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Abstract
We investigate the problem of finding a minimal volume parallelepiped en-
closing a given set ofn three-dimensional points. We give two mathematical
properties of these parallelepipeds, from which we derive two algorithms of
theoretical complexityO(n6). Experiments show that in practice our quickest
algorithm runs inO(n2) (at least forn≤ 105). We also present our application
in structural biology.

Keywords: Algorithmic geometry, parallelepiped, bioinformatic.

Résumé
Nous étudions le problème de la recherche d’un parallélépipède de volume
minimal englobant un ensemble donné den points d’un espace de dimension
trois. Nous démontrons deux propriétés mathématiques de ces parallélépipèdes
à partir desquelles nous élaborons deux algorithmes de complexité théorique
en O(n6). Nos expériences montrent que la complexité en pratique de notre
algorithme le plus rapide est enO(n2) (au moins quandn est inférieur à 105).
Nous présentons également notre application en biologie structurale.

Mots-clés: Géométrie algorithmique, parallélépipèdes, bioinformatique.
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1 Introduction

It is sometimes useful to circumscribe a complex three-dimensional shape with a simpler shape, of mini-
mum volume. Solutions for this problem are known if one is looking for the minimal volume enclosing
ball or ellipsoid [10], cylinder [5], tetrahedron [12], or rectangular box [2]. Our original motivation was to
approximate the surface of a protein with a set of regular shapes in the hope of finding some “outstanding
faces” of the protein, e.g. responsible of interactions with other proteins. From biological considerations,
parallelepipeds seemed more suitable for our problem. So, in this paper we show how to compute a paral-
lelepiped of minimal volume enclosing a three-dimensional shape or set of points. Our algorithms rely on
mathematical properties inspired by the properties satisfied in the plane by the minimal enclosing parallelo-
gram [7–9].

In Section 2 we prove two mathematical properties of minimal enclosing parallelepipeds. From these
properties, we derive two algorithms in Section 3. In Section 4, we report the experiments we performed
on these algorithms. Finally, in Section 5, we give an insight of our biological motivation: we apply our
technique to a protein and discuss the result.

2 Mathematical properties

First, we remark that the minimal volume parallelepiped enclosing a setSof points is the minimal volume
parallelepiped enclosing the convex hull ofS as the convex hull ofS is the smallest convex enclosingS.
Then, the first theorem states that each pair of opposite faces of the minimal enclosing parallelepiped must
flush a face or two edges of the convex hull (and not just a face as in 2D). In this paper we never consider
degenerated sets of points, i.e. included in a plane.

Theorem 1 For any set of points of convex hullC there exists a minimal enclosing parallelepipedP such
that, for any pair of opposite faces ofP , either one of the faces contains a face ofC or both faces contain
an edge ofC and the two edges are not parallel.

Proof We consider a set of points of convex hullC and one of its minimal enclosing parallelepipedP .
Any faceF of P contains at least one vertex ofC : otherwise it would be possible to moveF closer to its
opposite face to obtain an enclosing parallelogram of smaller volume.

To prove the theorem, we suppose thatP does not satisfy the property stated by the theorem and we
show that we can build an enclosing parallelogram satisfying the property and at least as small asP . As, by
hypothesis,P does not satisfy the property stated by the theorem, there exist two opposite facesF1 andF2

of P such that none of them contain a face ofC and if both contain an edge ofC , both edges are parallel.
We denote byP1 (resp.P2) the plane containingF1 (resp.F2).

A parallelepiped is defined by its eight vertices. It is also defined by the three pairs of parallel planes that
contain its faces. We will call these planes thesupporting planes. Let us consider a pair of supporting planes
p1 andp2, i.e. two supporting planes corresponding to opposite faces ofP . We take two parallel lines,d1

andd2, the first included inp1 and the second inp2. We rotatep1 aroundd1 andp2 aroundd2 with a same
angle. This way, we obtain a new pair of parallel planes which defines, with the four remaining supporting
planes ofP , a new parallelepiped. This new parallelepiped may or may not be an enclosing parallelepiped
for C . We say that we have rotated the pair of supporting planes{p1, p2}.

We first study the freedom we have to rotate the pair of supporting planes{P1,P2} while the obtained
parallelepiped remains enclosing forC .

