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Abstract: In this work, we deal with the problem of scheduling independent tasks on
heterogeneous master-slave platforms. We target both off-line and on-line problems, with
several objective functions (makespan, maximum response time, total completion time). On
the theoretical side, our results are two-fold: (i) For off-line scheduling, we prove several
optimality results for problems with release dates; (ii) For on-line scheduling, we establish
lower bounds on the competitive ratio of any deterministic algorithm. On the practical side,
we have implemented several heuristics, some classical and some new ones derived in this
paper. We studied experimentally these heuristics on a small but fully heterogeneous MPI
platform. Our results show the superiority of those heuristics which fully take into account
the relative capacity of the communication links.
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Ordonnancement en-ligne et hors-ligne pour

plates-formes mâıtre-esclave hétérogène

Résumé : Nous nous intéressons ici au problème de l’ordonnancement d’un ensemble de
tâches indépendantes sur une plate-forme mâıtre esclave hétérogène. Nous considérons les
problèmes en-ligne (ou à la volée) et hors-ligne, pour des fonctions objectives différentes
(durée totale d’exécution, temps de réponse maximum, temps de réponse moyen). D’un point
de vue théorique, nous obtenons deux types de résultats: (i) pour le problème hors-ligne,
nous avons établi plusieurs résultats d’optimalité pour des problèmes avec dates d’arrivée;
(ii) pour le problème en-ligne, nous avons établi des bornes inférieures sur le facteur de
compétitivité des algorithmes déterministes. D’un point de vue pratique, nous avons implé-
menté plusieurs heuristiques, certaines classiques, d’autres issues du présent travail. Nous
avons étudié expérimentalement ces heuristiques sur une petite plate-forme MPI totalement
hétérogène. Les résultats expérimentaux montrent la supériorité des heuristiques qui pren-
nent complètement en compte les capacités relatives des différents liens de communication.

Mots-clés : Ordonnancement en ligne, Ordonnancement hors-ligne, Calcul hétérogène,
Plate-forme mâıtre-esclave
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1 Introduction

In this paper, we deal with the problem of scheduling independent tasks on a heterogeneous
master-slave platform. We assume that this platform is operated under the one-port model,
where the master can communicate with a single slave at any time-step. This model is
much more realistic than the standard model from the literature, where the number of
simultaneous messages involving a processor is not bounded. However, very few complexity
results are known for this model (see Section 7 for a short survey). The major objective of
this paper is to assess the difficulty of off-line and on-line scheduling problems under the
one-port model.

We deal with problems where all tasks have the same size. Otherwise, even the simple
problem of scheduling with two identical slaves, without paying any cost for the communi-
cations from the master, is NP-hard [12]. Assume that the platform is composed of a master
and m slaves P1, P2, . . . , Pm. Let cj be the time needed by the master to send a task to Pj ,
and let pj be the time needed by Pj to execute a task. Our main results are the following:

� When the platform is fully homogeneous (cj = c and pj = p for all j), we design an
algorithm which is optimal for the on-line problem and for three different objective
functions (makespan, maximum response time, total completion time).

� When the communications are homogeneous (cj = c for all j, but different values of
pj), we design an optimal makespan minimization algorithm for the off-line problem
with release dates. This algorithm generalizes, and provides a new proof of, a result
of Simons [27].

� When the computations are homogeneous (pj = p for all j, but different value of
cj), we failed to derive an optimal makespan minimization algorithm for the off-line
problem with release dates, but we provide an efficient heuristic for this problem.

� For these last two scenarios (homogeneous communications and homogeneous compu-
tations), we show that there does not exist any optimal on-line algorithm. This holds
true for the previous three objective functions (makespan, maximum response time,
total completion time). We even establish lower bounds on the competitive ratio of
any deterministic algorithm.

The main contributions of this paper are mostly theoretical. However, on the practical
side, we have implemented several heuristics, some classical and some new ones derived in
this paper, on a small but fully heterogeneous MPI platform. Our (preliminary) results show
the superiority of those heuristics which fully take into account the relative capacity of the
communication links.

