
Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Minimizing the stretch

when scheduling flows

of biological requests

Arnaud Legrand ,

Alan Su ,

Frédéric Vivien

October 2005

Research Report No 2005-48

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

Minimizing the stretch

when scheduling flows

of biological requests

Arnaud Legrand , Alan Su , Frédéric Vivien

October 2005

Abstract

In this paper, we consider the problem of scheduling comparisons of motifs
against biological databanks. This problem lies in the divisible load framework
with negligible communication costs. Thus far, very few results have been
proposed in this model. We first explain the relationship between this model
and the preemptive uni-processor one. After having selected a few relevant
metrics (max-stretch and sum-stretch), we show how to extend algorithms that
have been proposed in the literature for the uni-processor model to our setting.
Then we extensively study the performance of these algorithms in realistic
scenarios. Our study clearly suggest an efficient heuristic for each of the two
metrics, though a combined optimization is in theory not possible in the general
case.

Keywords: Bioinformatics, heterogeneous computing, scheduling, divisible load, linear programming, stretch

Résumé

Nous nous sommes intéressés au problème de l’ordonnancement de requêtes de
comparaison de motifs et de bases de données biologiques. Ce problème peut
être traiter comme un problème de tâches divisibles dont les temps de communi-
cations sont négligeables. Jusqu’à présent, très peu de résultats ont été proposés
pour ce modèle. Nous commençons par expliquer les relations entre ce modèle et
le modèle mono-processeur avec préemption. Après avoir sélectionné quelques
métriques appropriées (max-stretch et somme-stretch), nous montrons com-
ment étendre les algorithmes de la littérature du cadre mono-processeur à notre
cadre de travail. Finalement, nous étudions de manière extensive les propriétés
de ces algorithmes dans des scénarios réalistes. Notre étude indique clairement
une heuristique efficace pour chacune des deux métriques, bien qu’une optimi-
sation conjointe ne soit en théorie pas possible dans le cas général.

Mots-clés: Bioinformatique, ordonnancement, tâches divisibles, programmation linéaire, flot pondéré,
plates-formes hétérogènes

Minimizing the stretch 1

1 Introduction

The problem of searching large-scale genomic sequence databanks is an increasingly important bioinformatics problem.
The results we present in this paper concern the deployment of such applications in heterogeneous parallel computing
environments. In fact, this application is a part of a larger class of applications, in which each task in the application
workload exhibits an “affinity” for particular nodes of the targeted computational platform. In the genomic sequence
comparison scenario, the presence of the required data on a particular node is the sole factor that constrains task
placement decisions. In this context, task affinities are determined by location and replication of the sequence databanks
in the distributed platform.

Numerous efforts to parallelize biological sequence comparison applications have been realized. These efforts are
facilitated by the fact that such biological sequence comparison algorithms are typically computationally intensive,
embarrassingly parallel workloads. In the scheduling literature, this computational model is effectively a divisible
workload scheduling problem with negligible communication overheads. The work presented in this paper concerns
this scheduling problem, motivated specifically by the aforementioned divisible workload scenario and the on-line aspect
of the scheduling (i.e., where no knowledge of the whole instance is supposed and where schedulers discover a job’s
characteristics at its release date). Thus far, no result has been proposed to this specific problem.

Aside from divisibility, the main difference with classical scheduling problems lies in the fact that the platforms
we target are shared by many users. In this context, we need to ensure a certain degree of fairness between the
different requests. Defining a fair objective that accounts for the various job characteristics (release date, processing
time) is thus the first difficulty to overcome. After having presented and justified our models in Section 2, we review
various classical metrics in Section 3 and conclude that the stretch of a job is an appropriate basis for evaluation. As
a consequence, we mainly focus on the max-stretch and sum-stretch metrics, and we present known results on closely
related problems in Section 4. We also explain how to extend these techniques to our framework and point out the
main difficulties. Then, we present in Section 5 an experimental evaluation of the aforementioned techniques. Finally,
we conclude and summarize our contributions in Section 6.

2 Applications and Modeling

The GriPPS [5, 7] protein comparison application serves as the context for the scheduling results presented in this
paper. The GriPPS framework is based on large databases of information about proteins; each protein is represented
by a string of characters denoting the sequence of amino acids of which it is composed. Biologists need to search such
sequence databases for specific patterns that indicate biologically homologous structures. The GriPPS software enables
such queries in grid environments, where the data may be replicated across a distributed heterogeneous computing
platform. To develop a suitable application model for the GriPPS application scenario, we performed a series of
experiments to analyze the fundamental properties of the sequence comparison algorithms used in this code. From
this modeling perspective, the critical components of this application are:

1. protein databanks: the reference databases of amino acid sequences, located at fixed locations in a distributed
heterogeneous computing platform;

2. motifs: compact representations of amino acid patterns that are biologically significant and serve as user input
to the application;

3. sequence comparison servers: processes co-located with protein databanks, capable of accepting a set of
motifs and identifying matches over any subset of the databank.

The following sections describe the scheduling model we use for this application. Experimental validation of this
model can be found in [11].

2.1 Fundamental properties: Divisibility, Preemption and Uniform Computation

First, a motif being a compact representation of an amino acid pattern, the communication overhead is negligible
compared to the processing time of a comparison. Second, if a pattern is matched against only a subset of databank,
then the processing time of such a request is linear with the size of the targeted protein sequence set. This allows us
to split the processing of a request among many processors at the same time without additional cost. The GriPPS
protein databank search application is therefore an example of a linear divisible workload without communications.

In the classical scheduling literature, preemption is defined as the ability to suspend a job at any time and to resume
it, possibly on another processor, at no cost. Our application implicitly falls in this category. Indeed, we can easily
halt the processing of a request on a given processor and continue the pattern matching for the unprocessed part of the
database on a different processor (as it only requires to transfer the pattern to the new location, which is negligible).

2 A. Legrand, A. Su, F. Vivien

Note that, from a theoretical perspective, divisible load without communications can be seen as a generalization of
the preemptive execution model that allows for simultaneous execution of different parts of a same job on different
machines.

Last, a set of jobs is uniform over a set of processors if the relative execution times of jobs over the set of processors
does not depend on the nature of the jobs. More formally, for any job Jj , pi,j/pi′,j = ki,i′ , where pi,j is the time
needed to process job Jj on processor i. Essentially, ki,i′ describes the relative power of processors i and i′, regardless
of the size or the nature of the job being considered. Our experiments (see [11]) indicate a clear constant relationship
between the computation time observed for a particular motif on a given machine, compared to the computation time
measured on a reference machine for that same motif. This trend supports the hypothesis of uniformity. However, it
may be the case in practice that a given databank is not available on all sequence comparison servers. Our setting
is then essentially a uniform machines with restricted availabilities scheduling problem, which is a specific instance of
the more general unrelated machines scheduling problem.

2.2 Platform and application model

Formally, an instance of our problem is defined by n jobs, J1, ..., Jn and m machines (or processors), M1, ..., Mm. The
job Jj arrives in the system at time rj (expressed in seconds), which is its release date; we suppose jobs are numbered
by increasing release dates. Each job is assigned a weight or priority wj . In this article, we focus on the particular
case where wj = 1/Wj but point out a few situations where the general case with arbitrary weights can be solved as
well. pi,j denotes the amount of time it would take for machine Mi to process job Jj . Note that pi,j can be infinite if
the job Jj requires a databank that is not present on the machine Mi. The time at which job Jj finishes is denoted as
Cj . Finally, the flow time of the job Jj is defined as Fj = Cj − rj .

As we have seen in Section 2.1, we could replace the unrelated times pi,j by the expression Wj ·pi, where Wj denotes
the size (in Mflop) of the job Jj and pi denotes the computational capacity of machine Mi (in second·Mflop−1). To
maintain correctness, we separately track the databanks present at each machine and enforce the constraint that a
job Jj may only be executed on a machine at which all dependent data of Jj are present. However, since the work we
present does not rely on these restrictions, we retain the more general scheduling problem formulation (i.e., unrelated
machines). As a consequence, all the values we consider in this article are nonnegative rational numbers (except that
pi,j may be infinite if Jj cannot be processed on Mi).

Due to the divisible load model, each job may be divided into an arbitrary number of sub-jobs, of any size.
Furthermore, each sub-job may be executed on any machine at which the data dependences of the job are satisfied.
Thus, at a given moment, many different machines may be processing the same job (with a master ensuring that these
machines are working on different parts of the job). Therefore, if we denote by αi,j the fraction of job Jj processed
on Mi, we enforce the following property to ensure each job is fully executed: ∀j,

∑
i αi,j = 1.

Aside from divisibility, the main difference between this model and classical scheduling problems lies in the fact
that we target a platform shared by many users. As a consequence, we need to ensure a certain degree of fairness
between the different requests. Given a set of requests, how should we share resources amongst the different requests?
The next section examines objective functions that are well-suited to achieve this notion of fairness.

3 Objective functions

Let us first note that many interesting results can be found in the scheduling literature. Unfortunately, they only hold
for the preemption model (denoted pmtn). Thus, in this section, we explain how to extend these techniques to our
original problem.

