
J. Parallel Distrib. Comput. 68 (2008) 1021–1031
www.elsevier.com/locate/jpdc

Research note
Comments on “Design and performance evaluation of load distribution
strategies for multiple loads on heterogeneous linear daisy chain networks”

Matthieu Galleta,c,d, Yves Roberta,c,d, Frédéric Vivienb,c,d,∗

a ENS Lyon, France
b INRIA, France

c Université de Lyon, France
d LIP, UMR 5668, ENS Lyon CNRS-INRIA-UCBL, Lyon, France

Received 15 February 2007; received in revised form 23 November 2007; accepted 4 December 2007
Available online 26 February 2008

Abstract

Min, Veeravalli, and Barlas have proposed strategies to minimize the overall execution time of one or several divisible loads on a heterogeneous
linear network, using one or more installments [Han Min Wong, Bharadwaj Veeravalli, Scheduling divisible loads on heterogeneous linear daisy
chain networks with arbitrary processor release times, IEEE Trans. Parallel Distrib. Syst. 15 (3) (2004) 273–288; Han Min Wong, Bharadwaj
Veeravalli, Gerassimos Barlas, Design and performance evaluation of load distribution strategies for multiple divisible loads on heterogeneous
linear daisy chain networks, J. Parallel Distrib. Comput. 65 (12) (2005) 1558–1577]. We show using a very simple example that their approach
does not always produce a solution and that, when it does, the solution is often suboptimal. We also show how to find an optimal scheduling
for any instance, once the number of installments per load is given. Finally, we formally prove that under a linear cost model, as in both the
above-mentioned references, an optimal schedule has an infinite number of installments. Therefore such a cost model should not be used to design
practical multi-installment algorithms.
c© 2008 Elsevier Inc. All rights reserved.

Keywords: Scheduling divisible load linear networks; Multi-installments
1. Introduction

Min, Veeravalli and Barlas have proposed strategies to mini-
mize the overall execution time of one or several divisible loads
on a heterogeneous linear network [10,11]. Initially, the au-
thors targeted single-installment strategies, that is strategies un-
der which a processor receives in a single communication all its
share of a given load. When they were not able to design single-
installment strategies, they proposed multi-installment ones.

In this research note, we first show using a very simple
example that the approach proposed in [11] does not always
produce a solution and that, when it does, the solution is often
suboptimal. The fundamental flaw of the approach of [11] is
that the authors are optimizing the scheduling load by load,
instead of attempting a global optimization. The load-by-load
approach is suboptimal and overconstrains the problem.
∗ Corresponding author at: LIP, UMR 5668 ENS-Lyon-CNRS-INRIA-
UCBL, Lyon, France.

E-mail address: Matthieu.Gallet@ens-lyon.fr (M. Gallet).

0743-7315/$ - see front matter c© 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2007.12.002
On the contrary, we show how to find an optimal scheduling
for any instance, once the number of installments per load
is given. In particular, our approach always finds the optimal
solution in the single-installment case. Finally, we formally
prove that under a linear cost model for computation and
communication, as in [10,11], an optimal schedule has an
infinite number of installments. Therefore such a cost model
cannot be used to design practical multi-installment strategies.

Please refer to the papers [10,11] for a detailed introduction
to the optimization problem under study. We briefly recall
the framework in Section 2, and we deal with an illustrative
example in Section 3. Then we directly proceed to the design
of our solution (Section 4). We experimentally evaluate the
different approaches in Section 5, and we discuss the linear cost
model and the possible extensions of this work in Section 6.
Finally, we conclude the paper in Section 7.

2. Problem and notations

We summarize here the framework of [10,11]. The target
architecture is a linear chain of m processors (P1, P2, . . . , Pm).

http://www.elsevier.com/locate/jpdc
mailto:Matthieu.Gallet@ens-lyon.fr
doi:10.1016/j.jpdc.2007.12.002
doi:10.1016/j.jpdc.2007.12.002
doi:10.1016/j.jpdc.2007.12.002
doi:10.1016/j.jpdc.2007.12.002
doi:10.1016/j.jpdc.2007.12.002
doi:10.1016/j.jpdc.2007.12.002
doi:10.1016/j.jpdc.2007.12.002
doi:10.1016/j.jpdc.2007.12.002

1022 M. Gallet et al. / J. Parallel Distrib. Comput. 68 (2008) 1021–1031

P
c
c
e
s
l
f

c
c
s
s

h
t
p
c
e

d
i
s
i
e

c
b
V
e
l
u
a
a
l

d

C

f
t
i
c

3

3

i

Fig. 1. Linear network, with m processors and m − 1 links.

rocessor Pi is connected to processor Pi+1 by the
ommunication link li (see Fig. 1). The target application is
omposed of N loads, which are divisible, which means that
ach load can be split into an arbitrary number of chunks of any
ize, and these chunks can be processed independently. All the
oads are initially available on processor P1, which processes a
raction of them and delegates (sends) the remaining fraction to
P2. In turn, P2 executes part of the load that it receives from
P1 and sends the rest to P3, and so on along the processor
hain. Communications can be overlapped with (independent)
omputations, but a given processor can be active in at most a
ingle communication at any time-step: sends and receives are
erialized (this is the full one-port model).

Since the last processor Pm cannot start computing before
aving received its first message, it is useful for P1 to distribute
he loads in several installments: the idle time of remote
rocessors in the chain will be reduced due to the fact that
ommunications are smaller in the first steps of the overall
xecution.

We deal with the general case in which the nth load is
istributed in Qn installments of different sizes. For the j th
nstallment of load n, processor Pi takes a fraction γ n

j (i), and
ends the remaining part to the next processor while processing
ts own fraction (that is, processor Pi sends a volume of data
qual to

∑m
k=i+1 γ n

j (k) to processor Pi+1).
In the framework of [10,11], loads have different

haracteristics. Every load n (with 1 ≤ n ≤ N) is defined
y a volume of data Vcomm(n) and a quantity of computation
comp(n). Moreover, processors and links are not identical
ither. We let wi be the time taken by Pi to compute a unit
oad (1 ≤ i ≤ m), and zi be the time taken by Pi to send a
nit load to Pi+1 (over link li , 1 ≤ i ≤ m − 1). Note that we
ssume a linear model for computations and communications,
s in the original articles, and as is often the case in divisible
oad literature [2,5,9].

For the j th installment of the nth load, let Commstart
i,n, j

enote the starting time of the communication between Pi and
Pi+1, and let Commend

i,n, j denote its completion time; similarly,
ompstart

i,n, j denotes the start time of the computation on Pi

or this installment, and Compend
i,n, j denotes its completion

ime. The objective function is to minimize the makespan,
.e., the time at which all loads are computed. For the sake of
onvenience, all notations are summarized in Table 1.