The possibility to rotate some supporting planes
We consider the numbernv of vertices ofC belonging to either of the two facesF1 andF2:
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nv ≥ 5: one of the two faces contains at least three vertices and thus a face ofC . This is impossible by
definition ofF1 andF2.

nv = 4: by definition ofF1 andF2, both faces contain an edge ofC and these two edges are parallel. We
denote byd1 (respectivelyd2) the line ofP1 (resp.P2) containing the edge ofC ∩F1 (resp.C ∩F2).
Then one can (slightly) rotate, in any direction,P1 andP2 of a same angle aroundd1 andd2 while
transformingP into another parallelepiped enclosingC , as long as the angle of the rotation remains
small. Indeed, we can rotate the pair of supporting planes{P1,P2} until one of the rotated planes
touch a new vertex ofC .

nv = 3: because of our hypothesis, one face contains a single vertex ofC and the other one an edge of
C . Without any loss of generality, we denote byF1 the face containing the edge. We defined1 as
previously andd2 as the line ofP2 containingC ∩F2 and parallel tod1. Then one can (slightly)
rotate, in any direction,P1 andP2 of a same angle aroundd1 andd2, under the same conditions than
previously.

nv = 2: each face contains exactly one vertex ofC . We randomly peak any vectorv in P1 to define the
direction ofd1 andd2: d1 (resp.d2) is then the line ofP1 (resp.P2) parallel tov and containingC ∩F1

(resp.C ∩F2). Then one can (slightly) rotate, in any direction,P1 andP2 of a same angle aroundd1

andd2, under the same conditions than previously.

Building an enclosing parallelogram smaller thanP
From what precedes, whatever the case, one can (slightly) rotate, in any direction,P1 andP2 of a same

angle aroundd1 andd2 while transformingP into another parallelepiped,P ′, enclosingC . We now compute
the volume of the new parallelepipedP ′. In the following, given two pointsI andJ, IJ denotes the vector
from pointI to pointJ andIJ the algebraic measure.
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Figure 1: Original parallelepiped and the rotation.
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Figure 2: Detail of Figure 1.

Figure 1 shows the original parallelepiped and the new faceF ′
1 = (B′F ′G′C′) obtained from the rotation

of P1 by an angle ofΘ aroundd1. We use the notations defined on Figure 1.S1,t (resp.S1,b) is the intersection
of d1 with the line(BC) (resp.(FG)). In order to ease the computations, we measure the rotation aroundd1

andd2 not by an angle measured in a plane orthogonal tod1 but in the plane(ABCD). Θ is the angle defined
by the vectorsS1,tC andS1,tC′.

The volume of the parallelepipedP is equal to: vol(P ) = |(CB∧CD).CG|. The volume ofP ′ is equal
to: vol(P ′) = |(C′B′∧C′D′).C′G′|. To explicit the value of vol(P ′), we need to explicit the values ofC′B′,
C′D′, andC′G′. We start withC′D′.
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The value ofC′D′. C′D′ = C′C+CD+DD′. To compute the value ofC′D′ we focus on Figure 2, which is
a magnification of Figure 1. We denote byα the angle defined by the vectorsCBandCD. Then cos(α−δ) =
CHt
CC′ and cos(−δ) = CHt

CS1,t
. As the sum of the angles in a triangle is equal toπ, δ = π

2 +Θ, and:

CC′ =
cos(δ)

cos(α−δ)
CS1,t =

cos(π
2 +Θ)

cos((α−Θ)− π
2)

CS1,t =− sin(Θ)
sin(α−Θ)

CS1,t ,

and,uCD denoting the unitary vector of same direction and orientation thanCD,

CC′ =− sin(Θ)
sin(α−Θ)

CS1,t.uCD.

Symmetrically, we have forDD′ (S2,t (resp. S2,b) being the intersection ofd2 with the line (DA) (resp.

(HE))): DD′ =− sin(Θ)
sin(α−Θ)DS2,t.uCD. Gathering these two results, we obtain:

C′D′ = C′C+CD+DD′ = CD+
sin(Θ)

sin(α−Θ)
(CS1,t −DS2,t).uCD.

The values ofC′B′ andC′G′. C′B′ =C′C+CB+BB′. Thus, asC′C andBB′ are parallel touCD, there exists
a valuex such that:C′B′ = CB+x.uCD. Symmetrically, there exists a valuey such thatC′G′ = CG+y.uCD.

The volume ofP ′. Collecting the previous results, we have:

(C′B′∧C′D′).C′G′ = ((CB+x.uCD)∧ (CD+ sin(Θ)
sin(α−Θ)(CS1,t −DS2,t).uCD)

.(CG+y.uCD)
= CB∧CD.CG+ sin(Θ)

sin(α−Θ)(CS1,t −DS2,t)(CB∧uCD.CG)

=
(

1+ sin(Θ)
sin(α−Θ)

(CS1,t−DS2,t)
||CD||

)
CB∧CD.CG.

Therefore:

vol(P ′) =
∣∣∣∣1+

sin(Θ)
sin(α−Θ)

(CS1,t −DS2,t)
||CD||

∣∣∣∣vol(P ). (1)

We have two cases to consider, depending whether(CS1,t −DS2,t) is null:

1. CS1,t −DS2,t 6= 0. sin(α) is obviously non null, knowing the definition ofα. For very small val-
ues ofΘ, sin(α−Θ) has the same sign than sin(α). As we can choseΘ to be either strictly neg-
ative or strictly positive (see the discussion above), we chose forΘ a very small value such that
Θsin(α)(CS1,t −DS2,t) < 0. Then vol(P ′) < vol(P ) and we have built an enclosing parallelogram of
(strictly) smaller volume.

