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Abstract

In this paper, we assess the impact of heterogeneity for scheduling independent
tasks on master-slave platforms. We assume a realistic one-port model where
the master can communicate with a single slave at any time-step. We target
on-line scheduling problems, and we focus on simpler instances where all tasks
have the same size. While such problems can be solved in polynomial time
on homogeneous platforms, we show that there does not exist any optimal
deterministic algorithm for heterogeneous platforms. Whether the source of
heterogeneity comes from computation speeds, or from communication band-
widths, or from both, we establish lower bounds on the competitive ratio of any
deterministic algorithm. We provide such bounds for the most important ob-
jective functions: the minimization of the makespan (or total execution time),
the minimization of the maximum response time (difference between comple-
tion time and release time), and the minimization of the sum of all response
times. Altogether, we obtain nine theorems which nicely assess the impact of
heterogeneity on on-line scheduling. These theoretical contributions are com-
plemented on the practical side by the implementation of several heuristics on
a small but fully heterogeneous MPI platform. Our (preliminary) results show
the superiority of those heuristics which fully take into account the relative
capacity of the communication links.

Keywords: Scheduling, Master-slave platforms, Heterogeneous computing, On-line

Résumé

Dans cet article, nous regardons l’impact de l’hétérogénéité sur l’ordonnance-
ment de tâches indépendantes sur une plate-forme mâıtre-esclave. Nous sup-
posons avoir un modèle un-port, où le mâıtre ne peut communiquer qu’à un seul
esclave à la fois. Nous regardons les problèmes d’ordonnancement à la volée,
et nous nous concentrons sur les cas simples où toutes les tâches sont indépen-
dantes et de même taille. Tandis que de tels problèmes peuvent être résolus
de façon polynomiale sur des plates-formes homogènes, nous montrons qu’il
n’existe pas d’algorithme optimal pour des plates-formes hétérogènes, que la
source de l’hétérogénéité vienne des processeurs, des bandes passantes, ou des
deux à la fois. Dans tous les cas, nous donnons des bornes inférieures de com-
pétitivité pour les fonctions objectives suivantes : la minimisation du makespan
(temps total d’exécution), la minimisation du temps de réponse maximal (dif-
férence entre la date d’arrivée et la date de fin de calcul), et la minimisation de
la somme des temps de réponse. En tout, nous obtenons neuf théorèmes, qui
traduisent l’impact de l’hétérogénéité sur l’ordonnancement à la volée. Ces con-
tributions théoriques sont complétées sur le plan pratique par l’implémentation
de plusieurs heuristiques sur une plate-forme MPI, petite mais hétérogène. Nos
résultats (préliminaires) montrent la supériorité des heuristiques qui prennent
pleinement en compte la capacité des liens de communication.

Mots-clés: Ordonnancement en ligne, Ordonnancement hors-ligne, Calcul hétérogène,
Plate-forme mâıtre-esclave
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1 Introduction

The main objective of this paper is to assess the impact of heterogeneity for scheduling independent
tasks on master-slave platforms. We make two important assumptions that render our approach
very significant in practice. First we assume that the target platform is operated under the one-
port model, where the master can communicate with a single slave at any time-step. This model is
much more realistic than the standard model from the literature, where the number of simultaneous
messages involving a processor is not bounded. Second we consider on-line scheduling problems,
i.e., problems where release times and sizes of incoming tasks are not known in advance. Such
dynamic scheduling problems are more difficult to deal with than their static counterparts (for
which all task characteristics are available before the execution begins) but they encompass a
broader spectrum of applications.

We endorse the somewhat restrictive hypothesis that all tasks are identical, i.e., that all tasks
are equally demanding in terms of communications (volume of data sent by the master to the slave
which the task is assigned to) and of computations (number of flops required for the execution). We
point out that many important scheduling problems involve large collections, or bags, of identical
tasks [10, 1].

Without the hypothesis of having same-size tasks, the impact of heterogeneity cannot be stud-
ied. Indeed, scheduling different-size tasks on a homogeneous platform reduced to a master and
two identical slaves, without paying any cost for the communications from the master, and with-
out any release time, is already an NP-hard problem [13]. In other words, the simplest (off-line)
version is NP-hard on the simplest (two-slave) platform.

