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Abstract In this paper, we consider the problem of schedul-
ing distributed biological sequence comparison applications.
This problem lies in the divisible load framework with neg-
ligible communication costs. Thus far, very few results have
been proposed for this model. We discuss and select rel-
evant metrics for this framework: namely max-stretch and
sum-stretch. We explain the relationship between our model
and the preemptive single processor case, and we show
how to extend algorithms that have been proposed in the
literature for the single processor model to the divisible
multi-processor problem domain. We recall known results
on closely related problems, we show how to minimize the
max-stretch on unrelated machines either in the divisible
load model or with preemption, we derive new lower bounds
on the competitive ratio of any online algorithm, we present
new competitiveness results for existing algorithms, and we
develop several new online heuristics. We also address the
Pareto optimization of max-stretch. Then, we extensively
study the performance of these algorithms and heuristics un-
der realistic scenarios. Our study shows that all previously
proposed guaranteed heuristics for max-stretch for the sin-
gle processor model are inefficient in practice. In contrast,
we show that our online algorithms based on linear program-
ming are in practice near-optimal solutions for max-stretch.
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Our study also clearly suggests heuristics that are efficient
for both metrics, although a combined optimization is in the-
ory not possible in the general case.
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1 Introduction

The problem of searching large-scale genomic and pro-
teomic sequence databanks is an increasingly important
bioinformatics problem. The results we present in this pa-
per concern the deployment of such applications in hetero-
geneous parallel computing environments. In the genomic
sequence comparison scenario, the presence of the required
databank on a particular node is the sole factor that con-
strains task placement decisions. This application is thus
part of a larger class of applications, in which each task in
the application workload exhibits an “affinity” for particular
nodes of the targeted computational platform. In this con-
text, task affinities are determined by location and replica-
tion of the sequence databanks in the distributed platform.

Numerous efforts to parallelize biological sequence com-
parison applications have been realized (e.g., Braun et al.
2001; Darling et al. 2003; Miller et al. 1991). These ef-
forts are facilitated by the fact that such biological sequence
comparison algorithms are typically computationally inten-
sive, embarrassingly parallel workloads. In the scheduling
literature, this computational model is effectively a divisi-
ble workload scheduling problem (Bharadwaj et al. 1996;
Blazewicz et al. 2007) with negligible communication over-
heads. The work presented in this paper concerns this appli-
cation model, particularly in the context of online schedul-
ing (i.e., in which the scheduler has no knowledge of any job
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in the workload in advance of its release date). Thus far, this
specific problem has not been considered in the scheduling
literature.

Aside from divisibility, the main difference with classi-
cal scheduling problems lies in the fact that the platforms
we target are shared by many users. Consequently, we need
to ensure a certain degree of fairness between the different
users and requests. Defining a fair objective that accounts
for the various job characteristics (release date, processing
time) is thus the first difficulty to overcome. After having
presented our motivating application and our framework in
Sect. 2, we review various classical metrics in Sect. 3 and
conclude that the stretch of a job is an appropriate basis for
evaluation. As a consequence, we mainly focus on the max-
stretch and sum-stretch metrics. To have a good background
on related objectives functions and results, in Sect. 4 we fo-
cus on the max-flow and sum-flow metrics. Then in Sect. 5
we study sum-stretch optimization, in Sect. 6 offline max-
stretch optimization, and in Sect. 7 Pareto offline optimiza-
tion of max-stretch. Building on the previous sections, we
focus in Sect. 8 on the online optimization of max-stretch.
This paper contains no section devoted to the related work
as the related work will be discussed throughout this article.
However, we summarize in the conclusions the known and
new results on complexity. Finally, we present in Sect. 9 an
experimental evaluation of the different solutions proposed,
and we conclude in Sect. 10.

The main contributions of this work are:

• OFFLINE SUM-FLOW AND SUM-STRETCH. We show that
sum-flow minimization is NP-complete on unrelated ma-
chines under the divisible load model (〈R|rj ,div|∑Fj 〉
is NP-complete). We also show that sum-stretch mini-
mization is NP-complete on one machine without pre-
emption and also on unrelated machines under the di-
visible load model (〈1|rj |∑Sj 〉 and 〈R|rj ,div|∑Sj 〉 are
NP-complete).

• OFFLINE MAX WEIGHTED FLOW. We present polynomial-
time algorithms to solve the minimization of max weight-
ed flow, offline, on unrelated machines, in the divisi-
ble load model and in the preemptive model: 〈R|rj ;div|
maxwjFj 〉 and 〈R|rj ;pmtn|maxwjFj 〉 are polynomial.

We also propose heuristics to solve the offline Pareto
minimization of max weighted flow, either on one ma-
chine or on unrelated machines. We present some cases
in which these heuristics are optimal and we prove that
the offline Pareto minimization of max-flow on unrelated
machines is NP-complete.

• ONLINE SUM-STRETCH AND MAX-STRETCH. We show
that First come, first served (FCFS) is �2-competitive
for sum-stretch minimization and �-competitive for max-
stretch, where � denotes the ratio of the sizes of the
largest and shortest jobs submitted to the system. We also

prove that no online algorithm has simultaneously better
competitive ratios for these two metrics.

We show that no online algorithm has a competitive
ratio less than or equal to 1.19484 for the minimization of
sum-stretch, or less than or equal to 1

2�
√

2−1 for the min-
imization of max-stretch. (The previous known bounds

were, respectively, 1.036 and 1
2�

1
3 .)

For minimizing the sum-stretch on one machine with
preemption, we show that Smith’s ratio rule—which is
then equivalent to shortest processing time—is not a com-
petitive algorithm and that shortest weighted remaining
processing time is at best 2-competitive.

Finally, we propose new heuristics for the online op-
timization of max-stretch. Through extensive simulations
we compare them with solutions found in the literature
and we show their very good performance.

All the details and proofs missing from this article can
be found in its companion research report (Legrand et al.
2008).

2 Motivating application and framework

2.1 Motivating application

The only purpose of this section is to present the application
that originally motivated this work, the GriPPS (Blanchet et
al. 2000; GriPPS webpage 2005) protein comparison appli-
cation. The GriPPS framework is based on large databases
of information about proteins; each protein is represented
by a string of characters denoting the sequence of amino
acids of which it is composed. Biologists need to search
such sequence databases for specific patterns that indicate
biologically significant structures. The GriPPS software en-
ables such queries in grid environments, where the data may
be replicated across a distributed heterogeneous computing
platform.

As a matter of fact, there seems to be two common usages
in protein comparison applications. In the first case, a biol-
ogist working on a set of proteins builds a pattern to search
for similar sequences on the servers (this is the case for the
GriPPS framework). In the second case, canonical patterns
are known and should be used for comparison with daily up-
dates of the databanks. This is the only case we are aware of
where a very large set of motifs is sent to all databanks. This
is, however, a typical background process, whereas the first
case is a typical online problem as many biologists concur-
rently use the servers. Therefore, in this first case, the motifs
are very small and communication cost they incur can re-
ally be neglected. To develop a suitable application model
for the GriPPS application scenario, we performed a series
of experiments to analyze the fundamental properties of the
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sequence comparison algorithms used in this code. Here we
report on the conclusions of this study whose details can be
found in Legrand et al. (2005, 2004).

From our modeling perspective, the critical components
of the GriPPS application are:

1. Protein databanks: the reference databases of amino acid
sequences, located at fixed locations in a distributed het-
erogeneous computing platform.

2. Motifs: compact representations of amino acid patterns
that are biologically important and serve as user input to
the application.

3. Sequence comparison servers: computational processes
co-located with protein databanks that accept as input
sets of motifs and return as output all matching entries
in any subset of a particular databank.

The main characteristics of the GriPPS application are:

1. Negligible communication costs. A motif is a relatively
compact representation of an amino acid pattern. There-
fore, the communication overhead induced while send-
ing a motif to any processor is negligible compared to
the processing time of a comparison.

2. Divisible loads. The processing time required for se-
quence comparisons against a subset of a particular data-
bank is linearly proportional to the size of the subset. This
property allows us to distribute the processing of a re-
quest among many processors at the same time without
additional cost.

The GriPPS protein databank search application is
therefore an example of a linear divisible workload with-
out communication costs.

In the classical scheduling literature, preemption is
defined as the ability to suspend a job at any time and
to resume it, possibly on another processor, at no cost.
Our application implicitly falls in this category. Indeed,
we can easily halt the processing of a request on a given
processor and continue the pattern matching for the un-
processed part of the database on a different processor
(as it only requires a negligible data transfer operation to
move the pattern to the new location). From a theoretical
perspective, divisible load without communication costs
can be seen as a generalization of the preemptive exe-
cution model that allows for simultaneous execution of
different parts of a same job on different machines.

3. Uniform machines with restricted availabilities. A set of
jobs is uniform over a set of processors if the relative ex-
ecution times of jobs over the set of processors does not
depend on the nature of the jobs. More formally, for any
job Jj , the time pi,j needed to process job Jj on proces-
sor i is equal to Wj · ci , where ci describes the speed
of processor i and Wj represents the size of Jj . Our ex-
periments indicated a clear constant relationship between
the computation time observed for a particular motif on a

given machine, compared to the computation time mea-
sured on a reference machine for that same motif. This
trend supports the hypothesis of uniformity. However, in
practice a given databank may not be available on all se-
quence comparison servers. Our model essentially rep-
resents a uniform machines with restricted availabilities
scheduling problem, which is a specific instance of the
more general unrelated machines scheduling problem.

2.2 Framework and notations

Formally, an instance of our problem is defined by n jobs,
J1, . . . , Jn, and m machines (or processors), M1, . . . ,Mm.
The job Jj arrives in the system at time rj (expressed in
seconds), which is its release date; we suppose that jobs are
numbered by increasing release dates.

The value pi,j denotes the amount of time it would take
for machine Mi to process job Jj . Note that pi,j can be in-
finite if the job Jj cannot be executed on the machine Mi ,
e.g., for our motivating application, if job Jj requires a data-
bank that is not present on the machine Mi . Finally, each job
is assigned a weight or priority wj .

As we have seen, for the particular case of our motivating
application, we could replace the unrelated times pi,j by the
expression Wj · ci , where Wj denotes the size (in Mflop)
of the job Jj and ci denotes the computational capacity of
machine Mi (in second·Mflop−1). To maintain correctness
for the biological sequence comparison application, we sep-
arately maintain a list of databanks present at each machine
and enforce the constraint that a job Jj may only be executed
on a machine that has a copy of all data upon which job Jj

depends. However, since the theoretical results we present
do not rely on these restrictions, we retain the more general
scheduling problem formulation that is, we address the unre-
lated machines framework in this article. As a consequence,
all the values we consider in this article are nonnegative
rational numbers (except the previously mentioned case in
which pi,j is infinite if Jj cannot be processed on Mi ).

The time at which job Jj is completed is denoted as Cj .
Then, the flow time of the job Jj , defined as Fj = Cj − rj ,
is essentially the time the job spends in the system.

