2-Partition, where the ai are strictly positive inte-
gers: is there a subset I of {1, . . . , n} such that

∑
i∈I ai =

∑
i/∈I ai?

From this instance of 2-Partition, we build the platform P = (S,L) represented in
Figure 7. In this platform, there are n + 5 servers:

� A1, . . . , An: the server Ai stores a file Fi of size ai.
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A1 An−1A2 An

Xl

Yr

Xr

Yl

...

D

Figure 7: Graph used in the reduction from 2-Partition to CommSchedFreeRoute.

� Xl and Xr: from each of the n servers A1, . . . , An, there is a link of bandwidth 1 to
the server Xl, and one to the server Xr.

� Yl and Yr: there is a link of bandwidth 1
2N from the server Xl to the server Yl, and

one from Xr to Yr, where N =
∑

1≤i≤n ai.

� D: there is a link of bandwidth 1 from the servers Yl and Yr to the server D.

The set, M, of communications is defined by communications from the A servers to D:
M = {(Ai, ai)}1≤i≤n. The time bound is T = N2 +N +min1≤i≤n ai. Clearly the size of the
constructed instance of CommSchedFreeRoute is polynomial in the size of the original
instance of 2-Partition.

Assume that the original instance of 2-Partition admits a solution: let (I1, I2) be a
partition of {1, . . . , n} such that

∑
i∈I1

ai =
∑

i∈I2
ai = N

2 . Without loss of generality,
suppose that I1 contains an element aj which is minimal: aj = min1≤i≤n ai. We derive a
scheduling for the instance CommSchedFreeRoute as follows:

1. At date 0, Aj sends its file of size aj to Xl, which is received at date aj .

2. Between dates 0 and N
2 , the servers corresponding to I2 ({Ai}i∈I2) send their files, in

any order, to Xr.

3. Between dates aj and aj + 2N · aj , Xl sends the file received from Aj to Yl.

4. Between dates aj and N
2 , the servers {Ai}i∈I1,i 6=j send their files, in any order, to Xl.

5. From aj + 2N · aj to aj + 2N · N
2 , Xl sends to Yl, in any order, the files received from

the servers in {Ai}i∈I1,i 6=j .

6. Between dates N
2 and N

2 +2N · N
2 , Xr sends to Yr, in any order, the files received from

the servers corresponding in I2.
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7. From aj + 2N · N
2 to aj + 2N · N

2 + N
2 , Yl sends, in any order, all the files that it holds

to D.

8. From aj + 2N · N
2 + N

2 to aj + 2N · N
2 + N , Yr sends, in any order, all the files that it

holds to D.

Therefore, we have derived a valid scheduling that matches the time bound, hence a solution
to the CommSchedFreeRoute instance.

Reciprocally, assume that the CommSchedFreeRoute instance admits a solution,
hence a valid scheduling satisfying the time bound T . Then, the communication origi-
nating from any Ai must go either through Xl or Xr. We define as I1 (respectively I2)
the Ai servers whose files are sent to D through Xl (resp. Xr). Thus, I1 and I2 defines
a partition of {1, . . . , n}. Suppose this is not a solution to 2-Partition. Then, without
loss of generality,

∑
i∈I1

ai >
∑

i∈I2
ai and thus

∑
i∈I1

ai > N
2 . Thus,

∑
i∈I1

ai ≥ 1 + N
2 .

Then, the time needed by Xl to send to Yl all the files it received from the Ai’s is equal to
2N · (

∑
i∈I1

ai) ≥ 2N · N
2 + 2N > min1≤i≤nai + 2N · N

2 + N = T , which is absurd.

Theorem 2 shows that scheduling the communications is NP-complete as soon as we
have the freedom to chose the route followed by the files. Therefore we assume that the
routing from one server to another is fixed. Note that this is a realistic assumption in
practice, because the routing is usually decided by table lookup. Between each pair of
servers, if multiple routes are available, we decide to chose one among all the routes of
maximal bandwidth. Furthermore, we decide the whole routing to be coherent: if S is the
first server in the route from a server R to a server T , then the route from R to T is made
of the physical link between R and S, and of the route from S to T .

Complexity of Communication Scheduling with Respect to an History

When trying to schedule the communications required for a task Tk, one must take into
account the communications scheduled for the tasks previously scheduled. In other words,
when trying to schedule the communications for a new task, one must take into account that
the communication links are already used at certain time slots due to previously scheduled
communications. Even with our hypothesis of a fixed routing, this leads to an NP-complete
problem, as we now show:

Definition 4 (CommSchedWithHistory(P,M, D,H, T )). Given a platform graph P =
(S,L), a finite set M of communications of same destination D, an history H specifying
for any communication link at which time-slots it is unavailable due to previously scheduled
communications, and a time bound T , is there a valid scheduling of the communications
whose makespan is not greater than T?

Theorem 3. Problem CommSchedWithHistory(P,M, D,H, T ) is NP-complete.

Proof. Obviously, CommSchedWithHistory(P,M, D,H, T ) belongs to NP. To prove its
completeness, we use a straightforward reduction from 2-Partition. Consider an arbitrary
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instance {a1, a2, . . . , an} of 2-Partition with
∑

1≤i≤n ai = N . From this instance, we build
a simple platform composed of two servers linked by a single communication link which is
available at any time t in [0; N

2 ]∪ [1 + N
2 ; +∞[. We let T = N + 1. Then, one can easily see

that there is a solution for the instance 2-Partition if and only if there is a solution to the
corresponding instance of CommSchedWithHistory. To reach this result, we make the
assumption that communications are never preempted, i.e., that a file is sent in one time and
is not cut in several sub-pieces which would be sent at different non contiguous times.

