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Abstract

In this paper, we focus on scheduling jobs on computing
Grids. In our model, a Grid job is made of a large col-
lection of input data sets, which must all be processed by
the same task graph or workflow, thus resulting in a collec-
tion of task graphs problem. We are looking for a compet-
itive scheduling algorithm not requiring complex control.
We thus only consider single-allocation strategies. In ad-
dition to a mixed linear programming approach to find an
optimal allocation, we present different heuristic schemes.
Then, using simulations, we compare the performance of
our different heuristics to the performance of a classical
scheduling policy in Grids, HEFT. The results show that
some of our static-scheduling policies take advantage of
their platform and application knowledge and outperform
HEFT, especially under communication-intensive scenar-
ios. In particular, one of our heuristics, DELEGATE, almost
always achieves the best performance while having lower
running times than HEFT.

Keywords Workflows, DAGs, scheduling, steady state,
heterogeneity, computing Grids.

1 Introduction

Computing Grids gather large-scale distributed and het-
erogeneous resources, and make them available to large
communities of users [13]. Such platforms enable large
applications from various scientific fields to be deployed
on large numbers of resources. These applications come
from domains such as high-energy physics [8], bioinformat-
ics [21], medical image processing [17], etc. Distributing an
application on such a platform is a complex duty. As far as
performance is concerned, we have to take into account the
computing requirements of each task, the communication
volume of each data transfer, as well as the platform het-
erogeneity: the processing resources are intrinsically het-

erogeneous, and run different systems and middlewares; the
communication links are heterogeneous as well, due to their
various bandwidths and congestion status. In this paper, we
investigate the problem of mapping an application onto the
computing platform. We are both interesting in optimizing
the performance of the mapping (that is, process the data as
fast as possible), and to keep the deployment simple, so that
we do not have to deploy complex control softwares on a
large number of machines.

Applications are usually described by a (directed) graph
of tasks, what is sometimes called a workflow in the Grid
literature. The nodes of this graph represent the computing
tasks, while the edges between nodes stand for the depen-
dences between these tasks, which are usually materialized
by files: a task produces a file which is necessary for the
processing of some other task. In this paper we consider
Grid jobs made of a large collection of input data sets that
must all be processed by the same application. We thus
have a large number of instances of the same task graph to
schedule. Such a situation arises when the same computa-
tion must be performed on independent data [20] or inde-
pendent parameter sets [24]. We thus concentrate on how to
map several instances of a same task graph onto a comput-
ing platform, that is, on how to decide on which resource
each instance of each task has to be processed.

We start by motivating the problem and describing re-
lated work (Section 2), then we formally define the problem
(Section 3) and describe our solutions (Section 4). Finally,
we assess the quality of these solutions through simulations
(Section 5) and conclude (Section 6).

2 Problem motivation and related work

2.1 Workflow scheduling in Grids

In Grid computing, jobs are often organized as sets of
tasks with dependences, thus resulting in a task graph,
sometimes also called a workflow. Scheduling task graphs
on Grids is the subject of a wide literature, and many
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tools exist to manage and schedule such workflows, such
as MOTEUR [18]. These tools usually include schedul-
ing heuristics to map the workflow tasks onto the available
resources. These heuristics were often inherited from the
Direct-acyclic graph (DAG) scheduling literature and were
more or less adapted to cope with the intrinsic heterogene-
ity of Grid environments. The most used techniques are
list scheduling [9], clustering [22], and task duplication [1].
The most famous of all task graph scheduling algorithms for
Grids is certainly HEFT [26]. We will use it as our baseline
reference.

2.2 Dynamic vs. static scheduling

Many scheduling strategies use a dynamic approach:
task graphs, or even tasks, are processed one after the other.
This is usually done by assigning priorities to waiting tasks,
and then by allocating resources to the task with highest pri-
ority, as long as there are free resources. This simple strat-
egy is the best possible in some cases: (i) when we have no
knowledge on the future workload (i.e., the tasks that will be
submitted in the near future, or released by the processing
of current tasks), or (ii) under a very unstable environment,
where machines join and leave the system with a high churn
rate.

On the contrary to the typical use case of dynamic
schedulers, we have much knowledge on the system when
scheduling several instances of the same task graph. First,
we can take advantage of the regularity of our collection of
task graphs. Second, we assume the computing platform
to be stable, and processors to be dedicated to our applica-
tion. We can then use performance measurement tools like
NWS [28] in order to get information on machine speeds
and link bandwidths. Also, there is no external workload
we should take into account. Such a situation arises, for
instance, when one is trying to make the best of one’s reser-
vation on a Grid.