The rest of the paper is organized as follows. In Section 2, we state some notations
for the scheduling problems under consideration. Section 3 deals with fully homogeneous
platforms. We study communication-homogeneous platforms in Section 4, and computation-
homogeneous platforms in Section 5. We provide an experimental comparison of several
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4 J.-F. Pineau, Y. Robert, F. Vivien

scheduling heuristics in Section 6. Section 7 is devoted to an overview of related work.
Finally, we state some concluding remarks in Section 8.

2 Framework

To be consistent with the literature [16, 9], we use the notation α | β | γ where:

α: the platform– As in the standard, we use P for platforms with identical processors,
and Q for platforms with different-speed processors 1. We add MS to this field to
indicate that we work with master-slave platforms.

β: the constraints– We write on-line for on-line problems, and rj when there are release
dates. We write cj = c for communication-homogeneous platforms, and pj = p for
computation-homogeneous platforms.

γ: the objective– We let Ci denote the end of the execution of task i. We deal with three
objective functions:

� the makespan (total execution time) max Ci;

� the maximum response time (or maximum flow) max Ci − ri: indeed, Ci − ri is
the time spent by task i in the system;

� the total completion time
∑

Ci, which is equivalent to the sum of the response
times

∑

(Ci − ri).

3 Fully homogeneous platforms

For fully homogeneous platforms, we are able to prove the optimality of the Round-Robin
algorithm which processes the tasks in the order of their arrival, and which assigns them in
a cyclic fashion to processors:

Theorem 1. The Round-Robin algorithm is optimal for the problem P,MS | online, rj , pj =
p, cj = c |

∑

(Ci − ri), as well as for the minimization of the makespan and of the maximum
response time.

We point out that the complexity of the Round-Robin algorithm is linear in the number
of tasks and does not depend upon the platform size.

1As we only target sets of same-size tasks, we always fall under the uniform processors framework. In
other words, the execution time of a task on a processor will only depend on the processor running it and
not on the task.

INRIA



Off-line and on-line scheduling on heterogeneous master-slave platforms 5

Proof. To prove that the greedy algorithm Round-Robin is optimal for our problem, we
show that there is an optimal schedule under which the execution of each task starts at the
exact same date than under Round-Robin. To prove this, we first show two results stating
that we can focus on certain particular optimal schedules.

1. There is an optimal schedule such that the master sends the tasks to the slaves in the
order of their arrival.

We prove this result with permutation arguments. Let S be an optimal schedule not
verifying the desired property. Remember that the master use its communication links
in a sequential fashion. Then we denote by r′i the date at which the task i arrives on
a slave. By hypothesis on S, there are two tasks, j and k, such that j arrives on the
master before k, but is sent to a processor slave after k. So:

rj < rk and r′k < r′j .

We then define from S a new schedule S ′ as follows:

� If the task j was nevertheless treated earlier than the task k (i.e., if Cj ≤ Ck),
then we simply reverse the dispatch dates of tasks j and k, but do not change
the processors where they are computed. This is illustrated on Figure 1. In this
case, the remainder of the schedule is let unaffected, and the total flow remains
the same (just as the makespan, and the maximum flow).

� If the task j was processed later than the task k, i.e., if Cj > Ck, then we send the
task j to the processor that was receiving k under S, at the time task k was sent
to that processor, and conversely. This is illustrated on Figure 2. Since the tasks
j and k have the same size, the use of the processors will be the same, and the
remainder of the schedule will remain unchanged. One obtains a new schedule
S′, having as total flow:







n
∑

i=1
i6=j,i6=k

(Ci − ri)






+ (Ck − rj) + (Cj − rk) =

n
∑

i=1

(Ci − ri) (1)

Therefore, this is also an optimal schedule. In the same way, the makespan as
well as the maximum flow are unchanged.

By iterating this process, we obtain an optimal schedule where the master sends the
tasks according to their arrival dates, i.e., by increasing ris. Indeed, if one considers
the set of the couples {(j, k) | rj < rk & r′j < r′k}, we notice that each iteration of the
process strictly increases the size of this set.

2. There is an optimal schedule such that the master sends the tasks to the slaves in the
order of their arrival, and such that the tasks are executed in the order of their arrival.
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Figure 1: Permutation on the optimal schedule S (case Cj ≤ Ck).
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Figure 2: Permutation on the optimal schedule S (case Cj > Ck).