Due to the divisible load model, each job may be di-
vided into an arbitrary number of sub-jobs, of any size. Fur-
thermore, each sub-job may be executed on any machine at
which the data dependencies of the job are satisfied. Thus, at
a given moment, many different machines may be process-
ing the same job (with a master scheduler ensuring that these
machines are working on different parts of the job). There-
fore, if we denote by αi,j the fraction of job Jj processed on
Mi , we enforce the following property to ensure each job is
fully executed: ∀j ,

∑
i αi,j = 1.

When a size Wj can be defined for each job Jj —e.g., in
the single processor case—we denote by � the ratio of the
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sizes of the largest and shortest jobs submitted to the system:
� = maxj Wj

minj Wj
.

2.3 Relationships with the single processor case with
preemption

We first prove that any schedule in the uniform machines
model with divisibility has a canonical corresponding sched-
ule in the single processor model with preemption. This
is especially important as many interesting results in the
scheduling literature only hold for the preemptive compu-
tation model (denoted ‘pmtn’).

Lemma 1 For any platform M1, . . . ,Mm composed of uni-
form processors, i.e., such that for any job Jj , pi,j = Wj ·ci ,
one can define a platform made of a single processor M̃ with
c̃ = 1/

∑
i

1
ci

, such that:
For any divisible schedule of J1, . . . , Jn on {M1, . . . ,Mm}

there exists a preemptive schedule of J1, . . . , Jn on M̃ with
smaller or equal completion times.

Conversely, for any preemptive schedule of J1, . . . , Jn on
M̃ there exists a divisible schedule of {M1, . . . ,Mm} with
equal completion times.

Figure 1 illustrates the underlying idea (see research re-
port, Legrand et al. 2008, for details). The reverse trans-
formation simply processes jobs sequentially, distributing
each job’s work across all processors. As a consequence, any
complexity result for the preemptive single processor model
also holds for the uniform divisible model. Thus, through-
out this article, in addition to addressing the multi-processor
case, we will also closely examine the single processor case.

Unfortunately, this line of reasoning is no longer valid
when the computational platform exhibits restricted avail-
ability, as defined in Sect. 2. In the single processor case,

Fig. 1 Geometrical transformation of a divisible uniform problem into
a preemptive single processor problem

a schedule can be seen as a priority list of the jobs (see
the article of Bender et al. 2004, for example). For this rea-
son, whenever we will present heuristics for the uniproces-
sor case they will follow the same basic approach: main-
tain a priority list of the jobs and at any moment, execute
the one with the highest priority. In the multi-processor case
with restricted availability, an additional scheduling dimen-
sion must be resolved: the spatial distribution of each job.

The example in Fig. 2 explains the difficulty of this
last problem. In the uniform situation, it is always benefi-
cial to fully distribute work across all available resources:
each job’s completion time in situation B is strictly better
than the corresponding job’s completion time in situation A.
However, introducing restricted availability confounds this
process. Consider a case in which tasks may be limited
in their ability to utilize some subset of the platform’s re-
sources (e.g., their requisite data are not present throughout
the platform). In situation C of Fig. 2, one task is subject to
restricted availability: the P2 computational resource is not
able to service this task. Deciding between various schedul-
ing options in this scenario is non-trivial in the general case
(for example, schedule A has a better max-flow than sched-
ule C, but schedule C has a better max-stretch than sched-
ule A), so we apply Algorithm 1’s simple rule to build a
schedule for general platforms from single processor heuris-
tics.

Another important characteristic of our problem is that
we target a platform shared by many users. As a conse-
quence, we need to ensure a certain degree of fairness be-
tween the different requests. Given a set of requests, how
should we share resources amongst the different requests?
The next section examines objective functions that are well-
suited to achieve this notion of fairness.

3 Objective functions

We first recall several common objective functions in the
scheduling literature and highlight those that are most rel-

Fig. 2 Illustrating the difference between the uniform model and the
restricted availability model

Algorithm 1 Converting a single-processor schedule to a divisible one with restricted availability
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evant to our work (Sect. 3.1). Then, we show that the
optimization of certain objectives are mutually exclusive
(Sect. 3.2).

3.1 Looking for a fair objective function

The most common objective function in the parallel schedul-
ing literature is the makespan: the maximum of the job ter-
mination times, or maxj Cj . Makespan minimization is con-
ceptually a system-centric approach, seeking to ensure effi-
cient platform utilization. Makespan minimization is mean-
ingful when there is only one user and when all jobs are
submitted simultaneously. However, individual users shar-
ing a system are typically more interested in job-centric met-
rics, such as job flow time (also called response time): the
time an individual job spends in the system. Optimizing the
average (or total) flow time,

∑
j Fj , suffers from the lim-

itation that starvation is possible, i.e., some jobs may be
delayed to an unbounded extent (Bender et al. 1998). By
contrast, minimization of the maximum flow time, maxj Fj ,
does not suffer from this limitation, but it tends to favor long
jobs to the detriment of short ones. To overcome this prob-
lem, one common approach (Chekuri and Khanna 2002) fo-
cuses on the weighted flow time, using job weights to off-
set the bias against short jobs. Sum weighted flow and max-
imum weighted flow metrics can then be analogously de-
fined. Note, however, that the starvation problem identified
for sum-flow minimization is inherent to all sum-based ob-
jectives, so the sum weighted flow suffers from the same
weakness. The stretch is a particular case of weighted flow,
in which a job’s weight is inversely proportional to its size:
wj = 1/Wj (Bender et al. 1998). On a single processor,
the stretch of a job can be seen as the slowdown it expe-
riences when the system is loaded. In a network context,
the stretch can be seen as the inverse of the overall band-
width allocated to a given transfer (i.e., the amount of data
to transfer divided by the overall time needed to complete
the transfer). However, this kind of definition does not ac-
count for the affinity of some tasks with some particular ma-
chines (e.g., the scarcity of a particular database). That is
why we think a slightly different definition should be used
in an unrelated machines context. The stretch is originally
defined to represent the slowdown a job experiences when
the system is loaded. In the remaining of this article, we
will thus define the stretch as a particular case of weighted
flow, in which a job’s weight is inversely proportional to its
processing time when the system is empty: wj = ∑

i
1

pi,j
in

our divisible load model. This definition matches the pre-
vious one in a single processor context and is thus a rea-
sonably fair measure of the level of service provided to an
individual job. It is more relevant than the flow in a system
with highly variable job sizes. Consequently, this article fo-

cuses mainly on the sum-stretch (
∑

Sj ) and the max-stretch
(maxSj ) metrics.

3.2 Simultaneous online optimization of sum-stretch and
max-stretch is impossible

We prove that simultaneously optimizing the objectives we
have defined earlier (sum-stretch and max-stretch) may be
impossible in certain situations.1 In this section, we only
consider the single processor case.

Theorem 1 Consider any online algorithm which has a
competitive ratio of ρ(�) for the sum-stretch. We assume
that this competitive ratio is not trivial, i.e., that ρ(�) < �2.
Then, there exists for this algorithm a sequence of jobs that
leads to starvation, and thus for which the obtained max-
stretch is arbitrarily greater than the optimal max-stretch.

Note that the currently best known online algorithm for
sum-stretch is 2-competitive (see Sect. 5.3). Using the exact
same construction, we can show that for any online algo-
rithm which has a non-trivial competitive ratio of ρ(�) < �

for the sum-flow, there exists a sequence of jobs leading
to starvation and where the obtained max-flow is arbitrarily
greater than the optimal one.

We must comment on our assumption about non-trivial
competitive ratios. This comes from the fact that ignoring
job sizes leads on a single processor to a �2-competitive
online algorithm for sum-stretch and �-competitive online
algorithm for sum-flow:

Theorem 2 FCFS is:

• �2-competitive for the online minimization of sum-stretch
• �-competitive for the online minimization of max-stretch
• �-competitive for the online minimization of sum-flow,

and
• optimal for the online minimization of max-flow (classical

result, see Bender et al. 1998, for example).

Proofs and details can be found in the research report cor-
responding to this article (see Legrand et al. 2008). We now
prove Theorem 1.

Proof Let us consider the case of an online algorithm for
the sum-stretch optimization problem that achieves a com-
petitive ratio of ρ(�) < �2. We arbitrarily take a value for
� > 1. Then, there exists ε > 0, such that ρ(�) < �2 − ε.
Finally, let α be any integer such that 1+α�

1+ α
�

> �2 − ε
2 (note

that this is the case for any value of α which is large enough).

1Note that the following two theorems have been incorrectly stated in
Legrand et al. (2006).
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At date 0 arrives α jobs, J1, . . . , Jα , of size �. Let k be
any integer. Then, at any time unit t , 0 ≤ t ≤ k − 1, arrives a
job Jα+t+1 of size 1.

A possible schedule would be to process each of the k

jobs of size 1 at its release date, and to wait for the com-
pletion of the last of these jobs before processing the jobs
J1, . . . , Jα . The sum-stretch would then be k × 1 + k+�

�
+

· · ·+ k+α�
�

= α(α+1)
2 + k(1+ α

�
) and the max-stretch would

be α + k
�

. Even if it is not optimal for either criterion, we
can still use it as an upper-bound.

In fact, with our hypotheses, the online algorithm cannot
complete the execution of all the jobs J1, . . . , Jα as long as
there are jobs of size 1 arriving at each time unit. Otherwise,
suppose that at some date t1, jobs J1, . . . , Jα have all been
completed. Then, a certain number k1 of unit-size jobs were
completed before time t1. The scenario which minimizes the
sum-stretch under these constraints is to schedule first the k1

jobs Jα+1, . . . , Jα+k1 at their release dates, then to schedule
J1, . . . , Jα , and then the remaining k − k1 jobs of size 1.
The sum-stretch of the actual schedule cannot therefore be
smaller than the sum-stretch of this schedule, which is equal
to:

k1 × 1 + k1 + �

�
+ · · · + k1 + α�

�
+ (k − k1)(1 + α�)

=
(

α(α + 1)

2
+ αk1

�

)

+ k1 + (k − k1)(1 + α�).

However, as, by hypothesis, we consider a ρ(�)-competitive
algorithm, the obtained schedule must at most be ρ(�)

times the optimal schedule. This implies that:

(
α(α + 1)

2
+ αk1

�

)

+ k1 + (k − k1)(1 + α�)

≤ ρ(�)

(
α(α + 1)

2
+ k

(

1 + α

�

))

⇐⇒ −α�k1 + α(α + 1)

2

(
1 − ρ(�)

) + αk1

�

≤ k

(

ρ(�)

(

1 + α

�

)

− (1 + α�)

)

.

