
Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON no 5668

Static load-balancing techniques for

iterative computations on heterogeneous
clusters

Hélène Renard,
Yves Robert,
Frédéric Vivien

February 2003

Research Report No 2003-12

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

Static load-balancing techniques for iterative computations on

heterogeneous clusters

Hélène Renard, Yves Robert, Frédéric Vivien

February 2003

Abstract
This paper is devoted to static load balancing techniques for mapping
iterative algorithms onto heterogeneous clusters. The application data
is partitioned over the processors. At each iteration, independent calcu-
lations are carried out in parallel, and some communications take place.
The question is to determine how to slice the application data into
chunks, and to assign these chunks to the processors, so that the to-
tal execution time is minimized. We establish a complexity result that
assesses the difficulty of this problem, and we design practical heuristics
that provide efficient distribution schemes.

Keywords: Heterogeneous clusters, static load-balancing techniques, communication,
complexity.

Résumé
Ce rapport est consacré à l’équilibrage de charge pour algorithmes ité-
ratifs sur plateformes hérérogènes. Les données sont réparties sur l’en-
semble des ressources. À chaque itération, les calculs indépendants sont
transmis en parallèle et les communications ont lieu. Le problème est
de déterminer comment partitionner les données et comment les répar-
tir sur les ressources pour que le temps total d’exécution soit minimal.
Nous avons démontré un résultat de complexité qui établit la difficulté de
ce problème, et nous proposons des heuristiques pratiques qui prouvent
l’efficacité de la distribution.

Mots-clés: Grappes hétérogènes, équilibrage de charge, communications, complexité.

Static load-balancing techniques on heterogeneous clusters 1

1 Introduction

In this paper, we investigate static load balancing techniques for iterative algorithms that
operate on a large collection of application data. The application data will be partitioned
over the processors. At each iteration, some independent calculations will be carried out
in parallel, and then some communications will take place. This scheme is very general,
and encompasses a broad spectrum of scientific computations, from mesh based solvers (e.g.
elliptic PDE solvers) to signal processing (e.g. recursive convolution), and image processing
algorithms (e.g. mask-based algorithms such as thinning).

The target architecture is a fully heterogeneous cluster, composed of different-speed pro-
cessors that communicate through links of different capacities. The question is to determine
the best partitioning of the application data. The difficulty comes from the fact that both the
computation and communication capabilities of each resource must be taken into account.

An abstract view of the problem is the following: the iterative algorithm repeatedly oper-
ates on a large rectangular matrix of data samples. This data matrix is split into vertical slices
that are allocated to the computing resources (processors). At each step of the algorithm,
the slices are updated locally, and then boundary information is exchanged between con-
secutive slices. This (virtual) geometrical constraint advocates that processors be organized
as a virtual ring. Then each processor will only communicate twice, once with its (virtual)
predecessor in the ring, and once with its successor. There is no reason a priori to restrict
to a uni-dimensional partitioning of the data, and to map it onto a uni-dimensional ring of
processors: more general data partitionings, such as two-dimensional, recursive, or even arbi-
trary slicings into rectangles, could be dealt with. But uni-dimensional partitionings are very
natural for most applications, and, as will be shown in this paper, the problem to find the
optimal one is already very difficult.

We assume that the target computing platform can be modeled as a complete graph:

• Each vertex in the graph models a computing resource Pi, and is weighted by the
relative cycle-time of the resource. Of course the absolute value of the time-unit is
application-dependent, what matters is the relative speed of one processor versus the
other.

• Each edge models a communication link, and is weighted by the relative capacity of
the link. Assuming a complete graph means that there is a virtual communication link
between any processor pair Pi and Pj . Note that this link does not necessarily need to
be a direct physical link. There may be a path of physical communication links from Pi

to Pj : if the slowest link in the path has maximum capacity ci,j , then the weight of the
edge will be ci,j .

We suppose that the communication capacity ci,j is granted between Pi and Pj (so if
some communication links happen to be physically shared, we assume that a fraction of the
total capacity, corresponding to the inverse of ci,j , is available for messages from Pi to Pj).
This assumption of a fixed capacity link between any processor pair makes good sense for
interconnection networks based upon high-speed switches like Myrinet [12].

Given these hypotheses, the optimization problem that we want to solve is the following:
how to slice the matrix data into chunks, and assign these chunks to the processors, so that the
total execution time for a given sweep step, namely a computation followed by two neighbor
communications, is minimized? We have to perform resource selection, because there is no

2 H. Renard, Y. Robert, F. Vivien

reason a priori that all available processors will be involved in the optimal solution (for
example some fast computing processor may be left idle because its communication links
with the other processors are too slow). Once some resources have been selected, they must
be arranged along the best possible ring, which looks like a difficult combinatorial problem.
Finally, once a ring has been set up, there remains to load-balance the workloads of the
participating resources

The rest of the paper is organized as follows. In Section 2, we formally state the previous
optimization problem, which we denote as SliceRing. If the network is homogeneous (all
links have same capacity), then SliceRing can be solved easily, as shown in Section 3. But
in the general case, SliceRing turns out to be a difficult problem: we show in Section 4 that
the decision problem associated to SliceRing is NP-complete, as could be expected from its
combinatorial nature. After the proof of this result, we derive in Section 5 a formulation of
the SliceRing problem in terms of an integer linear program, thereby providing a (costly)
way to determine the optimal solution. In Section 6, we move to the design of polynomial-
time heuristics, and we report some experimental data. We survey related work in Section 7,
and we provide a brief comparison of static versus dynamic strategies. Finally, we state some
concluding remarks in Section 8.

