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Abstract

In this work, we deal with the problem of scheduling independent tasks on het-
erogeneous master-slave platforms. We target both off-line and on-line prob-
lems, with several objective functions (makespan, maximum response time,
total completion time). On the theoretical side, our results are two-fold: (i)
For off-line scheduling, we prove several optimality results for problems with
release dates; (ii) For on-line scheduling, we establish lower bounds on the com-
petitive ratio of any deterministic algorithm. On the practical side, we have
implemented several heuristics, some classical and some new ones derived in
this paper. We studied experimentally these heuristics on a small but fully het-
erogeneous MPI platform. Our results show the superiority of those heuristics
which fully take into account the relative capacity of the communication links.

Keywords: Scheduling, Master-slave platforms, Heterogeneous computing, On-line, Release
dates.

Résumé

Nous nous intéressons ici au probleme de I'ordonnancement d’un ensemble de
taches indépendantes sur une plate-forme maitre esclave hétérogene. Nous con-
sidérons les problémes en-ligne (ou & la volée) et hors-ligne, pour des fonctions
objectives différentes (durée totale d’exécution, temps de réponse maximum,
temps de réponse moyen). D’un point de vue théorique, nous obtenons deux
types de résultats : (i) pour le probléme hors-ligne, nous avons établi plusieurs
résultats d’optimalité pour des problemes avec dates d’arrivée; (ii) pour le
probléeme en-ligne, nous avons établi des bornes inférieures sur le facteur de
compétitivité des algorithmes déterministes. D’un point de vue pratique, nous
avons implémenté plusieurs heuristiques, certaines classiques, d’autres issues
du présent travail. Nous avons étudié expérimentalement ces heuristiques sur
une petite plate-forme MPI totalement hétérogene. Les résultats expérimen-
taux montrent la supériorité des heuristiques qui prennent complétement en
compte les capacités relatives des différents liens de communication.

Mots-clés: Ordonnancement en ligne, Ordonnancement hors-ligne, Calcul hétérogene,
Plate-forme maitre-esclave
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1 Introduction

In this paper, we deal with the problem of scheduling independent tasks on a heterogeneous master-
slave platform. We assume that this platform is operated under the one-port model, where the
master can communicate with a single slave at any time-step. This model is much more realistic
than the standard model from the literature, where the number of simultaneous messages involving
a processor is not bounded. However, very few complexity results are known for this model (see
Section 7 for a short survey). The major objective of this paper is to assess the difficulty of off-line
and on-line scheduling problems under the one-port model.

We deal with problems where all tasks have the same size. Otherwise, even the simple problem
of scheduling with two identical slaves, without paying any cost for the communications from
the master, is NP-hard [12]. Assume that the platform is composed of a master and m slaves
Py, P, ..., P,. Let ¢; be the time needed by the master to send a task to P;, and let p; be the
time needed by P; to execute a task. Our main results are the following:

e When the platform is fully homogeneous (¢; = ¢ and p; = p for all j), we design an algo-
rithm which is optimal for the on-line problem and for three different objective functions
(makespan, maximum response time, total completion time).

e When the communications are homogeneous (¢; = ¢ for all j, but different values of p;),
we design an optimal makespan minimization algorithm for the off-line problem with release
dates. This algorithm generalizes, and provides a new proof of, a result of Simons [27].

e When the computations are homogeneous (p; = p for all j, but different value of ¢;), we
failed to derive an optimal makespan minimization algorithm for the off-line problem with
release dates, but we provide an efficient heuristic for this problem.

e For these last two scenarios (homogeneous communications and homogeneous computations),
we show that there does not exist any optimal on-line algorithm. This holds true for the pre-
vious three objective functions (makespan, maximum response time, total completion time).
We even establish lower bounds on the competitive ratio of any deterministic algorithm.

The main contributions of this paper are mostly theoretical. However, on the practical side,
we have implemented several heuristics, some classical and some new ones derived in this paper,
on a small but fully heterogeneous MPI platform. Our (preliminary) results show the superiority
of those heuristics which fully take into account the relative capacity of the communication links.