As a consequence of this result, we (heuristically) decide to use simple greedy algorithms
to schedule the communications. The first one using an insertion scheduling scheme, and
the even more simpler other one that always schedule a new communication after any com-
munication already scheduled on the same link.

Communication Scheduling Algorithms

Because of the two complexity results above, we have decided so far:

1. that the routing of communications is fixed;

2. that new communications are scheduled using some greedy algorithm.

Under these hypotheses, we are able to design two algorithms to schedule the communi-
cations required to send the necessary files to the server which we want to assign the new
task to. In the following, we call

� transfer the communication, through the network of servers, of a file from the source
server (which stores the file in its repository) to the destination server (where we
attempt to schedule the new task);

� local communications the communications between neighbor servers; therefore, a trans-
fer is potentially made up of several local communications.

A first idea is to memorize for each link the date and length of all communications already
scheduled, and to use an insertion scheduling scheme to schedule any new communication in
the first possible time slot. This scheme should be rather precise but may be very expensive.
A second idea is to schedule new communications as soon as possible bus always after
communications using the same links. In both cases, if a file is available on several servers,
we heuristically decide to bring it from the closest server.

Both algorithms are summarized by Algorithm 1: the local communications are sched-
uled on each intermediate server, these intermediate servers being considered in decreasing
distance from the destination of transfers. The differences between the two algorithms are
in the choice of a local communication (Step 9) and its schedule (Step 10). In the insertion
scheduling variant, the local communications are considered by decreasing duration (Step 9),
and scheduled in the first possible time slot (Step 10). A list of the available time slots needs
to be maintained. In the simpler variant, the local communications are considered by in-
creasing availability date (Step 9), which is the maximum between the arrival date of the
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file Fi on the sending server R, the ending date of the last emission from R, and the ending
date of the last reception on S. A new local communication from R to S is always scheduled
after the last communications involving R as sender or S as receiver (Step 10).

Algorithm 1 Schedule a set of transfers of same destination D

1: from the platform graph P, extract the tree T of the transfers to D.
2: for each server S in T do
3: compute the depth of S (starting from 0 for D)
4: for each server S source of a transfer of a file Fi do
5: add to the set of communications to be scheduled, the sending of file Fi from S to

father(S)
6: for h = height(T ) − 1 downto 0 do
7: for each server S of depth h do
8: while there remains to schedule some local communications do
9: take a local communication c of file Fi from R to S

10: schedule c, considering the arrival date of Fi on R
11: if S 6= D then
12: add to the set of communications to be scheduled, the sending of file Fi from

S to father(S)

Of course, these algorithms don’t always compute the optimal solution. The general
problem is most likely NP-complete, due to its similarity with the flow-shop problem [7].
Here is a simple example where both algorithms fail to return the optimal solution. Consider
two files F1 and F2, of sizes f1 = 2 and f2 = 4, to be routed from server A to server D
via server B. The bandwidth of the link from A to B is 1, that of the link from B to D
is 0.5. The availability dates of F1 in server A is t = 1 while that of F2 is t = 0. There
are no previous communications. The two algorithms will route F2 before F1 on each link,
starting at t = 0: the sending of F2 terminates at t = 4 in B and at t = 12 in D; F1 follows
at t = 6 in B and t = 16 in D. However, routing F1 first is better, even though we cannot
start before t = 1: F1 reaches B at t = 3 and D at t = 7, while F2 reaches B at t = 7 and
D at t = 15.

Complexity

Due to our hypotheses, with insertion scheduling we have to scan at most m holes for
each communication link. If we denote by nt the number of transfers, and by h the height
of the communication tree, the complexity of the algorithm with insertion scheduling is
O(h · nt · (m + log(nt))).

Without insertion scheduling, the scheduling of a local communication is done with an
O(1) complexity. One does even only need to sort the local communications on the tree
leaves. Each intermediate servers receives sorted lists from each of its sons in the tree,
and merging these lists costs at most O(nt) on each on the h − 2 heights concerned. The
complexity of the algorithm becomes then O(nt · (h + log(nt))).
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More specifically, if we denote by

� ∆T the maximum degree of a task, i.e., the maximum number of files that a task
depends upon;

� ∆P the diameter of the platform graph;

the complexity of this algorithm is in O(∆P ·∆T · (m+log(∆T ))) with insertion scheduling,
and O(∆T · (∆P + log(∆T ))) without. In the rest of this paper, we denote by Oc the
complexity of the communication scheduling algorithm. Then, Oc will be equal to either of
the two formulas above, depending of the version of the algorithm chosen.

4.3 Outline of the Whole min-min Scheme

Algorithm 2 presents our implementation of the min-min scheme on distributed repositories.
The complexity of the whole heuristic is

O(n2 · s · (∆T · s + Oc) + n · max
1≤i≤s

ci).

The last term comes from scheduling the tasks on the clusters. Indeed, once the communica-
tions are scheduled, we have for each task the availability date of the files which it depends
upon at a cost O(|E|). On each cluster, we greedily schedule the tasks on the available pro-
cessors. Among the tasks of lowest availability date, we take the largest one and schedule it
on the processor on which it will have the minimum completion time (taking into account the
date at which this processor will be available, knowing which tasks were already scheduled
on it). The complexity of this task scheduling is O(n · max1≤i≤s ci).