We will permute tasks to build an optimal schedule satisfying this property from a
schedule satisfying the property stated in point 1. Let S be an optimal schedule in
which tasks are sent by the master in the order of their arrival. From the above study,
we know that such a schedule exists. Let us suppose that S does not satisfy the desired
property. Then, there are two tasks j and k, such that

rj ≤ rk, r′j < r′k, and Cj > Ck.

Then we define a new schedule S ′ by just exchanging the processors to which the
tasks j and k were sent. Then, the task j is computed under S ′ at the time when
k was computed under S, and conversely. This way, we obtain the same total flow
((Cj − rk)+ (Ck − rj) = (Cj − rj)+ (Ck − rk)), the same makespan (since the working
times of the processors remains unchanged), whereas the maximum flow can decrease.

Among the optimal schedules which respect the property stated in point 2, we now look at
the subset of the solutions computing the first task as soon as possible. Then, among this

INRIA



Off-line and on-line scheduling on heterogeneous master-slave platforms 7

subset, we look at the solutions computing the second task as soon as possible. And so on.
This way, we define from the set of all optimal schedules an optimal solution, denoted ASAP,
which processes the tasks in the order of their arrival, and which processes each of them
as soon as possible. We will now compare ASAP with the schedule Round-Robin, formally
defined as follows: under Round-Robin the task i is sent to the processor i mod m as soon
as possible, while respecting the order of arrival of the tasks.

3. The computation of any task j starts at the same time under the schedules ASAP and
Round-Robin.

The demonstration is done by induction on the number of tasks. Round-Robin sends
the first task as soon as possible, just as ASAP does. Let us suppose now that the
first j tasks satisfy the property. Let us look at the behavior of Round-Robin on the
arrival of the (j + 1)-th task. The computation of the (j + 1)-th task starts at time:

RR(j + 1) = max
{

r′j+1, RR(j + 1 − m) + p
}

.

Indeed, either the processor is available at the time the task arrives on the slave, and
the task execution starts as soon as the task arrives, i.e., at time r′j+1, or the processor
is busy when the task arrives. In the latter case, the processor will be available when
the last task it previously received (i.e., the (j + 1 − m)-th task according to the
Round-Robin strategy) will be completed, at time RR(j + 1 − m) + p.

Therefore, if RR(j + 1) = r′j+1, Round-Robin remains optimal, since the task is pro-
cessed as soon as it is available on a slave, and since it was sent as soon as possible.
Otherwise, RR(j + 1) = RR(j + 1 − m) + p. But, by induction hypothesis, we know
that ∀λ, 1 ≤ λ ≤ m,RR(j + 1 − λ) = ASAP (j + 1 − λ). Furthermore, thanks to the
Round-Robin scheduling policy, we know that ∀i, RR(i) ≤ RR(i + 1). Therefore:

∀λ, 1 ≤ λ ≤ m,RR(j + 1 − m) ≤ RR(j + 1 − λ) < RR(j + 1 − m) + p = RR(j + 1)

This implies that, between RR(j + 1−m) and RR(j), m tasks of size p were started,
under Round-Robin, and also under ASAP because of the induction hypothesis. There-
fore, during that time interval, m slaves were selected. Then, until the date RR(j+1−
m) + p, all the slaves are used and, thus, the task j + 1 is launched as soon as possible
by Round-Robin, knowing that ASAP could not have launched it earlier. Therefore,
ASAP (j + 1) = RR(j + 1). We can conclude.

We have already stated that the demonstrations of points 1 and 2 are valid for sched-
ules minimizing either makespan, total flow, or maximum flow. The reasoning followed in
the demonstration of point 3 is independent from the objective function. Therefore, we
demonstrated the optimality of Round-Robin for these three objective functions.
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8 J.-F. Pineau, Y. Robert, F. Vivien

4 Communication-homogeneous platforms

In this section, we have cj = c but different-speed processors. We order them so that P1

is the fastest processor (p1 is the smallest computing time pi), while Pm is the slowest
processor.

4.1 On-line scheduling

Theorem 2. There is no scheduling algorithm for the problem P,MS | online, ri, pj , cj =

c | max Ci with a competitive ratio less than 5+3
√

5

10
.