2. CS1,t −DS2,t = 0. ThenP andP ′ are two enclosing parallelepipeds of same volume (whatever the
value ofΘ). We take forΘ the largest value possible. The two new facesF ′

1 andF ′
2 contain by

definition ofd1 andd2 all the points ofF1 andF2 belonging toC . Because of the maximality ofΘ,
F ′

1 ∪F ′
2 contains at least one more point ofC (and thus one more vertex ofC ) thanF1∪F2. If P ′

satisfies the property stated by the theorem, we are happy. Otherwise, we apply toP ′ the process
we have applied toP to obtainP ′. This way we obtain a new enclosing parallelogramP ′′. As the
number of verticesnv of (F1∪F2)∩C is strictly increasing with this process, we shortly end up with
a parallelepiped of volume at most equal to vol(P ) and which satisfies the property stated by the
theorem. Indeed, any parallelepiped withnv ≥ 5 satisfies this property (as we have shown above).
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In both cases we obtain, may be after a few iterations, a parallelepiped enclosingS , satisfying the desired
property, and whose volume is less than or equal to the volume ofP . �

Theorem 2 Let S be a set of points andC its convex hull. LetP be a minimal volume parallelepiped
enclosingS and which satisfies the property stated by Theorem 1. LetF1 andF2 be two opposite faces of
P . Then, the projection ofF1∩C on F2 along the other faces ofP has a non-null intersection withF2∩C .

Proof We prove this result by contradiction. Thus we suppose that,P , a minimal volume enclosing paral-
lelepiped which satisfies the property stated by Theorem 1, does not satisfy the property stated by Theorem
2. Then we show that we can build an enclosing parallelepiped of strictly smaller volume. The proof rely
on a careful study of Equation 1. First, we remark that, because of its definition, the angleα has a value
strictly between 0 andπ. Therefore sin(α) is always (strictly) positive.Θ will be chosen small. ThusΘ and
sin(Θ) will have the same sign. Also sin(α−Θ) and sin(α) will have the same sign. IfCS1,t −DS2,t is not
null and ifCS1,t −DS2,t and sin(Θ) have opposite signs, i.e. if sin(Θ)(CS1,t −DS2,t) < 0, the volume ofP ′

is strictly smaller than that ofP . We now show that, because of our hypotheses, there always exist a rotation
satisfying this property.

Let P′ be projection ofF2∩C on F1 along the other faces ofP . By hypothesis, the intersection ofP′

andF1∩C is empty.P′ andF1∩C are polyhedra asF1∩C (resp.F2∩C ) is either a single vertex, an edge,
or a face ofC . P′ andF1∩C are two bounded (convex) polyhedra and, as their intersection is empty, there
exists a lined of F1 which separates them strictly: inF1, P′ andF1∩C lie on either sides ofd, none of them
having some points in common withd (the dubious reader will find in the Appendix the lemma 2 which
proves the existence ofd). We take ford1 the line ofF1 parallel tod and containing a vertex ofF1∩C
which is the closest toP′. We chose ford2 the line ofF2 parallel tod and containing a vertex ofF2∩C
whose projection onF1 is a vertex ofP′ which is the closest toF1∩C . We defineS1,t andS2,t from d1 andd2

as previously. Then,CS1,t andDS2,t cannot be equal. Otherwise, the projection ofd2 on F1 would be equal
to d1 which is impossible by definition ofd1, d2, andd (d would have points common toP′ andF1∩C ).

Figure 3 show the case whereCS1,t −DS2,t > 0 (resp.CS1,t −DS2,t < 0). In this case, one can rotate the
pair of planes{P1,P2} of a same angleΘ < 0 (resp.Θ > 0) aroundd1 andd2 respectively while the obtained
parallelepiped remains enclosing, and while(CS1,t −DS2,t)sin(Θ) < 0. Hence, the obtained parallelepiped
has a volume strictly smaller thanP . �

A

GH

D C′

E

α
C

Θ

F F ′

d1

G′

B′B

F ′
1

d2

S1,t

S1,b

F1

S2,t

H

D

E

α
C

F
F1

d2

G′G

S1,b

F ′
1

BB′

C′

F ′

d1

S1,t

Θ

AS2,t

Figure 3: CasesCS1,t −DS2,t > 0 (left) andCS1,t −DS2,t < 0 (right). The intersections ofC andF1 andF2

are drawn in bold. The projectionP′ of F2∩C is drawn in dotted lines.

The following lemma is a corollary of Theorem 2. This lemma states whether two pairs of planes
satisfying the condition of Theorem 1 can satisfy the condition of Theorem 2, in which case we speak of
compatiblepairs of planes. This lemma is thus a weak version of Theorem 2.
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Lemma 1 Let S be a set of points andC its convex hull. Let{P1,P2} and{P3,P4} be two pairs of planes
satisfying the property stated by Theorem 1 forS . Let Vi = {vi

1, ...,v
i
|Vi |
} be the vertices ofPi ∩C , for any

i ∈ [1;4]. Let n1,2 (resp. n3,4) be a vector normal toP1 andP2 (resp.P3 andP4).