On the contrary, scheduling same-size tasks is easy on fully homogeneous platforms. Consider a
master-slave platform with m slaves, all with the same communication and computation capacity;
consider a set of identical tasks, whose release times are not known in advance. An optimal
approach to solve this on-line scheduling problem is the following list-scheduling strategy: process
tasks in a FIFO order, according to their release times; send the first unscheduled task to the
processor whose ready-time is minimum. Here, the ready-time of a processor is the time at
which it has completed the execution of all the tasks that have already been assigned to it. It
is striking that this simple strategy is optimal for many classical objective functions, including
the minimization of the makespan (or total execution time), the minimization of the maximum
response time (difference between completion time and release time), and the minimization of the
sum of the response times.

On-line scheduling of same-size tasks on heterogeneous platforms is much more difficult. In this
paper, we study the impact of heterogeneity from two sources. First we consider a communication-
homogeneous platform, i.e., where communication links are identical: the heterogeneity comes
solely from the computations (we assume that the slaves have different speeds). On such platforms,
we show that there does not exist any optimal deterministic algorithm for on-line scheduling. This
holds true for the previous three objective functions (makespan, maximum response time, sum of
response times). We even establish lower bounds on the competitive ratio of any deterministic
algorithm. For example, we prove that there exist problem instances where the makespan of any
deterministic algorithm is at least 1.25 times larger than that of the optimal schedule. This means
that the competitive ratio of any deterministic algorithm is at least 1.25. We prove similar results
for the other objective functions.

The second source of heterogeneity is studied with computation-homogeneous platforms, i.e.,
where computation speeds are identical: the heterogeneity comes solely from the different-speed
communication links. In this context, we prove similar results, but with different competitive
ratios.

Not surprisingly, when both sources of heterogeneity add up, the complexity goes beyond
the worst scenario with a single source. In other words, for fully heterogeneous platforms, we
derive competitive ratios that are higher than the maximum of the ratios with a single source of
heterogeneity.

The main contributions of this paper are mostly theoretical. However, on the practical side,
we have implemented several heuristics on a small but fully heterogeneous MPI platform. Our



2 J.-F. Pineau, Y. Robert, F. Vivien

(preliminary) results show the superiority of those heuristics which fully take into account the
relative capacity of the communication links.

The rest of the paper is organized as follows. In Section 2, we state some notations for the
scheduling problems under consideration. Section 3 is devoted to the theoretical results. We
start in Section 3.1 with a global overview of the approach and a summary of all results: three
platform types and three objective functions lead to nine theorems! We study communication-
homogeneous platforms in Section 3.2, computation-homogeneous platforms in Section 3.3, and
fully heterogeneous platforms in Section 3.4. We provide an experimental comparison of several
scheduling heuristics in Section 4. Section 5 is devoted to an overview of related work. Finally,
we state some concluding remarks in Section 6.

2 Framework

Assume that the platform is composed of a master and m slaves P1, P2, . . . , Pm. Let cj be the
time needed by the master to send a task to Pj , and let pj be the time needed by Pj to execute a
task. As for the tasks, we simply number them 1, 2, . . . , i, . . . We let ri be the release time of task
i, i.e., the time at which task i becomes available on the master. In on-line scheduling problems,
the ri’s are not known in advance. Finally, we let Ci denote the end of the execution of task i
under the target schedule.

To be consistent with the literature [17, 9], we describe our scheduling problems using the
notation α | β | γ where:

α: the platform– As in the standard, we use P for platforms with identical processors, and
Q for platforms with different-speed processors. As we only target sets of same-size tasks,
we always fall within the model of uniform processors: the execution time of a task on a
processor only depends on the processor running it and not on the task itself. We add MS
to this field to indicate that we work with master-slave platforms.

β: the constraints– We write on-line for on-line problems. We also write cj = c for communi-
cation-homogeneous platforms, and pj = p for computation-homogeneous platforms.

γ: the objective– We deal with three objective functions:

• the makespan or total execution time max Ci;

• the maximum flow max-flow or maximum response time max (Ci − ri): indeed, Ci− ri

is the time spent by task i in the system;

• the sum of response times
∑

(Ci − ri) or sum-flow, which is equivalent to the sum of
completion times

∑
Ci (because

∑
ri is a constant independent of the scheduling).