. An illustrative example

.1. Presentation

To show the limitations of [10,11], we deal with a simple
llustrative example. We use 2 identical processors P1 and P2
Table 1
Summary of notations

m Number of processors in the system.
Pi Processor i , where i = 1, . . . , m.
wi Time taken by processor Pi to compute a unit load.
zi Time taken by Pi to transmit a unit load to Pi+1.
τi Availability date of Pi (time at which it first becomes

available for processing the loads).
N Total number of loads to process in the system.
Qn Total number of installments for nth load.
Vcomm(n) Volume of data for nth load.
Vcomp(n) Volume of computation for nth load.

γ
j

i (n) Fraction of nth load computed on processor Pi
during the j th installment.

Commstart
i,n, j Start time of communication from processor Pi to

processor Pi+1 for j th installment of nth load.
Commend

i,n, j End time of communication from processor Pi to
processor Pi+1 for j th installment of nth load.

Compstart
i,n, j Start time of computation on processor Pi for j th

installment of nth load.
Compend

i,n, j End time of computation on processor Pi for j th
installment of nth load.

Fig. 2. The example schedule, with λ =
1
2 , α is γ 1

2 (1) and β is γ 1
2 (2).

with w1 = w2 = λ, and z1 = 1. We consider N = 2 identical
divisible loads to process, with Vcomm(1) = Vcomm(2) =

1 and Vcomp(1) = Vcomp(2) = 1. Note that when λ is
large, communications become negligible and each processor
is expected to process around half of both loads. But when
λ is close to 0, communications are very important, and the
solution is not obvious. To ease the reading, we only give a
short (intuitive) description of the schedules, and provide their
different makespans without justification (we refer the reader to
Appendix A for all proofs).

We first consider a simple schedule which uses a single
installment for each load, as illustrated in Fig. 2. Processor
P1 computes a fraction γ 1

1 (1) =
2λ2

+1
2λ2+2λ+1

of the first load,

and a fraction γ 1
1 (2) =

2λ+1
2λ2+2λ+1

of the second load. Then

the second processor computes a fraction γ 1
2 (1) =

2λ

2λ2+2λ+1

of the first load, and a fraction γ 1
2 (2) =

2λ2

2λ2+2λ+1
of the

second load. The makespan achieved by this schedule is equal

to makespan1 =
2λ

(
λ2

+λ+1
)

2λ2+2λ+1
.

M. Gallet et al. / J. Parallel Distrib. Comput. 68 (2008) 1021–1031 1023
Fig. 3. The schedule of [11] for λ = 2, with α = γ 1
2 (1) and β = γ 1

2 (2).
3.2. Solution of [11], one-installment

In the solution of [11], P1 and P2 have to simultaneously
complete the processing of their share of the first load. The
same holds true for the second load. We are in the one-
installment case when P1 is fast enough to send the second load
to P2 while it is computing the first load. This condition writes

λ ≥

√
3+1
2 ≈ 1.366.

In the solution of [11], P1 processes a fraction γ 1
1 (1) =

λ+1
2λ+1

of the first load, and a fraction γ 1
1 (2) =

1
2 of the second one.

P2 processes a fraction γ 1
2 (1) =

λ
2λ+1 of the first load L1, and a

fraction γ 1
2 (2) =

1
2 of the second one. The makespan achieved

by this schedule is makespan2 =
λ(4λ+3)
2(2λ+1)

.
Comparing both makespans, we have 0 ≤ makespan2 −

makespan1 ≤
1
4 , the solution of [11] having a strictly larger

makespan, except when λ =

√
3+1
2 . Intuitively, the solution

of [11] is worse than the schedule of Section 3.1 because it aims
at locally optimizing the makespan for the first load, and then
optimizing the makespan for the second one, instead of directly
searching for a global optimum. A visual representation of this
case is given in Fig. 3 for λ = 2.

3.3. Solution of [11], multi-installment

The solution of [11] is a multi-installment strategy when

λ <
√

3+1
2 , i.e., when communications tend to be important

compared to computations. More precisely, this case happens
when P1 does not have enough time to completely send the
second load to P2 before the end of the computation of the first
load on both processors.

The way to proceed in [11] is to send the second load
using a multi-installment strategy. Let Q denote the number of
installments for this second load. We can easily compute the
size of each fraction distributed to P1 and P2. Processor P1
has to process a fraction γ 1

1 (1) =
λ+1
2λ+1 of the first load, and

fractions γ 1
1 (2), γ 2

1 (2), . . . , γ
Q

1 (2) of the second one. Processor
P2 has a fraction γ 1

2 (1) =
λ

2λ+1 of the first load, and fractions

γ 1
2 (2), γ 2

2 (2), . . . , γ
Q

2 (2) of the second one. Moreover, we have
the following equality for 1 ≤ k < Q:

γ k
1 (2) = γ k

2 (2) = λkγ 1
2 (1).
And for k = Q (the last installment), we have γ
Q

1 (2) =

γ
Q

2 (2) ≤ λQγ 1
2 (1). Let βk = γ k

1 (2) = γ k
2 (2). We can then

establish an upper-bound on the portion of the second load
distributed in Q installments:

Q∑
k=1

(2βk) ≤ 2
Q∑

k=1

(
γ 1

2 (1)λk
)

=
2

(
λQ

− 1
)
λ2

2λ2 − λ − 1

if λ 6= 1, and Q = 2 otherwise.
We have three cases to discuss:

1. 0 < λ <
√

17+1
8 ≈ 0.64: Since λ < 1, we can write for any

nonnegative integer Q:

Q∑
k=1

(2βk) <

∞∑
k=1

(2βk) =
2λ2

(1 − λ)(2λ + 1)
.

We have 2λ2

(1−λ)(2λ+1)
< 1 for all λ <

√
17+1
8 . So, even in the

case of an infinite number of installments, the second load
will not be completely processed. In other words, no solution
is found in [11] for this case. A visual representation of this
case is given in Fig. 4 with λ = 0.5.

2. λ =

√
17+1
8 : We have 2λ2

(1−λ)(2λ+1)
= 1, so an infinite number

of installments are required to completely process the second
load. Again, this solution is obviously not feasible.

3.
√

17+1
8 < λ <

√
3+1
2 : In this case, the solution of [11] is

better than any solution using a single installment per load,
but it may require a very large number of installments. A
visual representation of this case is given in Fig. 5 with
λ = 1.

In this case, the number of installments is set in [11] as

Q =

⌈
ln(4λ2

−λ−1
2λ2)

ln(λ)

⌉
. To see that this choice is not optimal,

consider the case λ =
3
4 . The algorithm of [11] achieves a

makespan equal to
(
1 − γ 1

2 (1)
)
λ+

λ
2 =

9
10 . The first load is sent

in one installment and the second one is sent in 3 installments
(according to the previous equation).