{P1,P2} and{P3,P4} can satisfy the property stated by Theorem 2 if and only if{
∃(a,b) ∈ V1×V2, (b−a).n3,4 ≥ 0, ∃(c,d) ∈ V1×V2, (d−c).n3,4 ≤ 0
∃(e, f ) ∈ V3×V4, ( f −e).n1,2 ≥ 0, ∃(g,h) ∈ V3×V4, (h−g).n1,2 ≤ 0.

This lemma, proved in the appendix, just mathematically states that the pair of planes{P1,P2} contains a
direction which maps a point ofP3∩C on a point ofP4∩C , and reciprocally.

3 Algorithms

Using Theorem 1 we derive a rather simple algorithm. Then we refine it using Lemma 1.

3.1 A first algorithm

Theorem 1 tells us that there is at least one minimal volume enclosing parallelepiped such that each of its
faces is either parallel to a face of the convex hull or to two non-parallel edges of this convex hull. Then,
Algorithm 1 simply enumerates all the possible triplets of orientation of the supporting planes, and search
which one gives an enclosing parallelepiped of minimal volume. The algorithm is rather straightforward:
after the computation of the convex hull, we build the pair of candidate supporting planes defined by faces
of the convex hull, then the pair of candidate supporting planes defined by a pair of edges of the convex hull,
and we test all the triplets of pairs of candidate supporting planes. The volumes of the parallelepipeds are
computed using a formula proved in appendix (Lemma 3).

Theoretical complexity

Let n be the number of points inS . Its convex hullC containsv vertices withv≤ n. If C was enforced
to be simplicial, it contains exactly 2v− 4 faces and 3v− 6 edges [1]. Then, the setN contains at most
Θ(9v2) = O(n2) faces. Except for the loops, all the operations in this algorithm are performed in constant
time except for the steps 1, 5 and 13:

• Step 1: the computation of the convex hull costsO(nlogn) [1];

• Step 5: to find the vertex which is the furthest from a face of the convex hull, we need to scan all the
vertices which costs at worstO(n);

• Step 13: for this test we simply check that the direction of edgee1 (resp.e2) has two scalar products
of opposite signs with the normals to the two faces of the convex hull containinge2 (resp.e1) (to see
it, write thate1∧e2, the normal to the new plane, is a convex combination of the normals to the two
faces, and take the scalar product withe1 or e2); hence a cost ofO(1).

The overall theoretical complexity of this algorithm is thus at worstO(n6), wheren is the number of
vertices ofS , because of the search on all the triplets of elements ofN . More precisely, the complexity of
this algorithm is inO(nlogn+v6), wheren is the number of vertices ofSandv the number of vertices of its
convex hull. We will see in Section 4 that the complexity is far better in practice. Nevertheless, we now use
Lemma 1 to speed-up our algorithm.
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Algorithm 1 Compute a minimal volume parallelepiped enclosing the set of pointsS .
1: Compute the convex hullC of the set of pointsS
2: N = /0 {The set of candidate supporting planes}
3: Let F be the set of all the faces ofC
4: for each facef of F do
5: Find the vertexv of C which is the furthest fromf
6: Associate tof the vectornf normal to f and linking f andv (v+nf is a point of f )
7: N = N ∪{( f , f −nf ,nf )}
8: Let E be the set of all the edges ofC
9: for each pair{e1,e2} of elements ofE do

10: if e1 ande2 are not parallelthen
11: Build the planesf1 and f2 parallel toe1 ande2, f1 containinge1 and f2 includinge2

12: Compute the vectornf1 normal to f1 (and thus tof2) such thatf1 +nf1 = f2
13: if C is enclosed in the space between the planesf1 and f2 then
14: N = N ∪{( f1, f2,nf1)}
15: vol_min= +∞
16: planes= /0
17: for each element( f1, f ′1,n1) of N do
18: for each element( f2, f ′2,n2) of N do
19: for each element( f3, f ′3,n3) of N do
20: if n1∧n2.n3 6= 0 then
21: vol =

∣∣∣ ||n1||2||n2||2||n3||2
n1∧n2.n3

∣∣∣
22: if vol < vol_min then
23: vol_min= vol
24: planes= { f1, f ′1, f2, f ′2, f3, f ′3}
25: return planes

3.2 A second algorithm

We use Theorem 2 to refine Algorithm 1. Theorem 2 gives us a condition for a triplet of pairs of parallel
planes to be an actual candidate for a minimal volume enclosing parallelepiped. Of course, we do not want
to enumerate anymore any triplets of pairs of candidate parallel planes. Thus we use Lemma 1 to check
whether two pairs of candidate planes can be used together in a minimal enclosing parallelepiped. This way
we obtain Algorithm 2.