Once the approximation algorithm has completed the ex-
ecution of the jobs J1, . . . , Jα we can keep sending unit-
size jobs for k to become as large as we wish. There-
fore, for the inequality not to be violated, we must have
ρ(�)(1 + α

�
) − (1 + α�) ≥ 0. However, we have by hy-

pothesis ρ(�) < �2 −ε. Therefore, we must have �2 −ε >
1+α�
1+ α

�
, which contradicts the definition of α. Therefore, the

only possible behavior for the approximation algorithm is to
delay the execution of at least one of the jobs J1, . . . , Jα un-

til after the end of the arrival of the unit-size jobs, whatever
the number of these jobs. This leads to the starvation of at
least one of these jobs. Furthermore, the ratio of the obtained

max-stretch to the optimal one is
α+ k

�

1+α�
= α�+k

�(α�+a)
, which

may be arbitrarily large. �

Intuitively, algorithms targeting max-based metrics en-
sure that no job is left behind. Such an algorithm is thus
extremely “fair” in the sense that cost (in our context the
weighted flow or the stretch of each job) is made as equal
as possible for everybody. Sum-based metrics tend to op-
timize instead the utilization of the platform. The previous
theorem establishes that these two objectives can be in oppo-
sition on particular instances. As a consequence, it should be
noted that any algorithm optimizing a sum-based metric has
the particularly undesirable property of potential starvation.
This observation, combined with the fact that the stretch is
more relevant than the flow in a system with highly variable
job sizes, motivates max-stretch as the metric of choice in
designing scheduling algorithms in the GriPPS setting.

4 Flow optimization

On a single processor, the max-flow is optimized by FCFS
(see Bender et al. 1998, for example). Using the remarks
of Sect. 2.3, we can thus easily derive an online optimal
algorithm for 〈Q|rj ;div|Fmax〉. We will see in Sect. 6 that
〈R|rj ;div|maxwjFj 〉 can be solved in polynomial time us-
ing linear programming techniques.

Regarding sum-flow, it was proved by Baker (1974), us-
ing exchange arguments, that SRPT (shortest remaining
processing time first) is optimal for the 〈1|rj ;pmtn|∑Cj 〉
problem. It is thus also optimal for 〈1|rj ;pmtn|∑Fj 〉 and,
using the remarks of Sect. 2.3, we can easily derive an online
optimal algorithm for 〈Q|rj ;div|∑Fj 〉. We will, however,
see in this section that under the uniform machines with re-
stricted availabilities model, this problem is much harder.

Many of the reduction we propose in this article rely on
the following strongly NP-hard problem (Garey and Johnson
1991):

Definition 1 (3-Dimensional Matching (3DM) problem)
Given three sets U = {u1, . . . , um}, V = {v1, . . . , vm}, and
W = {w1, . . . ,wm}, and a subset S ⊂ U × V × W of size
n ≥ m, does S contain a perfect matching, that is, a set S′ ⊆
S of cardinality m that covers every element in U ∪ V ∪ W ?

Theorem 3 The scheduling problem 〈R|rj ,div|∑Fj 〉 is
NP-complete.

The reduction is made from 3-Dimensional Matching and
uses the same idea as Sitters (2005) used to prove the strong
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NP-hardness of 〈R|pmtn|∑Cj 〉. It should be noted that, in
the reduction we use, the machines are uniform machines
with restricted availabilities. We refer the reader to the ex-
tended version of this document (Legrand et al. 2008) where
the whole proof can be found.

5 Sum-stretch optimization

In this section, we give various results regarding sum-stretch
optimization. In Sect. 5.1, we establish the complexity of
this problem in our framework. In the remaining sections,
we focus on the one processor setting and study the compet-
itiveness of “classical” heuristics.

5.1 Complexity of the offline problem

In the general case, without preemption and divisibility,
minimizing the sum-stretch is an NP-complete problem:

Theorem 4 The scheduling problem 〈1|rj |∑Sj 〉 is NP-
complete.

This NP-completeness result is proved by reduction from
of PARTITION. A complete proof can be found in the re-
search report corresponding to this article (see Legrand et
al. 2008).

The complexity of the offline minimization of the sum-
stretch with preemption is still an open problem. At the
very least, this is a hint at the difficulty of this problem.
In the framework with preemption, Bender et al. (2004)
present a Polynomial Time Approximation Scheme (PTAS)
for minimizing the sum-stretch with preemption. Chekuri
and Khanna (2002) present an approximation scheme for the
more general sum weighted flow minimization problem. As
these approximation schemes cannot be extended to work in
an online setting, we will not discuss them further.

Moving to the divisible load framework, we can easily
say that the complexity of 〈Q|rj ;div|∑Sj 〉 is open (us-
ing the remarks of Sect. 2.3). The minimization of the sum-
stretch is, however, NP-complete on unrelated machines:

Theorem 5 The scheduling problem 〈R|rj ,div|∑Sj 〉 is
NP-complete.

The reduction is also made from 3-Dimensional Match-
ing and also uses the same idea as Sitters (2005) used to
prove the strong NP-hardness of 〈R|pmtn|∑Cj 〉. In the re-
duction, the machines are thus also uniform machines with
restricted availabilities. A complete proof can be found in
the research report corresponding to this article (see Legrand
et al. 2008).

5.2 Lower bound on the competitiveness of online
algorithms

Muthukrishnan et al. (1999) propose an optimal online algo-
rithm when there are only two job sizes. Mainly, they prove
that there is no optimal online algorithm for the sum-stretch
minimization problem when there are three or more distinct
job sizes. Furthermore, they give a lower bound of 1.036 on
the competitive ratio of any online algorithm. The following
theorem improves this bound:

Theorem 6 (Legrand et al. 2006) No online algorithm min-
imizing the sum-stretch with preemption on a single proces-
sor has a competitive ratio less than or equal to 1.19484.

Proof Here we just present the adversary used to prove this
lower bound. A complete proof can be found in the re-
search report corresponding to this article (Legrand et al.
2008). The adversary behavior is defined by the following
parameters: α = 1.93716, β = 1.29941, n = 1

ε
≈ 2.69598,

k = 1012, and ε = 0.370923. Our adversary proceeds as fol-
lows:

1. At time r0 = 0 we send a job J0 of size p0 = αβn.
2. At time r1 = αβn − ε we send a job J1 of size p1 = βn.
3. We consider the system at time αβn + βn − ε, and

whether the execution of J0 has been completed at that
time.
(a) If the execution of J0 has not yet been completed, we

do not send any more jobs.
(b) Otherwise, at time r2 = αβn + βn − ε we send a job

J2 of size p2 = n.
We consider the system at time αβn+βn+n−ε,

and whether the execution of J1 has been completed
at that time.

i. If the execution of J1 has not yet been completed,
we do not send any more jobs.

ii. Otherwise, at time r3 = αβn + βn + n − ε we
send a job J3 of size p3 = n.

We consider the system at time αβn + βn +
2n− ε, and whether the execution of J2 has been
completed at that time.
A. If the execution of J2 has not yet been com-

pleted, we do not send any more jobs.
B. Otherwise, we send to the system a series of

k unit-size jobs, the inter-arrival time of these
jobs being equal to their size: at time r3+j =
αβn+βn+ 2n− ε + (j − 1) we send the job
J3+j of size p3+j = 1, for 1 ≤ j ≤ k.

The parameters are chosen so that the optimal completion
order of the jobs is J1, J2, J3, J3+1, . . . , J3+k , J0. �
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5.3 Shortest processing time rules: SRPT, SWPT,
SWRPT

In the previous section, we have recalled that shortest re-
maining processing time (SRPT) is optimal for minimiz-
ing the sum-flow. When SRPT takes a scheduling deci-
sion, it only considers the remaining processing time of a
job, and not its original processing time. Therefore, from
the point of view of the sum-stretch minimization, SRPT
does not take into account the weight of the jobs in the ob-
jective function. Nevertheless, Muthukrishnan, Rajaraman,
Shaheen, and Gehrke have shown (Muthukrishnan et al.
1999) that SRPT is 2-competitive for sum-stretch.

Another well studied algorithm is the Smith’s ratio rule
(Smith 1956) also known as shortest weighted processing
time (SWPT). This is a preemptive list scheduling where
the available jobs are executed in increasing value of the
ratio

pj

wj
. Whatever the weights, SWPT is 2-competitive

(Schulz and Skutella 2002) for the minimization of the
sum of weighted completion times (

∑
wjCj ). Note that a

ρ-competitive algorithm for the sum weighted flow min-
imization (

∑
wj(Cj − rj )) is ρ-competitive for the sum

weighted completion time (
∑

wjCj ). However, the reverse
is not true: a guarantee on the sum weighted completion
time (

∑
wjCj ) does not induce any guarantee on the sum

weighted flow (
∑

wj(Cj − rj )). Therefore, the previous ra-
tio on the minimization of the sum of weighted completion
times gives us no result on the efficiency of SWPT for the
minimization of the sum-stretch. Furthermore, we can even
prove that SWPT is not an approximation algorithm for
minimizing the sum-stretch. Indeed, SWPT schedules the
available jobs by increasing values of 1

p2
j

and has thus ex-

actly the same behavior as the shortest processing time first
heuristic (SPT). The following theorem states that SPT (and
thus SWPT) is not a competitive algorithm for minimizing
the sum-stretch.

Theorem 7 (Legrand et al. 2006) For any value ρ > 1, there
is an instance on which the sum-stretch realized by SPT is
at least ρ times the optimal. Furthermore, we can impose
that in this instance �, the ratio of the sizes of the largest
and shortest jobs submitted to the system, is equal to 2.

Proof Without loss of generality, we assume that ρ is a
strictly positive integer. Then, the problematic instance is
made of 4ρ + 1 jobs where job Jk , 0 ≤ k ≤ 4ρ, is defined
by: rk = 8ρk − k(k+1)

2 and pk = 8ρ − k. A complete proof
can be found in the research report corresponding to this ar-
ticle (see Legrand et al. 2008). �

The weakness of the SWPT heuristics is obviously that it
does not take into account the remaining processing times:

it may preempt a job when it is almost completed. To ad-
dress the weaknesses of both SRPT and SWPT, one might
consider a heuristic that takes into account both the original
and the remaining processing times of the jobs. This is what
the shortest weighted remaining processing time heuristic
(SWRPT) does. In the framework of sum-stretch minimiza-
tion, at any time t , SWRPT schedules the job Jj which
minimizes pjρt (j). Muthukrishnan et al. (1999) prove that
SWRPT is actually optimal when there are only two job
sizes.

Neither of the proofs of competitiveness of SRPT or
SWPT can be extended to SWRPT. SWRPT has appar-
ently been studied by Megow (2002), but only in the scope
of the sum weighted completion time. So far, there is no
guarantee on the efficiency of SWRPT for sum-stretch min-
imization. Intuitively, we would think that SWRPT is more
efficient than SRPT for the sum-stretch minimization. How-
ever, the following theorem shows that the worst case for
SWRPT for the sum-stretch minimization is no better than
that of SRPT.

Theorem 8 (Legrand et al. 2006) For any real ε, 1 > ε > 0,
there exists an instance such that SWRPT is not (2 − ε)-
competitive for the minimization of the sum-stretch.