Proof. Suppose the existence of an on-line algorithm A with a competitive ratio ρ =
5+3

√
5

10
− ε, with ε > 0. We will build a platform and study the behavior of A opposed

to our adversary. The platform consists of two processors, where p1 = 2, p2 = 1+3
√

5

2
, and

c = 1.

Initially, the adversary sends a single task i at time 0. A sends the task i either on
P1, achieving a makespan at least equal to 3, or on P2, with a makespan at least equal to
3+3

√
5

2
. At time-step 1, we check if A made a decision concerning the scheduling of i, and

the adversary reacts consequently:

1. If A did not begin the sending of the task i, the adversary does not send other tasks.
The best makespan is then 4. As the optimal makespan is 3, we have a competitive

ratio of 4

3
> 5+3

√
5

10
. This refutes the assumption on ρ. Thus the algorithm A must

have scheduled the task i at time 1.

2. If A scheduled the task i on P2 the adversary does not send other tasks. The best

possible makespan is then equal to 3+3
√

5

2
, which is even worse than the previous case.

Consequently, algorithm A does not have another choice than to schedule the task i

on P1.

At time-step 1, the adversary sends another task, j. In this case, we look, at time-step 2, at
the assignment A made for j:

1. If j is sent on P2, the adversary does not send any more task. The best achievable

makespan is then 5+3
√

5

2
, whereas the optimal is 5. The competitive ratio is then

5+3
√

5

10
> ρ.

2. If j is sent on P1 the adversary sends a last task at time-step 2. The best possible

makespan is then 7+3
√

5

2
, whereas the optimal is 5+3

√
5

2
. The competitive ratio is still

5+3
√

5

10
, higher than ρ.

INRIA



Off-line and on-line scheduling on heterogeneous master-slave platforms 9

Remark 1. Similarly, we can show that there is no on-line scheduling for the problem
P,MS | online, ri, pj , cj = c |

∑

Ci whose competitive ratio ρ is strictly lower than
2+4

√
2

7
, and that there is no on-line scheduling for the problem P,MS | online, ri, pj , cj =

c | max (Ci − ri) whose competitive ratio ρ is strictly lower than 7

6
.

4.2 Off-line scheduling

In this section, we aim at designing an optimal algorithm for the off-line version of the
problem, with release dates. We target the objective max Ci. Intuitively, to minimize the
completion date of the task arriving last, it is necessary to allocate this task to the fastest
processor (which will finish it the most rapidly). However, the other tasks should also be
assigned so that this fastest processor will be available as soon as possible for the task
arriving last. We define the greedy algorithm SLJF (Scheduling Last Jobs First) as follows:

Initialization– Take the last task which arrives in the system and allocate it to the fastest
processor (Figure 3(a)).

Scheduling backwards– Among the not-yet-allocated tasks, select the one which arrived
latest in the system. Assign it, without taking its arrival date into account, to the
processor which will begin its execution at the latest, but without exceeding the com-
pletion date of the previously scheduled task (Figure 3(b)).

Memorization– Once all tasks are allocated, record the assignment of the tasks to the
processors (Figure 3(c)).

Assignment– The master sends the tasks according to their arrival dates, as soon as pos-
sible, to the processors which they have been assigned to in the previous step (Fig-
ure 3(d)).

Theorem 3. SLJF is an optimal algorithm for the problem Q,MS | rj , pj , cj = c | max Ci.

Proof. The first three phases of the SLJF algorithm are independent of the release dates,
and only depend on the number of tasks which will arrive in the system. The proof proceeds
in three steps. First we study the problem without communication costs, nor release dates.
Next, we take release dates into account. Finally, we extend the result to the case with
communications. The second step is the most difficult.

For the first step, we have to minimize the makespan during the scheduling of identical
tasks with heterogeneous processors, without release dates. Without communication costs,
this is a well-known load balancing, problem, which can be solved by a greedy algorithm [6].
The “scheduling backwards” phase of SLJF solves this load balancing problem optimally.
Since the problem is without release dates, the “memorization” phase does not increase the
makespan, which thus remains optimal.