The rest of the paper is organized as follows. In Section 2, we state some notations for
the scheduling problems under consideration. Section 3 deals with fully homogeneous platforms.
We study communication-homogeneous platforms in Section 4, and computation-homogeneous
platforms in Section 5. We provide an experimental comparison of several scheduling heuristics in
Section 6. Section 7 is devoted to an overview of related work. Finally, we state some concluding
remarks in Section 8.

2 Framework

To be consistent with the literature [16, 9], we use the notation « | 8 | v where:

a: the platform— As in the standard, we use P for platforms with identical processors, and @
for platforms with different-speed processors !. We add MS to this field to indicate that we
work with master-slave platforms.

B: the constraints— We write on-line for on-line problems, and r; when there are release dates.
We write ¢; = ¢ for communication-homogeneous platforms, and p; = p for computation-
homogeneous platforms.

1As we only target sets of same-size tasks, we always fall under the uniform processors framework. In other
words, the execution time of a task on a processor will only depend on the processor running it and not on the task.
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~v: the objective— We let C; denote the end of the execution of task i. We deal with three
objective functions:

e the makespan (total execution time) maz Cj;

e the maximum response time (or maximum flow) maz C; — r;: indeed, C; — r; is the
time spent by task ¢ in the system;

e the total completion time Y C;, which is equivalent to the sum of the response times

>(Ci = 19).

3 Fully homogeneous platforms

For fully homogeneous platforms, we are able to prove the optimality of the Round-Robin algorithm
which processes the tasks in the order of their arrival, and which assigns them in a cyclic fashion
to processors:

Theorem 1. The Round-Robin algorithm is optimal for the problem P, MS | online,r;,p; =
pc; = c¢ | Y (Ci—r;), as well as for the minimization of the makespan and of the maximum
response time.

We point out that the complexity of the Round-Robin algorithm is linear in the number of
tasks and does not depend upon the platform size.

Proof. To prove that the greedy algorithm Round-Robin is optimal for our problem, we show that
there is an optimal schedule under which the execution of each task starts at the exact same date
than under Round-Robin. To prove this, we first show two results stating that we can focus on
certain particular optimal schedules.

1. There is an optimal schedule such that the master sends the tasks to the slaves in the order
of their arrival.

We prove this result with permutation arguments. Let S be an optimal schedule not verifying
the desired property. Remember that the master use its communication links in a sequential
fashion. Then we denote by r; the date at which the task ¢ arrives on a slave. By hypothesis
on S, there are two tasks, j and k, such that j arrives on the master before k, but is sent to
a processor slave after k. So:

r; <1 and ), < r;.
We then define from S a new schedule S’ as follows:

o If the task j was nevertheless treated earlier than the task k (i.e., if C; < C), then we
simply reverse the dispatch dates of tasks j and k, but do not change the processors
where they are computed. This is illustrated on Figure 1. In this case, the remainder of
the schedule is let unaffected, and the total flow remains the same (just as the makespan,
and the maximum flow).

o If the task j was processed later than the task k, i.e., if C; > C}, then we send the
task j to the processor that was receiving k under S, at the time task k£ was sent to
that processor, and conversely. This is illustrated on Figure 2. Since the tasks j and k
have the same size, the use of the processors will be the same, and the remainder of the
schedule will remain unchanged. One obtains a new schedule S’, having as total flow:

n

Z (Ci—ri) | +(Cr —1;)+(Cj — 1) ZZ(Q‘—M) (1)
iy itk =
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Therefore, this is also an optimal schedule. In the same way, the makespan as well as
the maximum flow are unchanged.

Comm
P, i ]

Comm

(a) Before permutation (b) After permutation

Figure 1: Permutation on the optimal schedule S (case C; < Cy).

Comm Comm
"
Comm Comm
P, ] P i

(a) Before permutation (b) After permutation

Figure 2: Permutation on the optimal schedule S (case C; > Cy).

