
Static Strategies for Worksharing
with Unrecoverable Interruptions

A. Benoit2,4,5 Y. Robert2,4,5 A. L. Rosenberg1 F. Vivien3,4,5

1 Colorado State University, USA 2 ENS Lyon, France 3 INRIA, France
4 Université de Lyon, France 5 LIP, UMR 5668 ENS-CNRS-INRIA-UCBL, Lyon, France

Abstract

One has a large workload that is “divisible”—its constituent
work’s granularity can be adjusted arbitrarily—and one has
access to p remote computers that can assist in computing
the workload. The problem is that the remote computers
are subject to interruptions of known likelihood that kill all
work in progress. One wishes to orchestrate sharing the
workload with the remote computers in a way that maxi-
mizes the expected amount of work completed. Strategies for
achieving this goal, by balancing the desire to checkpoint
often, in order to decrease the amount of vulnerable work
at any point, vs. the desire to avoid the context-switching
required to checkpoint, are studied. Strategies are devised
that provably maximize the expected amount of work when
there is only one remote computer (the case p = 1). Results
suggest the intractability of such maximization for higher
values of p, which motivates the development of heuristic ap-
proaches. Heuristics are developed that replicate works on
several remote computers, in the hope of thereby decreasing
the impact of work-killing interruptions. The quality of these
heuristics is assessed through exhaustive simulations.

1 Introduction

Technological advances and economic constraints have en-
gendered a variety of modern computing platforms that allow
a person who has a massive, compute-intensive workload to
enlist the help of others’ computers in executing this work-
load. The cooperating computers may belong to a nearby
or remote cluster, or they could be geographically dispersed
computers that are available under one of the increasingly
many modalities of Internet-based computing—such as Grid
computing (cf. [5]), or volunteer computing (cf. [9]). In
order to avoid unintended connotations concerning the orga-
nization of the remote computers, we avoid evocative terms

in favor of the generic “assemblage.” Advances in comput-
ing power never come without cost. These new platforms
add various types of uncertainty to the list of concerns that
must be addressed when preparing one’s computation for
allocation to the available computers: notably, computers
can slow down unexpectedly, even failing ever to complete
allocated work. The current paper follows in the steps of
sources such as [1,4,11], analytic studies of algorithmic tech-
niques for coping with uncertainty in computational settings.
Whereas most of these sources address the uncertainty of
the computers in an assemblage one computer at a time, we
attempt here to view the assemblage as a “team” wherein one
computer’s shortcomings can be compensated for by other
computers, most notably by judiciously replicating work,
i.e., allocating some work to more than one computer.

The problem. We have a large computational workload
whose constituent work is divisible in the sense that each
chunk of work can be partitioned into arbitrary granularity
(cf. [7]). We also have access to p ≥ 1 identical computers
to help us compute the workload via worksharing. We study
homogeneous assemblages in the current paper in order to
concentrate only on developing technical tools to cope with
uncertainty within an assemblage. We hope to focus in later
work on the added complexity of coping with uncertainty
within a heterogeneous assemblage.

We address here the most draconian type of uncertainty that
can plague an assemblage of computers, namely, vulnerabil-
ity to unrecoverable interruptions that cause us to lose all
work currently in progress on the interrupted computer. We
wish to cope with such interruptions—whether they arise
from hardware failures or from a loaned/rented computer’s
being reclaimed by its owner, as during an episode of cycle-
stealing (cf. [1,4,11]). Our scheduling tool is work replica-
tion, the allocation of work to more than one remote com-
puter. The only external resource to help us use this tool
judiciously is our assumed access to a priori knowledge of
the risk of a computer’s having been interrupted—which
we assume is the same for all computers (as in [4, 11], our

1

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

scheduling strategies can be adapted to use statistical, rather
than exact, knowledge of the risk of interruption—albeit at
the cost of weakened performance guarantees).

The goal. Our goal is to maximize the expected amount of
work that gets computed by the assemblage of computers,
no matter which, or how many computers get interrupted.
Therefore, we implicitly assume that we are dealing with
applications for which even partial output is meaningful,
e.g., annotation of metagenomics data. In metagenomics
annotation, one has a large number of DNA fragments to
classify (as belonging to eukaryotes, prokaryotes, etc.); one
would rather have all the DNA fragments processed, but the
result of the classification is nevertheless meaningful even if
the annotation is fragmentary (this just artificially raises the
“unknown” category).

The challenges. The challenges of scheduling our work-
load on interruptible remote computers can be described in
terms of dilemmas. Sending each remote computer a small
amount of work minimizes vulnerability to interruption-
induced losses, but it maximizes the impact of per-work
overhead and minimizes the opportunities for “parallelism”
within the assemblage of remote computers. Replicating
work lessens our vulnerability to interruption-induced losses,
but it minimizes the expected productivity advantage from
having access to remote computers. (The pros and cons of
work replication are discussed in [8].)

Approaches to the challenges. (1) “Chunking” our work-
load. We cope with the first dilemma by sending work
allocations to computers as a sequence of chunks rather
than as a single block per computer. (We use the generic
“chunk” instead of “task” to emphasize tasks’ divisibility.)
This approach, advocated in [4,11], allows each computer to
checkpoint at various times, thereby, protecting some work
from the threat of interruption. (2) Replicating work. We
allocate some chunks to more than one remote computer
in order to enhance their chances of being computed suc-
cessfully. We replicate work judiciously, in deference to the
second dilemma.

Because communication to remote computers is likely to be
costly in time and overhead, we limit such communication by
orchestrating work replications in an a priori, static manner,
rather than dynamically, in response to observed interrup-
tions. While we thereby duplicate work unnecessarily when
there are few interruptions among the remote computers,
we also prevent the server from becoming a communication
bottleneck.

Main results. Most of our results assume the linear risk
model, in which the probability that a computer will be in-
terrupted increases linearly with the time the computer has
been available. We find optimal schedules for 1 remote com-
puter, both when there are per-chunk overheads and when

there are not (Section 3). We find asymptotically optimal
schedules when there are 2 remote computers (Section 4).
We propose heuristics for the general p-computer case (Sec-
tion 5), whose efficiency is established through extensive
simulations (Section 6).

Before embarking on technicalities, we quickly discuss re-
lated work. Due to space limitations, we relegate all proofs
and more discussion of the related work to the companion
research report [3].