However, we can come up with a better schedule by splitting
both loads into two installments, and distributing them as
follows:

• during the first round, P1 processes 0 unit of the first load,

1024 M. Gallet et al. / J. Parallel Distrib. Comput. 68 (2008) 1021–1031
Fig. 4. The example with λ =
1
2 , α = γ 1

2 (1) and βk = γ k
2 (2).

Fig. 5. The example with λ = 1, α = γ 1
2 (1) and βk = γ k

2 (2).
• during the second round, P1 processes 317
653 unit of the first

load,
• during the first round, P2 processes 192

653 unit of the first load,
• during the second round, P2 processes 144

653 unit of the first
load,

• during the first round, P1 processes 0 unit of the second load,
• during the second round, P1 processes 464

653 unit of the second
load,

• during the first round, P2 processes 108
653 unit of the second

load,
• during the second round, P2 processes 81

653 unit of the second
load.

This scheme gives us a total makespan equal to 781
653

3
4 ≈

0.897, which is (slightly) better than 0.9. This shows that among
the schedules having a total number of four installments, the
solution of [11] is suboptimal.

3.4. Conclusion

Despite its simplicity (two identical processors and two
identical loads), the analysis of this illustrative example clearly
outlines the limitations of the approach of [11]: this approach
does not always return a feasible solution and, when it does,
this solution is not always optimal.

As we said before, the main drawback of the previous ap-
proach is to search for local optimums. The authors of [11], by
forcing each load to finish at the same time on all processors,
designed their solution as if the optimality principle, which is
only true for a single load, was true for several loads. Moreover,
they wanted to remove, on each processor, any potential com-
putation idle time between the processing of two consecutive
loads. However, these constraints are useless to obtain a valid
schedule, but can artificially limit the solution space.

In the next section, we show how to compute an optimal
schedule when dividing each load into any prescribed number
of installments.

4. Optimal solution

In this section we show how to compute an optimal
schedule, when dividing each load into any prescribed number
of installments. We will discuss the computation of the right
number of installments in Section 6.

When the number of installments is set to 1 for each load
(i.e., Qn = 1, for any n in [1, N]), the following approach
solves the problem originally targeted by Min, Veeravalli, and
Barlas.

To build our solution we use a linear programming approach.
In fact, we only have to list all the (linear) constraints that must
be fulfilled by a schedule, and write that we want to minimize
the makespan. All these constraints are captured by the linear
program in Fig. 6. This linear program simply encodes the
following constraints (where the number in brackets is the
number of the corresponding constraint on Fig. 6):

M. Gallet et al. / J. Parallel Distrib. Comput. 68 (2008) 1021–1031 1025
Fig. 6. The complete linear program.
• Pi cannot start a new communication to Pi+1 before the end
of the corresponding communication from Pi−1 to Pi (1),

• Pi cannot start receiving the next installment of the nth load
before having finished sending the current one to Pi+1 (2),

• Pi cannot start receiving the first installment of the next load
before having finished sending the last installment of the
current load to Pi+1 (3),

• any transfer has to begin at a nonnegative time (4),
• the duration of any transfer is equal to the product of the

time taken to transmit a unit load (5) by the volume of data
to transfer,

• processor Pi cannot start computing the j th installment
of the nth load before having finished receiving the
corresponding data (6),

• the duration of any computation is equal to the product of
the time taken to compute a unit load (7) by the volume of
computations,

• processor Pi cannot start computing the first installment of
the next load before it has completed the computation of the
last installment of the current load (8),

• processor Pi cannot start computing the next installment of
a load before it has completed the computation of the current
installment of that load (9),

• processor Pi cannot start computing the first installment of
the first load before its availability date (10),

• every portion of a load dedicated to a processor is necessarily
nonnegative (11),

• any load has to be completely processed (12),
• the makespan is no smaller than the completion time of the

last installment of the last load on any processor (13).

Lemma 1. Consider, under a linear cost model for communica-
tions and computations, an instance of our problem with one or
more load, at least one processor, and a given maximum num-
ber of installments for each load. If, as in [10,11], loads have to
be sent in the order of their submission, then the linear program
given in Fig. 6 finds a valid and optimal schedule.

Proof. First, we can ensure that the provided schedule is valid:
• all starting time and installment sizes are nonnegative (4,
11),

• each computation only begins after the reception of the
corresponding data (6),

• at most one computation is processed at any time on any
processor, and installments are processed following the
submission order (7, 8, 9, 10),

• any load is completely processed (12),
• all communications respect the strict one-port model and the

submission order (1, 2, 3, 5).

The only nonessential constraint is the respect of the
submission order by the computations (which is imposed by (7,
8, 9, 10)), since we could have inverted the computation of two
installments on the same processor. This constraint allows the
linear program to give a complete description of the schedule,
with starting and ending time for any computation and any
communication.

Moreover, this constraint does not change the minimum
makespan: we know that an optimal algorithm to the problem
described as 1|r j |Cmax (minimizing the makespan on one
machine with release dates) in [3, p. 63] is the classical
FCFS (First Come, First Served) algorithm. Thus imposing the
submission order of the computations on a processor does not
change the total computation time.

Since all other constraints are essential to have a valid sched-
ule, we can assert that the schedule obtained by finding an opti-
mal solution to the linear program is an optimal schedule. �

Altogether, we have a linear program to be solved over the
rationals, hence a solution in polynomial time [7]. In practice,
standard packages like Maple [4] or GLPK [6] will return the
optimal solution for all reasonable problem sizes.

Note that the linear program gives the optimal solution for
a prescribed number of installments for each load. We will
discuss the problem of the number of installments in Section 6.

5. Experiments

Using simulations, we now assess the relative performance
of our linear programming approach, of the solutions of [10,11],

1026 M. Gallet et al. / J. Parallel Distrib. Comput. 68 (2008) 1021–1031
Table 2
Summary of results

Heuristic Average Std dev. Max Best result Optimal solutions found (%)

SIMPLE 1150.42 1.6 × 103 8 385.94 3.66 0.00
SINGLELOAD 100 1462.65 2.0 × 103 10 714.41 6.03 0.00
MULTIINST 100 1.13962 1.8 × 10−1 1.98712 1. 7.64
MULTIINST 300 1.13963 1.8 × 10−1 1.98712 1. 6.99
HEURISTIC B 1.13268 1.7 × 10−1 2.01865 1. 4.72
LP 1 1.00047 8.5 × 10−4 1.00498 1. 89.97
LP 2 1.00005 9.6 × 10−5 1.00196 1. 97.32
LP 3 1.00002 4.7 × 10−5 1.00098 1. 97.35
LP 6 1.00000 0 1.00001 1. 99.82
and of simpler heuristics. We first describe the experimental
protocol and then analyze the results.