By iterating this process, we obtain an optimal schedule where the master sends the tasks
according to their arrival dates, i.e., by increasing r;s. Indeed, if one considers the set of
the couples {(j,k) | r; < rx & ) <7}, we notice that each iteration of the process strictly
increases the size of this set.

2. There is an optimal schedule such that the master sends the tasks to the slaves in the order
of their arrival, and such that the tasks are executed in the order of their arrival.

We will permute tasks to build an optimal schedule satisfying this property from a schedule
satisfying the property stated in point 1. Let S be an optimal schedule in which tasks are
sent by the master in the order of their arrival. From the above study, we know that such
a schedule exists. Let us suppose that S does not satisfy the desired property. Then, there
are two tasks j and k, such that

rj <, 1 <rg,  and  Cj > Cy.

Then we define a new schedule S’ by just exchanging the processors to which the tasks j
and k were sent. Then, the task j is computed under S’ at the time when k was computed
under S, and conversely. This way, we obtain the same total flow ((C; — %) + (Cp — 1) =
(Cj—rj)+(Cr —14)), the same makespan (since the working times of the processors remains
unchanged), whereas the maximum flow can decrease.

Among the optimal schedules which respect the property stated in point 2, we now look at the
subset of the solutions computing the first task as soon as possible. Then, among this subset, we
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look at the solutions computing the second task as soon as possible. And so on. This way, we
define from the set of all optimal schedules an optimal solution, denoted ASAP, which processes
the tasks in the order of their arrival, and which processes each of them as soon as possible.
We will now compare ASAP with the schedule Round-Robin, formally defined as follows: under
Round-Robin the task ¢ is sent to the processor ¢ mod m as soon as possible, while respecting the
order of arrival of the tasks.

3. The computation of any task j starts at the same time under the schedules ASAP and
Round-Robin.

The demonstration is done by induction on the number of tasks. Round-Robin sends the first
task as soon as possible, just as ASAP does. Let us suppose now that the first j tasks satisfy
the property. Let us look at the behavior of Round-Robin on the arrival of the (j + 1)-th
task. The computation of the (j + 1)-th task starts at time:

RR(j+1) = maz {r},, RR(j +1—m)+p}.

Indeed, either the processor is available at the time the task arrives on the slave, and the
task execution starts as soon as the task arrives, i.e., at time r; 11, or the processor is busy
when the task arrives. In the latter case, the processor will be available when the last task
it previously received (i.e., the (j + 1 — m)-th task according to the Round-Robin strategy)
will be completed, at time RR(j + 1 —m) + p.

Therefore, if RR(j + 1) = r§+1, Round-Robin remains optimal, since the task is processed
as soon as it is available on a slave, and since it was sent as soon as possible. Otherwise,
RR(j+1) = RR(j +1 —m) + p. But, by induction hypothesis, we know that VA,1 < A <
m,RR(j+1—X) = ASAP(j + 1 — ). Furthermore, thanks to the Round-Robin scheduling
policy, we know that Vi, RR(i) < RR(i + 1). Therefore:

VAM1<A<m,RR(j+1-m)<RR(Gj+1—-AN)<RR(j+1-m)+p=RR(j+1)

This implies that, between RR(j + 1 —m) and RR(j), m tasks of size p were started, under
Round-Robin, and also under ASAP because of the induction hypothesis. Therefore, during
that time interval, m slaves were selected. Then, until the date RR(j + 1 — m) + p, all the
slaves are used and, thus, the task j 4+ 1 is launched as soon as possible by Round-Robin,
knowing that ASAP could not have launched it earlier. Therefore, ASAP(j+1) = RR(j+1).
We can conclude.