Related work. The literature contains relatively few rig-
orously analyzed scheduling algorithms for interruptible
“parallel” computing in assemblages of computers. Among
those we know of, [1, 4, 11] deal with an adversarial model
of interruptible computing. One finds in [1] a randomized
scheduling strategy which, with high probability, completes
within a logarithmic factor of the optimal fraction of the
workload. In [4, 11], scheduling is a game against a mali-
cious adversary who seeks to minimize work production by
interrupting each remote computer in order to kill all work in
progress. Among experimental sources, [13] studies the use
of task replication on a heterogeneous desktop grid whose
constituent computers may become definitively unavailable;
the objective is to eventually process all work.

There is a large literature on scheduling divisible workloads
on assemblages of computers that are not vulnerable to inter-
ruptions. We refer the reader to [7] and its myriad intellectual
progeny; another good start is [2], a thorough study of di-
visible load scheduling on star and tree networks; also, [6]
shows how a linear model, like our free-initiation model, can
lead to absurd schedules involving infinitely many infinitely
small chunks. We encounter such a problem in Section 3.1.

We do not enumerate here the many studies of computation
on assemblages of remote computers, which focus either on
systems that enable such computation or on specific algo-
rithmic applications. However, we point to [10] and [12] as
exemplars of the two types of studies.

2 The Technical Framework

We supply the technical details necessary to turn the informal
discussion in the Introduction into a framework in which we
can develop and rigorously validate scheduling guidelines.

2.1 The Computation and the Computers

We have W units of divisible work to execute on an as-
semblage of p ≥ 1 identical computers that are suscepti-
ble to unrecoverable interruptions that “kill” all work in
progress. All computers share the same perfectly known

2

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

instantaneous probability of being interrupted, and this prob-
ability increases with the amount of time the computer has
been operating (whether working or not). As discussed in
the Introduction, the danger of losing work in progress when
an interruption incurs mandates that we not just divide our
workload intoW/p equal-size chunks and allocate one chunk
to each computer. Instead, we “protect” our workload as
best we can, by:

• partitioning it into chunks, the unit of work that we
allocate to the computers;
• prescribing a schedule for allocating chunks to comput-

ers;
• allocating some chunks to several computers, as a

divisible-load analogue of task replication.

We also try to avoid having our computer become a commu-
nication bottleneck, by orchestrating chunk replications in an
a priori, static manner—even though this leads to duplicated
work when there are few or no interruptions—rather than
dynamically, in response to observed interruptions.

2.2 Modeling Interruptions and Expected
Work

2.2.1 The interruption model

Within our model, all computers share the same risk function,
i.e., the same instantaneous probability, Pr(w), of having
been interrupted by the end of “the first w time units.” We
measure time in terms of work units that could have been
executed “successfully,” i.e., with no interruption. In other
words “the first w time units” is the amount of time that a
computer would have needed to compute w work units if it
had started working on them when the entire worksharing
episode began. This time scale is shared by all computers.
Of course, Pr(w) increases with w; we assume that we
know its exact value (see the comment in the Introduction).

It is useful in our study to generalize our measure of risk
by allowing one to consider many baseline moments. We
denote by Pr(s, w) the probability that a computer has not
been interrupted during the first s “time units” but has been
interrupted by “time” s+ w. Thus, Pr(w) = Pr(0, w) and
Pr(s, w) = Pr(s + w) − Pr(s). We let κ ∈ (0, 1] be a
constant that weights our probabilities. We illustrate the role
of κ as we introduce our risk function.

Linearly increasing risk. The risk function that is the focus
of our study is the linear function Pr(w) = κw. It is the
most natural model in the absence of further information:
the risk of interruption grows linearly with the time that the
computer has been available, or equivalently to the amount
of work it could have done. The density function is then

dPr = κdt for t ∈ [0, 1/κ] and 0 otherwise, so that

Pr(s, w) = min
{

1,
∫ s+w

s

κdt

}
= min{1, κw}.

The constant 1/κ recurs repeatedly in our analyses, since it
can be viewed as the time by which an interruption will have
occurred with probability 1. To enhance legibility of the
rather complicated expressions that populate our analyses,
we denote 1/κ by X .

2.2.2 Expected work production

Risk functions help us finding an efficient way to chunk work
for, and allocate work to, the remote computers, in order to
maximize the expected work production of the assemblage.
Let jobdone be the random variable whose value is the num-
ber of work units that the assemblage executes successfully
under a given scheduling regimen. Formally, we are striving
to maximize the expected value (or, expectation) of jobdone.

We perform our study under two models, which play differ-
ent roles as one contemplates the problem of scheduling a
large workload. The models differ in the way chunk exe-
cution times relate to chunk sizes. In short, there are two
classes of time-costs, those that are proportional to the chunk
size and those that are fixed constants. When chunks are
large, the second cost will be minuscule compared to the first.
This suggests that the fixed costs can be ignored, but one
must be careful: if one ignores the fixed costs, then there is
no disincentive to, say, deploying the workload to the remote
computers in n+1 chunks, rather than n. Of course, increas-
ing the number of chunks tends to make chunks smaller—
which increases the significance of the fixed cost! Therefore,
we perform the current study with two cost models, striving
for optimal schedules under each one. (1) The free-initiation
model is characterized by not charging the owner of the
workload a per-chunk fixed cost. This model focuses on
situations wherein the fixed costs are negligible compared to
the chunk-size-dependent costs. (2) The charged-initiation
model, which more accurately reflects the costs incurred
with real computing systems, is characterized by accounting
for both the fixed and chunk-dependent costs.

The free-initiation model. This model assesses no per-
chunk cost. Our results under this model approximate real-
ity well when a priori chunks must be large, e.g., because
large fixed-size costs demand that every remote computer
do a substantial amount of work in order to amortize the
fixed-size costs. In such a situation, one keeps chunks large
by placing a bound on the number of scheduling “rounds,”
which counteracts this model’s tendency to increase the num-
ber of “rounds” without bound. Importantly also: the free-
initiation model allows us to obtain bounds on the expecta-

3

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

tion of jobdone under the charged-initiation model, when
such bounds are prohibitively hard to derive directly; cf. The-
orem 1.

Under the free-initiation model, the expected value of
jobdone under a given scheduling regimen Θ, denoted
E(f)(Θ), the superscript “f” denoting “free(-initiation),” is

E(f)(Θ) =
∫ ∞

0

Pr(jobdone ≥ u under Θ) du.