We claim that by taking advantage of such knowledge,
we can achieve better results using static scheduling tech-
niques, that is, by anticipating the mapping and scheduling
of the whole workload at its submission date. The simula-
tion experiments (Section 5) will show that we achieve sig-
nificantly better performance than a classic scheduler like
HEFT [26].

2.3 Steady-state scheduling

Our objective is to take advantage of the regularity of
the problem, and to make use of steady-state scheduling
techniques. In this paper we consider a Grid job made of
a large number of data sets which have to be processed us-
ing the same task graph. We can relax the scheduling prob-
lem and consider a steady-state approach: we assume that

after some transient initialization phase, the throughput of
each resource will become steady. For problems composed
of a large number of data sets, optimizing the steady-state
phase allows to derive efficient, near-optimal schedules. In
scheduling, the classical objective is to minimize the run-
ning time of the job, or makespan, which is an NP-hard
problem in most practical situations [16, 25, 9]. However,
by using steady-state techniques, we relax this objective and
concentrate on maximizing the system throughput. Fortu-
nately, it turns out that the optimal steady-state schedule can
often be characterized very efficiently.

The steady-state approach has been pioneered by Bert-
simas and Gamarnik [6]. This approach has been success-
fully applied to problems as diverse as network packet rout-
ing [6], pipelining broadcasts [4], or scheduling indepen-
dent tasks [2] or divisible loads [19] on heterogeneous plat-
forms. A steady-state approach for scheduling collections
of identical task graphs was proposed in [5]. The solu-
tion of [5], although asymptotically optimal under reason-
able assumptions, may not be practical. Indeed, this so-
lution may use a large number of different allocations and
thus require a lot of control. Furthermore, the schedules
built by [5] may have large initialization phases and peri-
ods. They may thus require a large number of task graph
instances before the steady-state can be reached. This is
why we are targeting steady-state schedules using a single
allocation. In [14] we have addressed the theoretical part
of this problem: establishing its complexity and proposing
mixed-linear programs to solve it (we recall these results in
Sections 3.4 and 4.1). In the current paper we aim at de-
signing practical heuristics.

3 Notations, hypotheses, and complexity

3.1 Platform and application model

We denote byGP = (VP , EP ) the undirected graph rep-
resenting the platform, where VP = {P1, . . . , Pp} is the
set of all processors. The edges of EP represent the com-
munication links between these processors. The maximum
bandwidth of the communication link Pq → Pr is denoted
by bwq,r. Moreover, we suppose that processor Pq has a
maximum incoming bandwidth Bin

q and a maximum outgo-
ing bandwidthBout

q . Figure 1(a) gives an example of such a
platform graph. A path from processor Pq to processor Pr,
denoted Pq ; Pr, is a set of adjacent communication links
going from Pq to Pr.

We use a bidirectional multiport model for communica-
tions: a processor can perform several communications si-
multaneously. In other words, a processor can simultane-
ously send data to multiple targets and receive data from
multiple sources, so long as the bandwidth limitation is not
exceeded on links, either on incoming or on outgoing ports.
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Figure 1. Examples of platform and applications.

We denote by GA = (VA, EA) the Directed Acyclic ap-
plication Graph (DAG), where VA = {T1, . . . , Tn} is the
set of tasks, and EA represents the dependences between
these tasks, that is, Fi,j = (Ti, Tj) ∈ EA is the file pro-
duced by task Ti and consumed by task Tj . The depen-
dence file Fi,j has size datai,j , so that its transfer through
link Pq → Pr takes a time datai,j

bwq,r
. Figure 1(b) gives an

example of application graph. Computation task Tk needs
a time wi,k to be entirely processed by processor Pi. This
last notation corresponds to the so-called unrelated-machine
model: a processor can be fast for a given type of tasks and
slow for another one. Using these notations, we can model
the benefits which can be drawn on some specific hardware
architectures by specially optimized tasks. For example, a
Cholesky factorization can be 5.5 times faster when using
a GeForce 8800GTX graphic card than when using only
the CPU, while a LU factorization is only 3 times faster in
the same conditions [27]. Unrelated performance may also
come from memory requirements. Indeed, a given task re-
quiring a lot of memory may be completed faster when pro-
cessed by a slower processor with a larger amount of mem-
ory. Grids are often composed of several clusters bought
over several years, thus with very different memory capaci-
ties, even when processors are rather similar.