The term n2 · s · (∆T · s) comes from searching, each time a file is needed, the closest
server among those where the file is available. This policy requires to dynamically update
a list of possible source for each file. Another policy would be to invoke Algorithm 1 on all
possible sets of transfer sources and to choose the best solution. Knowing the complexity of
the min-min heuristic, such an expensive policy is not realistic.

We remark that going from systems with a single repository, as in [9], to systems with
several repositories, the complexity increases by a multiplicative factor of ∆T · s + Oc,
corresponding to the cost of the communication scheduling algorithm. In the meantime,
the number of processors was replaced by the number of servers. This is because of our
simplified view of the problem: in the decision phase, we see each cluster Cj as a single
computational resource of cumulative speed

∑cj

k=1 sj,k.

Variant of the min-min Scheme: the sufferage Heuristic

The sufferage heuristic is a variant of min-min which sometimes delivers better schedules,
but whose complexity is slightly greater [3, 9]. The difference is in Step 6 where, instead of
choosing a couple (Sj , Ti) with minimum MCT, the chosen task Ti is the one which will be
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Algorithm 2 Outline of the whole min-min scheme
1: while there remain tasks to be scheduled do
2: for each remaining task Ti do
3: for each server Sj do
4: use Algorithm 1 to compute the date t at which all the files required for the

execution of Ti will be available on Sj

5: evaluate the minimum completion time of Ti on Sj knowing t (as computed
above), and considering the cluster Cj as a single processor

6: pick a couple (Sj , Ti) whose minimum completion time is minimal
7: map Ti on the cluster Cj

8: use Algorithm 1 to schedule the communications needed by the execution of Ti on Sj

9: for each server Sj do
10: greedily schedule the tasks mapped on Sj

the most penalized if not mapped on its most favorable processor, but on its second most
favorable, i.e., the task with the greater difference between its two minimum MCTs. This
task is then mapped on a server Sj which achieves the minimum MCT for the task.

5 Heuristics of Lower Complexity

As appealing as the min-min scheme could be because of the quality of the scheduling that
it produces [3, 9], its computational cost is huge and may forbid its use. Therefore, we aim
at designing heuristics which are an order of magnitude faster, while trying to preserve the
quality of the scheduling produced.

The principle of our heuristics is quite simple. The min-min scheme is especially expen-
sive as, each time it attempts to schedule a new task, it considers all the remaining tasks
and compute their MCTs. On the opposite, we worked on solutions where we only consider
a single task candidate per cluster. This leads to the following scheme:

� While there remain tasks to be scheduled do

1. for each cluster Ci pick the“best”candidate task Tk that remains to be scheduled;

2. pick the “best” couple (Ci, Tk) and schedule Tk on Ci.

The whole heuristic then relies on the definition of the “best” candidate. For that, we design
a cost function that we use as an estimate of the minimum completion time of a task on a
given server. We have designed two types of heuristics: static ones where costs are estimated
once and for all; and dynamic ones where costs are reevaluated as mapping and scheduling
decisions are being made.
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5.1 Static Heuristics

In our static heuristics, for each cluster we first build a list of all tasks sorted by increasing
cost function. Then, each time we schedule a new task: 1) we define as local candidate
for cluster Ci the task which has lowest cost on Ci and has not already been scheduled;
2) among all the local candidates we take the one of lowest cost and we assign it on the
corresponding cluster; 3) we schedule the necessary communications and the computation as
we did for the min-min scheme. Algorithm 3 presents the structure of this static heuristic.
Step by step, we describe its different parts, and we explain our design choices.

Algorithm 3 Structure of the static heuristic
1: for each task Ti do
2: for each server Sj do
3: compute the cost a(Ti, Sj)
4: remember S(Ti), such that a(Ti, S(Ti)) = min1≤j≤s a(Ti, Sj)
5: Sort the tasks in increasing order of the costs a(Ti, S(Ti))
6: while there remain tasks to be scheduled do
7: pick the next unscheduled task Ti

8: map Ti on the cluster of S(Ti)
9: use Algorithm 1 to schedule the communications needed by the execution of Ti on

S(Ti)
10: for each server Sj do
11: greedily schedule the tasks mapped on Sj

The Cost Function

In our fully static heuristics, the cost of a task Ti on a server Sj is defined as an evaluation of
the minimum completion time of Ti on Sj . Following what has been previously done for the
min-min heuristic, the minimum completion time is defined as the sum of the time needed
to send the required files to Sj , as computed by Algorithm 1, plus the time needed by the
cluster Cj to process the task, when the cluster is seen as a single computational resource:

a(Ti, Sj) = Time-Algo-1 {(source(Fk, Sj), Sj , Fk) | ek,i ∈ E , Fk /∈ Rj} +
ti∑

1≤l≤cj
sj,l

(1)

where source(Fk, Sj) denotes the server which initially stores Fk; and (S, S′, F ) denotes the
transfer of file F from server S to S′. In fact, since there may be several sources for Fk, we
use the one closest to Sj (in terms of communication time).