We illustrate this model via three calculations of E(f)(Θ)
in cases when Θ deploys the whole workload on a single
computer. To enhance legibility, let the phrase “under Θ”
within “Pr(jobdone ≥ u under Θ)” be specified implicitly
by context. For an arbitrary risk function Pr:

Workload deployed as 1 chunk (regimen Θ1)
E(f)(W,Θ1) = W (1− Pr(W))

Workload deployed as 2 chunks (regimen Θ2)
E(f)(W,Θ2)

=
∫ ω1

0

Pr(jobdone ≥ u)du

+
∫ ω1+ω2

ω1

Pr(jobdone ≥ u)du

= ω1(1− Pr(ω1)) + ω2(1− Pr(ω1 + ω2))

Workload deployed as n chunks (regimen Θn)
Chunk sizes: ω1 ≥ 0, ω2 ≥ 0, . . . , ωn ≥ 0

where ω1 + · · ·+ ωn = W

E(f)(W,Θn) = ω1(1− Pr(ω1)) + · · ·+
+ · · ·+ ωn(1− Pr(ω1 + · · ·+ ωn)).

Optimizing expected work-production on one remote com-
puter. One goal of our study is to learn how to craft, for
each integer n, a scheduling regimen Θ that maximizes
E(f)(W,Θ). We observe that many risk functions—such
as the linear risk function—represent situations wherein the
remote computers are certain to have been interrupted no
later than a known eventual time. In such a situation, one
might get more work done, in expectation, by not deploying
the entire workload: one could increase the expectation by
making the last deployed chunk even a tiny bit smaller than
needed to deploy all W units of work (this will be the case
in Theorem 2 for the free-initiation model and in Theorem 3
for the charged-initiation model). Thus, our ultimate goal
when considering a single remote computer (the case p = 1),
is to determine, for each integer n:

• how to select n chunk sizes that collectively sum to at
most W ,
• how to select n chunks of these sizes out of our work-

load,
• how to schedule the deployment of these chunks

in a way that maximizes the expected amount of work
that gets done. We formalize this goal via the function

E(f)(W,n) = max{ω1(1 − Pr(ω1)) + · · · + ωn(1 −
Pr(ω1 + · · · + ωn))}, where the maximization is over
all n-tuples {ω1 ≥ 0, ω2 ≥ 0, . . . , ωn ≥ 0} such that
ω1 + ω2 + · · ·+ ωn ≤W .

The charged-initiation model. This model is much harder
to analyze than the free-initiation model, even when there
is only one remote computer. In compensation, this model
often allows one to determine analytically what the best
numbers of chunks are. Under this model, the overhead for
each additional chunk is a fixed cost—which, in common
with time, we measure in units of work—that is added to the
cost of computing of each chunk; we denote this overhead by
ε (for instance this may correspond to a checkpointing cost).
Under this model, then, the expectation of jobdone under
schedule Θ, denoted E(c)(Θ), the superscript “c” denoting
“charged(-initiation),” is

E(c)(Θ) =
∫ ∞

0

Pr(jobdone ≥ u+ ε) du.

Letting E(c)(W,k) be the analogue for the charged-
initiation model of the parameterized free-initiation expec-
tation E(f)(W,k), we find that, when the whole work-
load is deployed as a single chunk, E(c)(W,Θ1) =
W (1− Pr(W + ε)) , and when work is deployed as two
chunks of respective sizes ω1 and ω2, E(c)(W,Θ2) =
ω1(1− Pr(ω1 + ε)) + ω2(1− Pr(ω1 + ω2 + 2ε)).

Relating the two models. One can bound the work com-
pleted under the charged-initiation model via the free-
initiation model. This justifies our primary focus on the
free-initiation model.

Theorem 1 Let E(c)(W,n) and E(f)(W,n) denote, respec-
tively, the optimal n-chunk expected value of jobdone under
the charged-initiation model and under the free-initiation
model. Then:

E(f)(W,n) ≥ E(c)(W,n) ≥ E(f)(W,n)− nε.

3 Scheduling for a Single Remote Computer

This section is devoted to studying how to schedule opti-
mally when there is only a single remote computer, under
the linear risk model. Some of the results we derive bear a
striking similarity to their analogues in [4], despite certain
substantive differences in models.

3.1 An Optimal Schedule under the Free-
Initiation Model

We first illustrate why the risk of losing work because of an
interruption must affect our scheduling strategy, even when

4

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

there is only one remote computer. When W ≤ 1/κ, the ex-
pected amount of work achieved when one deploys the entire
workload in a single chunk is E(f)(W,Θ1) = W − κW 2.
The analogous quantity when one deploys the workload in
two chunks, of respective sizes ω1 > 0 and ω2 > 0, with
ω1 + ω2 = W , is E(f)(W,Θ2) = W − W 2κ + ω1ω2κ.
Note that: E(f)(W,Θ2) − E(f)(W,Θ1) = ω1ω2κ > 0.
Thus, as one would expect: For any fixed total workload,
one increases the expectation of jobdone by deploying the
workload as two chunks, rather than one—no matter how
one sizes the chunks. In fact, the expectation of jobdone for
the optimal schedule strictly increases with the number of
chunks allowed (Theorem 2). This fact identifies a weakness
of the free-initiation model: increasing the number of chunks
always increases the expected amount of work done—so the
(unachievable) “optimal” strategy would deploy infinitely
many infinitely small chunks.

Theorem 2 Say that one wishes to deploy W units of work
to a single remote computer in at most n chunks, for some
integer n > 0. In order to maximize the expectation of
jobdone, one should have all chunks comprise Z/n units of

work, where Z = min
{
W, n

n+1X
}

. In expectation, this

optimal schedule completes E(f)(W,n) = Z − n+1
2n Z

2κ
units of work.

3.2 An Optimal Schedule under the
Charged-Initiation Model

The charged-initiation analogue of Theorem 2 is dramati-
cally more difficult to deal with.