5.1. Experimental protocol

We use Simgrid [8] to simulate linear processor networks.
Schedules are pre-computed by a script, and their validity and
theoretical makespan are checked before running them in the
simulator.

We study the following algorithms and heuristics:

• The naive heuristic SIMPLE distributes each load in a single
installment and proportionally to the processor speeds.

• The strategy for a single load, SINGLELOAD, presented by
Min and Veeravalli in [10]. For each load, we set the time
origin to the availability date of the first communication link
(in order to try to prevent communication contentions).

• The MULTIINST n strategy. The main strategy proposed
by Min, Veeravalli and Barlas is to split each load into
several installments, in order to overlap communications by
computations, and we called it MULTIINST. However, they
do not fix any limit on the total number of installments, and
MULTIINST n is a slightly modified version of MULTIINST

which ensures that a load is not distributed in more than n
installments, the nth installment of a load distributing all the
remaining work of that load.

• The HEURISTIC B presented by Min, Veeravalli, and Barlas
in [11].

• LP n: the solution of our linear program where each load is
distributed in n installments.

We measure the relative performance of each heuristic
on each instance: we divide the makespan obtained by a
given heuristic on a given instance by the smallest makespan
obtained, on that instance, among all heuristics. Considering
the relative performance enables us to produce meaningful
statistics among instances with very different makespans.

5.2. Instances

We emulate a heterogeneous linear network with m =

10 processors. We consider two distribution types for
processing powers: homogeneous where each processor Pi has
a processing power 1

wi
= 100 MFLOPS, and heterogeneous

where processing powers are uniformly picked between 10
and 100 MFLOPS. Communication link li has a speed 1

zi
uniformly chosen between 10 Mb/s and 100 Mb/s, and a
latency between 0.1 and 1 ms (links with high bandwidths
having small latencies). For homogeneous and heterogeneous
platforms, loads have their computation volumes either all
uniformly distributed between 6 GFLOPS and 4 TFLOPS,
or all uniformly distributed between 6 and 60 GFLOPS. For
each combination of processing power distribution and task
size, we fix the communication to computation volume of all
tasks to either 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, or 100 (bytes
per FLOPS). Each instance contains 50 loads. Finally, we
randomly built 100 instances per combination of the different
parameters. Hence a total of 3600 instances are simulated and
reported in Table 2. The code and the experimental results
can be downloaded from: http://graal.ens-lyon.fr/∼mgallet/
downloads/DivisibleLoadsLinearNetwork.tar.gz.

We only present the results of the simulation with Simgrid,
without giving the pre-computed makespans (computed during
the validity check of each schedule). Schedules were computed
without latency according to the model. However, the
communication model used for the simulation is realistic and
thus includes latencies (see Section 6). These latencies are
small, less than one millisecond as in many modern clusters.
This is sufficient to have a small difference between predicted
makespans and experimental ones, less than 1%, but since both
values were very close, only experimental values are given.

We fixed an upper-bound to the number of installments per
load used by the different heuristics: MULTIINST to either 100
or 300, SINGLELOAD to 100, and LP n to either 1, 2, 3, or 6.

5.3. Discussion of the results

As we can see in Table 2, experimental values show that
the linear program give almost always the best experimental
makespan. There is a difference between pre-computed and
experimental values, since LP 6 always give the best theoretical
makespan but can be 0.01h away from the apparent best
solution in the experimental results.

LP 1, LP 2, LP 3, and LP 6 achieve equivalent performance,
always less than 5h away from the best result, and even LP
1 gives the best makespan in almost 90% of instances. This
may seem counterintuitive but can readily be explained: multi-
installment strategies mainly reduce the idle time incurred on
each processor before it starts processing the first task, and
room for improvement is thus quite small in our (and [11])

http://graal.ens-lyon.fr/~mgallet/downloads/DivisibleLoadsLinearNetwork.tar.gz
http://graal.ens-lyon.fr/~mgallet/downloads/DivisibleLoadsLinearNetwork.tar.gz
http://graal.ens-lyon.fr/~mgallet/downloads/DivisibleLoadsLinearNetwork.tar.gz
http://graal.ens-lyon.fr/~mgallet/downloads/DivisibleLoadsLinearNetwork.tar.gz
http://graal.ens-lyon.fr/~mgallet/downloads/DivisibleLoadsLinearNetwork.tar.gz
http://graal.ens-lyon.fr/~mgallet/downloads/DivisibleLoadsLinearNetwork.tar.gz
http://graal.ens-lyon.fr/~mgallet/downloads/DivisibleLoadsLinearNetwork.tar.gz
http://graal.ens-lyon.fr/~mgallet/downloads/DivisibleLoadsLinearNetwork.tar.gz
http://graal.ens-lyon.fr/~mgallet/downloads/DivisibleLoadsLinearNetwork.tar.gz

M. Gallet et al. / J. Parallel Distrib. Comput. 68 (2008) 1021–1031 1027
batches of 50 tasks. The strict one-port communication model
forbids the overlapping of some communications due to
different installments, and further limits room for performance
enhancement. Except in some peculiar cases, distributing the
loads in multi-installments does not induce significant gains. In
very special cases, LP 6 does not achieve the best performance
during the simulations, but this fact can be explained by the
latencies existing in simulations, and is not taken into account
in the linear program of Fig. 6.

The bad performance of SIMPLE, which can have
makespans 8000 greater than the optimal, justifies the use
of sophisticated scheduling strategies. The slight difference
performance between MULTIINST 100 and MULTIINST 300
shows that MULTIINST sometimes uses a very large amount
of installments for an insignificant negative gain (certainly
due to latencies). When communication links are slow and
when computations dominate communications, MULTIINST

and HEURISTIC B can have makespans 98% higher than the
optimal.

6. Possible extensions

There are several restrictions in the model of [11] that can
be alleviated. First the model uses uniform machines, meaning
that the speed of a processor does not depend on the task that
it executes. It is easy to extend the linear program for unrelated
parallel machines, introducing wn

i to denote the time taken by
Pi to process a unit-size part of load n. Also, all processors
and loads are assumed to be available from the beginning.
In our linear program, we have introduced availability dates
for processors. The same way, we could have introduced
release dates for loads. Furthermore, instead of minimizing the
makespan, we could have targeted any other objective function
which is an affine combination of the load completion time and
of the problem characteristics, like the average completion time,
the maximum or average (weighted) flow, etc.