We have already stated that the demonstrations of points 1 and 2 are valid for schedules mini-
mizing either makespan, total flow, or maximum flow. The reasoning followed in the demonstration
of point 3 is independent from the objective function. Therefore, we demonstrated the optimality
of Round-Robin for these three objective functions. O

4 Communication-homogeneous platforms

In this section, we have c¢; = ¢ but different-speed processors. We order them so that P; is the
fastest processor (p; is the smallest computing time p;), while P, is the slowest processor.

4.1 On-line scheduling

Theorem 2. There is no scheduling algorithm for the problem P, MS | online,r;,p;,c; = ¢ | maz C;
with a competitive ratio less than %,
Proof. Suppose the existence of an on-line algorithm A with a competitive ratio p = # —

with € > 0. We will build a platform and study the behavior of A opposed to our adversary. The
1+3v5
2

)

platform consists of two processors, where p; = 2, py = ,and ¢ = 1.
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Initially, the adversary sends a single task i at time 0. A sends the task ¢ either on P,
achieving a makespan at least equal to 3, or on P», with a makespan at least equal to % At
time-step 1, we check if A made a decision concerning the scheduling of 7, and the adversary reacts

consequently:

1. If A did not begin the sending of the task i, the adversary does not send other tasks. The

best makespan is then 4. As the optimal makespan is 3, we have a competitive ratio of

% > %0‘/5. This refutes the assumption on p. Thus the algorithm A must have scheduled

the task 7 at time 1.

2. If A scheduled the task i on P, the adversary does not send other tasks. The best possible

makespan is then equal to %‘/5, which is even worse than the previous case. Consequently,

algorithm A does not have another choice than to schedule the task ¢ on P;.

At time-step 1, the adversary sends another task, j. In this case, we look, at time-step 2, at the
assignment .4 made for j:

1. If j is sent on P», the adversary does not send any more task. The best achievable makespan

%, whereas the optimal is 5. The competitive ratio is then 543V5 p.

is then 55

2. If j is sent on P; the adversary sends a last task at time-step 2. The best possible makespan

7+§‘/5 # The competitive ratio is still 5*5’0‘/57 higher

is then , whereas the optimal is

than p.
O

Remark 1. Similarly, we can show that there is no on-line scheduling for the problem P, MS |
online,r;,pj,c; = ¢ | Y, C; whose competitive ratio p is strictly lower than %, and that
there is no on-line scheduling for the problem P, MS | online,r;,p;,c; = ¢ | max (C; — r;) whose

' . . . 7
competitive ratio p is strictly lower than g.

4.2 Off-line scheduling

In this section, we aim at designing an optimal algorithm for the off-line version of the problem,
with release dates. We target the objective max C;. Intuitively, to minimize the completion date
of the task arriving last, it is necessary to allocate this task to the fastest processor (which will
finish it the most rapidly). However, the other tasks should also be assigned so that this fastest
processor will be available as soon as possible for the task arriving last. We define the greedy
algorithm SLJF (Scheduling Last Jobs First) as follows:

Initialization— Take the last task which arrives in the system and allocate it to the fastest
processor (Figure 3(a)).

Scheduling backwards— Among the not-yet-allocated tasks, select the one which arrived latest
in the system. Assign it, without taking its arrival date into account, to the processor which
will begin its execution at the latest, but without exceeding the completion date of the
previously scheduled task (Figure 3(b)).

Memorization— Once all tasks are allocated, record the assignment of the tasks to the processors
(Figure 3(c)).

Assignment— The master sends the tasks according to their arrival dates, as soon as possible,
to the processors which they have been assigned to in the previous step (Figure 3(d)).

Theorem 3. SLIJF is an optimal algorithm for the problem Q, MS | r;,p;,¢; = ¢ | maz C;.
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Figure 3: Different steps of the SLJF algorithm, with four tasks i, j, k, and [.

Proof. The first three phases of the SLJF algorithm are independent of the release dates, and only
depend on the number of tasks which will arrive in the system. The proof proceeds in three steps.
First we study the problem without communication costs, nor release dates. Next, we take release
dates into account. Finally, we extend the result to the case with communications. The second
step is the most difficult.