Theorem 3 Say that one wishes to deploy W units
of work to a single remote computer in at most n
chunks, for some integer n > 0; say that X ≥
ε. Let n1 =

⌊
1
2

(√
1 + 8X/ε− 1

)⌋
and n2 =⌊

1
2

(√
1 + 8W/ε+ 1

)⌋
. The unique regimen for maxi-

mizing E(c)(W,n) specifies m = min{n, n1, n2} chunks:
the first has size ω1,m = Z

m + m−1
2 ε where Z =

min
{
W, m

m+1X −
m
2 ε
}

; the (i + 1)th chunk inductively
has size ωi+1,m = ωi,m − ε. In expectation, this schedule
completes

E(c)(W,n) = Z − m+ 1
2m

Z2κ

− m+ 1
2

Zεκ+
(m− 1)m(m+ 1)

24
ε2κ

units of work.

4 Scheduling for Two Remote Computers

The case of two remote computers affords us useful princi-
ples for addressing the general case of p remote computers.
We first establish characteristics of optimal schedules under
general risk functions, then restrict attention to linear risks.
Throughout this section, we consider two remote computers,
P1 and P2, under the free-initiation model.

4.1 Two Remote Computers under Gen-
eral Risk

Say, for i = 1, 2, that we deploy ni chunks of work,Wi,1,
. . . ,Wi,ni

, on Pi; Pi must schedule them in this order. We
do not assume any a priori relation between how P1 and P2

break their allocated work into chunks: work that is allocated
to both P1 and P2 may be chunked differently on the two
machines.

Theorem 4 Let Θ be a schedule for P1 and P2. Say that,
for both computers, the probability of being interrupted
never decreases as a computer processes more work. Then
there exists a schedule Θ′ that, in expectation, completes as
much work as does Θ and that satisfies the following three
properties; cf. Fig. 1.

1. Maximal work deployment. Θ′ deploys as much of the
overall workload as possible: the workloads it deploys to P1

and P2 can overlap only if their union is the entire overall
workload.

2. Local work priority. Θ′ has P1 (resp., P2) process all of
the allocated work that it does not share with P2 (resp., P1)
before it processes any shared work.

3. Shared work “mirroring.” Θ′ has P1 and P2 process
their shared work “in opposite orders.” Specifically, say
for k = 1, 2, that Pk chops its allocated work into chunks
Wk,1, . . . ,Wk,nk

. Say that there exist chunk-indices a1,
b1 > a1 for P1, and a2, b2 > a2 for P2 such that: W1,a1

andW2,a2 both contain a shared “piece of work” A, and
W1,b1 andW2,b2 both contain a shared “piece of work” B.
Then if Θ′ has P1 execute A before B (i.e., P1 executes
W1,a1 before W1,b1), then Θ′ has P2 execute B before A
(i.e., P2 executesW2,b2 beforeW2,a2).

4.2 Two Remote Computers under Linear
Risk

Optimal schedules. We now specialize from general risk
functions to linear ones. Results in [3] suggest that finding

5

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

W1,2 W1,3

W2,3 W2,2 W2,1

W1,1

Figure 1. The shape of Theorem 4’s optimal
schedule for two computers; n1 = n2 = 3. The
top row displays P1’s chunks, the bottom row
P2’s. Vertically aligned parts of chunks cor-
respond to shared work; shaded areas depict
unallocated work (e.g., no work in W2,1 is al-
located to P1).

exactly optimal schedules is surprisingly difficult, even in the
simple case wherein each computer processes its allocated
work as a single chunk. Nevertheless, it is worth seeking
significant restricted situations wherein one can tractably dis-
cover exactly optimal schedules. One obvious candidate for
special consideration is the family of schedules that allocate
the entire workload to each remote computer—which seems
to be desirable when Wκ is small enough. We conjecture
that, for such schedules, an optimal strategy would have the
two computers chop the workload into chunks of the same
size and then process these chunks in “opposite orders” (as
defined in the third property of Theorem 4). When all remote
computers chop the workload into n chunks, this scheduling
strategy completes, in expectation,W−W

3κ2

6

(
1 + 3

n + 2
n2

)
units of work (cf. Theorem 5 below). Extensive numerical
simulations suggest that such a scheduling strategy is, in-
deed, optimal as long as n ≤ 3. However, we know that
the strategy is suboptimal once one allows n to exceed 3.
Indeed, for n = 4, the strategy completes, in expectation,
W − 5

16W
3κ2 units of work, which is strictly less than the

W − 757−73
√

73
432 W 3κ2 units completed, in expectation, by

the strategy specified schematically in Fig. 2 (with m = 1
and α =

√
73−7
6 W ; the boxes in Fig. 2 contain chunk sizes).

Furthermore, the schedule in Fig. 2 is suboptimal as soon as
we allow computers to chop work into eight chunks. To wit,
Fig. 3 presents an 8-chunk schedule that completes, in expec-
tation, W − 229−44

√
22

98 W 3κ2 ≈ W − 0.230834W 3κ2

units of work, when α = 4
√

22−17
14 W , while the sched-

ule of Fig. 2, using 8 chunks per computer (specifically,
m = 5 and α = 19−

√
193

42 W) completes, in expectation,
W − 18293−965

√
193

21168 W 3κ2 ≈ W − 0.230857W 3κ2 units
of work. (The schedule of Fig. 3 is not even optimal for
8 chunks, but the best schedule we found numerically was
almost identical but slightly less regular.)

The increasing complexities of the preceding “counterex-
ample” schedules suggest how hard it will be to search for,
and characterize, exactly optimal schedules—even in the

presence of simplifying assumptions, such as that the whole
workload is distributed to each computer. Since our simula-
tions suggest that simple regular solutions often complete,
in expectation, almost as much work as do complex exactly
optimal schedules, we henceforth aim for simply structured
asymptotically optimal schedules.

Asymptotically optimal schedules. We now analyze Al-
gorithm 1, whose prescribed schedules for two remote com-
puters are asymptotically optimal; they are exactly optimal
when Wκ ≥ 2.

Notation. Given a workload of size W that is ordered lin-
early, 〈a, b〉 denotes the sub-workload obtained by eliminat-
ing the initial a units of work and all work beyond the initial
b units. Thus, 〈0,W 〉 denotes the entire workload, 〈0, 1

2W 〉
its first half, and 〈 12W,W 〉 its second half.