The overall complexity of the evaluation of the costs is O(n · s · ∆T · ∆P). We even
speed-up these evaluations by approximating the time needed to send all the necessary files.
Instead of using the precise but costly Algorithm 1, we use the simple formula:

Opek,i∈E,Fk /∈Rj
comm(source(Fk, Sj), Sj , Fk), (2)
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where comm(S, S′, F ) denotes the time to transfer file F from server S to S′; and Op
can design either the “sum” operator (over-approximation by sequentialization of all the
communications) or the “max” operator (under-approximation by considering all the com-
munications to take place in parallel). If we precompute once and for all the cost of sending
an elementary file between any two servers, which requires O(s3) operations, the overall
complexity of the evaluation of the costs drops to O(n · |E| + s3) with our approximations.

Task Scheduling

To schedule the communications, we use Algorithm 1, the source of each file transfer being
the closest server as for the min-min heuristic. Once the communications are scheduled, we
have for each task the availability date of the files which it depends upon at a cost O(|E|).
To schedule the tasks, we then proceed as explained in Section 4.3 for the min-min heuristic,
with a cost O(n · max1≤i≤s ci).

Overall Complexity

In the rest of this paper we denote by static the static heuristic presented above. Its
complexity is

O

(
n · |E| + s3 + n · log(n) + n · Oc + m · s2 + n · max

1≤i≤s
ci

)

which is an order of magnitude less than the complexity of the min-min scheme: we no
longer have a n2 term.

5.2 Variants of the Static Heuristics

From this first heuristic, we design several variants: critic which reconsiders, at the end of
the heuristic, the ordering of the communications using a critical path approach; readiness
which first looks if a task can be scheduled on a server with no communication cost; and
mct which selects the “best” candidate among the local candidates using their minimum
completion times.

Critical Path Scheduling of Communications: Variant critic

Instead of scheduling the communications task by task, we schedule at once all the necessary
communications. This way, we hope to be able to give a higher priority to the most important
communications.

Consider the transfer of a file F from a server Si to a server Sk, through a single other
server Sj . The transfer is thus composed of two local communications, the second (Sj

F→ Sk)

depending upon the first (Si
F→ Sj). To schedule the whole set of communications, we build

the dependence graph of the local communications where each vertex represents a local
communication, and where there is an edge from a first vertex to a second if and only if the
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first one represents a local communication that must have been realized before the second
can occur. In our example, there would be an edge from the vertex representing Si

F→ Sj

to the vertex representing Sj
F→ Sk. Our dependence graph is obviously a directed acyclic

graph (DAG). It contains at most O(m · s) vertices (at the end, at worst each file is on each
server).

We associate to each vertex Si
F→ Sj of the dependence graph a weight equal to the

computation time of the tasks mapped to the cluster Cj and depending on the file F , plus
the time of the communication itself. We define the cost of a vertex as the sum of its weight
and of the weights of all the vertices reachable from it. Finally, in a critical path approach,
we schedule the communications (among those having their dependences already satisfied)
in decreasing order of their associated vertices costs.

The complexity of this whole communication scheduling is O(m · s · log(m · s)) without
insertion scheduling (note that the costs are computed in O(m · s) through a simple graph
traversal). With insertion scheduling, this complexity increases by an additional factor of
O(m2 · s).

Highest Priority to Ready Tasks: Variant readiness

In the basic version of the heuristic, tasks are selected by following strictly the increasing
order on the task costs (Step 7 of Algorithm 3). In the readiness variant, each time we
try to schedule a new task, we consider the next task in this order, unless there is a task
Ti which is ready for a server Sj , in which case we immediately schedule Ti on Sj . A task
is called ready for a server, if the server repository holds all the files that the task depends
upon. So, a ready task can be scheduled at no communication cost.

Maintaining lists of ready tasks costs O(s · |E|). Indeed, on each server, we maintain
for each task the number of its missing files. Each time a new file arrives on a server, we
decrease the number of missing files for all tasks that depend upon it.

Postponing the Mapping of Tasks to Servers: Variant mct

In the static heuristic, a task is mapped on a server on which its cost is minimal. Following
ideas in [9], we only use the cost to determine in which order the tasks are considered.
Thus, we sort, for each server, the tasks by increasing cost. Once the sorted lists are
computed, we still have to map the tasks to the servers and to schedule them. The tasks
are scheduled one-at-a-time. When we want to schedule a new task, on each server Si we
evaluate the completion time of the first task (according to the sorted list) which has not
yet been scheduled. The completion time evaluation is identical to the equivalent evaluation
performed by the min-min heuristic. Then we pick the pair task/server with the lowest
completion time. This way, we obtain our static+mct heuristic (see Algorithm 4), which
includes by default the readiness variant.
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Algorithm 4 Structure of the static+mct heuristic
1: for each server Sj do
2: for each task Ti do
3: compute the cost a(Ti, Sj)
4: build the list L(Sj) of the tasks sorted in increasing value of a(Ti, Sj)
5: while there remain tasks to be scheduled do
6: for each server Sj do
7: if there are tasks ready for Sj then
8: let Ti be any task ready for Sj

9: else
10: let Ti be the first unscheduled task in L(Sj)
11: use Algorithm 1 to compute the date t at which all the files required for the execution

of Ti will be available on Sj

12: evaluate the minimum completion time of Ti on Sj knowing t (as computed above)
and considering the cluster Cj as a single processor

13: pick a couple (Sj , Ti) whose minimum completion time is minimal
14: map Ti on the cluster Cj

15: use Algorithm 1 to schedule the communications needed by the execution of Ti on Sj

16: for each server Sj do
17: greedily schedule the tasks mapped on Sj

The overall complexity of the static+mct heuristic is:

O

(
n · |E| + s3 + s · n · log(n) + s · |E| + n · s · (∆T · s + Oc) + n · max

1≤i≤s
ci

)

5.3 Dynamic Heuristics

In our static heuristics, we first define the order in which the tasks are considered, and all
the other scheduling decisions (communication definition and scheduling) are implied by this
original order. However, this order is based on a cost which is truly relevant when there is a
single task in the system. Indeed, the cost formula does not take into account the fact that
some other tasks may need the same files, and thus misses the possibility of new sources
(created as the execution proceeds) for these files. To remedy this flaw, we introduce a more
dynamic scheme, while trying to conserve a low complexity heuristic. The structure of our
dynamic heuristics is described by Algorithm 5.