2 Framework

In this section, we formally state the optimization problem to be solved. As already said,
the target computing platform is modeled as a complete graph G = (P,E). Each node Pi

in the graph, 1 ≤ i ≤ |P | = p, models a computing resource, and is weighted by its relative
cycle-time wi: Pi requires S.wi time-units to process a task of size S. Edges are labeled
with communication costs: the time needed to transfer a message of size L from Pi to Pj is
L.ci,j , where ci,j is the capacity of the link, i.e. the inverse of its bandwidth. The motivation
to use a simple linear-cost model, rather than an affine-cost model involving start-ups, both
for the communications and the computations, is the following: only large-scale applications
are likely to be deployed on heterogeneous platforms. Each step of the algorithm will be
both computation- and communication-intensive, so that start-up overheads can indeed be
neglected. Anyway, most of the results presented here extend to an affine cost modeling,
τi + S.wi for computations and βi,j + L.ci,j for communications.

Let W be the total size of the work to be performed at each step of the algorithm.
Processor Pi will accomplish a share αi.W of this total work, where αi ≥ 0 for 1 ≤ i ≤ p
and

∑p
i=1 αi = 1. Note that we allow αj = 0 for some index j, meaning that processor Pj do

not participate in the computation. Indeed, there is no reason a priori for all resources to be
involved, especially when the total work is not so large: the extra communications incurred
by adding more processors may slow down the whole process, despite the increased cumulated
speed.

We will arrange the participating processors along a ring (yet to be determined). After
updating its data slice, each active processor Pi sends some boundary data to its neighbors:
let pred(i) and succ(i) denote the predecessor and the successor of Pi in the virtual ring.
Then Pi requires H.ci,succ(i) time-units to send a message of size H to its successor, plus
H.ci,pred(i) to receive a message of same size from its predecessor. In most situations, we will
have symmetric costs (ci,j = cj,i) but we do not make this assumption here. To illustrate
the relationship between W and H, we can view the original data matrix as a rectangle

Static load-balancing techniques on heterogeneous clusters 3

composed of W columns of height H, so that one single column is exchanged between any
pair of consecutive processors in the ring (but clearly, the parameter H can represent any
fixed volume of communication).

The total cost of a single step in the sweep algorithm is the maximum, over all participating
processors, of the time spent computing and communicating:

Tstep = max
1≤i≤p

I{i}[αi.W.wi + H.(ci,succ(i) + ci,pred(i))]

where I{i}[x] = x if Pi is involved in the computation, and 0 otherwise. In summary, the goal
is to determine the best way to select q processors out of the p available, and to arrange them
along a ring so that the total execution time per step is minimized. We formally state this
optimization problem as follows:

Definition 1 (SliceRing(p,wi,ci,j,W ,H)). Given p processors of cycle-times wi and p(p−1)
communication links of capacity ci,j, given the total workload W and the communication
volume H at each step, determine

Tstep = min
1≤q≤p

 min
σ ∈ Sq,p∑q

i=1 ασ(i) = 1

max
1≤i≤q

(
ασ(i).W.wσ(i) + H.(cσ(i),σ(i−1 mod q) + cσ(i),σ(i+1 mod q))

)

(1)
Here Sq,p denotes the set of one-to-one functions σ : [1..q] → [1..p] which index the q selected
processors, for all candidate values of q between 1 and p.

From Equation 1, we see that the optimal solution will involve all processors as soon as
the ratio W

H is large enough: in that case, the impact of the communications becomes smaller
in front of the cost of the computations, and these computations should be distributed to all
resources. But even in that case, we still have to decide how to arrange the processors along
a ring. Extracting the “best” ring out of the interconnection graph seems to be a difficult
combinatorial problem. Before assessing this result (see Section 4), we deal with the much
easier situation when the network is homogeneous (see Section 3).

To conclude this section, we point out that this framework is more general than iterative
algorithms: in fact, our approach applies to any problem where independent computations
are distributed over heterogeneous resources. The only hypothesis is that the communication
volume is the same between adjacent processors, regardless of their relative workload.

3 Homogeneous networks

Solving the optimization problem, i.e. minimizing expression (1), is easy when all commu-
nication times are equal. This corresponds to a homogeneous network where each processor
pair can communicate at the same speed, for instance through a bus or an Ethernet backbone.

Let us assume that ci,j = c for all i and j, where c is a constant. There are only two cases
to consider: (i) only the fastest processor is active; (ii) all processors are involved. Indeed, as
soon as a single communication occurs, we can have several ones for the same cost, and the
best is to divide the computing load among all resources.

4 H. Renard, Y. Robert, F. Vivien

In the former case (i), we derive that Tstep = W.wmin, where wmin is the smallest cycle-
time. In the latter case (ii), the load is most balanced when the execution time is the same for
all processors: otherwise, removing a small portion of the load of the processor with largest
execution time, and giving it to a processor finishing earlier, would decrease the maximum
computation time. This leads to αi.wi = Constant for all i, with

∑p
i=1 αi = 1. We derive

that Tstep = W.wcumul + 2H.c, where wcumul = 1∑p
i=1

1
wi

.