Proof Here we just present the construction used to prove
this lower bound on the competitive ratio of SWRPT.
A complete proof can be found in the research report corre-
sponding to this article (see Legrand et al. 2008). The prob-
lematic instance is composed of two sequences of jobs. In
the first sequence, the jobs are of decreasing sizes, the size
of a job being the square root of the size of its immediate
predecessor. In the second sequence, all the jobs are of unit-
size. Each job arrives at a date equal to the release date of
its predecessor plus the execution time of this predecessor,
except for the second and third jobs which arrive at dates
critical for SWRPT.

Let α = 1 − ε
3 , n = �log2(log2

3(1+α)
ε

)�, and k =
�− log2(− log2 α)�. Let l be an integer. Then, we formally
build the instance J as follows:

1. Job J0 arrives at time r0 = 0 and is of size p0 = 22n
.

2. Job J1 arrives at time r1 = 22n −22n−2
and is of size p1 =

22n−1
.

3. Job J2 arrives at time r2 = r1 + 22n−1 − α and is of size
p2 = 22n−2

.
4. Job Jj , for 3 ≤ j ≤ n, arrives at time rj = rj−1 + pj−1

and is of size pj = 22n−j
.

5. Job Jn+j , for 1 ≤ j ≤ k, is of size pn+j = 22−j
and ar-

rives at time rn+j = rn+j−1 + pn+j−1.
6. Job Jn+k+j , for 1 ≤ j ≤ l, is of size pn+k+j = 1 and

arrives at time rn+k+j = rn+k+j−1 + pn+k+j−1.
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Then, we evaluate the sum-stretch realized by both SWRPT
and SRPT and we show that, if l is large enough, the sum-
stretch realized by SWRPT is (R ≥ 2 − ε)-times that real-
ized by SRPT. This proves the result as the optimal sum-
stretch is no greater than that of SRPT. �

6 Offline max-stretch optimization

Bender et al. (1998) have shown that the problem of max-
stretch minimization on one machine without preemption,
i.e., problem 〈1|rj |Smax〉, cannot be approximated within a
factor O(n1−ε) for arbitrarily small ε > 0, unless P = NP.
In this section, we show that if we allow either divisible
loads or preemptions, we are able to minimize the maxi-
mum weighted flow in polynomial time even on unrelated
machines.

In Sect. 6.1, we state the relationship between minimiza-
tion of the maximum weighted flow problem and dead-
line scheduling. Then we present a solution to maximum
weighted flow minimization in the divisible load framework,
on unrelated machines. By adapting some of these tech-
niques, we then describe a solution to the minimization of
the maximum weighted flow when preemption (but not load
divisibility) is allowed, once again on unrelated machines.
These results are given in Sect. 6.2.

It should be noted that, prior to our work, at least two so-
lutions were known for minimizing the max-stretch on one
machine with preemption. Baker et al. (1983) presented an
O(n2) algorithm to solve an even more general problem:
〈1|pmtn,prec, rj |fmax〉 (where fmax is the maximum of the
costs of the jobs and the cost of a job is a non-decreasing
function of its completion time). This algorithm determines
the job of least priority and then iterates. Another solution
using network flow maximization techniques was known.2

In our divisible load framework, we do not know how to ex-
tend this flow maximization technique to solve the case of
uniform machines with restricted availabilities, much less
the more general case of unrelated processors. Neverthe-
less, for the sake of completeness, we recall this solution
in Sect. 6.1.4. Finally, let us mention that the article (Lawler
and Labetoulle 1978) contains explicitly, or implicitly, most
(if not all) of the techniques used in this section. We never-
theless fully expose the max-stretch minimization algorithm
as these techniques may not be so widely known3 and as a
good knowledge of the algorithm is necessary to understand
the content of Sects. 7 and 8.

2We do not know any reference to this technique which was presented
to us by Michael Bender.
3For instance, Bender, Chakrabarti, and Muthukrishnan proved in Ben-
der et al. (1998) the existence of a PTAS for a problem that is solved in
polynomial-time in this section.

6.1 Minimizing the maximum weighted flow in the
divisible model

6.1.1 Max weighted flow minimization and deadline
scheduling

Let us assume that we are looking for a schedule S under
which the maximum weighted flow is less than or equal to
some objective value F . The weighted flow of any job Jj is
equal to wj(Cj − rj ). Then, we should have:

max
1≤j≤n

wj (Cj − rj ) ≤ F

⇐⇒ ∀j ∈ [1;n], wj (Cj − rj ) ≤ F

⇐⇒ ∀j ∈ [1;n], Cj ≤ rj + F /wj .

Thus, the execution of Jj must be completed before time
dj (F ) = rj + F /wj for schedule S to satisfy the bound F
on the maximum weighted flow. Therefore, looking for a
schedule which satisfies a given upper bound on the maxi-
mum weighted flow is equivalent to an instance of the dead-
line scheduling problem. We now show how to solve such
a deadline scheduling problem in the divisible load frame-
work.

In deadline scheduling, each job Jj has not only a release
date rj but also a deadline dj . The problem is then to find
a schedule such that each job Jj is executed within its exe-
cutable time interval [rj , dj ]. We consider the set of all job
release dates and deadlines: {r1, . . . , rn, d1, . . . , dn}. We de-
fine an epochal time as a time value at which one or more
points in this set occur; there are between 2 (when all jobs
are released at the same date and have the same deadline)
and 2n (when all job release dates and deadlines are dis-
tinct) such values. When ordered in absolute time, adjacent
epochal times define a set of time intervals. We denote each
time interval It by It = [inf It , sup It [. Finally, we denote by
α

(t)
i,j the fraction of job Jj processed by machine Mi during

the time interval It . In this framework, System (1) lists the
constraints that should hold true in any valid schedule:

(a) Release date: job Jj cannot be processed before it is
released (equation (1a)).

(b) Deadline: job Jj cannot be processed after its dead-
line (equation (1b)).

(c) Resource usage: during a time interval, a machine can-
not be used longer than the duration of this time inter-
val (equation (1c)).

(d) Job completion: each job must be processed to comple-
tion (equation (1d)).
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1a) ∀i,∀j,∀t, rj ≥ sup It ⇒ α
(t)
i,j = 0;

(1b) ∀i,∀j,∀t, dj ≤ inf It ⇒ α
(t)
i,j = 0;

(1c) ∀t,∀i,
∑

j

α
(t)
i,j .pi,j ≤ sup It − inf It ;

(1d) ∀j,
∑

t

∑

i

α
(t)
i,j = 1.

(1)

Lemma 2 System (1) has a solution if, and only if, there
exists a solution to the deadline scheduling problem.

System (1) can be solved in polynomial time by any lin-
ear solver system as all its variables are rational. Building a
valid schedule from any solution of system (1) is straight-
forward as for any time interval It , and on any machine Mi ,
the job fractions α

(t)
i,j can be scheduled in any order.

One may think that by applying a binary search on possi-
ble values of the objective value F , one would be able to find
the optimal maximum weighted flow, and an optimal sched-
ule. However, a binary search on rational values will not
terminate. By setting a limit on the precision of the binary
search, the number of process iterations is bounded, and the
quality of the approximation can be guaranteed. However,
as we now show, we can adapt our search to always find the
optimal in polynomial time.

6.1.2 Solving on a range

So far we have used System (1) to check whether our prob-
lem has a solution whose maximum weighted flow is no
greater than some objective value F . We now show that we
can use it to check whether our problem has a solution for
some particular range of objective values. Later we show
how to divide the whole search space into a polynomial
number of search ranges.

First, let us suppose there exist two values F1 and F2,
F1 < F2, such that the relative order of the release dates
and deadlines, r1, . . . , rn, d1(F ), . . . , dn(F ), when ordered
in absolute time, is independent of the value of F ∈]F1; F2[.
Then, on the objective interval ]F1, F2[, as before, we define
an epochal time as a time value at which one or more points
in the set {r1, . . . , rn, d1(F ), . . . , dn(F )} occurs. Note that
an epochal time which corresponds to a deadline is no longer
a constant but an affine function in F . As previously, when
ordered in absolute time, adjacent epochal times define a set
of time intervals, that we denote by I1, . . . , Inint(F ). The du-
rations of time intervals are now affine functions in F . Us-
ing these new definitions and notations, we can solve our
problem on the objective interval [F1, F2] using System (1)
with the additional constraint that F belongs to [F1, F2]

(F1 ≤ F ≤ F2), and with the minimization of F as the ob-
jective. This gives us System (2)

Minimize F ,

under the constraints
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2a) ∀i,∀j,∀t, rj ≥ sup It ⇒ α
(t)
i,j = 0;

(2b) ∀i,∀j,∀t, dj ≤ inf It ⇒ α
(t)
i,j = 0;

(2c) ∀t,∀i,
∑

j

α
(t)
i,j .pi,j ≤ sup It − inf It ;

(2d) ∀j,
∑

t

∑

i

α
(t)
i,j = 1;

(2e) F1 ≤ F ≤ F2.

(2)

6.1.3 Particular objectives

The relative ordering of the release dates and deadlines only
changes for values of F where one deadline coincides with a
release date or with another deadline. We call such a value of
F a milestone.4 In our problem, there are at most n distinct
release dates and as many distinct deadlines. Thus, there are
at most n(n−1)

2 milestones at which a deadline function coin-

cides with a release date. There are also at most n(n−1)
2 mile-

stones at which two deadline functions coincides (two affine
functions intersect in at most one point). Let nq be the num-
ber of distinct milestones. Then, 1 ≤ nq ≤ n2 − n. We de-
note by F1, F2, . . . , Fnq the milestones ordered by increas-
ing values. To solve our problem we just need to perform a
binary search on the set of milestones F1, F2, . . . , Fnq , each
time checking whether System (2) has a solution in the ob-
jective interval [Fi , Fi+1] (except for i = nq in which case
we search for a solution in the range [Fnq,+∞[). There is
a polynomial number of milestones and System (2) can be
solved in polynomial time. Therefore, we have:

Theorem 9 (Legrand et al. 2005) The problem of minimiz-
ing the maximum weighted flow time in the divisible load
model 〈R|rj ;div|maxwjFj 〉 can be solved in polynomial
time.

6.1.4 A network flow approach for uniform machines

In Sect. 6.1.1, we presented System (1) to check whether
there exists a schedule whose maximum weighted flow is no
greater than a given objective. This linear program solves
this problem in the unrelated machines case, that is, the most
general one. In fact, in the uniform machines framework,

4Labetoulle et al. (1984) call such a value a “critical trial value”.
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Fig. 3 Graph used to check, on
uniform machines and through
network flow maximization,
whether there exists a schedule
of a given maximum weighted
flow. This example has two jobs,
three machines, and three time
intervals defined by the epochal
times r1 < r2 < d1 < d2

one can solve this problem using a network flow maximiza-
tion approach. The graph is built as follows:

Vertices. The graph contains:

• A source
• A sink
• One vertex Jj , for each job Jj , 1 ≤ j ≤ n

• One vertex (It ,Mi) for each ordered pair made
of a time interval It , 1 ≤ t ≤ nint, and of a ma-
chine Mi , 1 ≤ i ≤ m

Edges. The graph contains:

• One edge from the source to each node Jj of
capacity Wj , the size of the job. This edge rep-
resents the amount of work that must be done
for the job Jj .