A Dynamic Cost

We build a dynamic cost function along the line of the cost defined by Equation 1, using the
simple communication estimation of Equation 2 and replacing the constant“source” function
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Algorithm 5 Structure of the dynamic heuristics
1: for each task Ti do
2: for each server Sj do
3: compute the cost a(Ti, Sj)
4: while there remain tasks to be scheduled do
5: for each server Si do
6: pick the task(s) of lowest dynamic cost(s) on Si

7: among the tasks picked at Step 5, select the couple(s) (Si,Tj) of lowest dynamic cost(s),
taking into account the amount of work already assigned to cluster Ci

8: for each selected couple (Si,Tj) in any order do
9: map Ti on the cluster Cj

10: use Algorithm 1 to schedule the communications needed by the execution of Ti on
Sj

11: re-evaluate the costs whose value may have changed
12: for each server Sj do
13: greedily schedule the tasks mapped on Sj

by a dynamic “closest” function:

a(Ti, Sj) = Opek,i∈E,Fk /∈Rj
comm(closest(Fk, Sj), Sj , Fk) +

ti∑
1≤l≤p(j) sj,l

(3)

The “closest” function, when invoked on a file F and a server S, returns the identity of the
server which is closest to S, and which holds the file F at the time the function was invoked.
In other words, the “closest” function takes into account the mapping decisions taken before
its invocation.

A new problem arises: the ability to compute the“closest” function at the lowest possible
cost. To reach this goal, each server holds a table of the other servers sorted in increasing
distance (in communication time). Building such a list costs the computation of all the
pairwise distances plus the sorting of the s tables, that is O(s3 + s2 · log(s)) = O(s3).
Each time a new communication is decided involving a file F , the value of closest(F, Si) is
recomputed for any server Si. This is done in constant time by checking whether the new
server holding F has a lower rank, in the table defined above, than the previous closest
server for this file. As, in the worst case, each file is only sent once to each of the servers,
there are at most O(s · m) of these constant-time updates.

Each time the value of a function closest(Fk, Sj) changes, we recompute the value of
a(Ti, Sj) if and only if task Ti depends upon file Fk, i.e., ek,i ∈ E . Any of these updates is
in constant time if the operator “Op” is the sum operator, and cost O(∆T ) if “Op” stands
for “max”. Therefore, the overall complexity of maintaining our dynamic costs is

O(s3 + s · m · (1 + u))

where u = 1 if “Op” is the sum operator and u = ∆T if “Op” is the max operator.
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Picking the Next Task(s) to Be Scheduled

Once we have defined our dynamic cost, we have to decide how to use it to select the new
task(s) to be scheduled. We have the choice either to pick a single new task at a time or to
pick a set of k tasks. The former scheme is in spirit closer to the min-min heuristic. The
latter scheme may be less expensive. In both versions, we once again target a low complexity.

Heuristic dynamic1

A simple way of picking a single new task would be to search, on each server, which task has
the lowest complexity, and then search for the minimum over the servers. This is exactly
what the min-min heuristic does. Such a selection scheme costs O(n2 · s) which may be
prohibitive. In order to speed-up the search of the task of lowest cost, we maintain on each
server a heap of the task costs. Then, on each server, the selection of the task of lowest cost
is done in constant time. However, each time we update a cost, we have to pay an additional
cost of O(log(n)) for the removal of an element from the heap and the addition of a new
one1. Therefore, the overall complexity of this heuristic is:

O

(
n · |E| + s3 + s · m · (1 + u) + s · (m + n) · log(n) + n · (∆T · s + Oc) + n · max

1≤i≤s
ci

)
.

Heuristic dynamic2

Another way of decreasing the complexity of the selection of the “closest” task candidate is
to select, on each server, k tasks of lowest costs, instead of only 1 task. Such a selection can
be realized in linear time in the worst case [2, 6]. Therefore, we select k tasks of lowest cost
on each server. As a task may appear in the “closest” set of different servers, we sort the
k ·s couples (task, server) that we obtain according to their costs, and we pick the k distinct
tasks of lowest costs. Therefore, the overall complexity of this heuristic is:

O

(
n · |E| + s3 + s · m · (1 + u) +

n

k
· (n · s + k · s · log(k · s)) + n · (∆T · s + Oc) + n · max

1≤i≤s
ci

)
.

Variants of the Dynamic Heuristics

As for the static heuristic, we have a critic and an mct variant for the dynamic heuristics.

6 Simulation Results

In order to compare our heuristics, we have simulated their executions on randomly built
platforms and graphs. We have conducted a large number of experiments, which we sum-
marize in this section.

1The removal of any element in a heap cost O(log(n)) if we maintain a table associating any element
stored in the heap to its position in the heap. Maintaining such a table does not increase the theoretical
complexity of the heap operations.
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6.1 Simulation Platforms

Platform graphs: they are composed of 7 servers. The graph of the servers is either a
clique, a random tree, or a ring.