3 Theoretical results

3.1 Overview and summary

Given a platform (say, with homogeneous communication links) and an objective function (say,
makespan minimization), how can we establish a bound on the competitive ratio on the perfor-
mance of any deterministic scheduling algorithm? Intuitively, the approach is the following. We
assume a scheduling algorithm, and we run it against a scenario elaborated by an adversary. The
adversary analyzes the decisions taken by the algorithm, and reacts against them. For instance if
the algorithm has scheduled a given task T on P1 then the adversary will send two more tasks,
while if the algorithm schedules T on P3 then the adversary terminates the instance. In the end,
we compute the performance ratio: we divide the makespan achieved by the algorithm by the
makespan of the optimal solution, which we determine off-line, i.e., with a complete knowledge



The impact of heterogeneity for on-line master-slave scheduling 3

Objective function
Platform type

Makespan Max-flow Sum-flow

Communication homogeneous 5
4 = 1.250 5−

√
7

2 ≈ 1.177 2+4
√

2
7 ≈ 1.093

Computation homogeneous 6
5 = 1.200 5

4 = 1.250 23
22 ≈ 1.045

Heterogeneous 1+
√

3
2 ≈ 1.366

√
2 ≈ 1.414

√
13−1
2 ≈ 1.302

Table 1: Lower bounds on the competitive ratio of on-line algorithms, depending on the platform
type and on the objective function.

of the problem instance (all tasks and their release dates). In one execution (task T on P1) this
performance ratio will be, say, 1.1 while in another one (task T on P3) it will be, say, 1.2. Clearly,
the minimum of the performance ratios over all execution scenarios is the desired bound on the
competitive ratio of the algorithm: no algorithm can do better than this bound!

Because we have three platform types (communication-homogeneous, computation-homoge-
neous, fully heterogeneous) and three objective functions (makespan, max-flow, sum-flow), we
have nine bounds to establish. Table 1 summarizes the results, and shows the influence on the
platform type on the difficulty of the problem. As expected, mixing both sources of heterogeneity
(i.e., having both heterogeneous computations and communications) renders the problem the most
difficult.

3.2 Communication-homogeneous platforms

In this section, we have cj = c but different-speed processors. We order them so that P1 is the
fastest processor (p1 is the smallest computing time pi), while Pm is the slowest processor.

Theorem 1. There is no scheduling algorithm for the problem Q,MS | online, ri, pj, cj =
c | max Ci with a competitive ratio less than 5

4 .

Proof. Suppose the existence of an on-line algorithm A with a competitive ratio ρ = 5
4 − ε, with

ε > 0. We will build a platform and study the behavior of A opposed to our adversary. The
platform consists of two processors, where p1 = 3, p2 = 7, and c = 1.

Initially, the adversary sends a single task i at time 0. A sends the task i either on P1, achieving
a makespan at least1 equal to c + p1 = 4, or on P2, with a makespan at least equal to c + p2 = 8.
At time t1 = c, we check whether A made a decision concerning the scheduling of i, and the
adversary reacts consequently:

1. If A did not begin the sending of the task i, the adversary does not send other tasks. The
best makespan is then t1 + c + p1 = 5. As the optimal makespan is 4, we have a competitive
ratio of 5

4 > ρ. This refutes the assumption on ρ. Thus the algorithm A must have scheduled
the task i at time c.

2. If A scheduled the task i on P2 the adversary does not send other tasks. The best possible
makespan is then equal to c + p2 = 8, which is even worse than the previous case. Conse-
quently, algorithm A does not have another choice than to schedule the task i on P1 in order
to be able to respect its competitive ratio.

At time t1 = c, the adversary sends another task, j. In this case, we look, at time t2 = 2c, at the
assignment A made for j:

1. If j is sent on P2, the adversary does not send any more task. The best achievable makespan
is then max{c + p1, 2c + p2} = max{1 + 3, 2 + 7} = 9, whereas the optimal is to send the
two tasks to P1 for a makespan of max{c + 2p1, 2c + p1} = 7. The competitive ratio is then
9
7 > 5

4 > ρ.

1Nothing forces A to send the task i as soon as possible.
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2. If j is sent on P1 the adversary sends a last task at time t2 = 2c. Then the schedule has the
choice to execute the last task either on P1 for a makespan of max{c+3p1, 2c+2p1, 3c+p1} =
max{10, 6} = 10, or on P2 for a makepsan of max{c + 2p1, 3c + p2} = max{6, 5, 10} = 10.
The best achievable makespan is then 10. However, scheduling the first task on P2 and the
two others on P1 leads to a makespan of max{c + p2, 2c + 2p1, 3c + p1} = max{8, 8, 6} = 8.
The competitive ratio is therefore at least equal to 10

8 = 5
4 > ρ.