Next we add the constraints of release dates. To show that SLJF is optimal, we proceed by
induction on the number of tasks. For a single task, it is obvious that the addition of a release
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lP1 : p = 2

P2 : p = 4

P2 : p = 3

(a) Initialization

l

k

P1 : p = 2

P2 : p = 4

P2 : p = 3

(b) Scheduling backwards

l

k

i

j

P1 : p = 2

P2 : p = 3

P3 : p = 4

i → P1 j → P3 k → P2 l → P1

(c) Memorization

i

i

k l

k

l

j

j

j

k, l

i

P1 : p = 2

P2 : p = 4

P2 : p = 3

Comm

Arrival:

(d) Assignment

Figure 3: Different steps of the SLJF algorithm, with four tasks i, j, k, and l.

date does not change anything about the optimality of the solution. Let us suppose the
algorithm optimal for n tasks, or less. Then look at the behavior of the algorithm to process
n + 1 tasks. If the addition of the release dates does not increase the makespan compared
to that obtained during the “memorization” step, then an optimal scheduling is obtained. If
not, let us look once again at the problem starting from the end. Compare the completion
times of the tasks in the scheduling of the“memorization”phase (denoted as (Cn−Ci)memo),
and in the “assignment” phase (denoted as (Cn −Ci)final). If both makespans are equal, we
are finished. Otherwise, there are tasks such that (Cn − Ci)memo < (Cn − Ci)final. Let j

be the last task satisfying this property. In this case, the scheduling of the (n − j − 1) last
tasks corresponds to SLJF in the case of (n − j − 1) tasks, when the first task arrives at
time rj+1 (see Figure 4). And since j is the last task satisfying the above property, we are
sure that the processors are free at the expected times. Using the induction hypothesis,
scheduling is thus optimal from rj+1, and task j + 1 cannot begin its computation earlier.
The whole scheduling is thus optimal. Finally, SLJF is optimal to minimize the makespan
in the presence of release dates.
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k → P2

Cl − Ck = 0

j → P3

Cl − Cj = 0

i → P1

Cl − Ci = 2

l → P1

Cl − Cl = 0

j

P1 : p = 2

P2 : p = 3

P3 : p = 4

k

i

Makespan = 4

l

(a) Scheduling backwards

P1 : p = 2

P2 : p = 4

P2 : p = 3

Comm i

Arrival:

SLJF (3)

Cl − Ci > 2 Cl − Cj > 0 Cl − Ck = 0 Cl − Cl = 0

j k l

j

k

li

j k, li

(b) Assignment

Figure 4: Detailing the last two phases of the SLJF algorithm.

Taking communications into account is now easy. Under the one-port model, with a
uniform communication time for all tasks and processors, the optimal policy of the master
consists in sending the tasks as soon as they arrive. Now, we can consider the dates at
which the tasks are available on the slaves, and consider them as release dates for a problem
without communications.

Remark 2. It should be stressed that, by posing c = 0, our approach allows to provide a
new proof to the result of Barbara Simons [27].

5 Computation-homogeneous platforms

In this section, we have pj = p but processor links with different capacities. We order them,
so that P1 is the fastest communicating processor (c1 is the smallest computing time ci).

5.1 On-line scheduling

Just as in Section 4, we can bound the competitive ratio of any deterministic algorithm:

Theorem 4. There is no scheduling algorithm for the problem P,MS | online, ri, pj =
p, cj | max Ci whose competitive ratio ρ is strictly lower than 6

5
.

Proof. Assume that there exists a deterministic on-line algorithm A whose competitive ratio
is ρ = 6

5
−ε, with ε > 0. We will build a platform and an adversary to derive a contradiction.

The platform is made up with two processors P1 and P2 such that p1 = p2 = p = max{5, 12

25ε
},

c1 = 1 and c2 = p

2
.
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12 J.-F. Pineau, Y. Robert, F. Vivien

Initially, the adversary sends a single task i at time 0. A executes the task i, either on
P1 with a makespan at least2 equal to 1 + p, or on P2 with a makespan at least equal to 3p

2
.