• One edge from each node Jj to each node
(It ,Mi) if, and only if, job Jj can be executed
during the time interval It (i.e., rj ≤ inf It and
sup t ≤ dj ). This edge is also of capacity Wj

(and is thus not constraining).
• One edge from each node (It ,Mi) to the sink, of

capacity sup It−inf It

ci
: this is the amount of work

that machine Mi can perform during the time
interval It .

Figure 3 presents an example of such a graph.
There exists a schedule whose maximum weighted flow

is no greater than a given objective F if the network flow
maximization problem for the graph defined above (for the
time intervals corresponding to F ) has a solution whose flow

is equal to
∑

j Wj . As previously, one can just check the
feasibility of the network flow problem for the milestones
defined in the previous section. Then, when it is known be-
tween which two milestones lies the optimal, the ordering of
deadlines is known, and an Earliest Deadline First schedul-
ing leads to an optimal solution. However, this scheme only
works in the uniform machines setting as EDF is no longer
optimal for uniform machines with restricted availabilities
(see the example of Fig. 2). Therefore, we do not know
how to use the network flow approach to minimize the max-
stretch on uniform machines with restricted availabilities,
but this approach can obviously be used in such a framework
to check whether a given objective is feasible. Furthermore,
this network flow approach cannot be straightforwardly ex-
tended to deal with the general case of unrelated machines
(even for the problem of uniform machines with restricted
availabilities).

6.2 Minimizing the maximum weighted flow with
preemption (but no divisibility)

In this section, we focus on the more classical problem with
preemption but without the divisible load assumption. We
show that combining the linear programming approach of
the previous section with the work of Lawler and Labetoulle
(1978) leads to a polynomial-time algorithm to solve this
problem on unrelated machines. Note that the network flow
approach we just recalled enables to minimize the max-
stretch with preemption on one machine.
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Following the work of Gonzalez and Sahni (1976),
Lawler and Labetoulle (1978) present a scheme to build in
polynomial-time a preemptive schedule of makespan C for
a set of jobs J1, . . . , Jn of null release dates (∀j, rj = 0),
under the condition that Linear System (3) has a solution.
This system simply states that:

1. all jobs must be fully processed (equation (3a)).
2. the whole processing of a job cannot take a time larger

than C (equation (3b)).
3. the whole utilization time of a machine cannot be

longer than a time C (equation (3c)).

Obviously, these constraints must be satisfied by any pre-
emptive schedule whose makespan is no longer than C . The
constructive result obtained by Lawler and Labetoulle shows
that such a schedule exists if, and only if, this set of con-
straints has a solution.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3a) ∀j,

m∑

i=1

αi,j = 1;

(3b) ∀j,

m∑

i=1

αi,j · pi,j ≤ C;

(3c) ∀i,

n∑

j=1

αi,j · pi,j ≤ C.

(3)

Our problem is slightly more general in that we allow ar-
bitrary release dates. Additionally, our objective is to mini-
mize the maximum weighted flow rather than the makespan.
Let us consider a maximum weighted flow objective F . As
we did in Sect. 6.1.1, we use this objective value to define
for each job Jj a deadline dj (F ) = rj + F /wj . As before,
the set of release dates and deadlines defines a set of epochal
times which, in turn, defines a set of time intervals that we
denote by I1, . . . , Inint(F ). Then, we claim that there exists a
preemptive schedule whose maximum weighted flow is no
greater than F if, and only if, Linear System (4) has a solu-
tion. Linear System (4) simply states that:

(a) Each job must be processed to completion (equa-
tion (4a) which corresponds to equation (3a)).

(b) The processing of a job during the time interval It

cannot take a time larger than the length of It as, in
the current framework, a job cannot be simultaneously
processed by two different machines (equation (4b)
which corresponds to equation (3b)).

(c) The utilization of a machine during a time interval
cannot exceed its capacity (equation (4c) which corre-
sponds to equation (3c)).

(d) The processing of a job cannot start before it is re-
leased (equation (4d)).

(e) A job must be processed before its deadline (equation
(4e)).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4a) ∀j,
∑

t

∑

i

α
(t)
i,j = 1;

(4b) ∀t,∀j,
∑

i

α
(t)
i,j .pi,j ≤ sup It − inf It ;

(4c) ∀t,∀i,
∑

j

α
(t)
i,j .pi,j ≤ sup It − inf It ;

(4d) ∀i,∀j,∀t, rj ≥ sup It ⇒ α
(t)
i,j = 0;

(4e) ∀i,∀j,∀t, dj ≤ inf It ⇒ α
(t)
i,j = 0.

(4)

Any preemptive schedule whose maximum weighted
flow is no greater than F must obviously satisfy Linear Sys-
tem (4). Conversely, suppose that Linear System (4) has a
solution. Then, following Lawler and Labetoulle (1978), we
note that the whole system effectively decomposes into a set
of linear sub-systems, one for each of the time intervals, and
that the sub-system corresponding to interval It is exactly
equivalent to Linear System (3) where the objective is the
length of the time interval (i.e., C = sup It − inf It ). There-
fore, starting from a solution of Linear System (4) we use
the polynomial-time reconstruction scheme of Lawler and
Labetoulle to build a preemptive schedule for each of the
time intervals It . The concatenation of these partial sched-
ules gives us a solution to our problem.

Thus far, we have shown that we are able to check
the feasibility of a specific objective value for maximum
weighted flow in polynomial time. Moreover, if such an
objective is feasible a schedule that achieves this maxi-
mum weighted flow can also be built in polynomial time.
To finally solve our problem, we recall the methodology
presented in Sect. 6.1: Linear System (4) can be used to
search for a solution in a range of objective values, de-
fined by consecutive milestones, over which the linear sys-
tem is valid (i.e., the relative order of release dates and dead-
lines does not change). Similarly, a binary search over the
milestones—which are in polynomial number—enables us
to find and build an optimal solution in polynomial time.
Therefore, we have:

Theorem 10 The problem of minimizing the maximum
weighted flow time in the unrelated machines with preemp-
tion model 〈R|rj ;pmtn|maxwjFj 〉 can be solved in polyno-
mial time.

7 Pareto minimization of max-stretch and max flow

In this section we present a few game theory notions and
how they translate to our context. This enables us to under-
stand a major flaw of the previous max-based metric in a
general framework and how to correctly define a new met-
ric.
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Fig. 4 Most optimal solutions
to max-based metrics are not
Pareto-optimal

Game theory provides a general framework to model sit-
uations where many users compete for resources. Each user
(in our context, a job) is characterized by a utility func-
tion uj . The utility functions represent the satisfaction per-
ceived by the user (typically function of the delay or of the
capacity). The goal is to find scheduling strategies such that
the utility of each user is maximized. In our context it is
more relevant to consider cost functions rather than utility
functions. Indeed, scheduling problems are typically min-
imization problems as we try to minimize the completion
time, the flow or the stretch of each job. We will therefore
assume in the following that the cost γj of job Jj is a func-
tion of the completion times C. However, as these users may
compete for the same resources, it is generally not possi-
ble to simultaneously minimize the cost of each user. In a
multi-user context, optimality is not defined as simply as
in the single-user context, and it is common to use Pareto-
optimality, defined as follows:

Definition 2 (Pareto-optimality) A vector of completion
times C = (C1, . . . ,Cn) is Pareto-optimal if and only if:

∀C̃,∃i, γi(C̃) < γi(C) =⇒ ∃j, γj (C) < γj (C̃).

In other words, C is Pareto-optimal if it is impossible to
strictly decrease the cost of a player without strictly increas-
ing that of another. Any non-Pareto-optimal schedule can
thus be considered as non-efficient as a strictly better us-
age of resources could be done. Let us consider the cost set
� ⊆ (R∗+)n defined as the set of all feasible cost vectors:

� = {(
γ1(C), . . . , γn(C)

) | there exist a valid schedule

with completion times C
}
.

Figure 4 depicts on each subfigure, for a simple schedul-
ing instance the various cost sets associated to the comple-
tion time, flow time, and stretch metrics. The dashed–dotted
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Algorithm 2 Heuristic Pareto minimization of max-stretch on one machine

line is the optimal isoline for the considered max-based met-
ric (maxj Cj for Fig. 4b, maxj Fj for Fig. 4c, and maxj Sj

for Fig. 4d). Any point (the bold lines) belonging to both
the isoline and the cost set is thus optimal for the max-
based metric. However, we can see that very few of them are
Pareto-optimal. This is due to the fact that only the first max-
imum has been minimized. It is well-known in the network
community (see, for example, Bertsekas and Gallager 1987;
Massoulié and Roberts 2002) that max–min fairness should
be recursively defined. In our setting, this means that the
first maximum should be minimized, then the second should
be minimized, and so on. Sum-based metrics obviously do
not suffer from this flaw and always produce Pareto-optimal
schedules. That is why we propose to consider the new
metrics Cmax Pareto, Fmax Pareto, and Smax Pareto. These
scheduling metrics are likely to be much more difficult (but
also much more meaningful) than the previous ones as we
do not have to only optimize the cost of the more constrain-
ing job but to optimize the cost of all jobs at the same time.

7.1 Heuristic Pareto minimization of max-stretch on one
machine

Algorithm 2 is an obvious algorithm which recursively tries
to minimize the stretch of jobs: First, it minimizes the max-
stretch, then the number of jobs whose stretch is equal to the
max-stretch, then the maximum stretch of the other jobs, and
so on. This algorithm relies on the fact that Earliest Deadline
First (EDF) always finds a schedule satisfying all deadlines

if one exists (Dertouzos 1974).5 We show that in some cases
Algorithm 2 produces Pareto-optimal schedules for stretch
minimization.

Theorem 11 Algorithm 2 produces a Pareto-optimal sched-
ule for max-stretch minimization on one machine with pre-
emption if at no iteration of the while loop there are two jobs
whose deadlines, defined at Steps 6 or 8, are equal.

Proofs and details can be found in the research report cor-
responding to this article (see Legrand et al. 2008). We con-
jecture that Algorithm 2 always produces a Pareto-optimal
schedule for max-stretch minimization on one machine with
preemption. This conjecture is based on the facts that (1) the
function which associates to a schedule the vector of the
stretch of the jobs, sorted in non-decreasing order, is a con-
tinuous function; (2) we believe that the set of the instances
for which Theorem 11 holds is dense in the space of all in-
stances.