The formulation of the problem does not allow any piece of
the n′th load to be processed before the nth load is completely
processed, if n′ > n. We can easily extend our solution to
allow for N rounds of the N loads, each load being still divided
into several installments. This would allow to interleave the
processing of the different loads.

The divisible load model is linear, which causes major
problems for multi-installment approaches. Indeed, once we
have a way to find an optimal solution when the number
of installments per load is given, the question is: what is
the optimal number of installments? Under a linear model
for communications and computations, the optimal number of
installments is infinite, as the following theorem states:

Theorem 1. Consider, under a linear cost model for communi-
cations and computations, an instance of our problem with one
or more load and at least two processors, such that all proces-
sors are initially idle. Then, any schedule using a finite number
of installments is suboptimal for makespan minimization.

This theorem is proved by building, from any schedule using
a finite number of installments, another schedule with a strictly
smaller makespan. The proof is available in Appendix B.
An infinite number of installments obviously do not define
a feasible solution. Moreover, in practice, when the number
of installments becomes too large, the model is inaccurate,
as acknowledged in [2, p. 224 and 276]. Any communication
incurs a startup cost K , which we express in bytes. Consider
the nth load, whose communication volume is Vcomm(n): it
is split into Qn installments, and each installment requires
m − 1 communications. The ratio between the actual and
estimated communication costs is roughly equal to ρ =
(m−1)Qn K+Vcomm(n)

Vcomm(n)
> 1. Since K , m, and Vcomm are known

values, we can choose Qn such that ρ is kept relatively small,
and so that the model remains valid for the target application.
Another, and more accurate solution, would be to introduce
latencies in the model, as in [1]. This latter article shows how to
design asymptotically optimal multi-installment strategies for
star networks. A similar approach should be used for linear
networks.

7. Conclusion

We have shown that a linear programming approach allows
solving all instances of the scheduling problem addressed
in [10,11]. In contrast, the original approach was providing a
solution only for particular problem instances. Moreover, the
linear programming approach returns an optimal solution for
any given number of installments, while the original approach
was empirically limited to very special strategies, and was often
suboptimal.

Intuitively, the solution of [11] is worse than the schedule of
Section 3.1 because it aims at locally optimizing the makespan
for the first load, and then optimizing the makespan for the
second one, and so on, instead of directly searching for a global
optimum. We did not find elegant closed-form expressions to
characterize optimal solutions but, through the power of linear
programming, we have been able to find an optimal schedule
for any instance.

Appendix A. Analytical computations for the illustrative
example

In this appendix we prove the results stated in Sections 3.2
and 3.3. In order to simplify equations, we write α instead
of γ 1

2 (1) (i.e., α is the fraction of the first load sent from
the first processor to the second one), and β instead of γ 2

2 (1)

(similarly, β is the fraction of the second load sent to the second
processor).

In this research note we used simpler notations than the ones
used in [11]. However, as we want to explicit the solutions
proposed by [11] for our example, we need to use the original
notations to enable the reader to double-check our statements.
The necessary notations from [11] are recalled in Table 3.

In the solution of [11], both P1 and P2 have to finish the
first load at the same time, and the same holds true for the
second load. The transmission for the first load will take α

time units, and the one for the second load β time units.
Since P1 (respectively P2) will process the first load during
λ(1−α) (respectively λα) time units and the second load during

1028 M. Gallet et al. / J. Parallel Distrib. Comput. 68 (2008) 1021–1031
Table 3
Summary of the notations of [11] used in this paper

T n
cp Time taken by the standard processor (w = 1) to

compute the load Ln .
T n

cm Time taken by the standard link (z = 1) to
communicate the load Ln .

Ln Size of the nth load, where 1 ≤ n ≤ N .
Lk,n Portion of the load Ln assigned to the kth installment

for processing.

α
(k)
n,i The fraction of the total load Lk,n to Pi , where

0 ≤ α
(k)
n,i ≤ 1, ∀i = 1, . . . , m and

∑m
i=1 α

(k)
n,i = 1.

tk,n The time instant at which is initiated the first
communication for the kth installment of load Ln
(Lk,n).

Ck,n The total communication time of the kth installment
of load Ln when Lk,n = 1;

Ck,n =
T n

cm
Ln

∑m−1
p=1 z p

(
1 −

∑p
j=1 α

(k)
n, j

)
.

Ek,n The total processing time of Pm for the kth
installment of load Ln when Lk,n = 1;

Ek,n = α
(k)
n,mwm T n

cp
1

Ln
.

T (k, n) The finish time of the kth installment of load Ln ; it is
defined as the time instant at which the processing of
the kth installment of load Ln ends.

T (n) The finish time of the load Ln ; it is defined as the
time instant at which the processing of the nth load
ends, i.e., T (n) = T (Qn) where Qn is the total
number of installments required to finish processing
load Ln . T (N) is the finish time of the entire set of
loads resident in P1.

λ(1−β) (respectively λβ) time units, we can write the following
equations:

λ(1 − α) = α + λα (14)

λ(1 − α) + λ(1 − β) = (α + max(β, λα)) + λβ.

There are two cases to discuss:
1. max(β, λα) = λα. We are in the one-installment case

when L2C1,2 ≤ T (1) − t1,2, i.e., β ≤ λ(1 − α) − α (Eq.
(5) in [11], where L2 = 1, C1,2 = β, T (1) = λ(1 − α) and
t1,2 = α). The values of α and β are given by:

α =
λ

2λ + 1
and β =

1
2
.

This case is true for λα ≥ β, i.e., λ2

2λ+1 ≥
1
2 ⇔ λ ≥

1+
√

3
2 ≈

1.366.
In this case, the makespan is equal to:

makespan2 = λ(1 − α) + λ(1 − β) =
λ(4λ + 3)

2(2λ + 1)
.

Comparing both makespans, we have:

makespan2 − makespan1 =
λ

(
2λ2

− 2λ − 1
)

8λ3 + 12λ2 + 8λ + 2
.

For all λ ≥

√
3+1
2 ≈ 1.366, our solution is better than their

one, since:

1
4

≥ makespan2 − makespan1 ≥ 0.
Furthermore, the solution of [11] is strictly suboptimal for any

λ >
√

3+1
2 .

2. max(β, λα) = β. In this case, P1 does not have enough
time to completely send the second load to P2 before the end of
the computation of the first load on both processors. The way
to proceed in [11] is to send the second load using a multi-
installment strategy.

By using Eq. (14), we can compute the value of α:

α =
λ

2λ + 1
.

Then we have T (1) = (1−α)λ =
λ+1
2λ+1λ and t1,2 = α =

λ
2λ+1 ,

i.e., the communication for the second request begins as soon
as possible.