Algorithm 1: Scheduling for 2 computers using at most
n chunks per computer

if W ≥ 2X then1

∀i ∈ [1, n], W1,i ←
〈
i−1
n ·

n
n+1X,

i
n ·

n
n+1X

〉
2

∀i ∈ [1, n],3

W2,i ←
〈
W − i

n ·
n
n+1X, W −

i−1
n ·

n
n+1X

〉
4

if W ≤ X then5

∀i ∈ [1, n],W1,i =W2,n−i+1 ←
〈
i−1
n W, i

nW
〉

6

if X < W < 2X then7

`← bn/3c8

∀i ∈ [1, `], W1,i ←
〈
i−1
` (W −X), i

` (W −X)
〉

9

∀i ∈ [1, `],10

W2,i ←
〈
W − i

` (W −X), W − i−1
` (W −X)

〉
11

∀i ∈ [1, 2l],W1,l+i =W2,3l−i+1 ←12 〈
(W−X) + i−1

2` (2X−W), (W−X)+ i
2` (2X−W)

〉

Theorem 5 The schedules specified by Algorithm 1 are:

1. optimal when W ≥ 2X; in expectation, they com-
plete n−1

n X units of work, which tends toX (“tends to”
means “as n grows without bound.”);

2. asymptotically optimal when W ≤ X; in expecta-
tion, they complete W − 1

6W
3κ2

(
1 + 3

n + 2
n2

)
units

of work, which tends to W − 1
6W

3κ2;

3. asymptotically optimal when X < W < 2X;
letting ` = bn/3c, in expectation, they
complete 2W − 1

3X − W 2κ + 1
6W

3κ2 +
1
`

((
1 + 1

`

)
W −

(
1 + 2

3`

)
X − 1

2`W
2κ

− 1
4

(
1− 1

3`

)
W 3κ2

)
units of work, which tends to

2W − 1
3X −W

2κ+ 1
6W

3κ2.

6

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

m× α

W−mα
4

W−mα
2

W−mα
4

Figure 2. Counterexample to the optimality
of schedules that employ equal-size chunks.

W−2α
8

W−2α
8

W−2α
8

W−2α
8

W−2α
8

W−2α
8

W−2α
8

W−2α
8

α α

Figure 3. Counterexample to the optimality
of the schedule of Fig. 2.

5 Scheduling for p Remote Computers

We turn finally to the general case of p remote computers.
This case is so much more difficult than the already challeng-
ing case p = 2, that we devote our efforts here to searching
for efficient heuristic schedules. We adopt a pragmatic ap-
proach by restricting attention to “well-structured” schedules
that employ same-size chunks; this restriction has two major
antecedents. (1) The optimal schedules for the case p = 1
and the asymptotically schedules for the case p = 2 mandate
using same-size chunks; (2) This restriction greatly simpli-
fies the specification and implementation of schedules, by
imposing simplifying structure on the scheduling problem.

All of the schedules we develop here operate as follows: (1)
they partition the total workload into (disjoint) slices that
they assign to—and replicate on—disjoint subsets (coteries)
of remote computers; each coterie partitions each slice into
same-size chunks; (2) they orchestrate the processing of the
slices on each coterie of remote computers.

5.1 The Partitioning Phase

We begin with some simple partitioning heuristics; these are
tailored to the linear risk function but can be adapted easily
to other risk functions. We break the scheduling problem into
three subproblems, based on the size of our workload. Our
partition acknowledges the futility of deploying a workslice
of size > X on any computer, in the light of our interruption
model.

• W is “very small.” When W ≤ X , we deploy the
entire workload in a single slice, that is replicated on
all p computers.
• W is “very large.” When W ≥ pX , we deploy p

slices of common sizeX , to be processed independently
on the remote computers. We abandon the remaining
W − pX units of work, in acknowledgment of our
interruption model.
• W is of “intermediate” size. The caseX < W < pX

is the interesting challenge, as there is no compelling
scheduling strategy. In this case, we deploy W units

of work on the p remote computers. We partition this
work into q = dZκe slices, each of size sl = Z/q,
then deploy these slices on disjoint coteries of remote
computers. We load balance computing resources as
much as possible, by replicating each slice on either
bp/qc or dp/qe remote computers.

For general risk functions, we introduce a parameter λ that
specifies the maximum probability of a slice’s being inter-
rupted that the user is willing to risk. We use λ to compute
the maximum allowable slice size maxsl by insisting that
Pr(maxsl) = λ. For instance, if λ = 1/2, then under the
linear risk function, we set maxsl = 1

2X , while with an expo-
nential risk function we set maxsl = (ln 2)X . The amount
of work we actually deploy isZ = min(W, p×maxsl). This
mandates using q = dZ/maxsle slices, of size sl = Z/q.

5.2 The Orchestration Phase

The partition phase has left us with independent slices of
work, each of size sl ≤ maxsl, to be processed by disjoint co-
teries of computers. All slices are partitioned into n chunks
of common size ω = sl/n. For each coterie Γ, each chunk
assigned to Γ will be processed by all gΓ computers in the
coterie. Our challenge is to determine when (at which time
step) and where (on which computer) to execute which
chunk, in a way that maximizes the expected amount of
work completed by the total assemblage of p computers.

5.2.1 General schedules

Let us motivate our approach to the orchestration problem via
the following example, wherein each slice is partitioned into
n = 12 chunks, and each coterie contains g = 4 computers.
Since each coterie operates independently of all others, we
only need specify the schedule for a single coterie. For a
coterie Γ and its associated slice, we represent a possible
schedule via an execution chart such as that of Table 1. Rows
of this chart enumerate the computers in Γ, and columns
enumerate the indices of the chunks into which Γ’s slice is

7

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

chopped. Chart-entry Ci,j is the step at which chunk j is
processed by computer Pi.

Any g × n integer matrix whose rows are permutations of
[1..n] is a valid execution chart, under which each Pi exe-
cutes once each chunk j (at step Ci,j). One can use such a
chart to calculate the expected amount of work completed
under the schedule that the chart specifies. To wit, chunk j
will not be executed under the schedule only if all g comput-
ers in the coterie are interrupted before they complete the
chunk. This occurs with probability

∏g
i=1 Pr(Ci,jω) =∏g

i=1 Pr (Ci,jsl/n) , so the expectation of the total work
completed from the slice is

E(sl, n) = sl

1− 1
n

(
slκ

n

)g n∑
j=1

g∏
i=1

Ci,j

 .

The last expression is specific to the linear risk function:
because each Ci,j ≤ n, we have Pr(Ci,jω) = Ci,jωκ
under this risk function, so we need not take the minimum
of the last expression with 1. We can, therefore, derive the
following upper bound:

Proposition 1

E(sl, n)≤ sl·

(
1−
(

sl · κ (n!)1/n

n

)g
)
≈ sl·

(
1−
(

sl.κ

e

)g)
.