We summarize these results as follows:

Proposition 1. The optimal solution to SliceRing(p,wi,c,W ,H) is

Tstep = min {W.wmin,W.wcumul + 2H.c}

where wmin = min1≤i≤p wi and wcumul = 1∑p
i=1

1
wi

.

If the platform is given, there is a threshold, which is application-dependent, to decide
whether only the fastest computing resource, as opposed to all the resources, should be
involved. Given H, the fastest processor will do all the job for small values of W , namely
W ≤ H. 2c

wmin−wcumul
. Otherwise, for larger values of W , all processors should be involved.

4 Complexity

The decision problem associated to the SliceRing optimization problem is the following:

Definition 2 (SliceRingDec(p,wi,ci,j,W ,H,K)). Given p processors of cycle-times wi and
p(p− 1) communication links of capacity ci,j, given the total workload W and the communi-
cation volume H at each step, and given a time bound K, is it possible to find an integer
q ≤ p, a one-to one mapping σ : [1..q] → [1..p], and nonnegative rational numbers αi with∑q

i=1 ασ(i) = 1, such that

Tstep = max
1≤i≤q

{
ασ(i).W.wσ(i) + H.(cσ(i),σ(i−1 mod q) + cσ(i),σ(i+1 mod q))

}
≤ K?

The following result states the intrinsic difficulty of the problem:

Theorem 1. SliceRingDec(p,wi,ci,j,W ,H,K) is NP-complete.

Proof. Obviously, SliceRingDec belongs to NP. To prove its completeness, we use a reduc-
tion from HamCycle, the Hamiltonian Cycle Problem, which is NP-complete [17]. Consider
an arbitrary instance I1 of HamCycle: given a graph Gh = (Vh, Eh), is there a Hamiltonian
cycle in Gh, i.e. a cycle that visits all the vertices of G exactly once?

We construct the following instance I2 of SliceRingDec: we let p = |Vh| (assume p ≥ 2
without loss of generality), and we define a complete interconnection graph G = (P,E), whose
edge costs are given by

ce =
{

ε if e ∈ Eh

2 otherwise

where 0 < ε < 1
2 is a small constant. We let W = H = 1 and wi = p for 1 ≤ i ≤ p. Clearly,

I2 can be constructed in time polynomial in the size of I1. Finally, we let K = 1 + 2ε.
Assume first that I1 has a solution, i.e. that Gh possesses a hamiltonian cycle. We use

the edges of this path to build the ring. All processors are involved, and we let αi = 1/p for

Static load-balancing techniques on heterogeneous clusters 5

time

H.c1,5

H.c1,2

H.c2,1

H.c2,3

H.c3,2

H.c4,3

H.c4,5

H.c5,4

H.c5,1

α5.W.w5

p1 p2 p3 p4 p5

α4.W.w4
H.c3,4

α3.W.w3

α2.W.w2

α1.W.w1

processors

Figure 1: Summary of computation and communication times with p processors.

1 ≤ i ≤ p. The execution time and the communication time are the same for all processors,
we obtain that Tstep = 1

p · p + 2ε = K, hence a solution to I2.
Assume now that I2 has a solution. If a single processor were participating in that solution,

then we would have Tstep = 1.p ≥ 2 > K, a contradiction. Hence there are q processors, with
q ≥ 2, participating in the solution. If the ring used a communication edge that did not
belong to Gh, then the cost of that edge would be 2 and Tstep ≥ H.2 = 2 > K, again a
contradiction. There remains to show that we do use all the p processors in the solution. But
otherwise, if q < p, one computation load would be at least equal to 1

q .W.p > 1, which would
imply that Tstep > K. Finally, q = p, and the edges of the solution ring define a Hamiltonian
cycle in Gh, thereby providing a solution to I1.

5 ILP formulation

When the network is heterogeneous, we face a complex situation: how to determine the
number of processors that should take part to the computation already is a difficult question.

In this section, we express the solution to the SliceRing optimization problem, in terms
of an Integer Linear Programming (ILP) problem. Of course the complexity of this approach
may be exponential in the worst case, but it will provide useful hints to design low-cost
heuristics. We start with the case where all processors are involved in the optimal solution.
We extend the approach to the general case later on.

5.1 When all processors are involved

Assume first that all processors are involved in an optimal solution. All the p processors
require the same amount of time to compute and communicate: otherwise, we would slightly
decrease the computing load of the last processor to complete its assignment (computations
followed by communications) and assign extra work to another one. Hence (see Figure 1 for
an illustration) we have

Tstep = αi.W.wi + H.(ci,i−1 + ci,i+1) (2)

6 H. Renard, Y. Robert, F. Vivien

for all i (indices in the communication costs are taken modulo p). Since
∑p

i=1 αi = 1, we
derive that

∑p
i=1

Tstep−H.(ci,i−1+ci,i+1)
W.wi

= 1. Defining wcumul = 1∑p
i=1

1
wi

as before, we have:

Tstep

W.wcumul
= 1 +

H

W

p∑
i=1

ci,i−1 + ci,i+1

wi
(3)

Therefore, Tstep will be minimal when
∑p

i=1
ci,i−1+ci,i+1

wi
is minimal. This will be achieved

for the ring that corresponds to the shortest hamiltonian cycle in the graph G = (P,E), where
each edge ei,j is given the weight di,j = ci,j+cj,i

wi
. Once we have this path, we derive Tstep from

Equation 3, and then we determine the load αi of each processor using Equation 2.
To summarize, we have the following result:

Proposition 2. When all processors are involved, finding the optimal solution is equivalent
to solving the Traveling Salesman Problem in the weighted graph (P,E, d), di,j = ci,j+cj,i

wi
.