We know from Eq. (1) of [11] that αk
2,1 = αk

2,2, and by

definition of the α’s, αk
2,1 + αk

2,2 = 1, so we have αk
2,i =

1
2 . We

also have C1,2 = 1 − αk
2,1 =

1
2 , E1,2 =

λ
2 , Y (1)

1,2 = 0, X (1)
1,2 =

1
2 ,

H = H(1) =
X (1)

1,2C1,2

C1,2
=

1
2 , B = C1,2 + E1,2 − H =

λ
2 .

We will denote by β1, . . . , βn the sizes of the different
installments processed on each processor (then we have Lk,2 =

2βk).
Since the second processor is not left idle, and since the

size of the first installment is such that the communication ends
when P2 completes the computation of the first load, we have
β1 = T (1) − t1,2 = λα (see Eq. (27) in [11], in which we have
C1,2 =

1
2).

In the same way, we have β2 = λβ1, β3 = λβ2, and so on
(see Eq. (38) in [11], we recall that B =

λ
2 , and C1,2 =

1
2):

βk = λkα.

Each processor computes the same fraction of the second
load. If we have Q installments, the total processed portion of
the second load is upper bounded as follows:

Q∑
k=1

(2βk) ≤ 2
Q∑

k=1

(
αλk

)
= 2

λ

2λ + 1
λ

λQ
− 1

λ − 1

=
2

(
λQ

− 1
)
λ2

2λ2 − λ − 1

if λ 6= 1, and Q = 2 otherwise.

Q∑
k=1

(2βk) ≤
2λ2 Q

2λ + 1
.

We have four subcases to discuss:
(a) 0 < λ <

√
17+1
8 ≈ 0.64: Since λ < 1, we can write for

any nonnegative integer Q:

Q∑
k=1

(2βk) <

∞∑
k=1

(2βk) =
2λ2

(1 − λ)(2λ + 1)
.

We have 2λ2

(1−λ)(2λ+1)
< 1 for all λ <

√
17+1
8 . So, even in the

case of an infinite number of installments, the second load will

M. Gallet et al. / J. Parallel Distrib. Comput. 68 (2008) 1021–1031 1029
not be completely processed. In other words, no solution is
found in [11] for this case.

(b) λ =

√
17+1
8 : We have 2λ2

(1−λ)(2λ+1)
= 1, so an infinite

number of installments are required to completely process the
second load. Again, this solution is obviously not feasible.

(c)
√

17+1
8 < λ <

√
3+1
2 and λ 6= 1: In this case, the solution

of [11] is better than any solution using a single installment per
load, but it may require a very large number of installments.

Now, let us compute the number of installments. We know
that the i th installment is equal to βi = λiγ 1

2 (1), except the last
one, which can be smaller than λQγ 1

2 (1). So, instead of writing∑Q
i=1 2βi = (

∑Q−1
i 2λiγ 1

2 (1)) + 2βQ = 1, we write:

Q∑
i=1

2λiγ 1
2 (1) ≥ 1

⇔
2λ2

(
λQ

− 1
)

(λ − 1)(2λ + 1)
≥ 1

⇔
2λQ+2

(λ − 1)(2λ + 1)
≥

2λ2

(λ − 1)(2λ + 1)
+ 1.

If λ is strictly smaller than 1, we obtain:

2λQ+2

(λ − 1)(2λ + 1)
≥

2λ2

(λ − 1)(2λ + 1)
+ 1.

⇔2λQ+2
≤ 4λ2

− λ − 1

⇔ ln(λQ) ≤ ln
(

4λ2
− λ − 1

2λ2

)
⇔Q ln(λ) ≤ ln

(
4λ2

− λ − 1

2λ2

)
⇔Q ≥

ln
(

4λ2
−λ−1
2λ2

)
ln(λ)

.

We thus obtain:

Q =

ln

(
4λ2

−λ−1
2λ2

)
ln(λ)

 .

When λ is strictly greater than 1 we obtain the exact same result
(then λ − 1 and ln(λ) are both positive).

(d) λ = 1. In this case,

Q∑
i=1

2λiγ 1
2 (1) ≥ 1

simply leads to Q = 2.

Appendix B. Proof of Theorem 1

Proof. We first remark that in any optimal solution to our prob-
lem all processors work and complete their share simultane-
ously. To prove this statement, we consider a schedule where
one processor completes its share strictly before the makespan
(this processor may not be doing any work at all). Then, under
this schedule there exist two neighboring processors, Pi and
Pi+1, such that one finishes at the makespan, denoted M, and
one strictly earlier. We have two cases to consider:
1. There exists a processor Pi which finishes strictly before the
makespan M and such that the processor Pi+1 completes
its share exactly at time M. Pi+1 receives all the data it
processes from Pi . We consider any installment j of any
load Ln that is effectively processed by Pi+1 (that is, Pi+1
processes a nonnull portion of the j th installment of load
Ln and processes nothing hereafter). We modify the sched-
ule as follows: Pi enlarges by an amount ε, and Pi+1 de-
creases by an amount ε, the portion of the j th installment
of the load Ln it processes. Then, the completion time of
Pi is increased, and that of Pi+1 is decreased, by at least
an amount proportional to ε as our cost model is linear.
More precisely, the completion time of Pi is increased by
an amount equal to εwi Vcomp(n) and the completion time
of Pi+1 is decreased by an amount between εwi+1Vcomp(n)

and ε(zi Vcomm(n) + wi+1Vcomp(n)).
If ε is small enough, both processors complete their work

strictly beforeM. With our modification of the schedule, the
size of a single communication was modified, and this size
was decreased. Therefore, this modification did not enlarge
the completion time of any processor except Pi . Therefore,
the number of processors whose completion time is equal to
M is decreased by at least one by our schedule modification.

2. No processor which completes it share strictly before time
M is followed by a processor finishing at time M. There-
fore, there exists an index i such that the processors P1
through Pi all complete their share exactly at M, and the
processors Pi+1 through Pm complete their share strictly ear-
lier. Then, let the last processing be of processor Pi of install-
ment j of load Ln . We have Compend

i+1, j,n, . . . , Compend
m, j,n

<M.
Then Pi decreases by a size ε, and Pi+1 increases by a

size ε, the portion of the j th installment of load Ln that it
processes.

Then the completion time of Pi is decreased by an
amount εVcalc(n)wi , thus proportional to ε. The computa-
tion times of the processors Pi+1 through Pm are at most
increased by an amount εVcalc(n)wi+1 proportional to ε.

Therefore, if ε is small enough (i.e., 0 < ε <

max
(

Compend
i, j,n−Compend

i+1, j,n
Vcalc(n)wi+1

,
Compend

i, j,n−Commend
i, j,n

Vcomm(n)zi

)
), the proces-

sors Pi through Pm complete their work strictly beforeM.