3.2 Allocations

As described in the introduction, we assume that we have
a large collection of input data sets to process. These input
data sets are originally available on a given source processor
Psource. Each of these data sets contains the data for the exe-
cution of one instance of the application task graph. For the
sake of simplicity, we are looking for strategies where all
tasks of a given type Ti are processed on the same resource,
which means that the allocation of tasks to processors is
the same for all instances. The goal of this restriction is to
produce practical schedules requiring far less control than

classical steady-state solutions (see the related work discus-
sion). We now formally define what an allocation is.

Definition 1 (Allocation) An allocation of the application
graph to the platform graph is a function σ associating:
• to each task Ti, a processor σ(Ti) which processes all

instances of Ti;
• to each file Fi,j , a set of communication links σ(Fi,j)

which carries all instances of this file from processor
σ(Ti) to processor σ(Tj). The path for any transfer
from Pq to Pr is fixed a priori. This scenario corre-
sponds to the classical case where we have no freedom
on the routing between machines: we cannot change
the routing tables of routers.

3.3 Throughput

We first formally define what we call the “throughput”
of a schedule. Then, we will derive a tight upper bound on
the throughput of any schedule.

Definition of throughput We focus on the optimization
of the steady state. Thus, we are not interested in min-
imizing the overall execution time for a given number of
task graph instances, but we concentrate on maximizing the
throughput of a solution, that is the average number of in-
stances that can be processed per time-unit in steady state.

Definition 2 Assume that the number of instances to be
processed is infinite, and noteN(t) the number of instances
totally processed by a schedule at time t. The throughput ρ

of this schedule is given by ρ = lim
t→∞

N(t)
t

.

This definition is the most general one, as it is valid for
any schedule. We are only interested in very specific sched-
ules, consisting of a single allocation. We now show how to
compute an upper bound on the achievable throughput for a
given allocation. We later show that this bound is tight.
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Figure 2. A periodic schedule for the allocation of Figure 1(c). Only the first instance is represented
with task and file labels.

Upper bound on the achievable throughput First, we
consider the time spent by each resource on one instance of
a given allocation σ. In other words, we consider the time
spent by each resource for processing a single copy of our
task graph under allocation σ.

• The computation time spent by processor Pq for pro-
cessing a single instance is: tcomp

q =
∑

i,σ(Ti)=Pq

wi,q.

• The total amount of data carried by a communica-
tion link Pq → Pr for a single instance is dq,r =∑
(i,j),Pq→Pr∈σ(Fi,j)

datai,j . This allows us to compute

the time spent by each link, and each network inter-
face, on this instance:

– on link Pq → Pr: tq,r = dq,r/bwq,r;
– on Pq’s outgoing interface: tout

q =∑
r dq,r/B

out
q ;

– on Pq’s incoming interface: tinq =
∑
r dr,q/B

in
q .

We can now compute the maximum time τ spent by
any resource for the processing of one instance: τ =

max
{

max
Pq

{tcomp
q , tout

q , t
in
q }, max

Pq→Pr

tq,r

}
. This gives us an

upper bound on the achievable throughput: ρ ≤ ρmax =
1/τ . Indeed, as there is at least one resource which spends a
time τ to process its share of a single instance, the through-
put cannot be greater than 1 instance per τ units of time.
We now show that this upper bound is achievable in prac-
tice, i.e., that there exists a schedule with throughput ρmax.
In the following, we call “throughput of an allocation” the
optimal throughput ρmax of this allocation.

The upper bound is achievable Here, we will only ex-
plain on an example how one can built a periodic sched-
ule achieving the throughput ρmax. Indeed, we are not
interested here in giving a formal definition of periodic
schedules, or to formally define and prove schedules which
achieve the desired throughput, as this goes far beyond the
scope of this paper. The construction of such schedules, for
applications modeled by DAGs, was introduced in [3], and
a fully comprehensive proof can be found in [5].