Of course we are not expecting any polynomial-time solution from this result, because the
decision problem associated to the Traveling Salesman Problem is NP-complete [17] (even
worse, because the distance d does not satisfy the triangle inequality, there is no polynomial-
time approximation [9]), but this equivalence gives us two lines of action:

• For platforms of reasonable size, the optimal solution can be computed using an integer
linear program that returns the optimal solution to the Traveling Salesman Problem

• For very large platforms, we can use well-established heuristics which approximate
the solution to the Traveling Salesman Problem in polynomial time, such as the Lin-
Kernighan heuristic [23, 18].

In the following , we briefly recall the classical formulation of the Traveling Salesman
Problem as an Integer Linear Programming (ILP) problem. This will solve our problem
whenever all processors are involved. In Section 5.2 we will extend the ILP formulation to
cope with the case where only a fraction of the computing resources are involved in the optimal
solution.

Consider the complete weighted graph G = (P,E, d), where |P | = p, and assume that we
start the tour, i.e. the processor ring, with processor P1. Let xi,j be integer variables such
that xi,j = 1 when Pj is the processor immediately following Pi in the tour, and xi,j = 0
otherwise. Since exactly one processor precedes Pj in the tour, we have

∑p
i=1 xi,j = 1 for

each j. Similarly, we have
∑p

j=1 xi,j = 1 for each i. The cost of the tour can be expressed as∑p
i=1

∑p
j=1 di,j .xi,j .

But these equations are not sufficient: we have to exclude the case of two or more disjoint
sub-tours. To this purpose, we introduce p−1 new integer variables u2, u3, . . . , up with ui ≥ 0
and (p− 1)(p− 2) new constraints as follows:

ui − uj + p.xi,j ≤ p− 1 for 2 ≤ i, j ≤ p, i 6= j

Intuitively, ui represents the position on the tour at which Pi is visited, and the constraints
ensures that the tour does not split into sub-tours. Indeed, we follow the proof in [11]. Suppose
first that we have a Hamiltonian cycle (“starting” in P1): we prove that the ILP problem has a
solution. Let ui be the position on the path at which Pi is visited (excluding P1, and counting

Static load-balancing techniques on heterogeneous clusters 7

from 0). For instance with p = 5 and the tour P1 → P4 → P2 → P3 → P5 → P1, then u4 = 0,
u2 = 1, u3 = 2, and u5 = 3. We have 0 ≤ ui ≤ p − 2 for i ≥ 2. Therefore if xi,j = 0,
ui − uj + p.xi,j ≤ p − 2 if i 6= j, and the inequality holds. Next, if xi,j = 1, Pj is visited
immediately after Pi, hence uj = ui +1, and ui −uj + p.xi,j = p− 1, and the inequality holds
again.

Conversely, suppose that we have a solution to the ILP problem, and assume that the tour
splits into at least two sub-tours. Then, there is a sub-tour of r ≤ p− 1 processors that does
not include P1. Adding up the r equations for the r non-zero values of xi,j of that sub-tour
leads to r.p ≤ r.(p− 1) (all the ui occur twice and cancel), a contradiction.

Finally, we are led to the following ILP formulation:

TSP integer linear programming formulation
Minimize

∑p
i=1

∑p
j=1 di,j .xi,j ,

subject to
(1)

∑p
j=1 xi,j = 1 1 ≤ i ≤ p

(2)
∑p

i=1 xi,j = 1 1 ≤ j ≤ p
(3) xi,j ∈ {0, 1} 1 ≤ i, j ≤ p
(4) ui − uj + p.xi,j ≤ p− 1 2 ≤ i, j ≤ p, i 6= j
(5) ui integer, ui ≥ 0 2 ≤ i ≤ p

Proposition 3. When all processors are involved, finding the optimal solution is equivalent
to solving the previous integer linear program.

5.2 General case

How to extend the ILP formulation to the general case? For each possible value of q, 1 ≤
q ≤ p, we will set up an ILP problem giving the optimal solution with exactly q participating
resources. Taking the smallest solution among the p values returned by these ILP problems
will lead to the optimal solution.