In both cases, after we modified the schedule, there is at least
one more processor which completes its work strictly before
timeM, and no processor is completing its share after that time.
If no processor is any longer completing its share at timeM, we
have obtained a schedule with a better makespan. Otherwise,
we just iterate our process. As the number of processors is finite,
we will eventually end up with a schedule whose makespan is
strictly smaller thanM. Hence, in an optimal schedule all pro-
cessors complete their work simultaneously (and thus all pro-
cessors work).

We now prove the theorem itself by contradiction. Let S be
any optimal schedule using a finite number of installments. As
processors P2 through Pm initially hold no data, they stay tem-
porarily idle during the schedule execution, waiting to receive

1030 M. Gallet et al. / J. Parallel Distrib. Comput. 68 (2008) 1021–1031

1 This constraint is a bit too strong. The theorem is still true when only
one processor (different from P1) is initially idle. If all processors have
strictly positive release times, they can finish their first communication and
immediately start computing the first installment of the first load, without any
idle time between their release date and their first computation, and our theorem
is false.
some data to be able to process them. Let us consider proces-
sor P2. As the idleness of P2 is only temporary (all processors
are working in an optimal solution), this processor is only idle
because it is lacking data to process and it is waiting for some.
Therefore, the last moment at which P2 stays temporarily idle
under S is the moment it finished receiving some data, namely
the j0th installment of load Ln0 sent to it by processor P1.

As previously, Qk is the number of installments of the load
Lk under S. Then from the schedule S we build a schedule S ′,
identical to S except that we replace the j0th installment of load
Ln0 by two new installments. The replacement of the j0th in-
stallment of load Ln0 only affects processors 1 and 2: for the
others the first new installment brings no work to process and
the second brings exactly the same amount of work as the j0th
installment of load Ln0 in S. Formally, using the same nota-
tions for S ′ as for S, but with an added prime, S ′ is defined as
follows:

• All loads except Ln0 have the exact same installments under
S ′ as under S: ∀n ∈ [1, N]\{n0}, Q′

n = Qn and ∀i ∈ [1, m],
∀ j ∈ [1, Qn], γ

′ j
i (n) = γ

j
i (n).

• The load Ln0 has Q′
n0

= (1 + Qn0) installments under S ′,
defined as follows:
– The first (j0 − 1) installments of Ln0 under S ′ are identi-

cal to the first (j − 1) installments of this load under S:
∀i ∈ [1, m], ∀ j ∈ [1, j0 − 1], γ

′ j
i (n0) = γ

j
i (n0).

– Installment j0 of Ln0 is defined as follows:
γ

′ j0
1 (n0) = γ

j0
1 (n0).

γ
′ j0
2 (n0) =

1
2γ

j0
2 (n0).

∀i ∈ [3, m], γ
′ j0
i (n0) = 0.

– Installment j0 + 1 of Ln0 is defined as follows:
γ

′ j0+1
2 (n0) = 0.

γ
′ j0+1
2 (n0) =

1
2γ

j0
2 (n0).

∀i ∈ [3, m], γ
′ j0+1
i (n0) = γ

j0
i (n0).

– The last (Qn0 − j0) installments of Ln0 under S ′ are iden-
tical to the last (Qn0 − j0) installments of this load under

S: ∀i ∈ [1, m], ∀ j ∈ [j0 + 1, Q′
n0

], γ
′ j
i (n0) = γ

j−1
i (n0).

Since the j0th installment of the n0th load is the first modi-
fied one, starting and ending times of each previous installment
remain unchanged:

∀n < n0 and ∀ j ∈ [1, Qn]

or n = n0 and ∀ j ∈ [1, j0 − 1],

∀i ∈ [1, m − 1], Comm′ start
i,n, j = Commstart

i,n, j ,

∀i ∈ [1, m − 1], Comm′ end
i,n, j = Commend

i,n, j ,

∀i ∈ [1, m], Comp′ start
i,n, j = Commstart

i,n, j ,

∀i ∈ [1, m], Comp′ end
i,n, j = Compend

i,n, j . (15)

Now, let us focus on the j0th installment. We can easily de-
rive the following properties for the first processor:

Comp′ start
1,n0, j0

= Compstart
1,n0, j0

,

Comp′ end
1,n0, j0

= Compend
1,n0, j0

,

Comp′ start
1,n0, j0+1 = Compend

1,n0, j0
,

Comp′ end
1,n0, j0+1 = Compend

1,n0, j0
.

We can write the following equations about the communication
between P1 and P2:

Comm′ start
1,n0, j0

= Commstart
1,n0, j0

,

Comm′ end
1,n0, j0

= Commstart
1,n0, j0

+
1
2
γ

j0
1 (n0) ∗ Vcomm(n0) ∗ z1, (16)

Comm′ start
1,n0, j0+1 = Comm′ end

1,n0, j0
.

Comm′ end
1,n0, j0+1 = Commend

1,n0, j0
. (17)

There are only two constraints on the beginning of the com-
putation on P2:

Comp′ start
2,n0, j0

= max
{

Comm′ end
1,n0, j0

, Comp′ end
2,n0, j0−1

}
, (18)

Compstart
2,n0, j0

= max
{

Commend
1,n0, j0

, Compend
2,n0, j0−1

}
. (19)

Of course, Eqs. (18) and (19) are only true for j0 > 1, we
have to replace Comp′ end

2,n0, j0−1 (respectively Compend
2,n0, j0−1) by

Comp′ end
2,n0−1,Qn0−1

(respectively Compend
2,n0−1,Qn0−1

) if we have

n0 > 1 and j0 = 1, and by 0 in both cases if n0 = 1 and j0 = 1,
we recall that all processors are initially idle.1

By the definitions of j0 and n0, P2 is idle right before the
beginning of the computation of the j0th installment of the n0th
load, therefore:

Compend
2,n0, j0−1 < Commend

1,n0, j0
. (20)

Using Eq. (19), we thus have:

Compstart
2,n0, j0

= Commend
1,n0, j0

. (21)

Moreover, since we have γ
j0

2 (n0) > 0, the communication
of the j0th installment between P1 and P2 in S ′ ends strictly
earlier than the communication of the j0th installment between
these processors in S:

Comm′ end
1,n0, j0

< Commend
1,n0, j0

= Compstart
2,n0, j0

. (22)

We can apply Eq. (15) for the (j0 − 1)th installment of the
n0 load, and use Eqs. (20) and (21):

Comp′ end
2,n0, j0−1 = Compend

2,n0, j0−1 < Compstart
2,n0, j0

. (23)

In our new schedule S ′, by using Eqs. (18), (22) and (23), we
can say that the computation on the new j0th installment begins
strictly earlier on P2:

Comp′ start
2,n0, j0

< Compstart
2,n0, j0

. (24)

Comp′ start
2,n0, j0+1 = max

{
Comp′ end

2,n0, j0
, Comm′ end

1,n0, j0+1

}
. (25)

By the definitions of Comp′ end
2,n0, j0

, and Comp′ end
2,n0, j0+1, we have

the two following Eqs. (26) and (27):

M. Gallet et al. / J. Parallel Distrib. Comput. 68 (2008) 1021–1031 1031
Comp′ end
2,n0, j0

= Comp′ start
2,n0, j0

+
Compend

2,n0, j0
− Compstart

2, j0,n0

2
, (26)

Comp′ end
2,n0, j0+1 = Comp′ start

2,n0, j0+1

+
Compend

2,n0, j0
− Compstart

2, j0,n0

2
. (27)

If we use (27), (26), (25) and (17):

Comp′ end
2,n0, j0+1

= max

Compend

2,n0, j0
− Compstart

2, j0,n0

2
+ Commend

1,n0, j0
,

Comp′ start
2,n0, j0

+ Compend
2,n0, j0

− Compstart
2,n0, j0

.

(28)

Since we have Eq. (20) and 0 < γ
n0
2 (j0), we have

Compend
2,n0, j0

> Compstart
2,n0, j0

and then

Compend
2,n0, j0

− Compstart
2, j0,n0

2
+ Commend

1,n0, j0

< Compend
2,n0, j0

− Compstart
2, j0,n0

+ Commend
1,n0, j0

= Compend
2,n0, j0

. (29)

By using Eq. (24), we can ensure:

Comp′ start
2,n0, j0

+ Compend
2,n0, j0

− Compstart
2,n0, j0

< Compend
2,n0, j0

. (30)

By combining (29), (30) and (28), we have:

Comp′ end
2,n0, j0+1 < Compend

2,n0, j0
. (31)

Therefore, under schedule S ′ processor P2 completes strictly
earlier than under S the computation of what was the j0th in-
stallment of load Ln0 under S. If P2 is no more idle after the
time Comp′ end

2,n0, j0
, then it completes its overall work strictly ear-

lier under S ′ than under S. P1 completes its work at the same
time. Then, using the fact that in an optimal solution all proces-
sors finish simultaneously, we conclude that S ′ is not optimal.
As we have already remarked that its makespan is not greater
than the makespan of S, we end up with the contradiction that
S is not optimal. Therefore, P2 must be idled at some time after
the time Comp′ end

2,n0, j0
. Then we apply to S ′ the transformation

we applied to S as many times as needed to obtain a contradic-
tion. This process is bounded as the number of communications
that processor P2 receives after the time it is idle for the last
time is strictly decreasing when we transform the schedule S
into the schedule S ′. �

References

[1] Olivier Beaumont, Henri Casanova, Arnaud Legrand, Yves Robert, Yang
Yang, Scheduling divisible loads on star and tree networks: Results and
open problems, IEEE Trans. Parallel Distrib. Syst. 16 (3) (2005) 207–218.
[2] V. Bharadwaj, D. Ghose, V. Mani, T.G. Robertazzi, Scheduling Divisible
Loads in Parallel and Distributed Systems, IEEE Computer Society Press,
1996.

[3] Peter Brucker, Scheduling Algorithms, Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2001.

[4] B.W. Char, K.O. Geddes, G.H. Gonnet, M.B. Monagan, S.M. Watt, Maple
Reference Manual, 1988.

[5] D. Ghose, T.G. Robertazzi (Eds.), Special issue on divisible load
scheduling, Cluster Comput. 6 (1) (2003).

[6] GLPK: GNU Linear Programming Kit. http://www.gnu.org/software/
glpk/.

[7] N. Karmarkar, A new polynomial-time algorithm for linear programming,
in: Proceedings of ACM STOC’84, 1984, pp. 302–311.

[8] A. Legrand, L. Marchal, H. Casanova, Scheduling distributed appli-
cations: The SIMGRID simulation framework, in: Proceedings of CC-
Grid’03, May 2003, pp. 138–145.

[9] T.G. Robertazzi, Ten reasons to use divisible load theory, IEEE Comput.
36 (5) (2003) 63–68.

[10] Han Min Wong, Bharadwaj Veeravalli, Scheduling divisible loads on
heterogeneous linear daisy chain networks with arbitrary processor
release times, IEEE Trans. Parallel Distrib. Syst. 15 (3) (2004) 273–288.

[11] Han Min Wong, Bharadwaj Veeravalli, Gerassimos Barlas, Design
and performance evaluation of load distribution strategies for multiple
divisible loads on heterogeneous linear daisy chain networks, J. Parallel
Distrib. Comput. 65 (12) (2005) 1558–1577.

Matthieu Gallet received the Master degree in
Computer Sciences from the École normale supérieure
de Lyon in 2006. Currently, he is doing his Ph.D. Thesis
at the ENS Lyon, under the supervision of Yves Robert
and Frédéric Vivien. His research interests include
divisible load scheduling and steady-state scheduling.

Yves Robert received the Ph.D. degree from Institut
National Polytechnique de Grenoble in 1986. He is
currently a full professor in the Computer Science
Laboratory LIP at ENS Lyon. He is the author of
four books, 100 plus papers published in international
journals, and 120+ papers published in international
conferences. His main research interests are scheduling
techniques and parallel algorithms for clusters and
grids. Yves Robert served on many editorial boards,
including IEEE TPDS. He was the program chair of

HiPC’2006 in Bangalore and of IPDPS’2008 in Miami. He is a Fellow of the
IEEE. He has been elected a Senior Member of Institut Universitaire de France
in 2007.

Frédéric Vivien received a Ph.D. degree from École
normale supérieure de Lyon in 1997. From 1998 to
2002, he was an associate professor at Louis Pasteur
University, in Strasbourg, France. He spent the year
2000 working in the Computer Architecture Group
of the MIT Laboratory for Computer Science. He is
currently a full researcher from INRIA, working at
the ENS Lyon. He is the author of one book, 25
papers published in international journals, and 30+

papers published in international conferences. His main
research interests are scheduling techniques and parallel algorithms for clusters
and grids.

http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/

	Comments on ``Design and performance evaluation of load distribution strategies for multiple loads on heterogeneous linear daisy chain networks''
	Introduction
	Problem and notations
	An illustrative example
	Presentation
	Solution of 11, one-installment
	Solution of 11, multi-installment
	Conclusion

	Optimal solution
	Experiments
	Experimental protocol
	Instances
	Discussion of the results

	Possible extensions
	Conclusion
	Analytical computations for the illustrative example
	Proof of Theorem 1
	References