We first recall several common objective functions in the scheduling literature and highlight those that are most
relevant in our context. Then, we give a few structural remarks explaining how heuristics for the uni-processor case
can be reasonably extended to the general case in our framework, and why the optimization of certain objectives may
be mutually exclusive.

3.1 Defining a fair objective function

The most common objective function in the parallel scheduling literature is the makespan: the maximum of the job
termination times, or maxj Cj . Makespan minimization is conceptually a system-centric approach, seeking to ensure
efficient platform utilization. However, individual users are typically more interested in job-centric metrics, such as
job flow time (also called response time): the time an individual job spends in the system. Optimizing the average
(or total) flow time,

∑
j Fj , suffers from the limitation that starvation is possible, i.e., some jobs may be delayed to

an unbounded extent [2]. By contrast, minimization of the maximum flow time, maxj Fj , does not suffer from this
limitation, but it tends to favor long jobs to the detriment of short ones. To overcome this problem, one common
approach [6] focuses on the weighted flow time, using job weights to offset the bias against short jobs. Sum weighted

Minimizing the stretch 3

1
p3

1
p2

{
1
p1

{

of heterogeneity
Geometrical representation Using uniformity

preemptive schedule
Equivalent monoprocessor

P3

P2

P1

Pequiv

Figure 1: Geometrical transformation of a divisible uniform problem into a preemptive uni-processor problem

flow and Maximum weighted flow metrics can then be analogously defined. Note however that the starvation problem
identified for sum-flow minimization is inherent to all sum-based objectives, so the sum weighted flow suffers from the
same weakness. The Stretch is a particular case of weighted flow, in which a job weight is inversely proportional to its
size: wj = 1/Wj . The stretch of a job can be seen as the slowdown it experiences when the system is loaded. This is
thus a reasonably fair measure of the level of service provided to an individual job and is more relevant than the flow
in a system with highly variable job sizes. Consequently, this article focuses mainly on the sum stretch (

∑
Sj) and

the maximum stretch (maxSj) metrics.

3.2 A few structural remarks

We first prove that any schedule in the uniform machines model with divisibility has a canonical corresponding schedule
in the uni-processor model with preemption.

Lemma 1. For any instance of n jobs J1, ..., Jn such that pi,j = Wj · pi, there is a corresponding instance J
(1)
1 , ...,

J
(1)
n such that:

For any divisible schedule of J1, ..., Jn there exists a preemptive schedule

of J
(1)
1 , ..., J

(1)
n on one processor with smaller or equal completion times.

Proof. The main idea is that our m heterogeneous processors can be seen as an equivalent processor of power 1/
∑

i
1
pi

.
Figure 1 illustrates this idea. More formally, given an instance composed of n jobs J1, ..., Jn and m machines

P1, ..., Pm such that pi,j = Wj · pi, we define J
(1)
1 , ..., J

(1)
n with the same release date as the initial jobs and a

processing time p
(1)
j = Wj/(

∑
i

1
pi

). Let us denote by s(t) the starting time of the tth preemption and by ∆(t)[

the length of time interval before the next preemption. Last, if we define α
(t)
i,j the fraction of job Jj processed on

Mi between the tth and the (t + 1)th preemption (i.e. during the time interval [s(t), s(t) + ∆(t)[), by construction

we have for all Pi:
∑

j α
(t)
i,jpi,j 6 ∆(T), then

∑
j α

(t)
i,jWjpi 6 ∆(T), hence

∑
j α

(t)
i,jWj 6

∆(T)

pi
. Therefore, we have

∑
i

∑
j α

(t)
i,jWj 6 ∆(T)

∑
i

1
pi

and
∑

j

(∑
i α

(t)
i,j

)
Wj

P

i
1

pi

=
∑

j

(∑
i α

(t)
i,j

)
p
(1)
j 6 ∆(T).

It is thus possible to process (
∑

i α
(t)
i,j) of job J

(1)
j in time interval [s(t), s(t+1)[, hence defining a valid schedule for

our new instance. As preemptions in the new schedule only occur within the ones of the old schedule, completion
times can only be decreased.

The main idea is that our m heterogeneous processors can be seen as an equivalent processor of power 1/
∑

i
1
pi

.
Figure 1 illustrates this idea. The reverse transformation simply processes jobs sequentially, distributing each job’s
work across all processors. As a consequence, any complexity result for the preemptive uni-processor model also holds
for the uniform divisible model. Thus, we study exclusively the uni-processor case in Section 4.

Unfortunately, this line of reasoning does not extend to the restricted availability situation. In the uni-processor
case, a schedule can be seen as a priority list of the jobs (see [4] for example). For this reason, the heuristics presented
in Section 4 adhere to the same basic principle: maintain a priority list of the jobs and always schedule the one with the
highest priority. In the multi-processor case with restricted availability, an additional scheduling dimension must be
resolved: the spatial distribution of each job. The example in Figure 2 explains the difficulty. In the uniform situation,
it is always beneficial to fully distribute work across all available resources: each job’s completion time in situation B is
strictly better than the corresponding job’s completion time in situation A. When restricted availability is introduced

4 A. Legrand, A. Su, F. Vivien

P2

{
P2

{
P2

{
P1

{
P1

{
P1

{

C: restricted availabilityA: initial schedule B: uniform processing

Figure 2: Geometrical transformation of a divisible uniform problem into a preemptive uni-processor problem

(situation C), the completion times vectors can no longer be compared, and deciding between one distribution or
another is non-trivial in the general case. In such cases, we apply the following simple rule to build a schedule for
general platforms from uni-processor heuristics:

1: while some processors are idle do

2: Select the job with the highest priority and distribute its processing on all

appropriate processors that are available.

Last, we want to point out that the criteria we have defined earlier may be in opposition.

Theorem 1. Let ∆ be the ratio of the sizes of the largest and shortest jobs submitted to the system. Consider any
on-line algorithm which has a competitive ratio of ρ(∆) for the sum-stretch. We assume that this competitive ratio is
not trivial, i.e., that ρ(∆) < ∆. Then, there exists for this algorithm a sequence of jobs leading to starvation and for
which the obtained max-stretch is arbitrarily greater than the optimal max-stretch.

We can also show that for an on-line algorithm which has a competitive ratio of ρ(∆) for the sum-flow, there exists
a sequence of jobs leading to starvation and where the obtained max-flow is arbitrarily greater than the optimal one,
under the constraints that ρ(∆) < 1+∆

2 .

Proof. First, we must comment on our assumption about non-trivial competitive ratios. If all jobs have the same size,
then FIFO is obviously an optimal schedule for sum-stretch, and thus has a competitive ratio of 1. Therefore, if we
ignore the size of jobs and schedule FIFO all jobs considering them as unit-size jobs, and if we multiply by ∆ all the
dates defined by the schedule obtained this way, we would end up with a trivial schedule of competitive ratio at most
∆.

We first consider the case of an on-line algorithm for the sum-stretch optimization problem, whose competitive
ratio is ρ(∆). At date 0 arrives a job J1 of size ∆. Let k be any integer. Then, at any time unit t ∈ N, t 6 k − 1,
starting from time 0, arrives a job J1+t of size 1.

A possible schedule would be to process each of the k jobs of size 1 at its release date, and to wait for the completion
of the last of these jobs before processing job J1. The sum-stretch is then

(
1 + k

∆

)
+ k and the max-stretch is 1 + k

∆ .
In fact, with our hypotheses, the on-line algorithm cannot complete the execution of the job J1 as long as there

are jobs of size 1 arriving at each time unit. Otherwise, suppose that at the date t1, job J1 was completed. Then,
a certain number k1 of unit-size jobs were completed before time t1. The scenario which minimizes the sum-stretch
is to schedule the first k1 jobs at their release date, then to schedule J1, and then the remaining k − k1 jobs. The
sum-stretch of the actual schedule can therefore not be smaller than the sum-stretch of this schedule, which is equal to:(
1 + k1

∆

)
+ k1 + (k − k1)(1 + ∆). However, as, by hypothesis, we consider a ρ(∆)-competitive algorithm, the obtained

schedule must at most be ρ(∆) times the optimal schedule. This implies that:
(

1 +
k1

∆

)
+ k1 + (k − k1)(1 + ∆) 6 ρ(∆)

(
1 +

k

∆
+ k

)
⇔

(1 − ρ(∆)) + k1

(
1

∆
− ∆

)
6 k (1 + ∆)

(
ρ(∆)

∆
− 1

)
.

Once the approximation algorithm has completed the execution of the job J1, we can keep sending unit-size jobs

for k to become as large as we wish. Therefore, for the inequality not to be violated, we must have ρ(∆)
∆ − 1 > 0,

i.e., ρ(∆) > ∆, which contradicts our hypothesis on the competitive ratio.
Therefore, the only possible behavior for the approximation algorithm is to delay the execution of job J1 until after

the end of the arrival of the unit-size jobs, whatever the number of these jobs. This leads to starvation of job J1.

Furthermore, the ratio of the obtained max-stretch to the optimal one is
1+ k

∆

1+∆ = ∆+k
∆(∆+1) , which may be arbitrarily

large.