7.2 Heuristic Pareto minimization of max weighted flow
on unrelated machines

Here, we target the more general case of the max weighted
flow as we will need to look at the special case of max-flow
minimization.

5On one processor, this property can even be extended to the case of
tasks with general dependence relations (Blazewicz 1977).
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Algorithm 3 Heuristic Pareto minimization of max weighted flow

Algorithm 3 presents the solution we propose for the gen-
eral case. The solution for single processor case cannot be
straightforwardly extended to the general case as the Ear-
liest Deadline First algorithm is obviously not optimal for
non-uniform machines. Once again we (try to) recursively
optimize the max weighted flow of the jobs. We compute
the best achievable max weighted flow for the jobs whose
weighted flow is not yet fixed, and we (try to) minimize the
number of jobs whose weighted flow is equal to this max-
imum. As always the objective max weighted flow gives
a deadline per FreeWeightedFlow job, i.e., per job whose

weighted flow has not yet been fixed. We first minimize the
number of distinct deadlines d such that there always is a
job whose deadline is d and which is completed at date d .
Then we minimize the number of (problematic) jobs, i.e., of
jobs which are completed at their deadline.

We can show that Algorithm 3 is correct.

Lemma 3 Algorithm 3 produces a valid schedule.

Proofs and details can be found in the research report cor-
responding to this article (see Legrand et al. 2008).
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Step 15 does not explicit how the set “S′
d” of jobs whose

completion date equals the deadline should be computed,
especially as we would like this set to be as small as possible.
In fact, in the general case this problem is NP-complete. The
next theorem states the complexity of the Pareto max-flow
minimization, and thus of the general case.

Theorem 12 The Pareto minimization of max-flow on unre-
lated machines, 〈R|div|FmaxPareto〉, is NP-complete.

As we do not have any release dates in the above theorem,
we, in fact, prove that 〈R|div|CmaxPareto〉 is NP-complete.
In fact, we prove an even stronger result, that is, that mini-
mizing the number of jobs whose completion date is equal
to the makespan is NP-complete on unrelated machines, and
under the divisible model.

This result is proved with a reduction from MINIMUM

HITTING SET (Garey and Johnson 1991). The proof can be
found in the research report corresponding to this article (see
Legrand et al. 2008).

MINIMUM HITTING SET is equivalent to MINIMUM SET

COVER (Protasi et al. 1980). Therefore, one of the best poly-
nomial time algorithm to approximate MINIMUM HITTING

SET is the greedy algorithm which at each step picks the
element which belongs to the largest number of still un-hit
subsets. This greedy algorithm has an approximation ratio
of 1 + ln |S| (Johnson 1974; Slavík 1996), where |S| is the
size of the set.

We do not know what is the complexity of the Pareto
minimization of the max-stretch. Seeing how efficient is the
greedy heuristic for the minimum hitting set problem, we
simply suggest to use it to solve in practice Step 15. Fur-
thermore, one can easily see that when the set Sd at Step 14
is always reduced to a singleton, Algorithm 3 produces an
optimal schedule. Therefore:

Theorem 13 Algorithm 3 produces a Pareto-optimal sched-
ule for max weighted flow minimization on unrelated ma-
chines under the divisible load model if the set Sd at Step 14
is always reduced to a singleton.

We believe that, in practice, the set Sd will always be
reduced to a singleton, and thus that Algorithm 3 will always
produce optimal schedules. (Note that the case of jobs of
same size and same release date is not a problem.)

8 Online max-stretch optimization

In this section, we first improve a lower bound on the com-
petitive ratio of online algorithms for max-stretch minimiza-
tion established by Bender et al. (1998). Then we present the
two competitive algorithms that have previously been pro-
posed in the literature (Bender et al. 1998, 2002). Last we

highlight some practical limitations of these algorithms and
propose new heuristics that circumvent these limitations.

8.1 Lower bound on the competitiveness of online
algorithms

Theorem 14 (Legrand et al. 2006) There is no 1
2�

√
2−1-

competitive preemptive online algorithm minimizing max-
stretch if we restrict to instance with at least three different
processing times.

This result is an improvement from the bound of 1
2�

1
3

established by Bender et al. (1998). In fact, we establish
this new bound by doing a more precise analysis of the ex-
act same adversary. In their proof, Bender, Chakrabarti, and
Muthukrishnan implicitly assumed that the algorithm knew
in advance the ratio � of the sizes of the largest and short-
est jobs. We will see in the next section that there exist
some O(

√
�)-competitive algorithms. Therefore, we have

roughly bridged half of the gap between the previous lower
bound and the best existing algorithms.

Proof We prove this result by contradiction. Therefore, let
us assume that there exists a 1

2�
√

2−1-competitive preemp-
tive online algorithm A minimizing max-stretch. An adver-
sary sends the following series of jobs:

Phase 1: Jobs 1 and 2 have both a size of δ and arrive at
time 0, i.e., p1 = p2 = δ and r1 = r2 = 0.

Phase 2: Starting at time 2δ − k, and every k time units,
a job of size k (with k < δ) arrives. There are x

such jobs. In other words, for 1 ≤ j ≤ x, job J2+j

arrives at time r2+j = 2δ + (j − 2)k and is of size
p2+j = k.

A first come, first served (FCFS) ordering of all the jobs
has a stretch of 2. Algorithm A is by hypothesis 1

2�
√

2−1-
competitive and, as a stretch of 2 can be achieved, the
date C1 at which the execution of J1 ends must satisfy:
C1−r1

p1
≤ 1

2�
√

2−1 ×2 (same constraint on C2). So far, � = δ
k

(remember that � is the ratio of the sizes of the largest and
shortest jobs in the system).6 Therefore, the constraint on C1

can be rewritten:

C1 ≤ 1

2
�

√
2−1 × 2 × δ = δ

√
2

k
√

2−1
.

The most favorable case for algorithm A is when it is able to
(partially) delay the execution of J1 and J2 and to execute

6Our bound is tighter than the one established by Bender, Chakrabarti,
and Muthukrishnan because we remark that � = δ

k
, when they used

� = δ
1 = δ, as if they had assumed that the algorithm knew in advance

that the ratio of the sizes of the largest and shortest jobs submitted to
the system would be δ.
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each of the jobs J3, . . . , J2+x at its release date. To forbid
such a behavior, we choose x, the number of jobs of size k,
to be large enough for A not to be able to delay the com-
pletion of J1 and/or J2 after the completion of all the jobs
of size k. If each of the jobs J3, . . . , J2+x is executed at its
release date, then C2+x = 2δ + (x − 1)k. We define x as
follows:

x =
⌊

2 +
(

δ

k

)√
2

− 2δ

k

⌋

.

Then the execution of C1 and C2 must be completed by
the date 2δ + (x − 1)k. Otherwise, the algorithm A fails
to achieve its guarantee as the adversary would then send
at time 2δ + (x − 1)k a job of size k+δ

2 to be exactly un-
der the conditions stated by the theorem. So, algorithm A
must complete the execution of C1 and C2 by the date
2δ + (x − 1)k. Then the adversary sends the following third
series of jobs.

Phase 3: Starting at time 2δ+ (x −1)k, and every time unit,
arrives a job of size 1. There are y such jobs. In
other words, for 1 ≤ j ≤ y, job J2+x+j arrives at
time r2+x+j = 2δ + (x − 1)k + (j − 1) and is of
size p2+x+j = 1.

The optimal max-stretch is then less than or equal to
2δ+xk+y

δ
(obtained when delaying the completion of J1 or

J2 after the completion of all smaller jobs). The max-stretch
that algorithm A can achieve is greater than or equal to k+1
when we let y = �k(k − 1)�. Indeed, the last job completed
by algorithm A is either of size 1 or k and, whatever its size,
its stretch is thus the max-stretch of A. Finally, when we
pick k = δ2−√

2, we obtain the desired contradiction on the
competitive ratio of Algorithm A. �

8.2 Competitive online heuristics

We have already seen in Sect. 3.2 that FCFS, the optimal
algorithm for the online minimization of max-flow, is only
�-competitive for the online minimization of max-stretch.
This seemingly bad result is obviously partially explained
by Theorem 14.

We now recall two existing online algorithms for max-
stretch minimization before introducing a new one. Bender
et al. (2002) defined, for any job Jj , a pseudo-stretch Ŝj (t):

Ŝj (t) =
{ t−rj√

�
if 1 ≤ pj ≤ √

�,

t−rj
�

if
√

� < pj ≤ �.

Then, they scheduled the jobs by decreasing pseudo-stretch-
es, potentially preempting running jobs each time a new job
arrives in the system. They demonstrated that this method is
a O(

√
�)-competitive online algorithm.

Bender et al. (1998) had previously described another
O(

√
�)-competitive online algorithm for max-stretch. This

algorithm works as follows: each time a new job arrives, the
currently running job is preempted. Then, they compute the
optimal (offline) max-stretch S ∗ of all jobs having arrived
up to the current time. Next, a deadline is computed for each
job Jj : dj (F ) = rj +α × S ∗/pj . Finally, a schedule is real-
ized by executing jobs according to their deadlines, using the
Earliest Deadline First strategy. To optimize their competi-
tive ratio, Bender et al. set their expansion factor α to

√
�.

For both heuristics, the ratio � of the sizes of the largest and
shortest jobs submitted to the system is thus assumed to be
known in advance.

When they designed their algorithm, Bender et al. did
not know how to compute the (offline) optimal maximum
stretch. This problem is now overcome. The main remain-
ing problem in this approach, from our point of view, is that
such an algorithm tries only to optimize the stretch of the
most constraining jobs. This problem is common to all al-
gorithms minimizing a max objective. Indeed, such an algo-
rithm may very easily schedule all jobs so that their stretch is
equal to the objective, even if most of them could have been
scheduled to achieve far lower stretches. This problem is far
from being merely theoretical, as we will see in Sect. 9. We
will try to circumvent it when designing our own heuristics.

8.3 Practical online heuristics

The basic online heuristic we could derive from our offline
algorithm would be along the same line as the algorithm of
Bender, Chakrabarti, and Muthukrishnan: each time a new
job arrives we would preempt the running job (if any), com-
pute the optimal max-stretch, and schedule the jobs accord-
ing to the solution of System (2). The solution of System (2)
specifies what fraction of each job should be executed on
each processor during each time interval. We would imple-
ment this solution by breaking arbitrarily the ties that may
appear in each time interval.

Our first modification to this scheme is that, rather than
computing the “optimal max-stretch”, we compute the “best
achievable max-stretch considering the decisions already
made”. In other words, we take into account our knowledge
of which jobs were already (partially) executed, and when.
The underlying idea being that we cannot change the past.
Also, such an optimization will greatly simplify the linear
system. This modification is implemented by making trivial
modifications to System (2).

Our second modification to the above scheme is more im-
portant: we want to optimize more than the max-stretch. The
first possibility would be to use in an online framework our
offline heuristic for the Pareto minimization of max-stretch.
To do so, instead of using a binary search and System (2)
to compute the best achievable max-stretch, we use Algo-
rithm 3 where, at Step 4, we compute the best achievable
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max-stretch rather than the optimal one. This way we define
our ONLINE-PARETO heuristics.