For the first step, we have to minimize the makespan during the scheduling of identical tasks
with heterogeneous processors, without release dates. Without communication costs, this is a well-
known load balancing, problem, which can be solved by a greedy algorithm [6]. The “scheduling
backwards” phase of SLJF solves this load balancing problem optimally. Since the problem is
without release dates, the “memorization” phase does not increase the makespan, which thus
remains optimal.

Next we add the constraints of release dates. To show that SLJF is optimal, we proceed by
induction on the number of tasks. For a single task, it is obvious that the addition of a release
date does not change anything about the optimality of the solution. Let us suppose the algorithm
optimal for n tasks, or less. Then look at the behavior of the algorithm to process n + 1 tasks. If
the addition of the release dates does not increase the makespan compared to that obtained during
the “memorization” step, then an optimal scheduling is obtained. If not, let us look once again at
the problem starting from the end. Compare the completion times of the tasks in the scheduling
of the “memorization” phase (denoted as (C,, — C;)memo), and in the “assignment” phase (denoted
as (Cy, — Ci)ina1)- If both makespans are equal, we are finished. Otherwise, there are tasks such
that (Cr, — Ci)memo < (Cn — Ci)final. Let j be the last task satisfying this property. In this case,
the scheduling of the (n — j — 1) last tasks corresponds to SLJF in the case of (n — j — 1) tasks,
when the first task arrives at time 7,41 (see Figure 4). And since j is the last task satisfying the
above property, we are sure that the processors are free at the expected times. Using the induction
hypothesis, scheduling is thus optimal from 7;;, and task j + 1 cannot begin its computation
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Arrival: 4 J ,
vobod
Comm [ i | ‘
|

i l

Py:p=3

P :p=2

i — P j— P k— P | — P — =
G-Ci=2 -C;=0 C-C,=0 G-0C=0 SLJF (3) |

Makespan = 4 C—C;>2 Cl—Cj>0 C,—-C,=0 C,—-C,=0

(a) Scheduling backwards (b) Assignment

Figure 4: Detailing the last two phases of the SLJF algorithm.

earlier. The whole scheduling is thus optimal. Finally, SLJF is optimal to minimize the makespan
in the presence of release dates.

Taking communications into account is now easy. Under the one-port model, with a uniform
communication time for all tasks and processors, the optimal policy of the master consists in
sending the tasks as soon as they arrive. Now, we can consider the dates at which the tasks are
available on the slaves, and consider them as release dates for a problem without communications.

|

Remark 2. It should be stressed that, by posing ¢ = 0, our approach allows to provide a new proof
to the result of Barbara Simons [27].

5 Computation-homogeneous platforms

In this section, we have p; = p but processor links with different capacities. We order them, so
that P; is the fastest communicating processor (¢ is the smallest computing time ¢;).

5.1 On-line scheduling

Just as in Section 4, we can bound the competitive ratio of any deterministic algorithm:

Theorem 4. There is no scheduling algorithm for the problem P, MS' | online,r;,p; = p,c; | maxC;
whose competitive ratio p is strictly lower than g.

Proof. Assume that there exists a deterministic on-line algorithm A whose competitive ratio is
p= g — ¢, with € > 0. We will build a platform and an adversary to derive a contradiction. The
platform is made up with two processors P; and P, such that p; = ps = p = max{5, 21—526}, =1
and ¢ = £.

Initially, the adversary sends a single task ¢ at time 0. A executes the task i, either on P; with
a makespan at least? equal to 1 + p, or on P, with a makespan at least equal to 32—”.

At time-step £, we check whether A made a decision concerning the scheduling of i, and which

one:

1. If A scheduled the task ¢ on Py the adversary does not send other tasks. The best possible
makespan is then 377”. The optimal scheduling being of makespan 1+p, we have a competitive

2Nothing forces A to send the task i as soon as possible.
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ratio of
> Ei _3__3 68
Pe14p "2 200+1) "5

because p > 5 by assumption. This contradicts the hypothesis on p. Thus the algorithm A
cannot schedule task 7 on Ps.