Minimizing the stretch 5

Intuitively, algorithms targeting max-based metrics ensure that no job is left behind. Such an algorithm is thus
extremely “fair” in the sense that everybody’s cost (in our context the flow or the stretch of each job) is made as
close to the other ones as possible. Sum-based metrics tend to optimize instead the utilization of the platform. The
previous theorem establishes that these two objectives can be in opposition on particular instances. As a consequence,
it should be noted that any algorithm optimizing a sum-based metric has the particularly undesirable property of
potential starvation. This observation, coupled with the fact that the stretch is more relevant than the flow in a
system with highly variable job sizes, motivates max-stretch as the metric of choice in designing scheduling algorithms
in this setting.

4 Heuristics for the uni-processor case

In this section, we consider only scheduling problems on one processor, due to the demonstration in the previous
section of the equivalence of the “uniform machines with divisibility” and “uni-processor with preemption” models. We
first recall the known results for flow minimization. Then we move to sum- and, finally, max-stretch minimization.

4.1 Minimizing max- and sum-flow

Flow minimization is generally a simple problem when considering on-line preemptive scheduling on a single processor.
Indeed, the first come, first served heuristic optimally minimizes the max-flow [2]. Also, the shortest remaining
processing time first heuristic (SRPT) minimizes the sum-flow [1].

4.2 Minimizing the sum-stretch

The complexity of the off-line minimization of the sum-stretch is still an open problem. At the very least, this is a
hint at the difficulty of this problem.

Bender, Muthukrishnan, and Rajaraman presented in [4] a Polynomial Time Approximation Scheme (PTAS) for
minimizing the sum-stretch. In [6] Chekuri and Khanna presented an approximation scheme for the more general
sum weighted flow minimization problem. As these approximation schemes cannot be extended to work in an on-line
setting, we will not discuss them further.

In [13], Muthukrishnan, Rajaraman, Shaheen, and Gehrke prove that there is no optimal on-line algorithm for the
sum-stretch minimization problem when there are three or more distinct job sizes. They also give a lower bound of
1.036 on the competitive ratio of any on-line algorithm. They propose an optimal on-line algorithm when there are
only two job sizes.

In the previous section, we have recalled that shortest remaining processing time (SRPT) is optimal for minimizing
the sum-flow. When SRPT takes a scheduling decision, it only takes into account the remaining processing time of a
job, and not its original processing time. Therefore, from the point of view of the sum-stretch minimization, SRPT

does not take into account the weight of the jobs in the objective function. Nevertheless, Muthukrishnan, Rajaraman,
Shaheen, and Gehrke have shown [13] that SRPT is 2-competitive for sum-stretch.

Another well studied algorithm is the Smith’s ratio rule also known as shortest weighted processing time (SWPT).
This is a preemptive list scheduling where the available jobs are executed in increasing value of the ratio

pj

Wj
. Whatever

the weights, SWPT is 2-competitive [14] for the minimization of the sum of weighted completion times (
∑

wjCj).
Note that a ρ-competitive algorithm for the sum weighted flow minimization (

∑
wj(Cj − rj)) is ρ-competitive for

the sum weighted completion time (
∑

wjCj). However, the reverse is not true: a guarantee on the sum weighted
completion time (

∑
wjCj) does not induce any guarantee on the sum weighted flow (

∑
wj(Cj − rj)). Therefore, we

have no result on the efficiency of SWPT for the minimization of the sum stretch. Note that SWPT schedules the
available jobs by increasing values of 1

p2
j

and has thus exactly the same behavior as the shortest processing time first

heuristic (SPT). The weakness of SWPT heuristics is obviously that it does not take into account the remaining
processing times: it may preempt a job at the moment it is almost completed.

To address the weaknesses of both SRPT and SWPT, one might consider a heuristic that takes into account both
the original and the remaining processing time of the jobs. This is what the shortest weighted remaining processing

time heuristic (SWRPT) does. At any time t, SWRPT schedules the job Jj that minimizes ρt(j)
Wj

. Therefore, in the

framework of sum-stretch minimization, at any time t, SWRPT schedules the job Jj which minimizes 1
pjρt(j)

.

Neither of the proofs of competitiveness of SRPT or SWPT can be extended to SWRPT. SWRPT has apparently
been studied by N. Megow in [12], but only in the scope of the sum weighted completion time. So far, there exists no
guarantee on the efficiency of SWRPT. Intuitively, we would think that SWRPT is more efficient than SRPT for the
sum stretch minimization. However, the following theorem shows that the worst case for SWRPT for the sum-stretch
minimization is no better than that of SRPT.

6 A. Legrand, A. Su, F. Vivien

Theorem 2. For any real ε > 0, there exists an instance such that SWRPT is not (2 − ε)-competitive for the
minimization of the sum stretch.

Proof. The whole proof can be found in the Appendix (Section A). Here we just present the construction used to
prove this lower bound on the competitive ratio of SWRPT.

The problematic instance is composed of two sequences of jobs. In the first sequence, the jobs are of decreasing
sizes, the size of a job being the square root of the size of its immediate predecessor. In the second sequence, all the
jobs are of unit-size. Each job arrives at a date equal to the release date of its predecessor plus the execution time of
this predecessor, except for the second and third jobs which arrive at dates critical for SWRPT.

Formally, we build the instance J as follows (n, k and l will be defined below):

1. Job J0 arrives at time r0 = 0 and is of size 22n

.

2. Job J1 arrives at time r1 = 22n − 22n−2

and is of size 22n−1

.

3. Job J2 arrives at time r2 = r1 + 22n−1 − α and is of size 22n−2

, where α = 1 − ε
3 .

4. Job Jj , for 3 6 j 6 n, arrives at time rj = rj−1 + pj−1 and is of size 22n−j

.

5. Job Jn+j , for 1 6 j 6 k, is of size 22−j

and arrives at time rn+j = rn+j−1 + pn+j−1.

6. Job Jn+k+j , for 1 6 j 6 l, is of size 1 and arrives at time rn+k+j = rn+k+j−1 + pn+k+j−1.

where n =
⌈
log2

(
log2

3(1+α)
ε

)⌉
and k = d− log2(− log2 α)e. Then, we evaluate the sum-stretch realized by both

SWRPT and SRPT and we show that, if l is large enough, the sum-stretch realized by SWRPT is (R > 2− ε)-times
that realized by SRPT. This proves the result as the optimal sum-stretch is no greater than that of SRPT.

4.3 Minimizing the maximum stretch

4.3.1 The off-line case

We have previously shown [11, 10] that the maximum weighted flow – a generalization of the maximum stretch – can
be minimized in polynomial time when the release dates and jobs are known in advance (i.e., in the off-line framework).
This problem can in fact be solved for a set of unrelated processors, and we briefly describe our solution in its full
generality below. For a more detailed presentation, readers are referred to the above-mentioned publications.

Let us assume that we are looking for a schedule S under which the maximum weighted flow is less than or equal
to some objective value F . Then, for each job Jj , we define a deadline d̄j(F) = rj +F/wj (to minimize the maximum
stretch, just let wj = 1/pj). Then, the maximum weighted flow is no greater than the objective F , if and only if the
execution of each job Jj is completed before its deadline. Therefore, looking for a schedule which satisfies a given
upper bound on the maximum weighted flow is equivalent to an instance of the deadline scheduling problem.

Let us suppose that there exist two values F1 and F2, F1 < F2, such that the relative order of the release dates
and deadlines, r1, . . . , rn, d̄1(F), . . . , d̄n(F), when ordered in absolute time, is independent of the value of F ∈]F1;F2[.
Then, on the objective interval]F1,F2[, we define an epochal time as a time value at which one or more points in the
set {r1, . . . , rn, d̄1(F), . . . , d̄n(F)} occurs. Note that an epochal time which corresponds to a deadline is not a constant
but an affine function in F . When ordered in absolute time, adjacent epochal times define a set of time intervals, that
we denote by I1, . . . , Inint(F). The durations of time intervals are then affine functions in F . Using these definitions
and notations, System (1) searches the objective interval [F1,F2] for the minimal maximum weighted flow achievable.

Minimize F ,
under the constraints

(1a) F1 6 F 6 F2

(1b) ∀i,∀j,∀t, rj > sup It(F) ⇒ α
(t)
i,j = 0

(1c) ∀i,∀j,∀t, d̄j(F) 6 inf It(F) ⇒ α
(t)
i,j = 0

(1d) ∀t,∀i,
∑

j

α
(t)
i,j .pi,j 6 sup It(F) − inf It(F)

(1e) ∀j,
∑

t

∑

i

α
(t)
i,j = 1

(1)

Minimizing the stretch 7

The relative ordering of the release dates and deadlines only changes for values of F where one deadline coincides
with a release date or with another deadline. We call such a value of F a milestone.1 In our problem, there are at most

n distinct release dates and as many distinct deadlines. Thus, there are at most n(n−1)
2 milestones at which a deadline

function coincides with a release date. There are also at most n(n−1)
2 milestones at which two deadline functions

coincides (two affine functions intersect at at most one point). Let nq be the number of distinct milestones. Then,
1 6 nq 6 n2 − n. We denote by F1,F2, ...,Fnq

the milestones ordered by increasing values. To solve our problem we
just need to perform a binary search on the set of milestones F1,F2, ...,Fnq

, each time checking whether System (1)
has a solution in the objective interval [Fi,Fi+1] (except for i = nq in which case we search for a solution in the range
[Fnq

,+∞[). This process can be performed in its entirety in polynomial time, as the linear programs have rational
variables.