3. If j is not sent yet, then the adversary sends a last task at time t2 = c2. A has the choice to
execute j on P1, and to achieve a makespan worse than the previous case, or on P2. And it has
then the choice to send k either on P2 for a makespan of max{c+p1, t2+c+p2+max{c, p2}} =
max{4, 17} = 17, or on P1 for a makespan of max{c + 2p1, t2 + c + p2, t2 + 2c + p1} =
max{7, 10, 7} = 10. The best achievable makespan is then 10. The competitive ratio is
therefore at least equal to 10

8 = 5
4 > ρ. Hence the desired contradiction.

Theorem 2. There is no scheduling algorithm for the problem Q,MS | online, ri, pj , cj =

c | ∑
(Ci − ri) with a competitive ratio less than 2+4

√
2

7 .

Proof. Suppose the existence of an on-line algorithm A with a competitive ratio ρ = 2+4
√

2
7 − ε,

with ε > 0. We will build a platform and study the behavior of A opposed to our adversary. The
platform consists of two processors, where p1 = 2, p2 = 4

√
2− 2, and c = 1.

Initially, the adversary sends a single task i at time 0. A sends the task i either on P1,
achieving a sum-flow at least equal to c + p1 = 3, or on P2, with a sum-flow at least equal to
c + p2 = 4

√
2− 1. At time t1 = c, we check whether A made a decision concerning the scheduling

of i, and the adversary reacts consequently:

1. If A did not begin the sending of the task i, the adversary does not send other tasks. The
best sum-flow is then t1 + c + p1 = 4. As the optimal sum-flow is 3, we have a competitive
ratio of 4

3 > ρ. This refutes the assumption on ρ. Thus the algorithm A must have scheduled
the task i at time c.

2. If A scheduled the task i on P2 the adversary does not send other tasks. The best possible
sum-flow is then equal to c + p2 = 4

√
2 − 1, which is even worse than the previous case.

Consequently, algorithm A does not have another choice than to schedule the task i on P1

in order to be able to respect its competitive ratio.

At time t1 = c, the adversary sends another task, j. In this case, we look, at time t2 = 2c, at the
assignment A made for j:

1. If j is sent on P2, the adversary does not send any more task. The best achievable sum-flow
is then (c + p1) + ((2c + p2) − t1) = 2 + 4

√
2, whereas the optimal is to send the two tasks

to P1 for a sum-flow of (c + p1) + (max{2c + p1, c + 2p1} − t1) = 7. The competitive ratio is

then 2+4
√

2
7 > ρ.

2. If j is sent on P1 the adversary sends a last task at time t2 = 2c. Then the schedule has the
choice to execute the last task either on P1 for a sum-flow of (c + p1) + (max{c + 2p1, 2c +
p1}− t1) + (max{3c + p1, c + 3p1}− t2) = 12, or on P2 for a sum-flow of (c + p1) + (max{c +
2p1, 2c+p1}− t1)+((3c+p2)− t2) = 6+4

√
2. The best achievable sum-flow is then 6+4

√
2.

However, scheduling the second task on P2 and the two others on P1 leads to a sum-flow of
(c + p1) + ((2c + p2)− t1) + (max{3c + p1, c + 2p1} − t2) = 5 + 4

√
2. The competitive ratio

is therefore at least equal to 6+4
√

2
5+4

√
2

= 2+4
√

2
7 > ρ.

3. If j is not send yet, then the adversary sends a last task k at time t2 = 2c. Then the schedule
has the choice to execute j either on P1, and achieving a sum-flow worse than the previous
case, or on P2. Then, it can choose to execute the last task either on P2 for a sum-flow of
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(c + p1) + (t2 + c + p2 − t1) + (t2 + c + p2 + max{c, p2} − t2) = 12
√

2 + 2, or on P1 for a
sum-flow of (c + p1) + (t2 + c + p2 − t1) + (max{t2 + c + p1, c + 2p1} − t2) = 7 + 4

√
2. The

best achievable sum-flow is then 7 + 4
√

2 which is even worse than the previous case. Hence
the desired contradiction.

Theorem 3. There is no scheduling algorithm for the problem Q,MS | online, ri, pj, cj =

c | max (Ci − ri) with a competitive ratio less than 5−
√

7
2 .

Proof. Suppose the existence of an on-line algorithm A with a competitive ratio ρ = 5−
√

7
2 − ε,

with ε > 0. We will build a platform and study the behavior of A opposed to our adversary. The

platform consists of two processors, where p1 = 2+
√

7
3 , p2 = 1+2

√
7

3 , and c = 1.
Initially, the adversary sends a single task i at time 0. A sends the task i either on P1,

achieving a max-flow at least equal to c + p1 = 5+
√

7
3 , or on P2, with a max-flow at least equal to

c+p2 = 4+2
√

7
3 . At time τ = 4−

√
7

3 , we check whether A made a decision concerning the scheduling
of i, and the adversary reacts consequently:

1. If A did not begin the sending of the task i, the adversary does not send other tasks. The

best possible max-flow is then τ + c + p1 = 3. As the optimal max-flow is 5+
√

7
3 , we have

a competitive ratio of 9
5+

√
7

= 5−
√

7
2 > ρ. This refutes the assumption on ρ. Thus the

algorithm A must have scheduled the task i at time τ .