At time-step p

2
, we check whether A made a decision concerning the scheduling of i, and

which one:

1. If A scheduled the task i on P2 the adversary does not send other tasks. The best
possible makespan is then 3p

2
. The optimal scheduling being of makespan 1 + p, we

have a competitive ratio of

ρ ≥
3p

2

1 + p
=

3

2
−

3

2(p + 1)
>

6

5

because p ≥ 5 by assumption. This contradicts the hypothesis on ρ. Thus the algo-
rithm A cannot schedule task i on P2.

2. If A did not begin to send the task i, the adversary does not send other tasks. The
best makespan that can be achieved is then equal to p

2
+ (1 + p) = 1 + 3p

2
, which is

even worse than the previous case. Consequently, the algorithm A does not have any
other choice than to schedule task i on P1.

At time-step p

2
, the adversary sends three tasks, j, k and l. No schedule which executes

three of the four tasks on the same processor can have a makespan lower than 1 + 3p
(minimum duration of a communication and execution without delay of the three tasks).
We now consider the schedules which compute two tasks on each processor. Since i is
computed on P1, we have three cases to study, depending upon which other task (j, k, or l)
is computed on P1:

1. If j is computed on P1:

(a) Task i is sent to P1 during the interval [0, 1] and is computed during the interval
[1, 1 + p].

(b) Task j is sent to P1 during the interval [ p

2
, 1 + p

2
] and is computed during the

interval [1 + p, 1 + 2p].

(c) Task k is sent to P2 during the interval [1 + p

2
, 1 + p] and is computed during the

interval [1 + p, 1 + 2p].

(d) Task l is sent to P2 during the interval [1 + p, 1 + 3p

2
] and is computed during the

interval [1 + 2p, 1 + 3p].

The makespan of this schedule is then 1 + 3p.

2. If k is computed on P1:

(a) Task i is sent to P1 during the interval [0, 1] and is computed during the interval
[1, 1 + p].

2Nothing forces A to send the task i as soon as possible.

INRIA
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(b) Task j is sent to P2 during the interval [ p

2
, p] and is computed during the interval

[p, 2p].

(c) Task k is sent to P1 during the interval [p, 1 + p] and is computed during the
interval [1 + p, 1 + 2p].

(d) Task l is sent to P2 during the interval [1 + p, 1 + 3p

2
] and is computed during the

interval [2p, 3p].

The makespan of this scheduling is then 3p.

3. If l is computed on P1:

(a) Task i is sent to P1 during the interval [0, 1] and is computed during the interval
[1, 1 + p].

(b) task j is sent to P2 during the interval [ p

2
, p] and is computed during the interval

[p, 2p].

(c) Task k is sent to P2 during the interval [p, 3p

2
] and is computed during the interval

[2p, 3p].

(d) Task l is sent to P1 during the interval [ 3p

2
, 1 + 3p

2
] and is computed during the

interval [1 + 3p

2
, 1 + 5p

2
].

The makespan of this schedule is then 3p.

Consequently, the last two schedules are equivalent and are better than the first. Al-
together, the best achievable makespan is 3p. But a better schedule is obtained when
computing i on P2, then j on P1, then k on P2, and finally l on P1. The makespan of the
latter schedule is equal to 1 + 5p

2
. The competitive ratio of algorithm A is necessarily larger

than the ratio of the best reachable makespan (namely 3p) and the optimal makespan, which
is not larger than 1 + 5p

2
. Consequently:

ρ ≥
3p

1 + 5p

2

=
6

5
−

6

5(5p + 2)
>

6

5
−

6

25p
≥

6

5
−

ε

2

which contradicts the assumption ρ = 6

5
− ε with ε > 0.

5.2 Off-line scheduling

In the easy case where
∑p

i=1
ci ≤ p, and without release dates, Round-Robin is optimal

for makespan minimization. But in the general case, not all slaves will be enrolled in the
computation. Intuitively, the idea is to use the fastest m′ links, where m′ is computed so
that the time p to execute a task lies between the time necessary to send a task on each of
the fastest m′−1 links and the time necessary to send a task on each of the fastest m′ links.
Formally,

m′−1
∑

i=1

ci < p and

m′

∑

i=1

ci ≥ p.
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With only m′ links selected in the platform, we aim at deriving an algorithm similar to
Round-Robin. But we did not succeed in proving the optimality of our approach. Hence the
algorithm below should rather be seen as a heuristic.