Theoretical complexity

The worst case complexity of Algorithms 1 and 2 is obviously the same. If we study more carefully the
algorithm and denote byv the number of vertices of the convex hull, bye the number of faces built at steps 9
to 14, and byc the size of the largest of the sets “compatible( f1, f ′1,n1)”. Then steps 4 to 7 have a complexity
of O(v2), steps 9 to 14 have a complexity ofO(v2), steps 19 to 23 have a complexity ofO((v+e)2) (at least
if C is simplicial), and steps 24 to 31 have a complexity ofO((v+e)×c2). Hence the overall complexity of

O(nlogn+(v+e)2 +v×c2) (2)
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4 Experiments

We first compare the two algorithms on our application: we run the two algorithms on all the 45 proteins we
had. The results presented on Figure 4 show that Algorithm 2 is significantly more efficient than Algorithm 1
even for small inputs. These results are confirmed by Figure 5 which presents a comparison of the two
algorithms on larger and synthetic input sets (points randomly picked on a sphere).

Algorithm 2 being far more efficient, we focused on it. We wanted to determine what was its complexity
in practice. Thus we needed to run it on convex hulls with a large number of vertices. As the proteins we
had did not give us such examples —the convex hull of our worst-case protein only had 94 vertices— we
used synthetic data. We randomly picked points on the surface of a sphere as for such sets of points the
convex hull is almost equal to the number of points in the set. Figure 6 shows the result of the experiment
for convex hulls containing up to 10 000 vertices. The graph of the execution timeTime(n) in function of
the numbern of vertices of the convex hull “looks” quadratic. Indeed the graph ofTime(n)/n2 is almost an
horizontal line (this graph is also displayed on Figure 6 but scaled up to be readable). To confirm this result
we approximate the execution with a cubic function (using the nonlinear least-squares Marquardt-Levenberg
algorithm implemented in gnuplot). We exactly found:

Time(n)≈ 2.15263×10−11×n3 +2.09904×10−06×n2−0.00101368×n+0.770604

with an asymptotic error of 21.18% on the cubic term, and of 3.188% on the quadratic term. The corre-
sponding graph is also drawn on Figure 6 but is hardly seen as it is almost equal to theTime(n) graph. Even
if this function is cubic, its cubic term has almost no influence for convex hulls of up to 105 vertices as, until
then, the quadratic term is dominant. We tried to extend this result by running Algorithm 2 on larger sets.
The result is presented on Figure 7. There, the computed cubic approximation as an even less important
cubic term ((8.66169× 10−14± 8.503× 10−13)× n3 for (2.44779× 10−06± 5.343× 10−08)× n2). This
is not really surprising as the experimental uncertainties are rather important compared to this cubic term.
Furthermore, we only ran experiments up to 40 000 vertices as for such large convex hulls, the algorithm
already takes around one hour to run on our experimental platform (Intel Xeon CPU running at 1.80 GHz
and 512 MB of memory, C++ program compiled with GNU g++ 3.0, the convex hulls being computed using
the Qhull library [3]).

One can wonder whether these results are influenced by the type of synthetic data we used. Therefore,
we studied the execution time of Algorithm 2 on purely random sets of points containing up to 150 000
points. Figure 8 presents the graphTime(n) in function of the numbern of vertices of the convex hull and
the graph ofTime(n)/n2 (scaled up). In this figure, the execution time does not take into account the time
needed to compute the convex hull (when it is included in all other figures). The reason of this removal is
quite simple: even with large sets of points, the size of the convex hull is rather small (less than 250 vertices)
but most of the time is spent in its computation because of the size of the input sets. The graphs have the
desired shape. But the convex hulls are too small for the graphs to be conclusive.

From our experiments we can conclude that Algorithm 2 as an apparent complexity of

O(nlogn+v2)

wheren is the number of points in the setsS, andv is the number of vertices of the convex hull. This seems
at least true for input sets whose convex hull as up to 105 vertices, which seems to be the only input sets
that may be processed in a reasonable time (we may even wonder whether so large convex hulls exist in
practice). This result is quite coherent with Equation 2 when we remark that in all our examples we have
found thate≤ v (with the notations of Section 3.2).
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5 Application to proteins

Our initial motivation is to approximate the “surface” of a protein with a set of regular shapes. We hope
to be able to discover, by this method, the “faces” of the protein responsible of its interactions with other
biological objects, when such faces actually exist. Once we have approximated a protein by its minimal
volume enclosing parallelepiped, we consider the “composition” of each of the six faces of the minimal
volume enclosing parallelepiped.

A protein is a sequence of amino-acids. The two main characteristics of amino-acids are whether they
are electrically charged1 and whether they are attracted by water (hydrophile amino-acids) or repulsed
(hydrophobic amino-acids)2. So we consider the composition of the faces of our parallelepiped in terms of
electrically charged and hydrophobic amino-acids. The composition of a face is the set of the amino-acids
whose center of gravity is close to the face (less than 2.4 Å away from the face in our model).