2. If A scheduled the task i on P2 the adversary does not send other tasks. The best possible

max-flow is then equal to 4+2
√

7
3 , which is even worse than the previous case. Consequently,

algorithm A does not have another choice than to schedule the task i on P1 in order to be
able to respect its competitive ratio.

At time τ = 4−
√

7
3 , the adversary sends another task, j. The best schedule would have been to

send the first task on P2 and the second on P1 achieving a max-flow of max{c + p2, 2c + p1− τ} =

max{ 4+2
√

7
3 , 4+2

√
7

3 } = 4+2
√

7
3 . We look at the assignment A made for j:

1. If j is sent on P2, the best achievable max-flow is then max{c+p1, 2c+p2−τ} = max{ 5+
√

7
3 , 1+√

7} = 1 +
√

7, whereas the optimal is 4+2
√

7
3 . The competitive ratio is then 5−

√
7

2 > ρ.

2. If j is sent on P1, the best possible max-flow is then max{c+p1,max{c+2p1, 2c+p1}−τ} =

max{ 5+
√

7
3 , 1 +

√
7} = 1 +

√
7. The competitive ratio is therefore once again equal to

5−
√

7
2 > ρ.

3.3 Computation-homogeneous platforms

In this section, we have pj = p but processor links with different capacities. We order them, so
that P1 is the fastest communicating processor (c1 is the smallest computing time ci). Just as in
Section 3.2, we can bound the competitive ratio of any deterministic algorithm:

Theorem 4. There is no scheduling algorithm for the problem P,MS | online, ri, pj = p, cj |
max Ci whose competitive ratio ρ is strictly lower than 6

5 .

Proof. Assume that there exists a deterministic on-line algorithm A whose competitive ratio is
ρ = 6

5 − ε, with ε > 0. We will build a platform and an adversary to derive a contradiction. The
platform is made up with two processors P1 and P2 such that p1 = p2 = p = max{5, 12

25ε
}, c1 = 1

and c2 = p

2 .
Initially, the adversary sends a single task i at time 0. A executes the task i, either on P1 with

a makespan at least equal to 1 + p, or on P2 with a makespan at least equal to 3p

2 .
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At time-step p

2 , we check whether A made a decision concerning the scheduling of i, and which
one:

1. If A scheduled the task i on P2 the adversary does not send other tasks. The best possible
makespan is then 3p

2 . The optimal scheduling being of makespan 1+p, we have a competitive
ratio of

ρ ≥
3p

2

1 + p
=

3

2
− 3

2(p + 1)
>

6

5

because p ≥ 5 by assumption. This contradicts the hypothesis on ρ. Thus the algorithm A
cannot schedule task i on P2.

2. If A did not begin to send the task i, the adversary does not send other tasks. The best
makespan that can be achieved is then equal to p

2 + (1 + p) = 1 + 3p

2 , which is even worse
than the previous case. Consequently, the algorithm A does not have any other choice than
to schedule task i on P1.

At time-step p

2 , the adversary sends three tasks, j, k and l. No schedule which executes three of
the four tasks on the same processor can have a makespan lower than 1+3p (minimum duration of
a communication and execution without delay of the three tasks). We now consider the schedules
which compute two tasks on each processor. Since i is computed on P1, we have three cases to
study, depending upon which other task (j, k, or l) is computed on P1:

1. If j is computed on P1, at best we have:

(a) Task i is sent to P1 during the interval [0, 1] and is computed during the interval [1, 1+p].

(b) Task j is sent to P1 during the interval [ p

2 , 1 + p

2 ] and is computed during the interval
[1 + p, 1 + 2p].

(c) Task k is sent to P2 during the interval [1+ p

2 , 1+p] and is computed during the interval
[1 + p, 1 + 2p].

(d) Task l is sent to P2 during the interval [1+p, 1+ 3p

2 ] and is computed during the interval
[1 + 2p, 1 + 3p].

The makespan of this schedule is then 1 + 3p.

2. If k is computed on P1:

(a) Task i is sent to P1 during the interval [0, 1] and is computed during the interval [1, 1+p].