Clusters: we have recorded the computational power of different computers used in our
laboratories (in Lyon and Strasbourg). From this set of values, we randomly pick
values whose difference with the mean value was less than the standard deviation.
This way we define realistic and heterogeneous clusters randomly containing 8, 16, or
32 processors.

Communication links: the communication links between the servers are randomly built
along the same principles as the set of processors.

Communication to computation cost ratio: The absolute values of the communica-
tion link bandwidths or of the processors speeds have no meaning (in real life they
must be pondered by application characteristics). We are only interested by the rel-
ative values of the processors speeds, and of the communication links bandwidths.
Therefore, we normalize processor and communication characteristics. Also, we ar-
bitrarily impose the communication-to-computation cost ratio, so as to model three
main types of problems: computation intensive (ratio=0.1), communication intensive
(ratio=10), and intermediate (ratio=1).

6.2 Task Graphs

We ran the heuristics on the following four types of tasks graphs. In each case, the size of
the files and tasks are randomly and uniformly taken between 0.5 and 5.

Fork: each graph contains 100 fork graphs, where each fork graph is made up of 20 tasks
depending on a single and same file.

Two-one: each task depends on exactly two files: one file which is shared with some other
tasks, and one un-shared file.

Partitioned: the graph is divided into 20 chunks of 75 tasks, and in each chunk each task
randomly depends on 1 up to 10 files. The whole graph contains at least 20 different
connected components.

Random: each task randomly depends on 1 up to 50 files.

Each of our graphs contains 1,500 tasks and 1,750 files, except for the fork graphs which also
contain 1,500 tasks but only 70 files. In order to avoid any interference between the graph
characteristics and the communication-to-computation cost ratio, we normalize the sets of
tasks and files so that the sum of the file sizes equals the sum of the task sizes times the
communication-to-computation cost ratio.

The initial distribution of files to server is built randomly.
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6.3 Results

Table 1 summarizes all the experiments. In this table, we report the performance of the
heuristics, together with their cost (i.e., their CPU time). This is a summary of 36,000
random tests (1,000 tests over all four task graph types, three platform graph types, and
three communication-to-computation cost ratios). Each test involves 85 heuristics:

� min-min and its variants min-min+critic and sufferage.

� The three static heuristics: static, static+readiness, and static+mct. These
heuristics are declined with the variants max (“Op” is the max operator instead of
the sum, cf. Section 5.1) and critic.

� The dynamic heuristics dynamic1 and dynamic2, the latter using sets of either k = 10
or k = 100 tasks. These heuristics are also declined with the variants max, critic,
and mct.

� The naive randommap heuristic, which randomly picks the local candidate (the same
for all clusters) but uses the same optimizations and scheduling schemes than the other
heuristics. This heuristic is declined with the variants critic and mct.

Each heuristic (except min-min+critic) was tested with the two variants of Algorithm 1,
i.e., with insertion scheduling of the communications (insert) or without.

For each of the 36,000 tests, we compute the ratio of the performance of all heuristics
over the best heuristic for the test, which gives us a relative performance. The best heuristic
differs from test to test, which explains why no heuristic in Table 1 can achieve an average
relative performance exactly equal to 1. In other words, the best heuristic is not always
the best of each test, but it is closest to the best of each test on the average. The optimal
relative performance of 1 would be achieved by picking, for any of the 36,000 tests, the best
heuristic for this particular case. (For each test, the relative cost is computed along the
same guidelines, using the fastest heuristic.)

Figures 8 through 18 present detailed comparisons of all the heuristics, by types of task
graphs, by communication to computation ratio, or by types of platform graphs. Each graph
shows the performance of the heuristics, using a logarithmic scale for the vertical axis.

From all these results, we can see that the min-min and the sufferage heuristics achieve,
on average, similar performances. They are the best heuristics when the communications
are scheduled using an insertion scheduling scheme.

The basic versions of our heuristics are far quicker than the min-min versions but at the
cost of a great loss in the quality of the schedules produced (at least two times worse). The
basic randommap is, not surprisingly, the worst heuristic with a relative performance of 141.
What is more surprising is that the static variants are all better than the dynamic ones.
The packet size (k) in dynamic2 doesn’t seem to have a significant impact, except on its
cost (it takes 6 times more time to achieve the heuristics with k = 10 than with k = 100).
Even with k = 100, dynamic2 takes longer to achieve than dynamic1 (which can be viewed
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Heuristic Basic version mct variant insert variant mct+insert variant
Performance Cost Performance Cost Performance Cost Performance Cost