Figure 2 illustrates how to build a periodic schedule of
period τ for the task graph described on Figure 1(b), on the
platform of Figure 1(a), using the allocation of Figure 1(c).
Once the schedule has reached its steady state, that is af-
ter 6τ in the example, during each period, each processor
computes one instance of each task assigned to it. More
precisely, in steady state, during period k (k ≥ 6), that is
during time-interval [kτ ; (k+1)τ ], the following operations
happens:

• P1 computes task T1 of instance k,
• P1 sends F1,2 and F1,3 of instance k − 1 to P2,
• P2 processes T2 and T3 of instance k − 2,
• P2 sends F2,4 and F3,5 of instance k−3 to P5 (via P3),
• P4 processes tasks T4 and T5 of instance k − 4,
• P5 sends F4,6 and F5,6 of instance k − 5 to P6,
• P6 processes task T6 of instance k − 6.

One instance is thus completed after each period, achieving
a throughput of 1/τ .
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3.4 NP-completeness of throughput opti-
mization

We now formally define the decision problem associated
to the problem of maximizing the throughput. The proof of
this result is a simple reduction from Minimum Multipro-
cessor Scheduling, and is available in [15].

Definition 3 (DAG-Single-Alloc) Given a directed acyclic
application graph GA, a platform graph GP , and a bound
B, is there an allocation with throughput ρ ≥ B?

Theorem 1 DAG-Single-Alloc is NP-complete.

4 Finding an allocation with good through-
put

4.1 Optimal allocation trough mixed lin-
ear programming

Here, we recall how to compute the optimal alloca-
tion [14]. In that paper, we proposed a method, using mixed
linear programming: we express the problem as a linear
program where integer and rational variables coexist. Al-
though some softwares can solve such linear programs [11],
the problem remains NP-complete and this method can only
be used for small task graphs (up to 12 tasks with our cur-
rent implementation). However, this method provides an in-
teresting upper bound on the achievable throughput to com-
pare other solutions to on small task graphs.

Our linear programming formulation makes use of both
integer and rational variables. The integer variables are de-
scribed below. They can only take values 0 or 1.
• y’s variables which characterize where each task is

processed: ykq = 1 if and only if task Tk is processed
on processor Pq;
• x’s variables which characterize the mapping of file

transfers: xk,lq,r = 1 if and only if file Fk,l is trans-
fered using path Pq ; Pr; note that we may well have
xk,lq,q = 1 if processor Pq executes both tasks Tk and
Tl.

Obviously, these two sets of variables are related. In par-
ticular, for any allocation, xk,lq,r = ykq × ylr. This redun-
dancy allows us to express the problem as a set of linear
constraints.

The objective function is to minimize the maximum time
τ spent on any resource, in order to maximize the through-
put 1/τ . The intuition behind the linear program is the fol-
lowing:
• Constraints (1a) define the domain of each variable:
x, y lie in {0, 1}, while τ is rational.
• Constraint (1b) ensures that each task is processed ex-

actly once.

• Constraint (1c) asserts that a processor can send the
output file of a task only if it processes the correspond-
ing task.
• Constraint (1d) asserts that the processor computing a

task holds all necessary input data: for each predeces-
sor task, it either received the data from that task or
computed that task.
• Constraint (1e) ensures that the computing time of a

processor is no larger that τ .
• In Constraint (1f), we compute the amount of data

carried by a given link, and the following con-
straints (1g,1h,1i) ensure that the time spent on each
link or interface is not larger than τ , with a formula-
tion similar to that of Section 3.3.



MINIMIZE τ UNDER THE CONSTRAINTS

(1a) ∀Fk,l,∀Pq ; Pr, x
k,l
q,r ∈ {0, 1}, ykq ∈ {0, 1}

(1b) ∀Tk,
∑
Pq
ykq = 1

(1c) ∀Fk,l,∀Pq ; Pr, xk,lq,r ≤ ykq
(1d) ∀Tl,∀Fk,l,∀Pr, ykr +

∑
Pq;Pr

xk,lq,r ≥ ylr
(1e) ∀Pq,

∑
Tk
ykqwq,k ≤ τ

(1f) ∀Pq → Pr,

dq,r =
∑

Ps;Pt with
Pq→Pr∈Ps;Pt

∑
Fk,l

xk,ls,tdatak,l

(1g) ∀Pq → Pr,
dq,r

bwq,r
≤ τ

(1h) ∀Pq
∑
Pq→Pr∈EP

dq,r

Bout
q
≤ τ

(1i) ∀Pr
∑
Pq→Pr∈EP

dq,r

Bin
q
≤ τ

(1)

We denote ρopt = 1/τopt, where τopt is the value of τ in
any optimal solution of Linear Program (1). The following
theorem states that ρopt is the maximum achievable through-
put. (The proof of this result is available in the research
report [15].)