(b) Task j is sent to P2 during the interval [ p

2 , p] and is computed during the interval [p, 2p].

(c) Task k is sent to P1 during the interval [p, 1 + p] and is computed during the interval
[1 + p, 1 + 2p].

(d) Task l is sent to P2 during the interval [1+p, 1+ 3p

2 ] and is computed during the interval
[2p, 3p].

The makespan of this scheduling is then 3p.

3. If l is computed on P1:

(a) Task i is sent to P1 during the interval [0, 1] and is computed during the interval [1, 1+p].

(b) Task j is sent to P2 during the interval [ p

2 , p] and is computed during the interval [p, 2p].

(c) Task k is sent to P2 during the interval [p, 3p

2 ] and is computed during the interval
[2p, 3p].

(d) Task l is sent to P1 during the interval [ 3p

2 , 1 + 3p

2 ] and is computed during the interval

[1 + 3p

2 , 1 + 5p

2 ].

The makespan of this schedule is then 3p.



The impact of heterogeneity for on-line master-slave scheduling 7

Consequently, the last two schedules are equivalent and are better than the first. Altogether,
the best achievable makespan is 3p. But a better schedule is obtained when computing i on P2,
then j on P1, then k on P2, and finally l on P1. The makespan of the latter schedule is equal
to 1 + 5p

2 . The competitive ratio of algorithm A is necessarily larger than the ratio of the best

reachable makespan (namely 3p) and the optimal makespan, which is not larger than 1 + 5p

2 .
Consequently:

ρ ≥ 3p

1 + 5p

2

=
6

5
− 6

5(5p + 2)
>

6

5
− 6

25p
≥ 6

5
− ε

2

which contradicts the assumption ρ = 6
5 − ε with ε > 0.

Theorem 5. There is no scheduling algorithm for the problem P,MS | online, ri, pj = p, cj |
max (Ci − ri) whose competitive ratio ρ is strictly lower than 5

4 .

Proof. Assume that there exists a deterministic on-line algorithm A whose competitive ratio is
ρ = 5

4 − ε, with ε > 0. We will build a platform and an adversary to derive a contradiction. The
platform is made up with two processors P1 and P2, such that p1 = p2 = p = 2c2− c1, and c1 = ε,
c2 = 1. Initially, the adversary sends a single task i at time 0. A executes the task i either on P1,
with a max-flow at least equal to c1 + p, or on P2 with a max-flow at least equal to c2 + p.

At time step τ = c2 − c1, we check whether A made a decision concerning the scheduling of i,
and which one:

1. If A scheduled the task i on P2 the adversary send no more task. The best possible max-flow
is then c2 + p = 3 − ε. The optimal scheduling being of max-flow c1 + p = 2, we have a
competitive ratio of

ρ ≥ c2 + p

c1 + p
=

3

2
− ε

2
>

5

4
− ε

Thus the algorithm A cannot schedule the task i on P2.

2. If A did not begin to send the task i, the adversary does not send other tasks. The best
max-flow that can be achieved is then equal to τ+c1+p

c1+p
= 3−ε

2 , which is the same than the
previous case. Consequently, the algorithm A does not have any choice but to schedule the
task i on P1.

At time-step τ , the adversary sends three tasks, j, k and l. No schedule which executes three of
the four tasks on the same processor can have a max-flow lower than max(c1 +3p−τ,max(c1, τ)+
c1 + p + max{c1, p} − τ) = 6 − 2ε. We now consider the schedules which compute two tasks on
each processor. Since i is computed on P1, we have three cases to study, depending upon which
other task (j, k, or l) is computed on P1:

1. If j is computed on P1:

(a) Task i is sent to P1 and achieved a flow of c1 + p = 2.

(b) Task j is sent to P1 and achieved a flow of max{c1 +2p−τ,max{τ, c1}+c1 +p−τ} = 3.

(c) Task k is sent to P2 and achieved a flow of max{τ, c1}+ c1 + c2 + p− τ = 3

(d) Task l is sent to P2 and achieved a flow of max{τ, c1}+c1+c2+p+max{c2, p}−τ = 5−ε.

The max-flow of this schedule is then max{τ, c1}+ c1 + c2 + p + max{c2, p} − τ = 5− ε.

2. If k is computed on P1:

(a) Task i is sent to P1 and achieved a flow of c1 + p = 2.

(b) Task j is sent to P2 and achieved a flow of max{τ, c1}+ c2 + p− τ = 3− ε.