For a fixed value of q, 1 ≤ q ≤ p, we use a technique similar to that of Section 5.1, but we
need additional variables. Here is the ILP:

q-ring integer linear programming formulation
Minimize

∑p
i=1

∑p
j=1 di,j .xi,j ,

subject to

(1)
∑p

i=1 xi,j =
∑p

i=1 xj,i 1 ≤ j ≤ p
(2)

∑p
i=1 xi,j ≤ 1 1 ≤ j ≤ p

(3)
∑p

i=1

∑p
j=1 xi,j = q

(4) xi,j ∈ {0, 1} 1 ≤ i, j ≤ p
(5)

∑p
i=1 yi = 1

(6) − p.yi − p.yj + ui − uj + q.xi,j ≤ q − 1 1 ≤ i, j ≤ p, i 6= j
(7) yi ∈ {0, 1} 1 ≤ i ≤ p
(8) ui integer, ui ≥ 0 1 ≤ i ≤ p

As before, the intuitive idea is that xi,j = 1 if and only if Pj is the immediate successor
of Pi in the q-ring. Constraints (1) and (2) state that the in-degree of each node is the same
as its out-degree, and will be equal to 0 or 1. Constraint (3) ensures that the ring is indeed
composed of q processors. From constraints (5) and (7), we see that a single yi will be non-
zero, and it represents the “origin” of the q-ring. Assume the non-zero value is y1. For i = 1

8 H. Renard, Y. Robert, F. Vivien

and any value of j, constraint (6) will be satisfied because of the term −p.y1. If neither i nor
j is equal to the origin P1, then constraint (6) reduces to constraint (4) of the TSP program,
and assesses that the q-ring is not split into sub-rings. In the solution, ui = 0 for the origin
and the non-participating nodes, and ui is the position after the origin (numbered from 0 to
q − 2) of node Pi in the ring.

We summarize these results as follows:

Proposition 4. The SliceRing optimization problem can be solved by computing the solution
of p integer linear programs, where p is the total number of resources.

6 Heuristics and experiments

After the previous theoretically-oriented results, we adopt a more practical approach in this
section. We aim at deriving polynomial-time heuristics for solving the SliceRing optimiza-
tion problem.

Having expressed the problem in terms of a collection of integer linear programs enables us
to compute the optimal solution with softwares like PIP [15, 14] or LP SOLVE [4] (at least for
reasonable sizes of the target computing platforms). We compare this optimal solution with
that returned by two polynomial-time heuristics, one that approximates the TSP problem
(but only returns a solution where all processors are involved), and a greedy heuristic that
iteratively grows the solution ring.

6.1 TSP-based heuristic

The situation where all processors are involved in the optimal solution is very important
in practice. Indeed, only very large applications are likely to be deployed on distributed
heterogeneous platforms. And when W is large enough, we know from Equation 1 that all
processors will be involved.

From Section 5.1 we know that the optimal solution, when all processors are involved,
corresponds to the shortest Hamiltonian cycle in the graph (P,E, d), with di,j = ci,j+cj,i

wi
.

We use the well-known Lin-Kernighan heuristic [23, 18], to approximate this shortest path.
By construction, the TSP-based heuristic always returns a solution where all processors are
involved. Of course, if the optimal solution requires fewer processors, the TSP-based heuristic
will fail to find it.

6.2 Greedy heuristic

The greedy heuristic starts by selecting the fastest processor. Then, it iteratively includes
a new node in the current solution ring. Assume that we have already selected a ring of r
processors. For each remaining processor Pi, we search where to insert it in the current ring:
for each pair of successive processors (Pj , Pk) in the ring, we compute the cost of inserting
Pi between Pj and Pk in the ring. We retain the processor and the pair that minimize the
insertion cost, and we store the value of Tstep. This step of the heuristic has a complexity
proportional to (p− r).r.

Finally, we grow the ring until we have p processors. and we return the minimal value
obtained for Tstep. The total complexity is

∑p
r=1(p− r)r = O(p3). Note that it is important

to try all values of r, because Tstep may not vary monotically with r.

Static load-balancing techniques on heterogeneous clusters 9

6.3 Platform description

We experimented with two platforms, one located in ENS Lyon and the other in the University
of Strasbourg. Figure 2 represents the Lyon platform, which is composed of 14 processors,
whose cycle-times are described in Table 1. Table 2 shows the capacity of the links, i.e. the
inverse of the bandwidth, between each processor pair (Pi, Pj).

moby canaria

mryi0 popc0 sci0

Hub

Switch

sci3

sci2

sci4

sci5
sci6

sci1
myri1

myri2

Hub

router backbone
routlhpc

Figure 2: Topology of the Lyon platform.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

0.0291 0.00874 0.0206 0.0451 0.0206 0.0291 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206

Table 1: Processor cycle-times (in seconds per megaflop) for the Lyon platform.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

P0 0.198 1.702 1.702 0.262 0.198 1.702 1.702 0.262 0.262 0.262 0.262 0.262 0.262
P1 0.198 1.702 1.702 0.262 0.198 1.702 1.702 0.262 0.262 0.262 0.262 0.262 0.262
P2 1.702 1.702 0.248 0.248 1.702 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P3 1.702 1.702 0.248 0.248 1.702 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P4 0.262 0.262 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P5 0.198 0.198 1.702 1.702 0.262 1.702 1.702 0.262 0.262 0.262 0.262 0.262 0.262
P6 1.702 1.702 0.248 0.248 0.248 1.702 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P7 1.702 1.702 0.248 0.248 0.248 1.702 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P8 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P9 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P10 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P11 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P12 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P13 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248

Table 2: Capacity of the links (time in seconds to transfer a one-megabit message) for the
Lyon platform.

Similarly, Figure 3 represents the Strasbourg platform, which is composed of 13 processors,
whose cycle-times are described in Table 3, while Table 4 shows the capacity of the links.