4.3.2 The on-line case

Bender, Chahrabarti, and Muthukrishnan have shown in [2] that the minimization of the max-stretch in an on-line
setting is a very difficult problem. They indeed proved the following lower bound on the competitive ratio of any
on-line algorithm:

Theorem 3. For three lengths of jobs there is no ∆
1
3

2 -competitive on-line algorithm for max-stretch.2

We first recall two existing on-line algorithms before introducing a new one. In [3], Bender, Muthukrishnan, and

Rajaraman defined, for any job Jj , a pseudo-stretch Ŝj(t):

Ŝj(t) =

{ t−rj√
∆

if 1 6 pj 6
√

∆,

t−rj

∆ if
√

∆ < pj 6 ∆.

Then, they scheduled the jobs by decreasing pseudo-stretches, potentially preempting running jobs each time a new
job arrives in the system. They demonstrated that this method is a O(

√
∆)-competitive on-line algorithm.

Bender, Chahrabarti, and Muthukrishnan had already described in [2] another O(
√

∆)-competitive on-line algo-
rithm for max-stretch. This algorithm works as follows: each time a new job arrives, the currently running job is
preempted. Then, they compute the optimal (off-line) max-stretch S∗ of all jobs having arrived up to the current time.
Next, a deadline is computed for each job Jj d̄j(F) = rj + α × S∗/pj Finally, a schedule is realized by executing jobs
according to their deadlines, using the Earliest Deadline First strategy. To optimize their competitive ratio, Bender
et al. set their expansion factor to α =

√
∆.

This last on-line algorithm has several weaknesses. The first is that, when they designed their algorithm, Bender
et al. did not know how to compute the (off-line) optimal maximum stretch. This is now overcome. Another weakness
in this approach is that such an algorithm tries only to optimize the stretch of the most constraining jobs. In other
words, such an algorithm may very easily schedule all jobs so that their stretch is equal to the objective, even if most
of them could have been scheduled to achieve far lower stretches. This problem is far from being merely theoretical,
as we will see in Section 5. This problem could be ameliorated by specifying that each job should be scheduled in a
manner that minimizes its stretch value, while maintaining the overall maximal stretch value obtained. For example,
one could theoretically try to minimize the sum-stretch under the condition that the max-stretch be optimal. However,
as we have seen, minimizing the sum-stretch is an open problem. So we consider a heuristic approach expressed by
System (2).

Minimize

n∑

j=1

∑

t

(
m∑

i=1

α
(t)
i,j

)
sup It(S∗) + inf It(S∗)

2
,

under the constraints

(2a) ∀i,∀j,∀t, rj > sup It(S∗) ⇒ α
(t)
i,j = 0

(2b) ∀i,∀j,∀t, d̄j(S∗) 6 inf It(S∗) ⇒ α
(t)
i,j = 0

(2c) ∀t,∀i,
∑

j

α
(t)
i,j .pi,j 6 sup It(S∗) − inf It(S∗)

(2d) ∀j,
∑

t

∑

i

α
(t)
i,j = 1

(2)

This system ensures that each job is completed no later than the deadline defined by the optimal (off-line) max-stretch.
Then, under this constraint, this system attempts to minimize an objective that resembles a rational relaxation of the

1In [8], Labetoulle, Lawler, Lenstra, and Rinnoy Kan call such a value a “critical trial value”.
2Here ∆ is once again the ratio of the largest to the smallest job size.

8 A. Legrand, A. Su, F. Vivien

sum-stretch: it computes the sum of the average execution times of the different jobs. As we do not know the precise
time within an interval when a part of a job will be scheduled, we approximate it by the mean time of the interval.
This heuristic obviously offers no guarantee on the sum-stretch achieved. We further refine this heuristic to define the
following on-line algorithm. Each time a new job arrives:

1. Preempt the running job (if any).

2. Compute the best achievable max-stretch S∗, considering the decisions already made.

3. With the deadlines and intervals defined by the max-stretch S∗, solve System (2).

At this point, we define three variants to produce the schedule. The first, which we call Online, assigns work simply
using the values found by the linear program for the α variables:

4. For a given processor Pi, and a given interval It(S∗), all jobs Jj that complete their fraction on that processor

during the same interval (i.e., all jobs Jj such that
∑

t′>t α
(t′)
i,j = 0) are scheduled under the SWRPT policy in

that interval. We call these jobs terminal jobs (for Pi and It(S∗)). The non-terminal jobs scheduled on Pi during
interval It(S∗) are only executed in It(S∗) after all terminal jobs have finished.

The second variant we consider, Online-EDF, attempts to make changes to the schedule at the processor level to
improve the overall max- and sum-stretch attained:

4. Consider a processor Pi. The fractions αi,j of the jobs that must be partially executed on Pi are processed on
Pi under a list scheduling policy based on the following order: the jobs are ordered according to the interval
in which their share is completed (according to the solution of linear program), with ties being broken by the
SWRPT policy.

Finally, we propose a third variant, Online-EGDF, that creates a global priority list:

4. The (active) jobs are processed under a list scheduling policy, using the strategy outlined in Section 3 to deal with
restricted availabilities. Here, the jobs are totally ordered by the interval in which their total work is completed,
with ties being broken by the SWRPT policy.

The validity of these heuristic approaches will be assessed through simulations in the next section. Note that in Step (2),
we look for the best achievable max-stretch knowing what scheduling decisions were already taken, i.e., knowing which
jobs were already (partially) executed, and when, whereas Bender et al. were looking for the optimal max-stretch.

5 Simulation results

In order to evaluate the efficacy of various scheduling strategies when optimizing stretch-based metrics, we implement
a simulation framework using the SimGrid toolkit [9], based on the biological sequence comparison scenario. The
application and platform models used in the resulting simulator are derived from our initial observations of the
GriPPS system, described in Section 2. Our primary goal is to evaluate the proposed heuristics in realistic conditions
that include partial replication of target sequence databases across the available computing resources. The remainder
of this section outlines the experimental variables we considered and presents results describing the behavior of the
heuristics in question under various parameterizations of the platform and application models.

5.1 Simulation Settings

The platform and application models that we address in this work are quite flexible, resulting in innumerable variations
in the range of potentially interesting combinations. To facilitate our studies, we concretely define certain features of
the system that we believe to be useful in describing realistic execution scenarios. We consider in particular six such
features.

1. Platform size: Typically, a given biological databases such as those considered in this work would be replicated
at various sites, at which comparisons against this database may be performed. Generally, the number of sites
in a simulated system provides a basic measure of the aggregate power of the platform. This parameter specifies
the exact number of clusters in the simulated platform. Without loss of generality, we arbitrarily define each site
to contain 10 processors.

2. Processor power: Our model assumes that all the processors at any given site are equivalent, and each processor
is assumed to have access to all databases located there. Thus for each site, a single processor value represents
the processing power at that site. We choose processor power values using benchmark results from our previous
work.

Minimizing the stretch 9

 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4 5

A
ve

ra
ge

 d
eg

re
da

tio
n

fr
om

 o
pt

im
al

 (
%

)

Workload density

Non-optimized degradation
Optimized degradation

(a) Max-stretch degradation from optimal of both
versions of the on-line heuristic

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1 2 3 4 5

A
ve

ra
ge

 r
el

at
iv

e
ga

in
 (

%
)

Workload density

Gain using optimized online

(b) Sum-stretch gain of the optimized version, rela-
tive to the non-optimized version

Figure 3: Comparison of the optimized and non-optimized versions of the on-line heuristic

3. Number of databases: Applications such as GriPPS can accommodate multiple reference databases. Our
model allows for any number of distinct databases to exist throughout the system.

4. Database size: Our previous work demonstrated that the processing time needed to service a user request
targeting a particular database varies linearly according to the number of sequences found in the database in
question. We choose such values from a continuous range of realistic database sizes, with the job size for jobs
targeting a particular database scaled accordingly.

5. Database availability: A particular database may be replicated at multiple sites, and a single site may host
copies of multiple databases. We account for these two eventualities by associating with each database a proba-
bility of existence at each site. The same database availability applies to all databases in the system.

6. Workload density: For a particular database, we define the workload density of a system to be the ratio,
on average, of the aggregate job size of user requests against that database to the aggregate computational
power available to handle such requests. Workload density expresses a notion of the “load” of the system. This
parameter, along with the size of the database, define the frequency of job arrivals in the system.

We define a simulation configuration as a set of specific values for each of these six properties. Once defined,
concrete simulation instances are constructed by realizing random series for any random variables in the system. In
particular, two models are created for each instance: a platform model and a workload model. The former is specified
first by defining the appropriate number of 10-node clusters and assigning corresponding processor power values. Next,
a size is assigned to each database, and it is replicated according to the simulation’s database availability parameter.
Finally, the workload model is realized by first generating a series of jobs for each database, using a Poisson process
for job inter-arrival times, with a mean that is computed to attain the desired workload density. The database-specific
workloads are then merged and sorted to obtain the final workload. Jobs may arrive between the time at which the
simulation starts and 15 minutes thereafter.