5.2.2 Group schedules: introduction

Referring back to Table 1, we note that chunks 1–4 are al-
ways executed at the same steps; the same is true for chunks
5–8 as a group and chunks 9–12 as a group. The slice’s
chunks thus partition naturally into three groups. By re-
specifying the schedule of Table 1 as the group(-oriented)
schedule of Table 2, we significantly simplify the specifica-
tion. In the group(-oriented) execution chart of Table 2, each
column corresponds to a group of chunks, and the ith row
specifies the step at which chunks are executed for the ith
time. It is implicit that chunk-indices within each group are
cyclically permuted (downward) at each step, so that each
chunk is processed by each computer exactly once.

We generalize this description. When n is a multiple of g,
we can sometimes convert the full g × n execution chart
C exemplified by Table 1 to the g × n/g group(-oriented)
execution chart Ĉ exemplified by Table 2. There are n/g

groups of size g, and chart-entry Ĉi,j denotes the step at
which group j of chunks is executed for the ith time. For
a chart Ĉ to specify a valid group schedule, its total set
of entries must be a permutation of [1..n]. When Ĉ does
specify a valid group schedule, the expected amount of work

it completes, under the linear risk model, is:

E(sl, n,Θ) = sl− K(Θ) · g
κ

(
slκ

n

)g+1

where K(Θ) =
n/g∑
j=1

g∏
i=1

Ĉ
(Θ)
i,j .

Thus: A smaller value of K(Θ) corresponds to a larger value
of E(sl, n,Θ).

Group schedules are very natural, because they are sym-
metric: all computers play the same role as the work is
processed, differing only in the times at which they process
different chunks. Intuition suggests that the most productive
schedules are symmetric: why should some of the identical
computers be treated differently by “nature” than others?
Indeed, the following upper bound on the expected work pro-
duction of group schedules does not distinguish symmetric
schedules from general ones (but we have not yet been able
to prove that no difference exists).

Proposition 2 For any group schedule Θ,

E(sl, n,Θ) ≤ sl ·

(
1−

(
slκ(n!)1/n

n

)g
)
.

Proposition 2 affords us an easy lower bound on the K value
of any group schedule with parameters g and n:
Kmin =

⌈
(n/g)(n!)g/n

⌉
.

5.2.3 Group schedules: specific schedules

Our group schedules strive to maximize expected work com-
pletion by having every computer attempt to compute every
chunk. Of course, there are many ways to achieve this cov-
erage, and the form of the risk function will make some
ways more advantageous than others with respect to maxi-
mizing expected work completion. As an extreme example,
when p = 2 it is always advantageous to have the remote
computers process the work they share “in opposite orders”
(Theorem 4). We now specify and compare the performance
of six group schedules whose chunk-scheduling regimens
seem to be a good match for the way the linear risk function
“predicts” interruptions.

Cyclic scheduling (Table 3(a)). Under this regimen,
Θcyclic, groups are executed sequentially, in a round-robin
fashion, so the chunks of group j are executed at steps j,
j + n/g, j + 2n/g, and so on. The weakness of Θcyclic

is that chunks in low-index groups are more likely to be
completed than are chunks in high-index groups—because

8

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

PPPPPPPPComputer

Chunk
1 2 3 4 5 6 7 8 9 10 11 12

P1 1 6 9 12 2 5 8 11 3 4 7 10
P2 12 1 6 9 11 2 5 8 10 3 4 7
P3 9 12 1 6 8 11 2 5 7 10 3 4
P4 6 9 12 1 5 8 11 2 4 7 10 3

Table 1. General schedule.

Group 1 Group 2 Group 3

chunks 1–4 chunks 5–8 chunks 9–12

1 2 3
6 5 4
9 8 7
12 11 10

Table 2. Group-oriented schedule.

chunks remain in the same relative order throughout the com-
putation. The remaining schedules aim to compensate for
this imbalance.

Reverse scheduling (Table 3(b)). A schedule Θreverse pro-
duced under this regimen executes the chunks in each group
once in the initially-specified order, and then executes them
in the reverse order n/g − 1 times, so the chunks in group j
are executed at step j, and thereafter at steps 2n/g− j + 1,
3n/g−j+1, 4n/g−j+1, and so on. Θreverse thereby strives
to compensate for the imbalance in chunks’ likelihoods of
being completed created by their initial order of processing.
(Θreverse is the schedule specified in Table 2.)

Mirror scheduling (Table 3(c)). The mirror schedule
Θmirror, which is defined for even g, is a compromise be-
tween the cyclic and reverse strategies. Θmirror compensates
for the imbalance in likelihood of completion only during
the second half of the computation, by mimicking Θcyclic for
the first g/2 phases of processing a group and mimicking
Θreverse thereafter.

Snake-like scheduling (Table 3(d)). Θsnake compensates
for the imbalance of cyclic scheduling by mimicking Θcyclic

and Θreverse at alternating steps, which lends a snake-like
structure to the execution chart Ĉ(Θsnake).

Fat snake-like scheduling (Table 3(e)). Θfat−snake qual-
itatively adopts the same strategy as Θsnake, but it slows
down the return phase. Consider three consecutive rows of
Ĉ(Θfat−snake). The first row is identical to its shape in Ĉ(Θcyclic).
The return phase distributes elements of the two remain-
ing rows in the reverse order, two elements at a time. The
motivating intuition is that the slower return would further
compensate for the imbalance in Θcyclic.

Greedy scheduling (Table 3(f)). The greedy scheduling
algorithm, Θgreedy, iteratively assigns a step to each group
of chunks so as to balance the current success probabilities

as much as possible. At each step, Θgreedy constructs one
new row of the execution chart Ĉ(greedy). Remember that
after k steps, the probability that a chunk in group j will
be interrupted is proportional to Π

k

i=1Ĉ
(greedy)
ij . The idea is

to iteratively sort current column products and assign the
smallest time-step to the largest product.