We chose to illustrate our work with a protein which is a nuclear receptor. A nuclear receptor initiates
the transcription of some part of the DNA when it is activated by a certain molecule called its ligand. More
important for us, nuclear receptors are known to have a large interaction face: we want to check whether we

1The electrically charged amino-acids are: aspartic acid, glutamic acid, lysine, arginine, and histidine.
2The hydrophobic amino-acids are: leucine, isoleucine, valine, methionine, phenylalanine, tyrosine, and tryptophan.
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Figure 8: Execution time of Algorithm 2 on
15073 sets of random points.

Figure 9: The PPAR protein with its minimal
volume enclosing parallelepiped.

are able to rediscover this interaction face.

We chose the nuclear receptor protein called PPAR (Peroxisome Proliferator-Activated Receptor). This
protein is involved in the metabolism of glucose, lipids, and cholesterol. PPAR is presented on Figure 9
with its minimal volume enclosing parallelepiped3. The composition of the parallelepiped faces is summa-
rized in Figure 11 (the numbering of the parallelepiped faces is presented on Figure 10). From biological
considerations, faces 5 and 6 do not “contain” enough amino-acids to be significant. Among the remaining
faces, Face 1 is the one containing the smallest percentage of hydrophobic amino-acid and the one contain-
ing the biggest percentage of electrically charged amino-acids. Face 1 as thus an outstanding composition
(the amino-acids belonging to Face 1 are drawn the darkest on Figure 10). Actually, Face 1 corresponds to
the dimerisation interface of PPAR: thanks to this interface, PPAR can form an heterodimer with the protein
RXR (Retinoid X Receptor). Therefore, we were able to re-discover PPAR interface.

We do not claim from the above example that our method enables us to predict anything: we only
presented this example to give an insight to our motivation and application. In the general case, we cut a
protein in sub-pieces (if necessary) and we approximate each sub-piece with its minimal volume enclosing
parallelepiped. The whole description of this work goes far beyond the scope of this paper.

3

4

5

6
2

1

Figure 10: Numbering of the parallelepiped faces.

3We used the structure of PPAR proposed by Xu et al. [11] and denoted 1k74 in theProtein Data Base.
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Face 1 2 3 4 5 6
Number of amino-acids 32 19 18 13 8 4

Hydrophobic amino-acids 6% 21% 22% 38% 0% 0%
Electrically charged amino-acids50% 47% 44% 38% 62% 75%

Figure 11: Composition of the faces of the minimal volume parallelepiped enclosing PPAR (cf. Figure 9).

6 Conclusion

We presented two mathematical properties of the minimal volume parallelepiped enclosing a three-dimensional
set of pointsS. Using these properties we designed two algorithms of theoretical complexityO(n6), wheren
is the size ofS(the number of points it contains). Our experiments show that the practical complexity of our
quickest algorithm isO(nlogn+v2) wheren is the size ofSandv the number of vertices of its convex hull,
at least whenv is smaller than 105. Finally, we applied our method to search for the interaction faces of a
protein, our initial goal. Although the application of this research to structural biology is in the preliminary
stages, the first results are promising.
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A Additional results and proofs

Proof of Lemma 1 For the two pairs of parallel planes to have a chance to satisfy the property stated by
Theorem 2, there must exist a pointx in P1∩C and a pointy in P2∩C and a directiond in P3 such that
the projection ofx on P2 alongd is equal toy. In other words, the vectory−x must be parallel toP3. This
property is equivalent to(y−x).n3,4 = 0. We prove that this property is equivalent to the system of Lemma
1.

The points ofP1∩C are exactly the convex combinations of the vertices ofP1∩C . We use this property
for the pointx of P1∩C and also for the pointy in P2∩C :

∃λ1 ≥ 0, ...,λ|V1| ≥ 0,
|V1|

∑
j=1

λ j = 1,x =
|V1|

∑
j=1

λ jv
1
j , and∃µ1 ≥ 0, ...,µ|V2| ≥ 0,

|V2|

∑
k=1

µk = 1,y =
|V2|

∑
k=1

µkv
2
k.

y−x =
|V2|

∑
k=1

µkv
2
k−

|V1|

∑
j=1

λ jv
1
j =

|V2|

∑
k=1

(
|V1|

∑
j=1

λ j

)
µkv

2
k−

|V1|

∑
j=1

(
|V2|

∑
k=1

µk

)
λ jv

1
j =

|V2|

∑
k=1

|V1|

∑
j=1

µkλ j(v2
k−v1

j ),

and(y−x) is a convex combination of the values(v2
k−v1

j ). We have three cases to consider:

• All the scalar products(v2
k− v1

j ).n3,4 are (strictly) positive (resp. negative). Then, the scalar product
(y−x).n3,4 is also (strictly) positive (resp. negative) and the two pairs of parallel planes cannot satisfy
the property stated by Theorem 2.