Theorem 2 An optimal solution of Linear Program (1) de-
scribes an allocation with maximal throughput for the fixed
routing policy.

As the optimal linear programming approach can only be
used on small problems, we now fallback to design heuris-
tics.

4.2 Greedy mapping policies

In this section, we propose greedy strategies to find an
allocation of task graphs on processors. Greedy algorithms
are fast, easy to implement, and often effective to find rea-
sonable solutions.
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Simple greedy This heuristic is described by Algo-
rithm 1. We first compute the weight of a task Tk as its max-
imum execution time over all processors. Then we consider
the task with maximum weight, and allocate it to a proces-
sor so that the updated computation time of the processor is
minimum. As we focus on steady state, we do not consider
dependences and only try to minimize the processor occu-
pation time. (Dependences are taken care of when building
the schedule from the steady-state characterization [5].)

Algorithm 1: Simple greedy(GP , GA)
foreach Tk do weight [Tk]← maxPi

wi,k;
foreach Pi do processing time[Pi]← 0;
foreach Tk in decreasing order of weight do

Find Pi such that processing time[Pi] + wi,k is
minimized;
processing time[Pi]←
processing time[Pi] + wi,k;
mapping [Tk]← Pi;

return mapping ;

Refined greedy The previous heuristic attempts to bal-
ance the computing workload on processors, but do not take
communications into account. We try to refine the search
of an allocation in this heuristic, inspired from the classi-
cal HEFT algorithm for task graph scheduling [26]. Again,
dependences are not taken into account since we focus on
steady state (see the remark on SIMPLE GREEDY). Algo-
rithm 2 describes this heuristic.

Algorithm 2: Refined greedy(GP , GA)
avg comp time[Tk]← average computation time of
Tk over all processors;
avg comm time[Fk,l]← average communication
time of Fk,l over all links;
foreach source Tk of the task graph do

weight [Tk]← 0;
foreach Tl in topological order do

weight [Tl]←
maxFk,l

(weight [Tk] + avg comm time[Fk,l]) +
avg comp time[Tl];

foreach Tk in decreasing order of weight do
Find Pi such that the maximum of occupation
time over all resources is minimized;
mapping [Tk]← Pi;
Update the occupation time of all involved
resources (Pi and communication links);

return mapping ;

4.3 Rounding of the linear program

Since our problem is expressed as a mixed linear pro-
gram, a natural way to find a solution is to relax the lin-
ear program to solve it over rational numbers, and then to
round-off the rational solution into an integer one. Several
different approaches exist for the rounding-off of rational
solutions. We present two of them: a greedy rounding and
a randomized one. Both variants are described in Algo-
rithm 3.

Algorithm 3: RLP(GP , GA)
Constraints ← initial set of constraints, given in
Linear Program (1);
for m = 1 to n do

Solve over the rationals the linear program
associated to Constraints;
if using RLP max then

Find the maximum of the yki ’s over all Tk’s
and Pi’s, such that yki has not yet been set;

else if using RLP rand then
Randomly choose some task Tk which has not
yet been mapped;
Randomly choose a processor Pi, using
probability ykj for Pj ;

Constraints ← Constraints ∪ {yki = 1};

In the first variant (RLP MAX), at each step, we search
among the yki ’s (which have not yet been set) for the one
with the largest value. This yki is then set to 1 in the Linear
Program. After n steps, each task has been mapped to a
processor, which defines a whole allocation.

In the second variant (RLP RAND), we make use of a
randomized rounding, which is known to sometimes lead
to very efficient solutions [10]. At each step, we randomly
select a task that has not yet been mapped. Then we ran-
domly choose the processor that will process this task using
a probability distribution defined by the yki : each processor
Pi has probability yki to be chosen for the processing.

4.4 An involved strategy to delegate com-
putations

In this Section, we present an iterative strategy to build
an efficient allocation. Contrarily to the previous heuristics,
this algorithm is not based on the linear program formula-
tion. This method, called DELEGATE, consists in iteratively
refining an allocation by moving some work from a highly
loaded processor to a less loaded one. In the beginning, all
tasks are mapped to the source processor Psource. Then, we
select one task and some of its neighbors and delegate them
to another processor. This refinement procedure is repeated
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as long as the throughput can be improved, as described in
Algorithm 4.