10 H. Renard, Y. Robert, F. Vivien

sekhmet

shaitanlattice

merlinlancelot

router router

dinadan guenievre

nestea

darjeeling

marathon

pellinorecaseb

gauvain

Switch

Figure 3: Topology of the Strasbourg platform.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

0.00874 0.00874 0.0102 0.00728 0.00728 0.0262 0.00583 0.016 0.00728 0.00874 0.0131 0.00583 0.0131

Table 3: Processor cycle-times (in seconds per megaflop) for the Strasbourg platform.

6.4 Results

For both topologies, we compared the greedy heuristic against the optimal solution obtained
with integer linear programming softwares, when available. Since LP SOLVE fails to compute
the result when more than five processors are involved, we only report the results of the PIP
software. Tables 5 and 6 show the difference between the greedy heuristic and the optimal
solution (computed with PIP) on the Lyon and Strasbourg platforms. The numbers in the
tables represent the minimal cost of a path of length q on the platform, i.e. the value of the
objective function of the ILP program of Section 5.2 (multiplied by a scaling factor 6000,
because PIP needs a matrix of integers).

PIP is able to compute the optimal solution for all values for the Strasbourg platform,
but fails to do so between 9 and 13 processors for the Lyon platform (note that we used a
machine with two gigabytes of RAM!). When all processors are involved, we also tried the
LKH heuristic: for both platforms, it returns the optimal result. The conclusions that can be
drawn from these experiments are the following:

• the greedy heuristic is both fast and efficient, within 11.2% of the optimal for the Lyon
platform, and 6.8% for the Strasbourg platform

• the LKH heuristic is very reliable, but its application is limited to the case where all
resources are involved

• integer linear programming softwares rapidly fail to compute the optimal solution

In Figures 4 and 5, we plot the number popt of processors in the optimal solution as a
function of the ratio W/H. As expected, when this ratio grows (meaning more computations
per communication), more and more processors are used in the optimal solution, and the value
of popt increases. Because the interconnection network of the Lyon platform involves links of
similar capacities, the value of popt jumps from 1 (sequential solution) to 14 (all processors
participate), while the greedy heuristic returns a solution with 6 processors in between. The

Static load-balancing techniques on heterogeneous clusters 11

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

P0 0.048 0.019 0.017 0.019 0.147 0.151 0.154 0.147 0.048 0.017 0.016 0.151
P1 0.048 0.048 0.048 0.048 0.147 0.151 0.154 0.147 0.017 0.048 0.048 0.151
P2 0.019 0.048 0.019 0.019 0.147 0.151 0.154 0.147 0.048 0.019 0.019 0.151
P3 0.017 0.048 0.019 0.019 0.147 0.151 0.154 0.147 0.048 0.017 0.018 0.151
P4 0.019 0.048 0.019 0.019 0.147 0.151 0.154 0.147 0.048 0.019 0.019 0.151
P5 0.147 0.147 0.147 0.147 0.147 0.151 0.154 0.147 0.147 0.147 0.147 0.151
P6 0.151 0.151 0.151 0.151 0.151 0.151 0.154 0.151 0.151 0.151 0.151 0.151
P7 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154
P8 0.147 0.147 0.147 0.147 0.147 0.147 0.151 0.154 0.147 0.147 0.147 0.151
P9 0.048 0.017 0.048 0.048 0.048 0.147 0.151 0.154 0.147 0.048 0.048 0.151
P10 0.017 0.048 0.019 0.017 0.019 0.147 0.151 0.154 0.147 0.048 0.018 0.151
P11 0.016 0.048 0.019 0.018 0.019 0.147 0.151 0.154 0.147 0.048 0.018 0.151
P12 0.151 0.151 0.151 0.151 0.151 0.151 0.151 0.154 0.151 0.151 0.151 0.151

Table 4: Capacity of the links (time in seconds to transfer a one-megabit message) for the
Strasbourg platform.
`````````````̀Heuristics

Processors
3 4 5 6 7 8 9 10 11 12 13 14

Greedy
1202 556 1152 906 2240 3238 4236 5234 6232 7230 8228 10077

PIP
out of out of out of out of out of

878 556 1128 906 2075 3071 memory memory memory memory memory 9059

Table 5: Comparison between the greedy heuristic and PIP for the Lyon platform.

big jump from 1 to 14 is easily explained: once there is enough work to make a communication
affordable, rather use many communications for the same price, thereby better sharing the
load.

The interconnection network of the Strasbourg platform is more heterogeneous, and there
the value of popt jumps from 1 (sequential solution) to 10, 11 and 13 (all processors partici-
pate), while the greedy heuristic closely follows this evolution.

7 Related work

Load balancing strategies have been widely studied, both for homogeneous platforms (see the
collection of papers [26]) and for heterogeneous clusters (see chapter 25 in [6]). Distributing
the computations (together with the associated data) can be performed either dynamically
or statically, or a mixture of both.

The vast majority of the literature deals with dynamic strategies, that calls for peri-
odic re-mapping phases to remedy observed load-imbalance. Even though we target static
schemes, we briefly discuss a few important references in the field of dynamic approaches.
Simple paradigms are based upon the idea “use the past to predict the future”, i.e. use the

`````````````̀Heuristics
Processors

3 4 5 6 7 8 9 10 11 12 13

Greedy 1520 2112 3144 3736 4958 5668 7353 8505 10195 12490 15759
PIP 1517 2109 3141 3733 4955 5660 7348 8500 10188 12235 14757

Table 6: Comparaison between the greedy heuristic and PIP for the Strasbourg platform.