• At least one of the scalar products is null: the two pairs of parallel planes can obviously satisfy the
property.

• No scalar product is null, but there exist some valuesk1,k2, j1, j2 such that(v2
k1
− v1

j1).n3,4 > 0 and
(v2

k2
−v1

j2).n3,4 < 0. We define the pointsx andy as follows:

x =
|(v2

k2
−v1

j2).n3,4|v1
j1 + |(v2

k1
−v1

j1).n3,4|v1
j2

|(v2
k2
−v1

j2).n3,4|+ |(v2
k1
−v1

j1).n3,4|
and

y =
|(v2

k2
−v1

j2).n3,4|v2
k1

+ |(v2
k1
−v1

j1).n3,4|v2
k2

|(v2
k2
−v1

j2).n3,4|+ |(v2
k1
−v1

j1).n3,4|
.

One can check thatx belongs toP1∩C , y to P2∩C and that(y−x).n3,4 = 0.

To obtain the desired property, we redo on the pair of planes{P3,P4} what we have done on{P1,P2}. �

The following lemma is used in the proof of Theorem 1.

Lemma 2 Let A and B be two polytopes (bounded convex polyhedra) which have an empty intersection.
There exists an hyperplane which strictly separates A and B. In other words, there exists an affine form
x 7→ λx+µ which takes (strictly) negative values on A and (strictly) positive values on B.

Proof Let C = A−B = {z|∃x∈ A,∃y∈ B,z= x−y}. C does not contain 0 as, by hypothesis,A∩B = /0.
C is convex.We take two pointsz1 = x1−y1 andz2 = x2−y2 of C (x1 ∈ A, x2 ∈ A, y1 ∈ B andy2 ∈ B).

Let α be any value in[0;1]. αz1+(1−α)z2 = (αx1+(1−α)x2)−(αy1+(1−α)y2). AsA andB are convex
(αx1 +(1−α)x2) belongs toA and(αy1 +(1−α)y2) to B. Therefore,αz1 +(1−α)z2 belongs toC andC
is convex.
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C is a polytope. To prove it, we use Minkowski’s representation of polytopes [6]: there exists a set
{v1, ...,vp} of vertices ofA such that:

A =

{
x

∣∣∣∣∣x =
p

∑
i=1

αivi ,∀i ∈ [1, p]αi ≥ 0,
p

∑
i=1

αi = 1

}
.

Symmetrically, we denote by{w1, ...,wq} the vertices ofB. We show thatC is a polyhedron by showing
that it admits as (not necessarily minimal) Minkowski’s representation the setV = {vi −w j}1≤i≤p,1≤ j≤q. It
is obvious thatV is included inC. By convexity ofC, the polytope generated byV, which is the convex hull
of V, is included inC. We still have to show thatC is included in this polyhedron. Letz= x−y be any point
of C. x belongs toA andy to B. Thus, there exist some valuesα1, ...,αp andβ1, ...,βq such that:

∀i ∈ [1;p] αi ≥ 0, ∀ j ∈ [1;q] βi ≥ 0,
p

∑
i=1

αi = 1,
q

∑
j=1

β j = 1, x =
p

∑
i=1

αivi andy =
q

∑
j=1

β jw j .

Hence:

z=
p

∑
i=1

αivi −
q

∑
j=1

β jw j =
p

∑
i=1

(
q

∑
j=1

β j

)
αivi −

q

∑
j=1

(
p

∑
i=1

αi

)
β jw j .

Therefore:

z=
p

∑
i=1

q

∑
j=1

αiβ j(vi −w j), with ∀(i, j) ∈ [1;p]× [1;q],αiβ j ≥ 0 and ∑
(i, j)∈[1;p]×[1;q]

αiβ j = 1.

Thusz is a point of the polyhedron generated byV.
There exists a vectorλ such that∀x ∈ C,λ.x < 0. We show this property by contradiction. Thus, we

suppose that:

∀λ,∃x∈C,λ.x≥ 0. (3)

C is a polyhedron. Therefore, by definition, there exists a set ofm hyperplanesaix+ bi ≥ 0 such that:
C = ∩m

i=1{x|aix+bi ≥ 0} [6]. We suppose that there exists a valuei ∈ [1;m] such thatbi < 0. Then, for any
elementx of C, aix+bi ≥ 0⇔ (−ai)x≤ bi < 0. Thus, for any elementx of C, (−ai)x< 0 andλ = (−ai) does
not satisfy Equation 3 and there is a contradiction. Thus, for any valuei ∈ [1;m], bi ≥ 0 andai .0≥ 0≥−bi .
Thus, for any valuei ∈ [1;m], 0 belongs to the set{x|aix+bi ≥ 0} and 0 belongs toC, which is impossible.