In this simulation study, we use empirical values observed in the GriPPS system logs to generate realistic values
for the database sizes and the processor speeds. The remaining four parameters – platform size, number of distinct
databases, database availability, and workload density – represent the experimental values for our study. We discuss
further the specifics of the experimental design and our simulation results in Section 5.3.

5.2 Optimization of the on-line heuristic

In order to motivate the variants of our on-line heuristic described in Section 4.3.2, we conduct a series of experiments
to evaluate their effect. In particular, we consider a non-optimized version of the on-line heuristic, which stops after
Step 2. We consider job workloads of average density varying between 0.0125 to 4.00, over a range of average job lengths
between 3 and 60 seconds. For each job size/workload density combination evaluated, we simulate the execution of
5000 instances, recording the maximum and sum stretch of jobs in the workload achieved with both the optimized
and non-optimized versions of the on-line heuristic. The max-stretch of each is then divided by the max-stretch

10 A. Legrand, A. Su, F. Vivien

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0003 1.0167 1.6729 0.3825 4.4468
Online 1.0025 0.0127 2.0388 1.0806 0.0724 2.0343

Online-EDF 1.0024 0.0127 2.0581 1.0775 0.0708 2.0392
Online-EGDF 1.0781 0.1174 2.4053 1.0021 0.0040 1.0707

Bender98 3 1.0798 0.1315 2.0978 1.0024 0.0044 1.0530
SWRPT 1.0845 0.1235 2.5307 1.0002 0.0012 1.0458

SRPT 1.0939 0.1299 2.3741 1.0044 0.0055 1.0907
SPT 1.1147 0.1603 2.8295 1.0027 0.0054 1.1195

Bender02 3.4603 3.0260 28.4016 1.2053 0.2417 5.2022
MCT-Div 6.3385 7.4375 73.4019 1.3732 0.5628 11.0440

MCT 27.0124 20.1083 129.6119 50.9840 36.9797 157.8909

Table 1: Aggregate statistics over all 162 platform/application configurations

achieved by the optimal algorithm, yielding a degradation factor for both heuristics on that run. However, since
the optimal sum-stretch is not known, we observe the sum-stretch of the optimized on-line heuristic relative to the
non-optimized version. Figures 3(a) and 3(b) present the max-stretch and sum-stretch results, respectively. In the
first graph plots average max-stretch degradation values compared to the optimal result against workload density,
for each of 80 configurations; each data point represents the average degradation over 5000 simulations. The second
plot depicts the average improvement in sum-stretch (for the same 80 configurations and 5000 runs per configuration)
obtained when using the optimized heuristic, relative to the non-optimized version. These results strongly motivate
the use of the the optimizations encoded by the linear program depicted in System (2).

5.3 Simulation Results and Analysis

We have implemented in our simulator a number of scheduling heuristics that we plan to compare. First, we have
implemented Offline, corresponding to the algorithm described in Section 4.3.1 that solves the optimal max-stretch
problem. The three versions of the on-line heuristic are also implemented, designated as Online, Online-EDF,
and Online-EGDF. Next, we consider the SWRPT, SRPT, and SPT heuristics discussed in Section 4. We also
include two greedy strategies. First, MCT (“minimum completion time”) simply schedules each job as it arrives on
the processor that would offer the best job completion time. The MCT-Div heuristic extends this approach to take
advantage of the fact that jobs are divisible, by employing all resources that are able to execute the job (using the
strategy laid out in Section 3). Note that neither of these two heuristics make any changes to work that has already
been scheduled. Finally, we consider the two on-line heuristics proposed by Bender et al. that were briefly described
in Section 4.3.2.

As mentioned earlier, two of the six parameters of our model reflect empirical values determined in our previous
work with the GriPPS system [11]. Processor speeds are chosen randomly from one of the six reference platforms we
studied, and we let database sizes vary continuously over a range of 10 megabytes to 1 gigabyte, corresponding roughly
to GriPPS database sizes. Thus, our experimental results examine the behaviors of the above-mentioned heuristics as
we vary four parameters:

• platforms of 3, 10, and 20 clusters with 10 processors each;

• applications with 3, 10, and 20 distinct reference databases;

• database availabilities of 30%, 60%, and 90% for each database; and

• workload density factors of 0.75, 1.0, 1.25, 1.5, 2.0, and 3.0.

The resulting experimental framework has 162 configurations. For each configuration, 200 platforms and application
instances are randomly generated and the simulation results for each of the studied heuristics is recorded. Table 1
presents the aggregate results from these simulations; finer-grained results based on various partitionings of the data
may be found in the Appendix (Section B).

Above all, we note that the MCT heuristic – effectively the policy in the current GriPPS system – is unquestionably
inappropriate for max-stretch optimization: MCT was over 27 times worse on average than the best heuristic. Its
deficiency might arguably be tolerable on small platforms, but in fact, MCT yielded max-stretch performance over ten
times worse than the best heuristic in all simulation configurations. Even after addressing the primary limitation that
the divisibility property is not utilized, the results are still disappointing: MCT-Div is on average 6.3 times worse

Minimizing the stretch 11

in terms of max-stretch than the best approach we found. One of the principal failings of the MCT and MCT-Div

heuristics is that they are non-preemptive. As the stretch of small tasks are fairly sensitive to wait time, such a task
arriving at a moment when the system is loaded will be stretched substantially.

Experimentally, we find that two of the three on-line heuristics we propose are consistently near-optimal (within
0.1% on average) for max-stretch optimization. The third, Online-EGDF actually achieves consistently good sum-
stretch, but at the expense of its performance for the max-stretch metric. This is not entirely surprising, as the
heuristic ignores a significant portion of the fine-tuned schedule generated by the linear program designed to optimize
the max-stretch.

We also observe that SWRPT, SRPT, and SPT are all quite effective at sum-stretch optimization. Each is on
average within 1% of optimal for all configurations. In particular, SWRPT produces a sum-stretch that is on average
0.02% within the best observed sum-stretch, and attaining a sum-stretch within 5% of the best sum-stretch in all of
the roughly 32,000 instances. However, it should be noted that these heuristics may lead to starvation. Jobs may be
delayed for an arbitrarily long time, particularly when a long series of small jobs is submitted sequentially (the (n+1)th

job being released right after the termination of the nth job). Our analysis of the GriPPS application logs has revealed
that such situations occur quite often due to some automatic submission processes. By optimizing max-stretch in lieu
of sum-stretch, the possibility of starvation is eliminated.

Next, we find that the Bender98 and Bender02 heuristics are not practically useful in our scheduling context. The
results shown in Table 1 for the Bender98 heuristic comprise only 3-cluster platforms; simulations on larger platforms
were practically infeasible, due to the algorithm’s prohibitive overhead costs. Effectively, for an n-task workload, the
Bender98 heuristic solves n optimal max-stretch problems, many of which are computationally equivalent to the
full n-task optimal solution. In several cases the desired workload density required thousands of tasks, rendering the
Bender98 algorithm intractable. To roughly compare the overhead costs of the various heuristics, we ran a small
series of simulations using only 3-cluster platforms. The results of these tests indicate that the scheduling time for a
15-minute workload was on average under 0.28 s for any of our on-line heuristics, and 0.54 s for the off-line optimal
algorithm (with 0.35 s spent in the resolution of the linear program and 0.19 s spent in the on-line phases of the
scheduler); by contrast, the average time spent in the Bender98 scheduler was 19.76 s. The scheduling overhead of
Bender02 is far less costly (on average 0.23 s of scheduling time in our overhead experiments), but the competitive
ratios it guarantees are ineffective compared with our on-line heuristics for max-stretch optimization.

Finally, we note the anomalous result that optimal algorithm is occasionally beaten (in all cases by a variant of the
on-line heuristic); clearly this indicates an error in the solution of the optimal max-stretch problem. Our preliminary
analysis suggests that this is a floating-point precision problem that arises when very fine variations in values of F
result in different orderings of the epochal times. This may result in a very small time interval (ranging between two
nearly identical values of F), which then might be missed by the search process because it fails to distinguish the F
values. We are considering potential solutions to the problem, such as scaling the linear program variables such that
precision errors between epochal times may be avoided.

6 Conclusion

Our main contributions to this problem are the following:

• We present a synthesis of existing theoretical work on the closely related uni-processor model with preemption
and explain how to extend most results to our particular setting.

• Although this idea was underlying in previous work (e.g., in [2]), we prove the impossibility of simultaneously
approximating both max-based and sum-based metrics.

• We note that the natural heuristic for sum-stretch optimization, SWRPT, is not well-studied. Although this
simple heuristic seems to optimize the sum-stretch in practice, its performance is not guaranteed. However, we
prove that it cannot be guaranteed with a factor better than 2.

• We propose an on-line strategy for max-stretch optimizations in this problem domain, and we demonstrate
its efficacy using a wide range of realistic simulation scenarios. All previously proposed guaranteed heuristics
for max-stretch (Bender98 and Bender02) for the uni-processor model prove to be particularly inefficient in
practice.