12 H. Renard, Y. Robert, F. Vivien

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

N
um

be
r o

f p
ro

ce
ss

or
s

in
 th

e
be

st
 s

ol
ut

io
n

W/H

Comparaison between exact solution and greedy heuristic on the Lyon platform

Exact solution
Greedy heurisctic

Figure 4: Optimal number of processors for the Lyon platform.

currently observed speed of computation of each machine to decide for the next distribution
of work [7, 8, 5]. Several authors [25, 24, 27, 19] propose a mapping policy which dynamically
minimizes system degradation (including the cost of remapping) for each computation step.
Other papers [28, 13] advocate local schemes where data is exchanged only between neigh-
bor processors. Generally speaking, there is a challenge in determining a trade-off between
the data distribution parameters and the process spawning and possible migration policies.
Redundant computations might also be necessary to use a heterogeneous platform at its best
capabilities.

In the context of a library oriented approach, dynamic strategies are difficult to introduce,
because they imply a complicated memory management. Static strategies are less general
but prove useful if enough knowledge can be injected in the scheduling and mapping decision
process. In other words, if the characteristics of the target platform (processor speeds and link
capacities) and of the target application (computation and communication costs associated
to each data chunk) are known rather accurately, then excellent performance can be achieved
through static strategies. However, sophisticated data distribution schemes (like the ones
presented in this paper) are mandatory to achieve such a good performance.

Several authors have dealt with the static implementation of linear algebra kernels on
heterogeneous platforms. Matrix multiplication has been studied by [22, 2]. LU and QR
decomposition have been discussed by Barbosa et al. [1]. Static partitioning schemes to
map a two-dimensional data matrix onto heterogeneous resources have been investigated by
Crandall and Quinn [10], Kaddoura, Ranka and Wang [21], and Beaumont et al. [3]. The
main conclusions of these papers are drawn for three kinds of problems:

• Distributing independent chunks of work to uni-dimensional (linear) arrays of hetero-
geneous processors is easy (see the algorithm in [2])

• Distributing independent chunks of work to two-dimensional processor grids is difficult.
We have to search for the best distribution of work for each processor arrangement along
the two-dimensional grid, and there is an exponential number of such arrangements as
the grid size increases (see [1, 2])

Static load-balancing techniques on heterogeneous clusters 13

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

N
um

be
r o

f p
ro

ce
ss

or
s

in
 th

e
be

st
 s

ol
ut

io
n

W/H

Comparaison between exact solution and greedy heuristic on the Strasbourg platform

Exact solution
Greedy heuristic

Figure 5: Optimal number of processors for the Strasbourg platform.

• Relaxing the geometrical constraints induced by two-dimensional grids leads to irregular
partitionings [10, 21, 3] that allow for a good load-balancing but are much more difficult
to implement

In this perspective, this paper shows that the first problem, i.e. distributing independent
chunks of work to uni-dimensional processor arrays, is no longer easy when communications
are taken into account in addition to computations.

Finally, a survey of static load balancing techniques for mesh computations has been
written by Hu and Blake [19]. On the same subject, see also the paper by Ichikawa and
Yamashita [20].

8 Conclusion

The major limitation to programming heterogeneous platforms arises from the additional dif-
ficulty of balancing the load. Data and computations are not evenly distributed to processors.
Minimizing communication overhead becomes a challenging task.

Load balancing techniques can be introduced dynamically or statically, or a mixture of
both. On one hand, we may think that dynamic strategies are likely to perform better, because
the machine loads will be self-regulated, hence self-balanced, if processors pick up new tasks
just as they terminate their current computation. However, data dependences, in addition
to communication costs and control overhead, may well lead to slow the whole process down
to the pace of the slowest processors. On the other hand, static strategies will suppress (or
at least minimize) data redistributions and control overhead during execution. Furthermore,
in the context of a scientific library, static allocations seem to be necessary for a simple
and efficient memory allocation. We agree, however, that targeting larger platforms such
as distributed collections of heterogeneous clusters, e.g. available from the metacomputing
grid [16], may well enforce the use of dynamic schemes.

One major result of this paper is the NP-completeness of the SliceRing problem. Rather
than the proof, the result itself is interesting, because it provides yet another evidence of the

14 H. Renard, Y. Robert, F. Vivien

intrinsic difficulty of designing heterogeneous algorithms. But this negative result should not
be over-emphasized. Indeed, another important contribution of this paper is the design of
efficient heuristics, that provide a pragmatic guidance to the designer of iterative scientific
computations. Implementing such computations on commodity clusters made up of several
heterogeneous resources is a promising alternative to using costly supercomputers.

References

[1] J. Barbosa, J. Tavares, and A. J. Padilha. Linear algebra algorithms in a heterogeneous
cluster of personal computers. In 9th Heterogeneous Computing Workshop (HCW’2000),
pages 147–159. IEEE Computer Society Press, 2000.

[2] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert. A proposal for a
heterogeneous cluster ScaLAPACK (dense linear solvers). IEEE Trans. Computers,
50(10):1052–1070, 2001.

[3] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert. Matrix multiplication on hetero-
geneous platforms. IEEE Trans. Parallel Distributed Systems, 12(10):1033–1051, 2001.