Building the strictly separating hyperplane. Let λ be a vector satisfying the property we just proved:
∀x∈C,λ.x < 0. ∀x∈C,λ.x < 0⇔ ∀y∈ A,∀z∈ B,λy < λz. A (resp.B) is a polyhedron. Thus any linear
form overA (resp.B) reaches its maximum (resp. minimum) on a vertex, and thus a point, ofA (resp.B) [4].
Let yA (resp.zB) be such a point. We have:∀y∈ A,∀z∈ B,λy≤ λyA < λyB ≤ λz. The hyperplane defined
by the equation:λx = λyA+λyB

2 strictly separatesA andB. �

Lemma 3 (Another formula to compute the volume of a parallelepiped)
Let ABCDEFGH be a parallelepiped. Let n1 (resp. n2) (resp. n3) be a vector normal to the pair of

planes((DAEH),(CBFG)) (resp. ((DCGH),(ABFE))) (resp. ((ABCD),(HEFG))) whose norm is equal
to the distance between these two planes. Then, the volume of the parallelepiped ABCDEFGH is equal to:

V =
∣∣∣ ||n1||2||n2||2||n3||2

n1∧n2.n3

∣∣∣.
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Proof The volume of the parallelepiped is equal to:V = |(HG∧HE).HD|. We need to explicit the values
of HG, HE, andHD as functions ofn1, n2, andn3. We start withHD. Becausen1 andn2 are perpendicular
to HD, the direction ofHD is equal to± n1∧n2

||n1∧n2|| . Let α be the angle defined by the vectorsHD andn3. As

the triangle defined byH, D, andH +n3 is rectangle,||HD||= ||n3||
|cosα| hence:HD =± ||n3||

cosα
n1∧n2
||n1∧n2|| . Besides,

cosα = n1∧n2
||n1∧n2|| .

n3
||n3|| , which implies: HD = ± ||n3||2n1∧n2

n1∧n2.n3
. Similarly we obtain the values ofHG andHE:

HG =± ||n1||2n2∧n3
n1∧n2.n3

andHE =± ||n2||2n3∧n1
n1∧n2.n3

. Collecting these results we have:

V = ||n1||2||n2||2||n3||2|(n2∧n3)∧(n3∧n1).(n1∧n2)|
|n1∧n2.n3|3

= ||n1||2||n2||2||n3||2|[((n2∧n3).n1)n3−((n2∧n3).n3)n1].(n1∧n2)|
|n1∧n2.n3|3

= ||n1||2||n2||2||n3||2|[((n2∧n3).n1)n3].(n1∧n2)|
|n1∧n2.n3|3

= ||n1||2||n2||2||n3||2
|n1∧n2.n3|

(using the formulau∧ (v∧w) = (u.w)v− (u.v)w). �
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Algorithm 2 Compute a minimal volume parallelepiped enclosing the set of pointsS (optimized).
1: Compute the convex hullC of the set of pointsS
2: N = /0 {The set of candidate supporting planes}
3: Let F be the set of all the faces ofC
4: for each facef of F do
5: Find the vertexv of C which is the furthest fromf
6: Associate tof the vectornf normal to f and linking f andv (v+nf is a point of f )
7: N = N ∪{( f , f −nf ,nf )}
8: Let E be the set of all the edges ofC
9: for each pair{e1,e2} of elements ofE do

10: if e1 ande2 are not parallelthen
11: Build the planesf1 and f2 parallel toe1 ande2, f1 containinge1 and f2 includinge2

12: Compute the vectornf1 normal to f1 (and thus tof2) such thatf1 +nf1 = f2
13: if C is enclosed in the space between the planesf1 and f2 then
14: N = N ∪{( f1, f2,nf1)}
15: vol_min= +∞
16: planes= /0
17: for each element( f1, f ′1,n1) of N do
18: compatible( f1, f ′1,n1) = /0
19: for each element( f1, f ′1,n1) of N do
20: for each element( f2, f ′2,n2) of N do
21: if ( f1, f ′1,n1) and( f2, f ′2,n2) satisfy Lemma 1then
22: compatible( f1, f ′1,n1) = compatible( f1, f ′1,n1)∪{( f2, f ′2,n2)}
23: compatible( f2, f ′2,n2) = compatible( f2, f ′2,n2)∪{( f1, f ′1,n1)}
24: for each element( f1, f ′1,n1) of N do
25: for each element( f2, f ′2,n2) of compatible( f1, f ′1,n1) do
26: for each element( f3, f ′3,n3) of (compatible( f1, f ′1,n1)∩compatible( f2, f ′2,n2)) do
27: if n1∧n2.n3 6= 0 then
28: vol =

∣∣∣ ||n1||2||n2||2||n3||2
n1∧n2.n3

∣∣∣
29: if vol < vol_min then
30: vol_min= vol
31: planes= { f1, f ′1, f2, f ′2, f3, f ′3}
32: return planes