The difficulty lies in deciding when to use the m′-th processor. In addition to be the
one having the slowest communication link, its use can cause a moment of inactivity on

another processor, since
∑m′−1

i=1
ci + cm′ ≥ p. Our greedy algorithm will simply compare the

performances of two strategies, the one sending tasks only on the m′ − 1 first processors,
and the other using the m′-th processor “at the best possible moment”.

Let RRA be the algorithm sending the tasks to the m′ − 1 fastest processors in a cyclic
way, starting with the fastest processor, and scheduling the tasks in the reverse order, from
the last one to the first one. Let RRB be the algorithm sending the last task to processor m′,
then following the RRA policy. We see that RRA seeks to continuously use the processors,
even though idle time may occur on the communication link, and on the processor Pm′ . On
the contrary, RRB tries to continuously use the communication link, despite leaving some
processors idle.

The global behavior of the greedy algorithm, SLJFWC (Scheduling the Last Job First
With Communication) is as follows:

Initialization: Allocate the m′ − 1 last tasks to the fastest m′ − 1 processors, from the
fastest to the slowest.

Comparison: Compare the schedules RRA and RRB. If there are not enough tasks
to enforce the following stop and save condition, then keep the fastest policy (see
Figure 5).

Stop and save: After k(m′ − 1) + 1 allocated tasks (k ≥ 2), if (see Figure 6)

{

k
∑m′−1

i=1
ci + cm′ > kp

(k + 1)
∑m′−1

i=1
ci + cm′ ≤ (k + 1)p

then keep the task assignment of RRB for the last k(m′−1)+1 tasks, and start again
the comparison phase for the remaining tasks. If not, proceed with the comparison
step.

End: When the last task is treated, keep the fastest policy.

The intuition under this algorithm is simple. We know that if we only have the m′ − 1
fastest processors, then RRA is optimal to minimize the makespan. However, the time
necessary for sending a task on each of the m′ − 1 processors is lower than p. This means
that the sending of the tasks takes “advances” compared to their execution. This advance,
which accumulates for all the m′−1 tasks, can become sufficiently large to allow the sending
of a task on another m-th processor, for “free”, i.e. without delaying the treatment of the
next tasks to come on the other processors.
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Figure 5: Algorithms RRA and RRB with 9 tasks.

6 MPI experiments

6.1 The experimental platform

We build a small heterogeneous master-slave platform with five different computers, con-
nected to each other by a fast Ethernet switch (100 Mbit/s). The five machines are all
different, both in terms of CPU speed and in the amount of available memory. The het-
erogeneity of the communication links is mainly due to the differences between the network
cards. Each task will be a matrix, and each slave will have to calculate the determinant
of the matrices that it will receive. Whenever needed, we play with matrix sizes so as to
achieve more heterogeneity in the CPU speeds or communication bandwidths.

Below we report experiments for the following configuration (in an arbitrary unit):

� c1 = 0.011423 et p1 = 0.052190
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Figure 6: The stop and save condition.

� c2 = 0.012052 et p2 = 0.019685

� c3 = 0.016808 et p3 = 0.101777

� c4 = 0.043482 et p4 = 0.288397

6.2 Results

Figure 7 shows the makespan obtained with classical scheduling algorithms, such as SRPT
(Shortest Remaining Processing Time), List Scheduling, and several variants of Round-Robin,
as well as with SLJF and SLJFWC. In this experinebt, all the tasks to be scheduled arrived
at time 0 (off-line framework without release dates).

Each point on the figure, representing the makespan of a schedule, corresponds in reality
to an average obtained while launching several times the experiment. We see that SLJFWC

obtains good results. SLJF remains competitive, even if it was not designed for a platform
with different communications links.

Figure 8 also represents the average makespan of various algorithms, but on a different
platform. This time, the parameters were modified by software in order to render the
processors homogeneous. In this case, SLJFWC is still better, and SLJF obtains poor
performances.

Finally, Figure 9 represents the average makespan in the presence of release-dates. Again,
SLJFWC performs well, even though it was not designed for problems with release-dates.

7 Related work

We classify several related papers along the following four main lines:
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Figure 7: Comparing the makespan of several algorithms.
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Figure 8: Makespan on a platform with homogeneous slaves.