2. If A did not begin to send the task i, the adversary does not send other tasks. The best
makespan that can be achieved is then equal to £ + (1 +p) = 1+ ‘%p, which is even worse
than the previous case. Consequently, the algorithm A does not have any other choice than

to schedule task 7 on P;.

At time-step £, the adversary sends three tasks, j, k and . No schedule which executes three of
the four tasks on the same processor can have a makespan lower than 1+ 3p (minimum duration of
a communication and execution without delay of the three tasks). We now consider the schedules
which compute two tasks on each processor. Since i is computed on P;, we have three cases to
study, depending upon which other task (j, k, or [) is computed on P;:

1. If j is computed on Pi:

(a) Task i is sent to Py during the interval [0, 1] and is computed during the interval [1, 1+p].
(b) Task j is sent to P; during the interval [£,1 4 £] and is computed during the interval

(14 p, 1+ 2p].
¢) Task k is sent to P, during the interval [1+ £, 1+p] and is computed during the interval
2
[1+p, 1+ 2p].
d) Task [ is sent to P, during the interval [1+p, 1+ 22] and is computed during the interval
g 2 g
[1+42p,1+ 3p].

The makespan of this schedule is then 1 4 3p.
2. If k is computed on P;:

(a) Task i is sent to P, during the interval [0, 1] and is computed during the interval [1, 1+p].
(b) Task j is sent to P, during the interval [£, p] and is computed during the interval [p, 2p)].

(c) Task k is sent to P, during the interval [p, 1 + p| and is computed during the interval
(14 p, 1+ 2p].

(d) Taskis sent to P, during the interval [1+p, 1+ ?’2—”] and is computed during the interval
[2p, 3p).
The makespan of this scheduling is then 3p.

3. If [ is computed on P;:

(a) Task i is sent to P, during the interval [0, 1] and is computed during the interval [1, 1+p].

(b) task j is sent to P, during the interval [£, p] and is computed during the interval [p, 2p)].

(c) Task k is sent to P» during the interval [p, %] and is computed during the interval
[2p, 3p).

(d) Task [ is sent to P; during the interval [32—’", 1+ 37”] and is computed during the interval
[1+ 32,14 %)

The makespan of this schedule is then 3p.



Off-line and on-line scheduling on heterogeneous master-slave platforms 9

Consequently, the last two schedules are equivalent and are better than the first. Altogether,
the best achievable makespan is 3p. But a better schedule is obtained when computing 7 on Ps,
then j on Pj, then k on P», and finally [ on P;. The makespan of the latter schedule is equal
to 1+ 52—1’. The competitive ratio of algorithm A is necessarily larger than the ratio of the best
reachable makespan (namely 3p) and the optimal makespan, which is not larger than 1 + 57”
Consequently:

po B 666 6 6 «
1+ 5 50Bp+2)" 5 25p 5 2
which contradicts the assumption p = g — e with € > 0. O

5.2 Off-line scheduling

In the easy case where Y ©_ ¢, < p, and without release dates, Round-Robin is optimal for
makespan minimization. But in the general case, not all slaves will be enrolled in the computation.
Intuitively, the idea is to use the fastest m’ links, where m’ is computed so that the time p to
execute a task lies between the time necessary to send a task on each of the fastest m’ — 1 links
and the time necessary to send a task on each of the fastest m’ links. Formally,

m’'—1 m’
Zci<p and ZCin-
i=1 i=1

With only m’ links selected in the platform, we aim at deriving an algorithm similar to Round-
Robin. But we did not succeed in proving the optimality of our approach. Hence the algorithm
below should rather be seen as a heuristic.

The difficulty lies in deciding when to use the m’-th processor. In addition to be the one having
the slowest communication link, its use can cause a moment of inactivity on another processor,
since ZZ; Lei+ e > p. Our greedy algorithm will simply compare the performances of two
strategies, the one sending tasks only on the m’ — 1 first processors, and the other using the m’-th
processor “at the best possible moment”.