min-min 1.14 (±8%) 31,031 - - 1.08 (±8%) 61,711 - -
min-min+critic 2.05 (±31%) 30,981 - - - - - -
sufferage 1.16 (±13%) 33,966 - - 1.06 (±12%) 77,915 - -
static 2.19 (±33%) 15 1.45 (±22%) 44 1.47 (±25%) 18 1.17 (±11%) 56
static+critic 2.57 (±41%) 17 2.19 (±38%) 45 1.51 (±26%) 20 1.26 (±13%) 58
static+max 2.36 (±42%) 16 1.45 (±22%) 44 1.68 (±33%) 18 1.20 (±12%) 57
static+max+critic 2.63 (±45%) 17 2.17 (±37%) 46 1.72 (±34%) 21 1.29 (±14%) 59
static+readiness 2.09 (±32%) 17 - - 1.43 (±26%) 18 - -
static+readiness+critic 2.44 (±38%) 18 - - 1.47 (±26%) 21 - -
static+readiness+max 2.33 (±41%) 17 - - 1.67 (±33%) 19 - -
static+readiness+max+critic 2.61 (±45%) 19 - - 1.71 (±33%) 22 - -
dynamic1 2.92 (±41%) 43 1.61 (±30%) 67 2.06 (±54%) 45 1.29 (±21%) 80
dynamic1+critic 3.33 (±40%) 45 2.32 (±40%) 68 2.09 (±54%) 48 1.38 (±20%) 83
dynamic1+max 2.73 (±44%) 47 1.40 (±21%) 70 2.03 (±46%) 49 1.17 (±11%) 85
dynamic1+max+critic 3.30 (±48%) 48 2.16 (±38%) 71 2.05 (±45%) 53 1.26 (±14%) 88
dynamic2+010 2.84 (±37%) 315 2.08 (±32%) 83 1.82 (±35%) 311 1.44 (±23%) 94
dynamic2+010+critic 3.07 (±37%) 316 2.61 (±39%) 85 1.86 (±34%) 314 1.51 (±22%) 95
dynamic2+010+max 3.31 (±50%) 317 2.49 (±50%) 86 2.02 (±46%) 315 1.70 (±43%) 97
dynamic2+010+max+critic 3.30 (±48%) 320 3.04 (±50%) 89 2.05 (±45%) 318 1.75 (±41%) 100
dynamic2+100 2.89 (±44%) 52 2.53 (±41%) 54 1.74 (±32%) 53 1.59 (±37%) 71
dynamic2+100+critic 2.97 (±40%) 53 2.67 (±38%) 56 1.77 (±32%) 56 1.64 (±36%) 74
dynamic2+100+max 3.76 (±56%) 54 3.04 (±51%) 57 2.04 (±46%) 56 1.76 (±40%) 76
dynamic2+100+max+critic 3.33 (±49%) 56 3.12 (±46%) 59 2.06 (±46%) 59 1.80 (±40%) 79
randommap 141.24 (±318%) 11 1.32 (±18%) 41 94.13 (±336%) 15 1.08 (±7%) 53
randommap+critic 170.40 (±311%) 14 2.00 (±36%) 43 98.77 (±331%) 21 1.19 (±11%) 56

Table 1: Relative performance and cost of the heuristics: basic version and mct variants, with or without communication
scheduling with insertion scheduling (insert). Standard deviations are in parentheses (for relative costs, all are
between 128% and 211%).
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as a specialization for the case k = 1). In the evaluation of the communication costs for
the static heuristics, the plus operator seems to be a better choice than the max. For the
dynamic heuristic, the best choice varies with no evident scheme. However, it looks like the
max becomes less accurate as the number of files a task depends on increases (Figures 10
to 12).

As observed in [9], the readiness variant has a significant impact on performance. For
the static heuristic, it induces a performance gain of about 5% for an overhead cost of
13%. So, we use it by default in the mct variants. The critic variant, on the contrary,
gives in general worse results, despite the time spent to try to reorder the communications.

The mct variant greatly improves the quality of our heuristics while their costs remain
very low. For example, the mct variant of dynamic1+max produces schedules which are only
23% longer than those of min-min. . . but it produces them 440 times more quickly. A pretty
similar performance is reached by static+mct. The dynamic2+mct heuristic doesn’t gain as
much: it becomes just as good as static+readiness. The improvement brought by the mct
variant is best exemplified by randommap: it produces, 760 times faster, schedules that are
16% worse than those of min-min. On the fork graphs (Figure 9), the mct variant achieves
as good performances as the reference heuristics, whatever the base heuristic is (except for
dynamic2).

We also ran the heuristics with the insertion scheduling heuristic for communication
scheduling (rather than with the greedy scheduling as previously). As predicted, the qual-
ity of results significantly increased. The overhead is prohibitive for the min-min vari-
ants. Surprisingly, this overhead is reasonable for our heuristics. For example, the version
static+mct+insert produces schedules which are only 3% longer than those of the origi-
nal min-min. . . but it produces them 554 times more quickly. The randommap+mct+insert
heuristics performs even better: it achieves similar performances as the min-min+insert
with only 0.09% of its cost!

Our dynamic heuristics did not achieve as good performance as we hoped: they never
outperform the static heuristics. At best, the dynamic1+max+mct+insert heuristic performs
as well as the best static heuristic (static+mct+insert). These results are rather disap-
pointing. We were able to design dynamic heuristics of reasonable complexities, but there
performances are quite low. As our decision process does not take into account the amount
of communications already scheduled, and their destinations, our dynamic heuristics may
tend to map all the tasks on the same processor. This would obviously lead to network
congestion.

Looking at Figures 13 to 15, we see that our heuristics have the same behavior whatever
the communication to computation ratio is. Furthermore, the mct variant of randommap,
static, and dynamic1 have almost the same relative performance whatever this ratio is.
This shows the robustness of these heuristics.