Algorithm 4: DELEGATE(GP , GA, depth)
foreach Tk do current mapping [Tk]← Psource;
current value ← evaluate(current mapping);
continue ← TRUE;
while continue do

best value ← 0;
foreach Tk do

foreach Pi such that
current mapping [Tk] 6= Pi do

forall connected neighborhood S of Tk do
mapping ←move
(current mapping , S, Pi);
mapping ← refine move
(mapping , S, Pi);
value ← evaluate(mapping);
if (value > best value) then

(best value ,best mapping)←
(value,mapping);

if (best value > current value) then
(current value ,current mapping)←

(best value ,best mapping);
continue ← TRUE;

else continue ← FALSE;
return current mapping ;

At each step, we consider a candidate move (Tk,Pi), i.e.,
delegating task Tk to processor Pi (assuming that Tk is not
already mapped to Pi). Delegating a single task Tk to an-
other processor may not be interesting because of commu-
nications involving this task. Thus, we look for a cluster of
tasks containing Tk that it would be beneficial to delegate
to Pi.

We define a neighborhood of Tk as 1) a connected set
of tasks, 2) which contains Tk, and 3) which only contains
tasks which are at most at a distance depth from Tk in the
task graph. depth is a parameter of the algorithm. In prac-
tice we set the value of depth to 2. We will see in Section 5
that this value is large enough for our purpose.

We test all neighborhoods, trying in turn to map each of
them on processor Pi. This is done through the move func-
tion. We then select the best move among all neighborhoods
of all tasks. If this best move induces an improvement in
performance, we perform the move. Otherwise, we end the
overall process.

Evaluation metric This algorithm strongly depends on
the evaluation function, which is used both to identify the
best move, and to decide whether the overall performance

is improved. We have several possible choices for this eval-
uation function:
• Obviously, we could use the throughput of an allo-

cation as a measure of its quality. We can compute
the throughput as described in Section 3.3: the total
throughput is the inverse of the maximum occupation
time of any resource. It can similarly be computed with

ρ = min
{

min
Pq

{
1

tcomp
q

,
1
tout
q

,
1
tinq

}
, min
Pq→Pr

1
tq,r

}
.

Using the global throughput allows us to ensure that
the overall performance is improved at each step, but
may lead to sub-optimal scenarios: when two proces-
sors are evenly loaded, we can only decrease the oc-
cupation time of a single processor at each algorithm
step. Two successive moves are thus required for the
overall throughput to decrease. This cannot be done
with this evaluation function the way we designed Al-
gorithm 4.
• To overcome the issue of using the throughput metric,

we rather use a different way to compare two alloca-
tions, thanks to the lexicographical order. Instead of
computing a single value for each allocation, we sort
all resource occupation times by decreasing order, and
use the lexicographical order to compare two alloca-
tions. The underlying idea is to first minimize the oc-
cupation of the most used resource —the one defining
the throughput— and then the occupation of the other
resources.

Further improvements Algorithm 4 can be improved in
several ways:
• To keep computation time low, we have to set param-

eters depth to small values. However, this prevents
large subset of tasks to be simultaneously delegated
to a same processor. Thus, we introduce a function,
refine move, which enlarges the subset of tasks to
delegate to a processor. It greedily considers in an ar-
bitrary order any neighbor task of the tasks currently
in the subset S, and add this task to S if this leads to a
better allocation.
• The search for an allocation continues until Algo-

rithm 4 cannot improve the allocation any further.
When using the lexicographical order, however, the
number of iterations might be large before no more lo-
cal improvement is possible. To keep a low execution
time, we could bound the maximum number of itera-
tions.

In the following experiments, we always use the
refine move improvement, but never bound the number
of iterations.
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5 Performance evaluation

5.1 Reference heuristic

To assess the interest of using static-scheduling tech-
niques, we compare our steady-state strategies to the clas-
sical scheduling algorithm HEFT [26]. Contrarily to the
other heuristics, HEFT does not construct an allocation
which is used for all instances of the task graph, but sched-
ules all task graphs separately. Thus, HEFT can a priori
use much more resources than our strategies, which uses at
most one processor per task in the task graph.