Another possible approach would be to specify that each
job should be scheduled in a manner that minimizes its own
stretch value, while maintaining the overall maximal stretch
value obtained. For example, one could theoretically try to
minimize the sum-stretch under the condition that the max-
stretch be optimal. However, as we have seen, minimizing
the sum-stretch is an open problem. So we consider a heuris-
tic approach expressed by System (6).

Minimize
n∑

j=1

wj

((
∑

t

(
m∑

i=1

α
(t)
i,j

)
sup It (S ∗) + inf It (S ∗)

2

)

− rj

)

,

under the constraints
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6a) ∀i,∀j,∀t, rj ≥ sup It (S ∗) ⇒ α
(t)
i,j = 0;

(6b) ∀i,∀j,∀t, dj (S ∗) ≤ inf It (S ∗) ⇒ α
(t)
i,j = 0;

(6c) ∀t,∀i,
∑

j

α
(t)
i,j .pi,j ≤ sup It (S ∗) − inf It (S ∗);

(6d) ∀j,
∑

t

∑

i

α
(t)
i,j = 1.

(6)

This system ensures that each job is completed no later than
the deadline defined by the optimal (offline) max-stretch S ∗.
Then, under this constraint, this system attempts to min-
imize an objective that resembles a rational relaxation of
the sum-stretch (or more generally of the sum weighted
flow) using as an approximation of the completion time, the
weighted sum of the average execution times of a job. As we
do not know the precise time within an interval when a part
of a job will be scheduled, we approximate it by the mean
time of the interval. (This heuristic obviously offers no guar-
antee on the sum-stretch achieved.) This way, we obtain the
following online algorithm. Each time a new job arrives:

1. Preempt the running job (if any).
2. Compute the best achievable max-stretch S ∗, considering

the decisions already made.
3. With the deadlines and intervals defined by the max-

stretch S ∗, solve System (6).

At this point, we define three variants to produce the sched-
ule. The first, which we call ONLINE, assigns work simply
using the values found by the linear program for the α vari-
ables:

4. For a given processor Pi , and a given interval It (S ∗),
all jobs Jj that complete their fraction on that proces-
sor during the same interval (i.e., all jobs Jj such that
∑

t ′>t α
(t ′)
i,j = 0) are scheduled under the SWRPT policy

in that interval. We call these jobs terminal jobs (for Pi

and It (S ∗)). The non-terminal jobs scheduled on Pi dur-
ing interval It (S ∗) are only executed in It (S ∗) after all
terminal jobs have finished.

The second variant we consider, ONLINE-EDF, attempts to
make changes to the schedule at the processor level to im-
prove the overall max- and sum-stretch attained:

4. Consider a processor Pi . The fractions αi,j of the jobs
that must be partially executed on Pi are processed on
Pi under a list scheduling policy based on the follow-
ing order: the jobs are ordered according to the interval
in which their share is completed (according to the solu-
tion of the linear program), with ties being broken by the
SWRPT policy.

Finally, we propose a third variant, ONLINE-EGDF, that
creates a global priority list:

4. The (active) jobs are processed under a list scheduling
policy, using the strategy outlined in Sect. 2.3 to deal with
restricted availabilities. Here, the jobs are totally ordered
by the interval in which their total work is completed,
with ties being broken by the SWRPT policy.

The validity of these heuristic approaches will be assessed
through simulations in the Sect. 9.

9 Simulations

To evaluate the efficacy of various scheduling strategies
when optimizing stretch-based metrics, we implemented a
simulator using the SimGrid toolkit (Legrand et al. 2003),
based on the biological sequence comparison scenario. The
application and platform models used in the resulting simu-
lator are derived from our initial observations of the GriPPS
system, described in Sect. 2. Our primary goal is to evaluate
the proposed heuristics in realistic conditions that include
partial replication of target sequence databases across the
available computing resources. The remainder of this sec-
tion outlines the experimental variables we considered and
presents results describing the behavior of the heuristics in
question under various parametrizations of the platform and
application models.

9.1 Simulation settings

The platform and application models that we address in this
work are quite flexible, resulting in innumerable variations
in the range of potentially interesting combinations. To fa-
cilitate our studies, we concretely define certain features of
the system that we believe to be useful in describing real-
istic execution scenarios. We consider in particular six such
features.
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Platform size Typically, a given biological database such
as those considered in this work, would be replicated at var-
ious sites, at which comparisons against this database may
be performed. Generally, the number of sites in a simulated
system provides a basic measure of the aggregate power of
the platform. This parameter specifies the exact number of
sites in the simulated platform. Without loss of generality,
we arbitrarily define each site to contain 10 processors.

Processor power Our model assumes that all the proces-
sors at any given site are equivalent, and each processor is
assumed to have access to all databases located there. Thus,
for each site, a single processor value represents the process-
ing power at that site. We choose processor power values
using benchmark results from our previous work.

Number of databases Applications such as GriPPS can ac-
commodate multiple reference databases. Our model allows
for any number of distinct databases to exist throughout the
system.

Database size Our previous work demonstrated that the
processing time needed to service a user request targeting
a particular database varies linearly according to the number
of sequences found in the database in question. We choose
such values from a continuous range of realistic database
sizes, with the job size for jobs targeting a particular data-
base scaled accordingly.

Database availability A particular database may be repli-
cated at multiple sites, and a single site may host copies of
multiple databases. We account for these two eventualities
by associating with each database a probability of existence
at each site. The same database availability applies to all
databases in the system. We further ensure that each data-
base is available at at least one site, and each site hosts at
least one database.

Workload density For a particular database, we define the
workload density of a system to be the ratio, on average, of
the aggregate job size of user requests against that database
to the aggregate computational power available to serve such
requests. Workload density expresses a notion of the “load”
of the system. This parameter, along with the size of the
database, define the frequency of job arrivals in the system.

We define a simulation configuration as a set of specific
values for each of these six properties. Once defined, con-
crete simulation instances are constructed by realizing ran-
dom series for any random variables in the system. In par-
ticular, two models are created for each instance: a platform
model and a workload model. The former is specified first
by defining the appropriate number of 10-node sites and as-
signing corresponding processor power values. Next, a size

is assigned to each database, and it is replicated according
to the simulation’s database availability parameter. Finally,
the workload model is realized by first generating a series of
jobs for each database, using a Poisson process for job inter-
arrival times, with a mean that is computed to attain the de-
sired workload density. The database-specific workloads are
then merged and sorted to obtain the final workload. Jobs
may arrive between the time at which the simulation starts
and 15 minutes thereafter.

In this simulation study, we use empirical values ob-
served in the GriPPS system logs to define a realistic range
of database sizes and to generate appropriate values for
processor speeds. The remaining four parameters—platform
size, number of distinct databases, database availability, and
workload density—are the simulation values that vary in our
study. We discuss further the specifics of the experimental
design and our simulation results in Sect. 9.3.

9.2 Optimization of the online heuristic

To motivate the variants of our online heuristic described
in Sect. 8, we conduct a series of experiments to evaluate
their effect. In particular, we consider a non-optimized ver-
sion of the online heuristic, which stops after Step 2. We
consider job workloads of average density varying between
0.0125 to 4.00, over a range of average job lengths between
15 and 60 seconds. For each job size/workload density com-
bination evaluated, we simulate the execution of 5000 in-
stances, recording the maximum- and sum-stretch of jobs
in the workload achieved with both the optimized and non-
optimized versions of the online heuristic. The max-stretch
of each is then divided by the max-stretch achieved by the
optimal algorithm, yielding a degradation factor for both
heuristics on that run. Since the optimal sum-stretch is not
known, we observe the sum-stretch of the optimized online
heuristic relative to the non-optimized version. Figure 5a
and b presents the max-stretch and sum-stretch results, re-
spectively. In the first plot, the average max-stretch degra-
dation, compared to the optimal result, for both versions of
the heuristic over the 5000 runs of a given configuration is
plotted against the workload density of that configuration.
The second plot depicts the gain for the sum-stretch met-
ric for the optimized heuristic, relative to the non-optimized
version. These results strongly motivate the use of the op-
timizations encoded by the linear program depicted in Sys-
tem (6).

9.3 Simulation results and analysis

We have implemented in our simulator a number of sched-
uling heuristics that we plan to compare. First, we have
implemented OFFLINE, corresponding to the algorithm
described in Sect. 6 that solves the optimal max-stretch
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Fig. 5 Comparison of the
optimized and non-optimized
versions of the online heuristic

problem. Three versions of the online heuristic are also
implemented, designated as ONLINE, ONLINE-EDF, and
ONLINE-EGDF. Next, we consider the SWRPT, SRPT,
and SPT heuristics discussed in Sect. 5. Then, we con-
sider the two online heuristics proposed by Bender et al.
that were briefly described in Sect. 8.2. We also include
two greedy strategies. First, MCT (“minimum comple-
tion time”) simply schedules each job as it arrives on the
processor that would offer the best job completion time.
The FCFS-DIV heuristic extends this approach to take ad-
vantage of the fact that jobs are divisible, by employing
all resources that are able to execute the job (using the
strategy laid out in Sect. 2.3). Note that neither MCT nor
FCFS-DIV makes any changes to work that has already
been scheduled. Finally, as a basic reference, we consider
a list-scheduling heuristic with random job order denoted
RAND. This heuristic works as follows: initially, we ran-
domly build an order on the jobs that may arrive; then
RAND list-schedules the jobs while using this list to de-
fine priorities, and while using the divisibility property. All
the single processor heuristics (SWRPT, SRPT, SPT, and
Bender et al.’s) are extended to the multi-processor case us-
ing the Algorithm 1 previously described in Sect. 2.3.

As mentioned earlier, two of the six parameters of our
model reflect empirical values determined in our previous
work with the GriPPS system (Legrand et al. 2005). Proces-
sor speeds are chosen randomly from one of the six refer-
ence platforms we studied, and we let database sizes vary
continuously over a range of 10 megabytes to 1 gigabyte,
corresponding roughly to GriPPS database sizes. Thus, our
experimental results examine the behaviors of the aforemen-
tioned heuristics as we vary our four experimental parame-
ters:

• platforms of 3, 10, and 20 clusters (sites) with 10 proces-
sors each

• applications with 3, 10, and 20 distinct databases
• database availabilities of 30%, 60%, and 90% for each

database
• workload density factors of 0.75, 1.0, 1.25, 1.5, 2.0,

and 3.0.

The resulting experimental framework has 162 configu-
rations. For each configuration, 200 platforms and applica-
tion instances are randomly generated and the simulation re-
sults for each of the studied heuristics is recorded. Table 1
presents the aggregate results from these simulations; finer-
grained results based on various partitionings of the data
may be found in extended version of this document (Legrand
et al. 2008).