(c) Task k is sent to P1 and achieved a flow of max{c1+2p,max{τ, c1}+c2+c1+p}−τ = 3.

(d) Task l is sent to P2 and achieved a flow of max{max{τ, c1}+ c2 +2p,max{τ, c1}+2c2 +
c1 + p} − τ = 5− 2ε.
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The max-flow of this scheduling is then max{max{τ, c1}+ c2 + 2p,max{τ, c1}+ 2c2 + c1 +
p} − τ = 5− 2ε.

3. If l is computed on P1:

(a) Task i is sent to P1 and achieved a flow of c1 + p = 2.

(b) task j is sent to P2 and achieved a flow of max{τ, c1) + c2 + p} = 3− ε.

(c) Task k is sent to P2 and achieved a flow of max{max{τ, c1}+c2 +2p,max{τ, c1}+2c2 +
p} = 5− 2ε.

(d) Task l is sent to P1 and achieved a flow of max{c1+2p,max{τ, c1}+2c2+c1+p}−τ = 4.

The max-flow of this schedule is then max{max{τ, c1}+c2+2p,max{τ, c1}+2c2+p} = 5−2ε.

Consequently, the last two schedules are equivalent and are better than the first. Altogether,
the best achievable max-flow is 5− 2ε. But a better schedule is obtained when computing i on P2,
then j on P1, then k on P2, and finally l on P1. The max-flow of the latter schedule is equal to
max{c2 + p,max{τ, c2}+ c1 + p− τ,max{max{τ, c2}+ c1 + c2 + p, c2 + 2p}− τ,max{max{τ, c2}+
2c1 + c2 + p,max{τ, c2}+ c1 + 2p} − τ} = 4. The competitive ratio of algorithm A is necessarily
larger than the ratio of the best reachable max-flow (namely 5 − 2ε) and the optimal max-flow,
which is not larger than 4. Consequently:

ρ ≥ 5− 2ε

4
=

5

4
− ε

2

which contradicts the assumption ρ = 5
4 − ε with ε > 0.

Theorem 6. There is no scheduling algorithm for the problem P,MS | online, ri, pj = p, cj |∑
(Ci − ri) whose competitive ratio ρ is strictly lower than 23/22.

Proof. Assume that there exists a deterministic on-line algorithm A whose competitive ratio is
ρ = 23/22 − ε, with ε > 0. We will build a platform and an adversary to derive a contradiction.
The platform is made up with two processors P1 and P2, such that p1 = p2 = p = 3, and c1 = 1,
c2 = 2. Initially, the adversary sends a single task i at time 0. A executes the task i either on P1,
with a max-flow at least equal to c1 + p, or on P2 with a max-flow at least equal to c2 + p.

At time step τ = c2, we check whether A made a decision concerning the scheduling of i, and
which one:

1. If A scheduled the task i on P2 the adversary sends no more task. The best possible sum-
flow is then c2 + p = 5. The optimal scheduling being of sum-flow c1 + p = 4, we have a
competitive ratio of

ρ ≥ c2 + p

c1 + p
=

5

4
>

23

22
.

Thus the algorithm A cannot schedule the task i on P2.

2. If A did not begin to send the task i, the adversary does not send other tasks. The best
sum-flow that can be achieved is then equal to τ+c1+p

c1+p
= 6

4 , which is even worse than the
previous case. Consequently, the algorithm A does not have any choice but to schedule the
task i on P1.

At time-step τ , the adversary sends three tasks, j, k, and l. We look at all the possible
schedules, with i computed on P1:

1. If all tasks are executed on P1 the sum-flow is (c1 + p)+ (max{c1 +2p,max{τ, c1}+ c1 + p−
τ) + (max{c1 + 3p,max{τ, c1}+ c1 + p + max{c1, p} − τ) + (max{c1 + 4p,max{τ, c1}+ c1 +
p + 2max{c1, p} − τ) = 28.
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2. If j is the only task executed on P2 the sum-flow is (c1 + p) + (max{τ, c1} + c2 + p − τ) +
(max{c1 + 2p,max{τ, c1} + c2 + c1 + p} − τ) + (max{c1 + 3p,max{τ, c1} + c2 + c1 + p +
max{c1, p}} − τ) = 24.

3. If k is the only task executed on P2 the sum-flow is (c1 +p)+(max{c1 +2p,max{τ, c1}+c1 +
p− τ) + (max{τ, c1}+ c1 + c2 + p− τ) + (max{c1 + 3p,max{τ, c1}+ c2 + 2c1 + p}− τ) = 23.