5.2 Simulation settings

All algorithms are simulated using the SimGrid frame-
work [7]. The number N of instances to process is set to a
large number (between 100 and 1000). For all steady-state
strategies (MLP, SIMPLE GREEDY, REFINED GREEDY,
RLP MAX, RLP RAND, and DELEGATE), we run the cor-
responding algorithm to build the allocation; then we con-
struct the schedule corresponding to the steady-state allo-
cation for the N instances. For the reference heuristic, this
schedule is directly constructed by applying HEFT to the
collection of N instances. Then, each schedule is executed
in the SimGrid simulator [7]. We compute the experimental
throughput as the ratio between the total completion time
and the number N of instances. For steady-state heuris-
tics, we also compute a theoretical throughput, based on
the study of Section 3.3. The theoretical and experimen-
tal throughputs may differ due to the slight differences be-
tween our multiport model and the SimGrid network model.
Nevertheless, they are quite close in our experiments. Ta-
ble 1 gives the average error (and its standard deviation)
between theoretical and experimental throughputs for each
algorithm. The more communication-aware the heuristics,
the smaller the error.

We perform two sets of simulations. First, we compare
all algorithms on rather small problems (up to 12 tasks in the
tasks graphs); we have 135 platform/application scenarios
in this set. Then, we compare the heuristics on larger sim-
ulation settings, with task graphs including up to 47 tasks;
this set comprises 445 scenarios. We exclude the MLP al-
gorithm from the latter set of problems because of its pro-
hibitive running time on the larger task graphs.

Platforms We use several platforms modeling actual
computing Grids. The descriptions of these platforms were
obtained through the SimGrid simulator repository [7]:
• DAS-3, the Dutch Grid infrastructure,
• Egee, a large-scale European multi-disciplinary Grid

infrastructure, gathering more than 68.000 CPUs,

• Grid5000, a French research Grid gathering nearly
5000 cores,
• GridPP, the UK Grid infrastructure for particle physics.

Most of the time, users do not have access to a whole Grid
but to a limited subset of a Grid, usually through a reser-
vation. To simulate this behavior, a subset of the avail-
able processors is first randomly selected for each plat-
form/application scenario, and then used by all heuristics.
It is composed of around 10 processors for the small prob-
lems, and between 40 and 70 processors for larger prob-
lems.

Applications Several task graphs are used to assess the
quality of our strategies, with between 8 and 12 tasks when
the MLP algorithm is used, and up to 47 tasks otherwise:

(i) pipeAlign [23], a protein family analysis tool,
(ii) several random task graphs generated by the TGFF

generator [12].
In order to evaluate the impact of communications on the

quality of the result, we artificially modify the applications’
communication-to-computation ratios (CCR) by multiply-
ing the overall volume of communications by a constant
factor. We use the CCR as the basis for our comparisons.
There are many possible ways to define this ratio. We chose
to define an average computation time tcomp by dividing the
sum of all computation volumes by the average computa-
tional power of the platform. We similarly defined an av-
erage communication time tcom by dividing the sum of all
communication volumes by the average bandwidth in the
platform. We then define the CCR as the ratio tcom/tcomp.

Finally, we impose the first and last tasks of each task
graph to be processed on the first processor Psource. Psource

is then the processor used to communicate with the outside
world: it receives the input data sets and sends back the re-
sults. These first and last tasks have a size 0 and correspond
to the storage of input and output data. Our application set-
tings includes both related and unrelated applications, as
discussed in Section 3.1, but we do not distinguish them
as they lead to comparable results.

5.3 Results

5.3.1 Study on small task graphs

In this set of experiments, we include all heuristics and the
MLP algorithm which computes the optimal allocation. As
different scenarios may lead to very different throughputs,
we normalize all results so that the optimal single-allocation
algorithm MLP has throughput one. An interesting ques-
tion we want to answer is whether restricting to a single
allocation limits the achievable throughput, compared to a
strategy like HEFT. Top of Figure 3(a) shows that the op-
timal single-allocation strategy MLP is better than HEFT
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MLP SIMPLE GREEDY REFINED GREEDY RLP MAX RLP RAND DELEGATE
3% (± 3%) 21% (± 27%) 14% (± 22%) 14% (± 19%) 10% (± 15%) 3% (± 3%)

Table 1. Average error between theoretical and experimental throughputs for each algorithm.

as soon as communications are not negligible, that is when
the CCR is greater than 0.01. When the communication-
to-computation ratio exceeds 0.05, HEFT does not exceed
50% of the optimal throughput of a single allocation. This
both justifies our claim that static scheduling techniques can
outperform classical schedulers, and motivates the search
for single-allocation schedules. When the communication-
to-computation ratio is very small (smaller than 0.01), com-
munications are negligible and the best solution may be to
execute a different instance of the task graph on each pro-
cessor (except for peculiar applications whose tasks have
strong unrelated characteristics). This explains the perfor-
mance of HEFT for very low values of the CCR: it is able
to use more resources. On the other hand, when the CCR is
very high (larger than one), sometimes communications are
so expensive that all tasks must be mapped on the source
processor Psource. All the heuristics that are able to detect
this (DELEGATE and HEFT) then give the optimal through-
put.