Above all, we note that the MCT heuristic—effectively
the policy in the current GriPPS system—is unquestionably
inappropriate for max-stretch optimization: MCT was over
38 times worse, on average, than the best heuristic. Its defi-
ciency might arguably be tolerable on small platforms but, in
fact, MCT yielded max-stretch performance over 16 times
worse than the best heuristic in all simulation configurations.
Even after addressing the primary limitation that the divisi-
bility property is not utilized, the results are still disappoint-
ing: FCFS-DIV is on average 5.1 times worse in terms of
max-stretch than the best approach we found. One of the
principal failings of the MCT and FCFS-DIV heuristics is
that they are non-preemptive. By forcing a small task that
arrives in a heavily loaded system to wait, non-preemptive
schedulers cause such a task to be inordinately stretched rel-
ative to large tasks that are already running.

Experimentally, we find that the first two of the three
online heuristics we propose are consistently near-optimal
(within 4‰ on average) for max-stretch optimization. The
third heuristic, ONLINE-EGDF, actually achieves consis-
tently good sum-stretch (within 3‰ of the best observed
sum-stretch), but at the expense of its performance for the
max-stretch metric (within 4% of the optimal). This is not
entirely surprising as this heuristic ignores a significant por-
tion of the fine-tuned schedule generated by the linear pro-
gram designed to optimize the max-stretch. Furthermore,
our three online heuristics have far better sum-stretch than
the OFFLINE-PARETO (which is on average almost 30%
away of the best observed sum-stretch). This result validates
our heuristic optimization of sum-stretch as expressed by
System (6). As forecasted, OFFLINE-PARETO has a signifi-
cantly better average sum-stretch than OFFLINE.
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Table 1 Aggregate statistics
over all 162
platform/application
configurations

*BENDER98 results are limited
to 3-cluster platforms, due to
prohibitive overhead costs
(discussed in Sect. 9.3)

Max-stretch Sum-stretch

Mean SD Max Mean SD Max

OFFLINE 1.0000 0.0000 1.0000 1.4051 0.2784 2.6685

OFFLINE-PARETO 1.0000 0.0000 1.0000 1.2986 0.2605 3.5090

ONLINE 1.0039 0.0145 1.2420 1.0458 0.0439 1.5069

ONLINE-EDF 1.0040 0.0156 1.6886 1.0450 0.0432 1.5016

ONLINE-EGDF 1.0331 0.0622 1.6613 1.0024 0.0052 1.1095

SWRPT 1.0386 0.0729 2.0566 1.0003 0.0014 1.0384

SRPT 1.0596 0.1027 2.1012 1.0048 0.0074 1.1179

SPT 1.0576 0.1032 2.1297 1.0020 0.0048 1.1263

BENDER98* 1.0415 0.0971 2.1521 1.0028 0.0075 1.1393

BENDER02 2.9859 2.7071 23.5446 1.2049 0.3087 6.6820

FCFS-DIV 5.1353 6.6792 65.9073 1.3767 0.7224 15.4213

MCT 38.4276 24.2626 156.3778 51.9606 36.5202 154.1519

RAND 4.6568 6.9107 87.9141 1.2355 0.4827 10.8549

We also observe that SWRPT, SRPT, and SPT are all
quite effective at sum-stretch optimization. Each is on aver-
age within 5‰ of the best observed sum-stretch for all con-
figurations. In particular, SWRPT produces a sum-stretch
that is on average 0.3‰ within the best observed sum-
stretch, and attaining a sum-stretch within 4% of the best
sum-stretch in all of the roughly 32,000 instances. However,
it should be noted that these heuristics may lead to starva-
tion. Jobs may be delayed for an arbitrarily long time, par-
ticularly when a long series of small jobs is submitted se-
quentially (the (n + 1)th job being released right after the
termination of the nth job). Our analysis of the GriPPS ap-
plication logs has revealed that such situations occur fairly
often due to automated processes that submit jobs at regular
intervals. By optimizing max-stretch in lieu of sum-stretch,
the possibility of starvation is eliminated.

Next, we find that the BENDER98 and BENDER02
heuristics are not practically useful in our scheduling con-
text. The results shown in Table 1 for the BENDER98 heuris-
tic comprise only 3-cluster platforms; simulations on larger
platforms were practically infeasible, due to the algorithm’s
prohibitive overhead costs. Effectively, for an n-task work-
load, the BENDER98 heuristic solves n optimal max-stretch
problems, many of which are computationally equivalent to
the full n-task optimal solution. In several cases the desired
workload density required thousands of tasks, rendering the
BENDER98 algorithm intractable. To roughly compare the
overhead costs of the various heuristics, we ran a small se-
ries of simulations using only 3-cluster platforms. The re-
sults of these tests indicate that the scheduling time for a 15-
minute workload was on average under 0.28 s for any of our
online heuristics, and 0.54 s for the offline optimal algorithm
(with 0.35 s spent in the resolution of the linear program and
0.19 s spent in the online phases of the scheduler); by con-
trast, the average time spent in the BENDER98 scheduler

was 19.76 s. The scheduling overhead of BENDER02 is far
less costly (on average 0.23 s of scheduling time in our over-
head experiments), but in realistic scenarios for our applica-
tion domain, the competitive ratios it guarantees are inef-
fective compared with our online heuristics for max-stretch
optimization. Note that the bad performance of BENDER02
is not due to the way we adapt single-machine algorithms to
unrelated machines configurations (see Sect. 2.3). Indeed,
similar observations can be done when restricting to single-
machine configurations (see Table 2).

Finally, we remark that the RAND heuristic is slightly
better than the FCFS-DIV for both metrics. Moreover,
RAND is only 24% away from the best observed sum-
stretch on average. This leads us to think that the sum-stretch
may not be a discriminating objective for our problem. In-
deed, it looks as if, whatever the policy, any list-scheduling
heuristic delivers good performance for this metric.

10 Conclusions

Our initial goal was to minimize the maximum stretch.
We have presented a polynomial-time algorithm to solve
this problem offline. We have also proposed some heuris-
tics to solve this problem online. Through simulations we
have shown that these heuristics are far more efficient than
the pre-existing guaranteed heuristics, and do not have the
risk of job starvation present in classical simple scheduling
heuristics like shortest remaining processing time. Along
the way we have established some NP-completeness and
competitiveness results. Table 3 summarizes the main com-
plexity results presented in this document as well as related
work. Minimizing maxwjFj is polynomial as soon as divis-
ibility or preemption is allowed, whereas

∑
wjFj is always
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Table 2 Aggregate statistics for
a single machine for all
application configurations

Max-stretch Sum-stretch

Mean SD Max Mean SD Max

OFFLINE 1.0000 0.0000 1.0000 1.0413 0.0593 1.6735

ONLINE 1.0016 0.0149 1.6344 1.0549 0.0893 1.8134

SWRPT 1.1316 0.2071 3.1643 1.0001 0.0009 1.0398

SRPT 1.1242 0.2003 3.0753 1.0139 0.0212 1.2576

SPT 1.1961 0.2667 3.9752 1.0229 0.0296 1.3573

BENDER98 1.1200 0.1766 2.5428 1.0194 0.0279 1.4466

BENDER02 3.5422 2.4870 21.4819 2.9872 1.9599 15.0019

FCFS-DIV 8.7762 9.1900 80.7465 6.8979 7.7409 88.2449

RAND 11.3059 11.1981 125.3726 5.8227 6.3942 68.0009

Table 3 Summary of complexity results

β = ∅ β = pmtn β = div

〈1|rj ;β|maxwjFj 〉 NP (Bender et al. 1998) ↓ ↓
〈P |rj ;β|maxwjFj 〉 ↑ ↓ ↓
〈Q|rj ;β|maxwjFj 〉 ↑ ↓ ↓
〈R|rj ;β|maxwjFj 〉 ↑ P (Lin. Prog. Sect. 6.2) P (Lin. Prog. Sect. 6.1)

〈1|rj ;β|∑Fj 〉 NP (Lenstra et al. 1977) P (SRPT (Baker 1974)) ↓
〈P |rj ;β|∑Fj 〉 ↑ NP (Numerical-3DM, Baptiste et al. 2007) ↓
〈Q|rj ;β|∑Fj 〉 ↑ ↑ P (SRPT + Sect. 2.3)

〈R|rj ;β|∑Fj 〉 ↑ ↑ NP (3DM, Sect. 4)

〈1|rj ;β|∑Sj 〉 NP (Sect. 5.1) ? ?

〈P |rj ;β|∑Sj 〉 ↑ ? ?

〈Q|rj ;β|∑Sj 〉 ↑ ? ?

〈R|rj ;β|∑Sj 〉 ↑ ? NP (3DM, Sect. 5.1)

〈1|rj ;β|∑wjFj 〉 NP (Lenstra et al. 1977) NP (Numerical-3DM, Labetoulle et al. 1984) �
〈P |rj ;β|∑wjFj 〉 ↑ ↑ ↑
〈Q|rj ;β|∑wjFj 〉 ↑ ↑ ↑
〈R|rj ;β|∑wjFj 〉 ↑ ↑ ↑

strongly NP-hard.
∑

Fj is easy only on simple settings (one
processor with preemption of related processors with divisi-
bility) and is strongly NP-hard in all other settings. The main
problem whose complexity is still open is 〈1|rj ,pmtn|∑Sj 〉
even if (as we already have mentioned in Sect. 5.1) Polyno-
mial Time Approximation Scheme (PTAS) have been pro-
posed for this problem. Some other questions remain open,
like:

• What is the complexity of 〈R|div; rj |ParetoSmax〉, the
Pareto minimization of max-stretch on unrelated ma-
chines under the divisible load model?

• Are there some approximation algorithms minimizing the
sum-stretch on unrelated machines under the divisible
load model?

• Are there some algorithms with a better competitivity fac-
tor than 2 for the minimization of sum-stretch on a single
processor?

• Processor Sharing is a scheduling policy where time units
are divided arbitrarily finely between jobs and where all
jobs currently in the system get an equal share of the ma-
chine. In 1998, 1998, Bender et al. claim that Processor
Sharing has a competitive ratio of 
(n) for max-stretch
where n is the number of jobs. This is thus very bad
compared to the known O(

√
�) competitive algorithms.

However, in the instance they use, � grows with n (more
precisely � = 2n). Therefore, Processor Sharing may not
be such a bad algorithm for the max-stretch minimiza-
tion. It is not hard (at least numerically) to see that the
competitive ratio is 
(

√
�). The open question is there-
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fore: what is the competitive ratio of Processor Sharing
for max-stretch?

Beside all the theoretical considerations, we think that the
study presented in this article clearly demonstrates the supe-
riority of our algorithms in terms of fairness and efficiency
compared to currently implemented scheduling algorithm in
the GriPPS application. In particular, we hope that this study
has shown the major importance of divisibility and preemp-
tion in this framework and that such techniques will soon be
used in practice.
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