[4] Michel Berkelaar. LP SOLVE: Linear Programming Code. URL: http://www.cs.
sunysb.edu/~algorith/implement/lpsolve/implement.shtml.

[5] F. Berman. High-performance schedulers. In I. Foster and C. Kesselman, editors, The
Grid: Blueprint for a New Computing Infrastructure, pages 279–309. Morgan-Kaufmann,
1999.

[6] R. Buyya. High Performance Cluster Computing. Volume 1: Architecture and Systems.
Prentice Hall PTR, Upper Saddle River, NJ, 1999.

[7] M. Cierniak, M.J. Zaki, and W. Li. Compile-time scheduling algorithms for heterogeneous
network of workstations. The Computer Journal, 40(6):356–372, 1997.

[8] M. Cierniak, M.J. Zaki, and W. Li. Customized dynamic load balancing for a network
of workstations. Journal of Parallel and Distributed Computing, 43:156–162, 1997.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT
Press, 1990.

[10] P. E. Crandall and M. J. Quinn. Block data decomposition for data-parallel program-
ming on a heterogeneous workstation network. In 2nd International Symposium on High
Performance Distributed Computing, pages 42–49. IEEE Computer Society Press, 1993.

[11] Ian Craw. Class notes, Linear Optimisation and Numerical Analysis, Mathematical
Sciences, University of Aberdeen. URL: http://www.maths.abdn.ac.uk/~igc/tch/
mx3503/notes/node96.html.

[12] D. E. Culler and J. P. Singh. Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann, San Francisco, CA, 1999.

http://www.cs.sunysb.edu/~algorith/implement/lpsolve/implement.shtml
http://www.cs.sunysb.edu/~algorith/implement/lpsolve/implement.shtml
http://www.maths.abdn.ac.uk/~igc/tch/mx3503/notes/node96.html
http://www.maths.abdn.ac.uk/~igc/tch/mx3503/notes/node96.html

Static load-balancing techniques on heterogeneous clusters 15

[13] E. Deelman and B.K. Szymanski. Dynamic load balancing in parallel discrete event
simulation for spatially explicit problems. In PADS’98, 12th Workshop on Parallel and
Distributed Simulation, pages 46–53. IEEE Computer Society Press, 1998.

[14] Paul Feautrier. Parametric integer programming. RAIRO Recherche Opérationnelle,
22:243–268, September 1988. Software available at http://www.prism.uvsq.fr/~cedb/
bastools/piplib.html.

[15] Paul Feautrier and Nadia Tawbi. Résolution de systèmes d’inéquations linéaires; mode
d’emploi du logiciel PIP. Technical Report 90-2, Institut Blaise Pascal, Laboratoire
MASI (Paris), January 1990.

[16] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan-Kaufmann, 1999.

[17] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1991.

[18] K. Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman
heuristic. European Journal of Operational Research, 126(1):106–130, 2000. Software
available at http://www.dat.ruc.dk/~keld/research/LKH/.

[19] Y.F. Hu and R.J. Blake. Load balancing for unstructured mesh applications. Parallel
and Distributed Computing Practices, 2(3), 1999.

[20] S. Ichikawa and S. Yamashita. Static load balancing of parallel PDE solver for distributed
computing environment. In PDCS’2000, 13th Int’l Conf. Parallel and Distributed Com-
puting Systems, pages 399–405. ISCA Press, 2000.

[21] M. Kaddoura, S. Ranka, and A. Wang. Array decomposition for nonuniform computa-
tional environments. Journal of Parallel and Distributed Computing, 36:91–105, 1996.

[22] A. Kalinov and A. Lastovetsky. Heterogeneous distribution of computations while solving
linear algebra problems on networks of heterogeneous computers. In P. Sloot, M. Bubak,
A. Hoekstra, and B. Hertzberger, editors, HPCN Europe 1999, LNCS 1593, pages 191–
200. Springer Verlag, 1999.

[23] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling salesman
problem. Operations Research, 21:498–516, 1973.

[24] D.M. Nicol and Jr P.F. Reynolds. Optimal dynamic remapping of data parallel compu-
tations. IEEE Trans. Computers, 39(2):206–219, 1990.

[25] D.M. Nicol and J.H. Saltz. Dynamic remapping of parallel computations with varying
resource demands. IEEE Trans. Computers, 37(9):1073–1087, 1988.

[26] B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and load balancing in parallel
and distributed systems. IEEE Computer Science Press, 1995.

[27] J. Watts and S. Taylor. A practical approach to dynamic load balancing. IEEE Trans.
Parallel and Distributed Systems, 9(93):235–248, 1998.

http://www.prism.uvsq.fr/~cedb/bastools/piplib.html
http://www.prism.uvsq.fr/~cedb/bastools/piplib.html
http://www.dat.ruc.dk/~keld/research/LKH/

16 H. Renard, Y. Robert, F. Vivien

[28] M-Y. Wu. On runtime parallel scheduling for processor load balancing. IEEE Trans.
Parallel and Distributed Systems, 8(2):173–186, 1997.

	1 Introduction
	2 Framework
	3 Homogeneous networks
	4 Complexity
	5 ILP formulation
	5.1 When all processors are involved
	5.2 General case

	6 Heuristics and experiments
	6.1 TSP-based heuristic
	6.2 Greedy heuristic
	6.3 Platform description
	6.4 Results

	7 Related work
	8 Conclusion