Numerical evaluation We ran our six scheduling heuris-
tics on all problems where g ∈ [2, 100], n ∈ [2g, 1000], and
g divides n: altogether 4032 instances. Table 4 presents
two series of statistics. For heuristic Θ: The Relative series
presents the ratio of K(Θ) on a given instance to the low-
est K(Θ) value found for that instance among all the tested
heuristics; the Absolute series presents the ratio of K(Θ) to
Kmin. Table 4 also records the best-of heuristic that, on
each instance, runs all six heuristics and picks the best an-
swer. Θgreedy is clearly the best heuristic: it finds the best
schedule for 83% of the instances, and its solutions are never
more than 6% worse than the best solution found. More
importantly, K(Θgreedy) is never more than 23% larger than
the lower bound Kmin and, on average, it is less than 7%
larger than this bound. In fact, only Θfat−snake happens some-
times to find better solutions than Θgreedy; however, these
improvements are marginal, as one can see by comparing the
absolute performance of Θgreedy and best-of. As a result of
this experimentation, we retain only Θgreedy as the exemplar
of group schedules for the experiments of Section 6.

5.3 Choosing the Optimal Number of
Chunks

We show now that one does not have to guess at the number
n of chunks per computer. We begin to flesh out this remark
by noting that we can easily obtain an explicit expression
for the expected work completed by any group schedule
Θ under the charged-initiation model, from Θ’s analogous
expectation under the free-initiation model.

Theorem 6 Let C be a group schedule defined by
the execution chart Ci,j

∣∣
i∈{1,...,g},j∈{1,...,n/g} . If

9

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

a) cyclic b) reverse c) mirror

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

1 2 3 4 5
10 9 8 7 6
15 14 13 12 11
20 19 18 17 16

1 2 3 4 5
6 7 8 9 10
15 14 13 12 11
20 19 18 17 16

K(Θcyclic) = 34104 K(Θreverse) = 27284 K(Θmirror) = 24396

d) snake e) fat− snake f) greedy

1 2 3 4 5
10 9 8 7 6
11 12 13 14 15
20 19 18 17 16

1 2 3 4 5
14 12 10 8 6
15 13 11 9 7
16 17 18 19 20

1 2 3 4 5
10 9 8 7 6
15 14 13 12 11
20 19 18 16 17

K(Θsnake) = 25784 K(Θfat−snake) = 24276 K(Θgreedy) = 24390

Table 3. Illustrating the group schedules for n = 20 and g = 4. Here the most efficient schedule is
Θfat−snake.

Relative Absolute Success rate
min max avg. stdv. min max avg. stdv.

Cyclic 1.1 3.786 2.143 0.664 1.1 3.786 2.239 0.592 00.00%
Reverse 1 1.295 1.055 0.065 1 1.295 1.117 0.061 12.42%
Mirror 1 2.468 1.504 0.393 1 2.468 1.575 0.338 12.37%
Snake 1 1.199 1.127 0.059 1 1.291 1.193 0.059 12.34%
Greedy 1 1.055 1.005 0.015 1 1.224 1.067 0.074 83.01%
Fat-snake 1 1.442 1.123 0.115 1 1.530 1.192 0.143 17.07%
Best-of 1 1 1 0 1 1.224 1.061 0.069 100.00%

Table 4. Statistics on the K value of all heuristics for 2 ≤ g ≤ 100, 2g ≤ n ≤ 1000, and g divides n
(minimum, maximum, average value, and standard deviation over the 4032 instances).

sl(c) ≤ min {sl, X − nε}, then:

E(c,n)(sl(c), C) =
sl(c)

sl(c) + nε
E(f,n)(sl(c) + nε, C).

Now we determine the value of n, making only the assump-
tion that the expectation of the group schedule within the
charged-initiation model is a unimodal function of n. (It is
quite natural to assume that this expectation is nondecreasing
with n under the free-initiation model.) We can, therefore,
use a binary search to seek the optimum value of n. Specifi-
cally, for each tested value m, we compare the values of the
expectation for m and m+ 1 to determine if the expectation
is still increasing in m (so that m is smaller than the opti-
mum n). The binary search can be safely performed in the
interval [1..X/ε].

6 Experiments

We have tried to assess the performance of our group heuris-
tics by testing them on large simulated computing platforms
that are subject to unrecoverable interruptions. Since all
group heuristics were observed to have similar performance
in our simulations [3], we only report here on the simulated
performance of Θgreedy. The source code and the complete
set of results are available in [3].

We simulated randomly generated platforms comprising p
computers. In all experiments, κ = 1, and the time at which
each computer is interrupted falls randomly between 0 and
1, following a uniform distribution. The total workload has
size Wtot ∈ [1..p]. Wtot = 1 represents the case when all
computers can potentially complete all of the work before
being interrupted; Wtot = p represents the case when
we can do no better than give one slice of size 1 to each
computer, which then processes it until it is interrupted. The
key parameters for the simulation are p, Wtot, the (common)

10

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

chunk size cs, and the start-up cost ε. Several heuristics are
compared:

H1-brute. This brute replication heuristic replicates the
entire workload onto all computers. Each computer executes
work in the order of receipt, starting from the first chunk,
until it is interrupted.
H2-norep. This no replication heuristic distributes the work
in a round-robin fashion, with no replication. Thus, each
computer is allocated Wtot/p units of work (rounded by the
chunk size).
H3-cyclicrep. This cyclic replication heuristic distributes
the work in round-robin fashion, as does H2-norep, but it
keeps distributing chunks, starting from chunk 1 again, un-
til each computer has a total (local) workload of 1. Note
that when n is a multiple of p, this heuristic is identical to
H2-norep, since the chunks assigned to a computer after
replication were already assigned to it previously.
H4-randomrep. This random replication heuristic dis-
tributes a local workload of 1 to each computer, but it
chooses chunks randomly, to ensure that all chunks deployed
on the same computer are distinct. However, the same chunk
can be assigned to several computers.
H5-groupgreedy. This group greedy heuristic is the sched-
ule Θgreedy of Section 5.2.3. Since n may not be a multiple
of g, the last group of computers may not have a full g
chunks to process, in which case, we ignore this last group
once its computers have been assigned as many time-steps
as there are chunks in the group.
H6-omniscient. The omniscient heuristic is an idealized
static heuristic that knows exactly when each computer
is interrupted. This idealized knowledge obviates replica-
tion: each computer is statically allocated precisely as many
chunks as it can process before its interruption, and only
distinct chunks are sent. Of course no actual heuristic can
beat this optimal omniscient heuristic.