• On average, our various on-line algorithms based on linear programs prove to be near-optimal solutions for max-
stretch. SRPT and SWRPT, which were originally designed to optimize the sum-stretch metric, surprisingly
yield fairly good results for the max-stretch metric. However, due to the potential for starvation with sum-based
metrics, we assert that our max-stretch optimization heuristics are preferable for job- and user-centric systems.

3Bender98 results are limited to 3-cluster platforms, due to prohibitive overhead costs (discussed in Section 5.3).

12 A. Legrand, A. Su, F. Vivien

References

[1] K.R. Baker. Introduction to Sequencing and Scheduling. Wiley, New York, 1974.

[2] Michael A. Bender, Soumen Chahrabarti, and S. Muthukrishnan. Flow and stretch metrics for scheduling contin-
uous job streams. In Proceedings of the 9th Annual ACM-SIAM Symposium On Discrete Algorithms (SODA’98),
pages 270–279. ACM press, 1998.

[3] Michael A. Bender, S. Muthukrishnan, and Rajmohan Rajaraman. Improved algorithms for stretch scheduling. In
SODA ’02: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages 762–771,
Philadelphia, PA, USA, 2002. Society for Industrial and Applied Mathematics.

[4] Michael A. Bender, S. Muthukrishnan, and Rajmohan Rajaraman. Approximation algorithms for average stretch
scheduling. J. of Scheduling, 7(3):195–222, 2004.

[5] Christophe Blanchet, Christophe Combet, Christophe Geourjon, and Gilbert Deléage. MPSA: Integrated System
for Multiple Protein Sequence Analysis with client/server capabilities. Bioinformatics, 16(3):286–287, 2000.

[6] Chandra Chekuri and Sanjeev Khanna. Approximation schemes for preemptive weighted flow time. In Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing, pages 297–305. ACM Press, 2002.

[7] GriPPS webpage at http://gripps.ibcp.fr/, 2005.

[8] Jacques Labetoulle, Eugene L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Preemptive scheduling of uniform
machines subject to release dates. In W. R. Pulleyblank, editor, Progress in Combinatorial Optimization, pages
245–261. Academic Press, 1984.

[9] Arnaud Legrand, Loris Marchal, and Henri Casanova. Scheduling Distributed Applications: The SimGrid Simu-
lation Framework. In Proceedings of the 3rd IEEE Symposium on Cluster Computing and the Grid, 2003.

[10] Arnaud Legrand, Alan Su, and Frédéric Vivien. Off-line scheduling of divisible requests on an heterogeneous
collection of databanks. Research report 5386, INRIA, November 2004. Also available as LIP, ENS Lyon, research
report 2004-51.

[11] Arnaud Legrand, Alan Su, and Frédéric Vivien. Off-line scheduling of divisible requests on an heterogeneous
collection of databanks. In Proceedings of the 14th Heterogeneous Computing Workshop, Denver, Colorado, USA,
April 2005. IEEE Computer Society Press.

[12] Nicole Megow. Performance analysis of on-line algorithms in machine scheduling. Diplomarbeit, Technische
Universität Berlin, April 2002.

[13] S. Muthukrishnan, Rajmohan Rajaraman, Anthony Shaheen, and Johannes Gehrke. Online scheduling to minimize
average stretch. In IEEE Symposium on Foundations of Computer Science, pages 433–442, 1999.

[14] Andreas S. Schulz and Martin Skutella. The power of α-points in preemptive single machine scheduling. Journal
of Scheduling, 5(2):121–133, 2002. DOI:10.1002/jos.093.

http://gripps.ibcp.fr/
DOI: 10.1002/jos.093

Minimizing the stretch 13

A Lower bound on the competitive ratio of SWRPT

Proof. The instance is composed of two sequences of jobs. In the first sequence, the jobs are of decreasing sizes, the size
of a job being the square root of the size of its immediate predecessor. In the second sequence, all the jobs are of size
one. Each job arrives at a date equal to the release date of its predecessor plus the execution time of its predecessor,
except for the second and third jobs which arrives at dates critical for SWRPT.

Formally, we build the instance J as follows. Let α = 1 − ε
3 . Let n k, and l be three integers such that :

n =
⌈
log2 log2

3(1+α)
ε

⌉
, and k = d− log2(− log2 α)e.

1. Job J0 arrives at time r0 = 0 and is of size 22n

.

2. Job J1 arrives at time r1 = 22n − 22n−2

and is of size 22n−1

.

3. Job J2 arrives at time r2 = r1 + 22n−1 − α and is of size 22n−2

.

4. Job Jj , for 3 6 j 6 n, arrives at time rj = rj−1 + pj−1 and is of size 22n−j

.

5. Job Jn+j , for 1 6 j 6 k, is of size 22−j

and arrives at time rn+j = rn+j−1 + pn+j−1.

6. Job Jn+k+j , for 1 6 j 6 l, is of size 1 and arrives at time rn+k+j = rn+k+j−1 + pn+k+j−1.

We first study the behavior of SRPT on this instance: this gives us an upper bound on the optimal sum-stretch.
Then, we will study the sum-stretch of SWRPT.

Study of SRPT.

• The first date at which SRPT must choose between two jobs is r1. At r1 the remaining processing time (RPT)

of J0 is ρr1
(J0) = 22n−2

, when ρr1
(J1) = 22n−1

. Therefore, SRPT continues to execute J0 at date r1, until

r1 + 22n−2

< r2, at which date the execution of job J0 is completed.

• We now consider the date r2.

ρr2
(J1) = 22n−1 −

(
r2 − (r1 + 22n−2

)
)

= 22n−1 −
(
(r1 + 22n−1 − α) − (r1 + 22n−2

)
)

= 22n−1 − (22n−1 − 22n−2 − α) = 22n−2

+ α.

ρr2
(J2) = 22n−2

. Therefore, SRPT executes the job J2 starting at its release date.

• The job J2+j , for 1 6 j 6 n+k + l− 2, is executed at its release date. We can indeed see that at the release date
r2+j the only job previously released whose execution was not completed is J1 whose remaining processing time

is ρ(J1) = 22n−2

+ α which is strictly greater than J2+j (the jobs are released in decreasing order of their sizes).

• Once the execution of all the jobs J2+j , for 1 6 j 6 n + k + l − 2, is completed, SRPT completes the execution
of job J1 which ends at time tf equals to the sum of the sizes of all the jobs:

tf =
∑

06i6n

22i

+
∑

16i6k

22−i

+ l.

• From what precedes, the stretch realized by SRPT on this example is equal to one for all the jobs, except for
job J1. Therefore, the sum-stretch realized by SRPT on this instance is equal to:

n + k + l − 1 +
tf − (22n − 22n−2

)

22n−1 .

Study of SWRPT.

• The first date at which SWRPT must choose between two jobs is r1. At r1 the weighted remaining processing
time (WRPT) of J0 is ωr1

(J0) = 22n−2 ×22n

, when ωr1
(J1) = 22n−1 ×22n−1

= 22n

. Therefore, SWRPT preempts
job J0 at date r1 and executes job J1 instead.

• We now consider the date r2.

– ωr2
(J0) = ωr1

(J0) = 22n−2 × 22n

.

14 A. Legrand, A. Su, F. Vivien

– ωr2
(J1) =

(
22n−1 − (r2 − r1)

)
× 22n−1

=
(
22n−1 −

(
22n−1 − α

))
× 22n−1

= α × 22n−1

.

– ωr2
(J2) = 22n−2 × 22n−2

= 22n−1

.

Then, whatever the value of α ∈]0; 1[, SWRPT continues to execute the job J1 at the date r2, until its completion
at date r2 + α. Starting from the date r2 + α and until the next release date, r3, SWRPT executes the job J2.

• We now show by induction that at the date r1+j , for 1 6 j 6 n− 1, the only jobs released earlier than r1+j and

whose execution are not yet completed are J0 with ρr1+j
(J0) = 22n−2

, and Jj with ρr1+j
(Jj) = α. We have seen

that these properties hold for j = 1.

We now suppose that the properties hold until some value of j included. Then, by induction hypotheses:

– ωr1+j
(J0) = ωr1

(J0) = 22n−2 × 22n

.

– ωr1+j
(Jj) = α × 22n−j

.

– ωr1+j
(J1+j) = 22n−1−j × 22n−1−j

= 22n−j

.

Then, whatever the value of α ∈]0; 1[, SWRPT continues to execute the job Jj at the date r1+j , until its
completion at date r1+j + α. Starting from the date r1+j + α and until the next release date, r2+j , SWRPT

executes the job J1+j . Then the desired properties also hold for j + 1.

• Exactly as previously, we can show by induction that at the date rn+j , for 1 6 j 6 k − 1, the only jobs released

earlier than rn+j and whose execution are not yet completed are J0 with ρrn+j
(J0) = 22n−2

, and Jn+j−1 with
ρrn+j

(Jn+j−1) = α.

• We now consider the date rn+k+1.

– ωrn+k+1
(J0) = ωr1

(J0) = 22n−2 × 22n

.

– ωrn+k+1
(Jn+k) = α × 22−k

.

– ωrn+k+1
(Jn+k+1) = 1 × 1 = 1.