In the other diagrams of Figure 3(a), we compare the
optimal allocation strategy MLP to the allocation-building
heuristics described in Section 4. The DELEGATE heuris-
tic always achieves the best throughput among the steady-
state heuristics. Furthermore, its performance is very close
to the optimal performance defined by the mixed linear
program (MLP). We also notice that strategies based on
the rounding-off of relaxed linear programs are not signif-
icantly more efficient than our greedy strategies, despite
their higher complexity.

The attentive reader will notice that, sometimes, the
DELEGATE heuristic builds an allocation with an higher
throughput than the optimal allocation given by MLP.
This apparent paradox does not contradict the optimality of
MLP. Indeed, MLP gives an allocation with optimal theo-
retical throughput, and we have seen that the experimental
throughput may slightly differ from the theoretical through-
put. This is why DELEGATE is sometimes “better than the
optimal”.

5.3.2 Study on larger task graphs

Figure 3(b) shows a comparison between some steady-
state heuristics (REFINED GREEDY and DELEGATE) and
the HEFT strategy on larger task graphs. Due to the high
running times of the RLP MAX and RLP RAND heuristics,
we only ran them on a subset of the larger task graphs on
which they happened to perform poorly. Therefore, we do
not report here on their performance.

As we cannot compute the optimal single-allocation
throughput anymore, we normalize all results so that DEL-
EGATE gives a throughput of one. Note that the normal-
ized throughput is exactly the inverse of the normalized
makespan, as we defined the practical throughput as the
ratio between the number of task graph instances and the
makespan.

Greedy heuristics (SIMPLE GREEDY and RE-
FINED GREEDY) performs similarly; we only plot one of
them for readability. As for small task graphs, as soon as
communications matter, DELEGATE provides the best re-
sults, while HEFT performs similarly to greedy strategies.
However, when communications are almost negligible,
greedy strategies and HEFT outperforms DELEGATE.
In other words, DELEGATE is the best heuristics in the
complex cases, that is when communications do not impose
trivial solutions (no parallelism when communications are
too large, one task graph per processor when there are
no communications). On average, DELEGATE achieves
makespan 2.05 times shorter than those of HEFT.

5.3.3 Running times

We also study the running times of the different heuristics.
The CPLEX software [11] allows us to solve mixed linear
programs in about one minute for the small settings. How-
ever, for task graphs larger than about 20 tasks, the run-
ning time is often more than a full day. Both RLP MAX
and RLP RAND needs to solve many linear programs (over
the rationals). Since these linear programs are quite big,
the total running time of these heuristics often reach 10
minutes for the large settings. The greedy heuristics SIM-
PLE GREEDY and REFINED GREEDY are very fast (less
than one second), whereas DELEGATE computes an allo-
cation in about one half of the time needed for HEFT to
compute its schedule on 1000 instances.

6 Conclusion and perspectives

In this paper, we have studied the scheduling of a col-
lection of task graphs on a heterogeneous platform. Rather
than attempting the classical makespan minimization, we
have taken advantage of the regularity of our problem to
optimize the system throughput by applying steady-state
techniques. We have presented a mixed linear program-
ming approach to compute the optimal allocation, and sev-
eral heuristic algorithms to build practical solutions. We
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(a) Performance on the small task graphs. Results are normalized such that MLP has throughput one.
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Figure 3. Simulation results. X-axis is the communication-to-computation ratio.
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have performed extensive simulations to compare the per-
formance of our heuristics to a classical scheduler, HEFT.
Simulation results show the benefit of our approach as soon
as communication times are not negligible. Our heuris-
tic of choice, DELEGATE, almost always gives the best
makespan. On average, DELEGATE achieves makespans
which are twice shorter than HEFT’s ones, in our simu-
lation settings, while having a lower running time.
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