Models for heterogeneous platforms– In the literature, one-port models come in two
variants. In the unidirectional variant, a processor cannot be involved in more than
one communication at a given time-step, either a send or a receive. In the bidirectional
model, a processor can send and receive in parallel, but at most to a given neighbor
in each direction. In both variants, if Pu sends a message to Pv, both Pu and Pv are
blocked throughout the communication.

The bidirectional one-port model is used by Bhat et al [7, 8] for fixed-size messages.
They advocate its use because“current hardware and software do not easily enable mul-
tiple messages to be transmitted simultaneously”. Even if non-blocking multi-threaded
communication libraries allow for initiating multiple send and receive operations, they
claim that all these operations “are eventually serialized by the single hardware port
to the network”. Experimental evidence of this fact has recently been reported by Saif
and Parashar [24], who report that asynchronous MPI sends get serialized as soon
as message sizes exceed a few megabytes. Their results hold for two popular MPI
implementations, MPICH on Linux clusters and IBM MPI on the SP2.
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Figure 9: Makespan with release dates.

The one-port model fully accounts for the heterogeneity of the platform, as each link
has a different bandwidth. It generalizes a simpler model studied by Banikazemi et
al. [1], Liu [19], and Khuller and Kim [15]. In this simpler model, the communication
time only depends on the sender, not on the receiver: in other words, the communica-
tion speed from a processor to all its neighbors is the same.

Finally, we note that some papers [2, 3] depart from the one-port model as they allow
a sending processor to initiate another communication while a previous one is still
on-going on the network. However, such models insist that there is an overhead time
to pay before being engaged in another operation, so there are not allowing for fully
simultaneous communications.

Task graph scheduling– Task graph scheduling is usually studied using the so-called
macro-dataflow model [20, 26, 10, 11], whose major flaw is that communication re-
sources are not limited. In this model, a processor can send (or receive) any number of
messages in parallel, hence an unlimited number of communication ports is assumed
(this explains the name macro-dataflow for the model). Also, the number of messages
that can simultaneously circulate between processors is not bounded, hence an unlim-
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ited number of communications can simultaneously occur on a given link. In other
words, the communication network is assumed to be contention-free, which of course
is not realistic as soon as the processor number exceeds a few units. More recent
papers [29, 21, 23, 4, 5, 28] take communication resources into account.

Hollermann et al. [13] and Hsu et al. [14] introduce the following model for task graph
scheduling: each processor can either send or receive a message at a given time-step
(bidirectional communication is not possible); also, there is a fixed latency between
the initiation of the communication by the sender and the beginning of the reception
by the receiver. Still, the model is rather close to the one-port model discussed in this
paper.

On-line scheduling– A good survey of on-line scheduling can be found in [25, 22]. Two
papers focus on the problem of on-line scheduling for master-slaves platforms. In [17],
Leung and Zhao proposed several competitive algorithms minimizing the total com-
pletion time on a master-slave platform, with or without pre- and post-processing.
In [18], the same authors studied the complexity of minimizing the makespan or the
total response time, and proposed some heuristics. However, none of these works take
into consideration communication costs.

8 Conclusion

In this paper, we have dealt with the problem of scheduling independent, same-size tasks
on master-slave platforms. We enforce the one-port model, and we study the impact of the
communications on the design and analysis of the proposed algorithms.

On the theoretical side, we have derived several new results, either for on-line schedul-
ing, or for off-line scheduling with release dates. There are two important directions for
future work. First, the bounds on the competitive ratio that we have established for on-line
scheduling on communication-homogeneous, and computation-homogeneous platforms, are
lower bounds: it would be very interesting to see whether these bounds can be met, and
to design the corresponding approximation algorithms. Second, there remains to derive an
optimal algorithm for off-line scheduling with release dates on computation-homogeneous
platforms.

On the practical side, we have to widen the scope of the MPI experiments. A detailed
comparison of all the heuristics that we have implemented needs to be conducted on signif-
icantly larger platforms (with several tens of slaves). Such a comparison would, we believe,
further demonstrate the superiority of those heuristics which fully take into account the
relative capacity of the communication links.
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