Let RRA be the algorithm sending the tasks to the m’ — 1 fastest processors in a cyclic way,
starting with the fastest processor, and scheduling the tasks in the reverse order, from the last one
to the first one. Let RRB be the algorithm sending the last task to processor m/’, then following
the RRA policy. We see that RRA seeks to continuously use the processors, even though idle time
may occur on the communication link, and on the processor P,,,. On the contrary, RRB tries to
continuously use the communication link, despite leaving some processors idle.

The global behavior of the greedy algorithm, SLJFWC (Scheduling the Last Job First With
Communication) is as follows:

Initialization: Allocate the m’ — 1 last tasks to the fastest m’ — 1 processors, from the fastest to
the slowest.

Comparison: Compare the schedules RRA and RRB. If there are not enough tasks to enforce
the following stop and save condition, then keep the fastest policy (see Figure 5).

Stop and save: After k(m' — 1) + 1 allocated tasks (k > 2), if (see Figure 6)

BT e+ e > kp
4+ et em < (k+1)p

then keep the task assignment of RRB for the last k(m’ — 1) + 1 tasks, and start again the
comparison phase for the remaining tasks. If not, proceed with the comparison step.

End: When the last task is treated, keep the fastest policy.
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Figure 5: Algorithms RRA and RRB with 9 tasks.

The intuition under this algorithm is simple. We know that if we only have the m’ — 1 fastest
processors, then RRA is optimal to minimize the makespan. However, the time necessary for
sending a task on each of the m’ — 1 processors is lower than p. This means that the sending of
the tasks takes “advances” compared to their execution. This advance, which accumulates for all
the m’ — 1 tasks, can become sufficiently large to allow the sending of a task on another m-th
processor, for “free”; i.e. without delaying the treatment of the next tasks to come on the other
processors.

6 MPI experiments

6.1 The experimental platform

We build a small heterogeneous master-slave platform with five different computers, connected to
each other by a fast Ethernet switch (100 Mbit/s). The five machines are all different, both in terms
of CPU speed and in the amount of available memory. The heterogeneity of the communication
links is mainly due to the differences between the network cards. Each task will be a matrix, and
each slave will have to calculate the determinant of the matrices that it will receive. Whenever
needed, we play with matrix sizes so as to achieve more heterogeneity in the CPU speeds or
communication bandwidths.
Below we report experiments for the following configuration (in an arbitrary unit):

e ¢; = 0.011423 et p; = 0.052190
e co = 0.012052 et po = 0.019685
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Figure 6: The stop and save condition.

e c3 = 0.016808 et p3 = 0.101777
o ¢y = 0.043482 et py = 0.288397

6.2 Results

Figure 7 shows the makespan obtained with classical scheduling algorithms, such as SRPT (Short-
est Remaining Processing Time), List Scheduling, and several variants of Round-Robin, as well as
with SLJF and SLJFWC. In this experinebt, all the tasks to be scheduled arrived at time 0
(off-line framework without release dates).

Each point on the figure, representing the makespan of a schedule, corresponds in reality to an
average obtained while launching several times the experiment. We see that SLJFWC obtains
good results. SLJF remains competitive, even if it was not designed for a platform with different
communications links.

Figure 8 also represents the average makespan of various algorithms, but on a different plat-
form. This time, the parameters were modified by software in order to render the processors
homogeneous. In this case, SLJFWCC is still better, and SLJF obtains poor performances.

Finally, Figure 9 represents the average makespan in the presence of release-dates. Again,
SLJFWC performs well, even though it was not designed for problems with release-dates.

7 Related work

We classify several related papers along the following four main lines:

Models for heterogeneous platforms— In the literature, one-port models come in two vari-
ants. In the unidirectional variant, a processor cannot be involved in more than one com-
munication at a given time-step, either a send or a receive. In the bidirectional model, a
processor can send and receive in parallel, but at most to a given neighbor in each direction.
In both variants, if P, sends a message to P,, both P, and P, are blocked throughout the
communication.