In all experiments, we output the ratio Wdone/Wtot, where
Wdone is the amount of work successfully completed by a
heuristic. The experiments average the result obtained on
100 different random configurations of the system (interrup-
tion times). Only a significant subset of results is presented,
the complete study being available in [3].

As expected, for all parameters, H6-omniscient always com-
pletes the most work, and H1-brute completes the least. The
other heuristics are more comparable with each other. In all
cases, H3-cyclicrep is better than H2-norep, but these two
heuristics are equivalent when the total number of chunks is a
multiple of p. H4-randomrep generally produces more work
than H2-norep for small workloads, but it is not efficient for
high loads since it may distribute the same chunk several
times. Finally, the group greedy heuristic is the best one
(aside from the optimal H6) most of the time, at least when

the workload is not too large. When the workload increases,
since the number of chunks is not necessarily a multiple
of g, the handling of some chunks may not be optimized.
Moreover, for a large workload, a cyclic distribution of the
work will achieve a good result since not much redundant
work can be done. This ranking is observed in Fig. 4(a),
where the chunk size is cs = 1/n + ε. The ranking is similar
in all other tested sets of parameters [3].

These experiments also illustrate the impact of start-up cost
on the perceived quality of a schedule. In particular, the
simulations allow us to determine how many chunks should
be used in order to maximize the expected work output, for
a given setting; see, e.g., Fig. 4(b).

7 Conclusion

We have presented a model for studying the problem of
scheduling large divisible workloads on p identical remote
computers that are vulnerable (with the same risk function)
to unrecoverable interruptions. Our goal has been schedules
for allocating work to the computers and for scheduling the
checkpointing of that work, in a manner that maximizes the
expected amount of work completed by the remote comput-
ers. Most of our results assume that the risk of a computer
being interrupted increases linearly with the amount of time
that the computer has been available. We have completely
solved this scheduling problem for p = 1 remote computer.
Our solution provides exactly optimal schedules—whose
expected work completion is exactly maximum—both for
the free-initiation and charged-initiation models. For p = 2
remote computers, we provide schedules whose expected
work output is asymptotically optimal, as the size of the
workload grows without bound; we also provide guidelines
for deriving exactly optimal schedules. The complexity of
the development about 2 computers suggests that the general
case of p remote computers will be prohibitively difficult,
even with respect to deriving asymptotically optimal sched-
ules. Therefore, we settle in this general case for deriving
a number of well-structured heuristics, whose quality can
be assessed via explicit expressions for their expected work
outputs. Simulations suggest that our group-heuristics are
clear winners in terms of performance. Extensive simulation
experiments suggest that all our group-heuristics provide
schedules with good expected work output in non trivial
cases, that is, when there is work to replicate (W < pX) and
the replication is not trivial (W > X).

Much remains to be done regarding this important problem,
but three directions stand out as perhaps the major outstand-
ing challenges. One of these is to extend our (asymptotic-)
optimality results to a larger class of risk functions, thereby
covering the range of situations that our work addresses.

11

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

W
d
o
n
e
/W

to
t

Total workload Wtot

H1-brute
H2-norep

H3-cyclicrep
H4-randomrep

H5-groupgreedy
H6-omniscient

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

W
d
o
n
e
/W

to
t

Total workload Wtot

(a) p = 80, n = 97, ε = 0.001.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

W
d

o
n

e
/W

to
t

Number of chunks

(b) p = 10, Wtot = 3, ε = 0.001.

Figure 4. Performance of the different heuristics.

A second is to extend our study to include heterogeneous
assemblages of remote computers, whose constituent com-
puters differ in speed and other computational resources.
When the assemblages are heterogeneous, but even when
they are homogeneous, it would be significant to allow the as-
semblage’s computers to be subject to differing probabilities
of being interrupted.

Acknowledgment

The work of A. Benoit and Y. Robert was supported in part
by the ANR StochaGrid project. The work of A. Rosenberg
was supported in part by US NSF Grant CNS-0842578.

References

[1] B. Awerbuch, Y. Azar, A. Fiat, and F. T. Leighton. Mak-
ing commitments in the face of uncertainty: How to pick a
winner almost every time. In 28th ACM Symp. on Theory of
Computing, pages 519–530, 1996.

[2] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and
Y. Yang. Scheduling divisible loads on star and tree networks:
results and open problems. IEEE Trans. Parallel Distributed
Systems, 16(3):207–218, 2005.

[3] A. Benoit, Y. Robert, A. L. Rosenberg, and F. Vivien. Static
strategies for worksharing with unrecoverable interruptions.
Research report RR2008-29, LIP, ENS Lyon, France, 2008.

[4] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosen-
berg. An optimal strategies for cycle-stealing in networks of
workstations. IEEE Trans. Computers, 46(5):545–557, 1997.

[5] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
grid: Enabling scalable virtual organizations. Int. J. of High
Performance Computing Applications, 15(3):200–222, 2001.

[6] M. Gallet, Y. Robert, and F. Vivien. Comments on “design
and performance evaluation of load distribution strategies for
multiple loads on heterogeneous linear daisy chain networks”.
J. Parallel and Distributed Computing, 68(7):1021–1031,
2008.

[7] S. D. L. in Parallel and D. Systems. Veeravalli Bharadwaj
and Debasish Ghose and Venkataraman Mani and Thomas
G. Robertazzi. Wiley-IEEE Computer Society Press, 1996.

[8] D. Kondo, H. Casanova, E. Wing, and F. Berman. Models and
scheduling mechanisms for global computing applications.
In Intl. Parallel and Distr. Processing Symp., 2002.

[9] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and
M. Leboisky. Seti@home-massively distributed computing
for seti. Computing in Science & Engineering, 3(1):78–83,
2001.

[10] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - a hunter
of idle workstations. In 8th Intl. Conf. on Distr. Computing
Systs. (ICDCS), pages 104–111, 1988.

[11] A. L. Rosenberg. Optimal schedules for cycle-stealing in a
network of workstations with a bag-of-tasks workload. IEEE
Trans. Parallel Distrib. Syst., 13(2):179–191, 2002.

[12] S. White and D. Torney. Use of a workstation cluster for
the physical mapping of chromosomes. SIAM NEWS, pages
14–17, Mar. 1993.

[13] J. Wingstrom and H. Casanova. Probabilistic allocation of
tasks on desktop grids. In Proceedings of the Workshop on
Desktop Grids and Volunteer Computing Systems (PCGrid).
IEEE CS Press, 2008.

12

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