Finally, we introduced the naive randommap heuristic as a lower bound on the quality of
the task mapping and scheduling. With a performance of 550, the randommap heuristic is
extremely bad on the fork graphs. It appears that when the task graph contains evident
sharing properties, as in the fork graphs, our heuristics are able to take advantage of them.
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On the contrary, on the fork graphs, randommap is as bad as usual and the gap widens. On
the other types of graphs, the performance of randommap is not as bad as one could have
expected. This may be due to our choice to have a random initial distribution of files to
servers. Our simulation systems may be too general, and thus too difficult, for any heuristics
to have tremendous performance. Also, our simulation platforms may be small enough to
limit the impact of the randomness of randommap. Nevertheless, our best heuristics still
show significant improvements in comparison to randommap, while this is not always the
case for the dynamic heuristics (not a good mark for them!).

We also ran the static and randommap heuristics, with and without their mct variants,
on a larger system of 100 servers, 50,000 tasks, and 62,500 files. On such a large system, the
insert variant becomes prohibitive (we tried to run it, but we had to stop some heuristics
that did not finish after several days). Table 2 shows the relative performance (the lower the
numbers in the table, the better the static+mct heuristic) of static+mct when compared to
randommap and randommap+mct, on the original and on the larger system. The comparison
is done for the different task graphs, and with the average performance on all the graphs.
We clearly see that in comparison the relative performance of static+mct improves when
the system becomes larger. It even becomes, on average, better than randommap+mct, what
wasn’t the case before.

Task graph static+mct vs. randommap static+mct vs. randommap+mct
Original system Larger system Original system Larger system

Forks 0.002 0.00005 1.00 0.99
Two-one 0.28 0.12 1.13 0.75
Partitioned 0.43 0.28 1.12 0.96
Random 0.31 0.30 1.12 1.09
Average 0.01 0.0004 1.10 0.91

Table 2: Relative performance of static+mct in comparison to randommap and ran-
dommap+mct.

To summarize, we have reported in Table 3 the heuristics that give the best results given
some time limit. For each heuristic reported in the table, we do not have any heuristic
producing better schedules (on average) at a lower cost. We can see that, except min-min
and sufferage that rapidly become too expensive, a good choice is to use randommap+mct.
The static+readiness heuristic allows to obtain acceptable performances at low cost. If
we can afford the cost supplement, scheduling communications with an insertion scheduling
scheme greatly improves the quality of the produced schedules.
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Heuristic Performance Cost
sufferage+insert 1.06 77,915
min-min+insert 1.08 61,711
randommap+mct+insert 1.08 53
randommap+mct 1.32 41
static+readiness+insert 1.43 18
static+readiness 2.09 17
static 2.19 15
randommap 141.24 11

Table 3: Summary of the best heuristics according to their performance and their costs.

7 Conclusion

In this paper, we have dealt with the problem of scheduling a large collection of independent
tasks, that may share input files, onto collections of distributed servers. On the theoreti-
cal side, we have shown a new complexity result, that shows the intrinsic difficulty of the
combinatorial problem of deciding where to move files.

On the practical side, our contribution is twofold:

� We have shown how to extend the well-known min-min heuristic to the new framework;
this turned out to be more difficult than expected, and we had to introduce (and justify)
several restrictive assumptions upon the routing and communication scheduling.

� We have succeeded in designing a collection of new heuristics which have reasonably
good performance but whose computational costs are an order of magnitude lower than
min-min. The best heuristics were obtained by combining the readiness, mct, and
insert variants. Specifically, on small platforms, the heuristic randommap+mct+insert
produces schedules whose makespan is comparable to those produced by the best
variant of min-min (min-min+insert), but which are generated 1,100 times faster.
On larger platforms, the running time of the min-min heuristics and of the insert
variants become prohibitive. Then, static+mct becomes the heuristic of choice.

We plan to deploy the heuristics presented in this paper for a large medical application,
with servers in different hospitals in the Lyon-Grenoble area, and we hope that the ideas
introduced when designing our heuristics will prove useful in this real-life scheduling problem.
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Figure 8: Relative performances of the schedules produced by the different heuristics. Av-
erage on four types of task graphs, three communication to computation ratios, and three
types of platform graphs.
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Figure 9: Relative performances of the schedules produced by the different heuristics for
task graphs of type Fork. Average on three communication to computation ratios, and three
types of platform graphs.
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Figure 10: Relative performances of the schedules produced by the different heuristics for
task graphs of type Two-one. Average on three communication to computation ratios, and
three types of platform graphs.
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Figure 11: Relative performances of the schedules produced by the different heuristics for
task graphs of type Partitioned. Average on three communication to computation ratios,
and three types of platform graphs.
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Figure 12: Relative performances of the schedules produced by the different heuristics for
task graphs of type Random. Average on three communication to computation ratios, and
three types of platform graphs.
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Figure 13: Relative performances of the schedules produced by the different heuristics for
communication to computation ratio of 0.1. Average on four types of task graphs, and three
types of platform graphs.
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Figure 14: Relative performances of the schedules produced by the different heuristics for
communication to computation ratio of 1. Average on four types of task graphs, and three
types of platform graphs.
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Figure 15: Relative performances of the schedules produced by the different heuristics for
communication to computation ratio of 10. Average on four types of task graphs, and three
types of platform graphs.
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Figure 16: Relative performances of the schedules produced by the different heuristics for
platform graphs of type Clique. Average on four types of task graphs, and three communi-
cation to computation ratios.
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Figure 17: Relative performances of the schedules produced by the different heuristics for
platform graphs of type Random Tree. Average on four types of task graphs, and three
communication to computation ratios.
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Figure 18: Relative performances of the schedules produced by the different heuristics for
platform graphs of type Ring. Average on four types of task graphs, and three communica-
tion to computation ratios.
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