Obviously, we want SWRPT to take the wrong decision and to continue to execute job Jn+k at date rn+k+1.
SWRPT will do that if and only if

α × 22−k

< 1 ⇔ α <
1

22−k
.

Therefore, we let k = d− log2(− log2 α)e.

• We can easily show by induction that at the date rn+k+j , for 1 6 j 6 l, the only jobs released earlier than

rn+k+j and whose execution are not yet completed are J0 with ρrn+k+j
(J0) = 22n−2

, and Jn+k+j−1 with
ρrn+k+j

(Jn+k+j−1) = α.

• Finally, SWRPT executes the job Jn+k+l during the time interval [rn+k+l+α; 1+rn+k+l+α], and then completes
the execution of the job J0 during the time interval [1 + rn+k+l + α; tf].

• The sum-stretch realized by SWRPT is a bit more complicated to compute than the one realized by SRPT.
SWRPT stretches the execution of job J0 over all the execution of the schedule; job J1 as a stretch of 1; and
the execution of all the other jobs is increased by α. Therefore, the sum-stretch realized by SWRPT on this
instance is equal to:

tf
22n + 1 +

n+k∑

j=2

(
1 +

α

22n−j

)
+ l ×

(
1 +

α

1

)
= n + k − 1 + l(1 + α) +

tf
22n + α

n+k∑

j=2

1

22n−j .

We denote by R the ratio of the sum-stretch realized by SWRPT on this instance to the optimal sum-stretch.
From what precedes, we have:

R >
n + k − 1 + l(1 + α) +

tf

22n + α
∑n+k

j=2
1

22n−j

n + k + l − 1 +
tf−(22n−22n−2)

22n−1

>
l(1 + α)

n + k + l − 1 +
tf−(22n−22n−2)

22n−1

Minimizing the stretch 15

However, tf = l +
∑

06i6n+k 22n−j

= l + f(n, k). We then have,

R >
l(1 + α)

n + k + l − 1 +
tf−(22n−22n−2)

22n−1

=
l(1 + α)

l(1 + 1

22n−1) + n + k − 1 + f(k,n)−(22n−22n−2)

22n−1

We then chose for n a value large enough to have 1

22n−1 < ε
3(1+α) = ε

6−ε
. α, k, and n are now all defined. Then,

lim
l→+∞

l(1 + α)

l(1 + 1

22n−1) + n + k − 1 + f(k,n)−(22n−22n−2)

22n−1

=
1 + α

1 + 1

22n−1

.

Therefore, we can chose l large enough to have

l(1 + α)

l(1 + 1

22n−1) + n + k − 1 + f(k,n)−(22n−22n−2)

22n−1

>
1 + α

1 + 1

22n−1

− ε

3
.

Then,

R >
1 + α

1 + 1

22n−1

− ε

3
> (1 + α)(1 − 1

22n−1) − ε

3
> (1 + α)(1 − ε

3(1 + α)
) − ε

3
= 1 + α − ε

3
− ε

3
= 2 − ε.

B Additional simulation results

Tables 2 through 4 present the simulation data for 3-, 10-, and 20-site configurations. Tables 5 through 10 present the
simulation data for configurations with specific workload densities, varying from 0.75 to 3.00. Tables 11 through 13
present the simulation data for 3-, 10-, and 20-database configurations. Tables 14 through 16 present the simulation
data for configurations with database availability of 30%, 60%, and 90%.

16 A. Legrand, A. Su, F. Vivien

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0001 1.0057 1.4346 0.3406 3.2160
Online 1.0012 0.0083 1.2648 1.0604 0.0557 1.7044

Online-EDF 1.0011 0.0082 1.2648 1.0548 0.0530 1.7017
Online-EGDF 1.0557 0.1027 2.0936 1.0017 0.0037 1.0566

SWRPT 1.0643 0.1153 2.5307 1.0002 0.0013 1.0433
SRPT 1.0728 0.1205 2.1328 1.0042 0.0061 1.0907

SPT 1.0949 0.1595 2.8295 1.0033 0.0063 1.1195
Bender02 3.1209 2.8235 28.4016 1.2178 0.2922 5.2022
MCT-Div 6.4998 7.9212 68.3501 1.4771 0.7660 11.0440

MCT 10.3419 4.0266 121.6338 16.7938 4.8924 46.8819

Table 2: Aggregate statistics over 54 platform/application configurations using 3 sites

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0003 1.0167 1.7582 0.3548 3.9253
Online 1.0026 0.0113 1.2634 1.0950 0.0832 2.0343

Online-EDF 1.0025 0.0112 1.2634 1.0923 0.0808 2.0392
Online-EGDF 1.0838 0.1223 2.1460 1.0022 0.0037 1.0707

SWRPT 1.0884 0.1247 2.1469 1.0002 0.0010 1.0251
SRPT 1.0971 0.1306 2.1469 1.0044 0.0045 1.0333

SPT 1.1182 0.1582 2.3381 1.0025 0.0043 1.0448
Bender02 3.4492 2.9337 27.5690 1.1993 0.2178 3.5167
MCT-Div 6.3270 7.4253 73.4019 1.3367 0.4500 7.3333

MCT 25.0726 12.1027 83.1075 46.3988 16.8691 84.9341

Table 3: Aggregate statistics over 54 platform/application configurations using 10 sites

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0004 1.0165 1.8255 0.3313 4.4468
Online 1.0037 0.0169 2.0388 1.0865 0.0711 1.9958

Online-EDF 1.0037 0.0171 2.0581 1.0853 0.0699 1.9863
Online-EGDF 1.0949 0.1225 2.4053 1.0024 0.0046 1.0588

SWRPT 1.1006 0.1275 2.0754 1.0001 0.0011 1.0458
SRPT 1.1117 0.1351 2.3741 1.0047 0.0059 1.0333

SPT 1.1311 0.1609 2.4130 1.0022 0.0053 1.0625
Bender02 3.8102 3.2639 27.3621 1.1990 0.2056 3.5672
MCT-Div 6.1890 6.9315 54.1129 1.3060 0.3802 5.6269

MCT 45.5868 20.5669 129.6119 89.6846 33.2259 157.8909

Table 4: Aggregate statistics over 54 platform/application configurations using 20 sites

Minimizing the stretch 17

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0003 1.0148 1.6636 0.4310 4.4468
Online 1.0008 0.0057 1.1244 1.0420 0.0443 1.9958

Online-EDF 1.0008 0.0057 1.1244 1.0388 0.0394 1.7131
Online-EGDF 1.0392 0.0715 1.6490 1.0007 0.0025 1.0477

SWRPT 1.0413 0.0737 1.6490 1.0001 0.0010 1.0215
SRPT 1.0528 0.0908 1.9064 1.0021 0.0044 1.0616

SPT 1.0591 0.1033 1.9130 1.0012 0.0037 1.0796
Bender02 2.6110 2.4933 27.3621 1.0886 0.1196 2.6219
MCT-Div 4.2758 5.8801 57.8379 1.1587 0.2978 7.1549

MCT 30.7513 22.6511 129.6119 51.6552 37.0841 154.5800

Table 5: Aggregate statistics over 27 platform/application configurations with workload density of 0.75

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0002 1.0087 1.6815 0.4013 3.6012
Online 1.0011 0.0068 1.1765 1.0546 0.0511 1.6325

Online-EDF 1.0010 0.0066 1.1765 1.0505 0.0463 1.5247
Online-EGDF 1.0493 0.0817 1.8226 1.0009 0.0026 1.0490

SWRPT 1.0523 0.0850 1.8226 1.0001 0.0009 1.0205
SRPT 1.0650 0.1027 1.8226 1.0027 0.0046 1.0521

SPT 1.0746 0.1185 2.0091 1.0016 0.0044 1.1001
Bender02 2.9802 2.7600 28.4016 1.1175 0.1321 3.0905
MCT-Div 5.1722 6.6865 68.3501 1.2093 0.3189 6.0890

MCT 29.0574 21.1960 118.9077 51.5397 36.9930 152.1818

Table 6: Aggregate statistics over 27 platform/application configurations with workload density of 1.00

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0004 1.0165 1.6873 0.3835 3.9253
Online 1.0017 0.0086 1.1490 1.0670 0.0553 1.7945

Online-EDF 1.0016 0.0086 1.1556 1.0615 0.0508 1.7877
Online-EGDF 1.0623 0.0936 1.7260 1.0013 0.0030 1.0311

SWRPT 1.0671 0.0987 1.7649 1.0001 0.0009 1.0226
SRPT 1.0779 0.1118 2.1469 1.0035 0.0051 1.0907

SPT 1.0933 0.1323 2.0929 1.0022 0.0047 1.0957
Bender02 3.2584 2.8377 26.5854 1.1506 0.1511 2.4128
MCT-Div 5.8173 6.8755 60.7281 1.2690 0.3637 5.8874

MCT 27.7061 20.1537 107.3472 51.2116 36.9157 157.8909

Table 7: Aggregate statistics over 27 platform/application configurations with workload density of 1.25

18 A. Legrand, A. Su, F. Vivien

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0004 1.0167 1.6898 0.3734 3.2586
Online 1.0020 0.0102 1.2634 1.0744 0.0575 1.7630