The bidirectional one-port model is used by Bhat et al [7, 8] for fixed-size messages. They ad-
vocate its use because “current hardware and software do not easily enable multiple messages
to be transmitted simultaneously”. Even if non-blocking multi-threaded communication li-
braries allow for initiating multiple send and receive operations, they claim that all these
operations “are eventually serialized by the single hardware port to the network”. Experi-
mental evidence of this fact has recently been reported by Saif and Parashar [24], who report
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Figure 7: Comparing the makespan of several algorithms.

that asynchronous MPI sends get serialized as soon as message sizes exceed a few megabytes.
Their results hold for two popular MPI implementations, MPICH on Linux clusters and IBM
MPI on the SP2.

The one-port model fully accounts for the heterogeneity of the platform, as each link has a
different bandwidth. It generalizes a simpler model studied by Banikazemi et al. [1], Liu [19],
and Khuller and Kim [15]. In this simpler model, the communication time only depends on
the sender, not on the receiver: in other words, the communication speed from a processor
to all its neighbors is the same.

Finally, we note that some papers [2, 3] depart from the one-port model as they allow a
sending processor to initiate another communication while a previous one is still on-going
on the network. However, such models insist that there is an overhead time to pay be-
fore being engaged in another operation, so there are not allowing for fully simultaneous
communications.

Task graph scheduling— Task graph scheduling is usually studied using the so-called macro-

dataflow model [20, 26, 10, 11], whose major flaw is that communication resources are not
limited. In this model, a processor can send (or receive) any number of messages in paral-
lel, hence an unlimited number of communication ports is assumed (this explains the name
macro-dataflow for the model). Also, the number of messages that can simultaneously cir-
culate between processors is not bounded, hence an unlimited number of communications
can simultaneously occur on a given link. In other words, the communication network is as-
sumed to be contention-free, which of course is not realistic as soon as the processor number
exceeds a few units. More recent papers [29, 21, 23, 4, 5, 28] take communication resources
into account.

Hollermann et al. [13] and Hsu et al. [14] introduce the following model for task graph
scheduling: each processor can either send or receive a message at a given time-step (bidi-
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Figure 8: Makespan on a platform with homogeneous slaves.

rectional communication is not possible); also, there is a fixed latency between the initiation
of the communication by the sender and the beginning of the reception by the receiver. Still,
the model is rather close to the one-port model discussed in this paper.

On-line scheduling— A good survey of on-line scheduling can be found in [25, 22]. Two papers
focus on the problem of on-line scheduling for master-slaves platforms. In [17], Leung and
Zhao proposed several competitive algorithms minimizing the total completion time on a
master-slave platform, with or without pre- and post-processing. In [18], the same authors
studied the complexity of minimizing the makespan or the total response time, and proposed
some heuristics. However, none of these works take into consideration communication costs.

8 Conclusion

In this paper, we have dealt with the problem of scheduling independent, same-size tasks on master-
slave platforms. We enforce the one-port model, and we study the impact of the communications
on the design and analysis of the proposed algorithms.

On the theoretical side, we have derived several new results, either for on-line scheduling, or for
off-line scheduling with release dates. There are two important directions for future work. First, the
bounds on the competitive ratio that we have established for on-line scheduling on communication-
homogeneous, and computation-homogeneous platforms, are lower bounds: it would be very in-
teresting to see whether these bounds can be met, and to design the corresponding approximation
algorithms. Second, there remains to derive an optimal algorithm for off-line scheduling with
release dates on computation-homogeneous platforms.

On the practical side, we have to widen the scope of the MPI experiments. A detailed compar-
ison of all the heuristics that we have implemented needs to be conducted on significantly larger
platforms (with several tens of slaves). Such a comparison would, we believe, further demon-
strate the superiority of those heuristics which fully take into account the relative capacity of the
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communication links.
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