Online-EDF 1.0020 0.0102 1.2634 1.0734 0.0571 1.7352
Online-EGDF 1.0739 0.1039 1.7812 1.0017 0.0035 1.0707

SWRPT 1.0786 0.1077 1.9008 1.0002 0.0013 1.0433
SRPT 1.0899 0.1195 1.9914 1.0041 0.0051 1.0440

SPT 1.1079 0.1445 2.4130 1.0025 0.0049 1.0583
Bender02 3.4825 2.9844 25.9149 1.1826 0.1767 3.1846
MCT-Div 6.3037 7.1902 60.4304 1.3240 0.4200 6.2201

MCT 26.4973 19.5775 94.3396 50.7819 36.8234 157.7347

Table 8: Aggregate statistics over 27 platform/application configurations with workload density of 1.50

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0002 1.0084 1.6801 0.3566 3.3490
Online 1.0030 0.0118 1.2390 1.0995 0.0721 1.8607

Online-EDF 1.0030 0.0117 1.2390 1.0979 0.0716 1.8497
Online-EGDF 1.1006 0.1269 2.0188 1.0026 0.0040 1.0476

SWRPT 1.1069 0.1312 1.9647 1.0002 0.0012 1.0277
SRPT 1.1159 0.1379 1.9647 1.0056 0.0054 1.0373

SPT 1.1430 0.1668 2.6495 1.0034 0.0059 1.1195
Bender02 3.9233 3.2009 27.5690 1.2574 0.2295 4.0166
MCT-Div 7.4813 7.9766 55.3821 1.4696 0.5681 9.4111

MCT 24.9462 18.5232 95.2381 50.4874 36.8712 156.0182

Table 9: Aggregate statistics over 27 platform/application configurations with workload density of 2.00

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0002 1.0070 1.6349 0.3399 2.9322
Online 1.0063 0.0236 2.0388 1.1461 0.0909 2.0343

Online-EDF 1.0063 0.0237 2.0581 1.1427 0.0905 2.0392
Online-EGDF 1.1433 0.1669 2.4053 1.0054 0.0056 1.0588

SWRPT 1.1601 0.1754 2.5307 1.0003 0.0016 1.0458
SRPT 1.1614 0.1695 2.3741 1.0087 0.0058 1.0561

SPT 1.2102 0.2190 2.8295 1.0051 0.0071 1.1148
Bender02 4.5031 3.4066 23.2689 1.4347 0.3627 5.2022
MCT-Div 8.9719 8.7093 73.4019 1.8075 0.8904 11.0440

MCT 23.1295 17.1353 121.6338 50.2310 37.1835 156.9455

Table 10: Aggregate statistics over 27 platform/application configurations with workload density of 3.00

Minimizing the stretch 19

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0003 1.0167 1.4979 0.3444 3.3299
Online 1.0024 0.0113 1.3026 1.0701 0.0564 1.7044

Online-EDF 1.0024 0.0111 1.3026 1.0655 0.0539 1.7017
Online-EGDF 1.0592 0.1095 2.1947 1.0022 0.0047 1.0707

SWRPT 1.0639 0.1174 2.5307 1.0003 0.0018 1.0458
SRPT 1.0690 0.1185 2.1328 1.0035 0.0055 1.0907

SPT 1.0808 0.1497 2.8295 1.0021 0.0061 1.1195
Bender02 2.3317 2.0982 22.4182 1.1401 0.2223 5.2022
MCT-Div 3.2875 4.5014 62.0873 1.2246 0.4815 11.0440

MCT 27.0797 18.8117 129.6119 53.5436 36.7236 157.8909

Table 11: Aggregate statistics over 54 platform/application configurations with 3 reference databases

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0003 1.0166 1.7476 0.3742 4.4468
Online 1.0027 0.0153 2.0388 1.0870 0.0821 2.0343

Online-EDF 1.0026 0.0154 2.0581 1.0845 0.0807 2.0392
Online-EGDF 1.0854 0.1192 2.0460 1.0021 0.0038 1.0561

SWRPT 1.0924 0.1263 2.0659 1.0001 0.0007 1.0205
SRPT 1.1020 0.1314 2.1469 1.0048 0.0056 1.0565

SPT 1.1255 0.1625 2.4009 1.0029 0.0051 1.0796
Bender02 3.8022 3.1393 28.4016 1.2306 0.2509 4.3492
MCT-Div 7.1260 7.5863 68.3501 1.4255 0.5959 10.1591

MCT 26.5667 20.2844 117.3514 49.7426 37.0234 157.7347

Table 12: Aggregate statistics over 54 platform/application configurations with 10 reference databases

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0003 1.0165 1.7732 0.3662 4.1263
Online 1.0023 0.0111 1.2634 1.0848 0.0751 1.9958

Online-EDF 1.0024 0.0112 1.2634 1.0825 0.0734 1.8497
Online-EGDF 1.0897 0.1208 2.4053 1.0020 0.0035 1.0323

SWRPT 1.0971 0.1240 2.1458 1.0001 0.0005 1.0133
SRPT 1.1106 0.1354 2.3741 1.0050 0.0055 1.0411

SPT 1.1379 0.1626 2.6495 1.0031 0.0049 1.0462
Bender02 4.2474 3.3475 27.5690 1.2453 0.2374 3.8653
MCT-Div 8.6029 8.5496 73.4019 1.4696 0.5736 9.4838

MCT 27.3910 21.1527 111.3333 49.6653 37.0615 149.3393

Table 13: Aggregate statistics over 54 platform/application configurations with 20 reference databases

20 A. Legrand, A. Su, F. Vivien

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0001 1.0041 1.6418 0.4515 4.4468
Online 1.0016 0.0096 1.1991 1.1178 0.0968 2.0343

Online-EDF 1.0015 0.0094 1.1765 1.1115 0.0957 2.0392
Online-EGDF 1.0742 0.1203 2.4053 1.0024 0.0038 1.0588

SWRPT 1.0690 0.1154 2.3263 1.0003 0.0015 1.0458
SRPT 1.0706 0.1126 2.1328 1.0041 0.0046 1.0565

SPT 1.0883 0.1461 2.6785 1.0018 0.0044 1.0864
Bender02 2.0534 1.9157 28.4016 1.1277 0.1771 4.3492
MCT-Div 3.6172 5.4143 68.3501 1.2344 0.4738 10.3450

MCT 14.5871 8.7936 121.6338 30.5590 18.2418 115.3582

Table 14: Aggregate statistics over 54 platform/application configurations with database availability of 30%

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0003 1.0167 1.7546 0.3262 3.7500
Online 1.0028 0.0151 2.0388 1.0726 0.0507 1.7044

Online-EDF 1.0028 0.0153 2.0581 1.0705 0.0494 1.7017
Online-EGDF 1.0960 0.1267 2.0936 1.0025 0.0043 1.0561

SWRPT 1.1025 0.1352 2.0936 1.0002 0.0012 1.0373
SRPT 1.1083 0.1364 2.0912 1.0047 0.0055 1.0561

SPT 1.1266 0.1657 2.8295 1.0024 0.0048 1.1148
Bender02 2.9329 2.0364 27.5690 1.1826 0.1834 4.0166
MCT-Div 4.9589 5.2580 73.4019 1.2980 0.4053 8.0257

MCT 27.0743 16.7717 91.4105 50.1104 30.3253 128.8167

Table 15: Aggregate statistics over 54 platform/application configurations with database availability of 60%

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0004 1.0165 1.6222 0.3442 3.2160
Online 1.0031 0.0128 1.2715 1.0515 0.0386 1.3593

Online-EDF 1.0030 0.0127 1.2715 1.0504 0.0384 1.3593
Online-EGDF 1.0642 0.1014 2.1947 1.0013 0.0039 1.0707

SWRPT 1.0818 0.1166 2.5307 1.0000 0.0006 1.0240
SRPT 1.1027 0.1359 2.3741 1.0045 0.0064 1.0907

SPT 1.1294 0.1649 2.5322 1.0039 0.0065 1.1195
Bender02 5.3951 3.6954 27.3621 1.3057 0.3060 5.2022
MCT-Div 10.4401 9.1034 67.1243 1.5873 0.7005 11.0440

MCT 39.3782 23.3925 129.6119 72.2866 44.4828 157.8909

Table 16: Aggregate statistics over 54 platform/application configurations with database availability of 90%

	1 Introduction
	2 Applications and Modeling
	2.1 Fundamental properties: Divisibility, Preemption and Uniform Computation
	2.2 Platform and application model

	3 Objective functions
	3.1 Defining a fair objective function
	3.2 A few structural remarks

	4 Heuristics for the uni-processor case
	4.1 Minimizing max- and sum-flow
	4.2 Minimizing the sum-stretch
	4.3 Minimizing the maximum stretch
	4.3.1 The off-line case
	4.3.2 The on-line case

	5 Simulation results
	5.1 Simulation Settings
	5.2 Optimization of the on-line heuristic
	5.3 Simulation Results and Analysis

	6 Conclusion
	A Lower bound on the competitive ratio of SWRPT
	B Additional simulation results