4. If l is the only task executed on P2 the sum-flow is (c1 +p)+(max{c1 +2p,max{τ, c1}+ c1 +
p−τ)+(max{c1+3p,max{τ, c1}+c1+p+max{c1, p}−τ)+(max{τ, c1}+2c1+c2+p−τ) = 24.

5. If j,k,l are executed on P2 the sum-flow is (c1 +p)+(max{τ, c1}+c2 +p−τ)+(max{τ, c1}+
c2 + p + max{c2, p} − τ) + (max{τ, c1}+ c2 + p + 2max{c2, p} − τ) = 28.

We now consider the schedules which compute two tasks on each processor. Since i is computed
on P1, we have three cases to study, depending upon which other task (j, k, or l) is computed on
P1:

1. If j is computed on P1 the sum-flow is: (c1 + p) + (max{c1 + 2p,max{τ, c1}+ c1 + p− τ) +
(max{τ, c1}+ c1 + c2 + p− τ) + (max{τ, c1}+ c1 + c2 + p + max{c2, p} − τ) = 24.

2. If k is computed on P1: (c1 + p) + (max{τ, c1} + c2 + p − τ) + (max{c1 + 2p,max{τ, c1} +
c2 + c1 + p} − τ) + (max{τ, c1}+ c2 + p + max{c1 + c2, p} − τ) = 23.

3. If l is computed on P1: (c1+p)+(max{τ, c1}+c2+p−τ)+(max{τ, c1}+c2+p+max{c2, p}−
τ) + (max{c1 + 2p,max{τ, c1}+ 2c2 + c1 + p} − τ) = 25.

Consequently, the best achievable sum-flow is 23. But a better schedule is obtained when comput-
ing i on P2, then j on P1, then k on P2, and finally l on P1. The sum-flow of the latter schedule
is equal to (c2 + p) + (max{τ, c2} + c1 + p − τ) + (max{max{τ, c2} + c1 + c2 + p, c2 + 2p} − τ +
max{max{τ, c2}+2c1 +c2 +p,max{τ, c2}+c1 +2p}−τ} = 22. The competitive ratio of algorithm
A is necessarily larger than the ratio of the best reachable sum-flow (namely 23) and the optimal
sum-flow, which is not larger than 22. Consequently:

ρ ≥ 23

22

which contradicts the assumption ρ = 23
22 − ε with ε > 0.

3.4 Fully heterogeneous platforms

Just as in the previous two sections, we can bound the competitive ratio of any deterministic
algorithm. As expected, having both heterogeneous computations and communications increases
the difficulty of the problem.

Theorem 7. There is no scheduling algorithm for the problem Q,MS | online, ri, pj , cj | max Ci

whose competitive ratio ρ is strictly lower than 1+
√

3
2 .

Proof. Assume that there exists a deterministic on-line algorithm A whose competitive ratio is

ρ = 1+
√

3
2 − ε, with ε > 0. We will build a platform and an adversary to derive a contradiction.

The platform is made up with three processors P1, P2, and P3 such that p1 = ε, p2 = p3 = 1+
√

3,
c1 = 1 +

√
3 and c2 = c3 = 1.

Initially, the adversary sends a single task i at time 0. A executes the task i, either on P1 with
a makespan at least equal to c1 + p1 = 1 +

√
3 + ε, or on P2 or P3, with a makespan at least equal

to c2 + p2 = c3 + p3 = 2 +
√

3.
At time-step 1, we check whether A made a decision concerning the scheduling of i, and which

one:
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1. If A scheduled the task i on P2 or P3, the adversary does not send any other task. The best
possible makespan is then c2 + p2 = c3 + p3 = 2 +

√
3. The optimal scheduling being of

makespan c1 + p1 = 1 +
√

3 + ε, we have a competitive ratio of:

ρ ≥ 2 +
√

3

1 +
√

3 + ε
>

1 +
√

3

2
− ε,

because ε > 0 by assumption. This contradicts the hypothesis on ρ. Thus the algorithm A
cannot schedule task i on P2 or P3.

2. If A did not begin to send the task i, the adversary does not send any other task. The best
makespan that can be achieved is then equal to 1+ c1 +p1 = 2+

√
3+ ε, which is even worse

than the previous case. Consequently, the algorithm A does not have any other choice than
to schedule task i on P1.

Then, at time-step τ = 1, the adversary sends two tasks, j and k. We consider all the scheduling
possibilities:

• j and k are scheduled on P1. Then the best achievable makespan is:

max{c1 + 3p1,max{c1, τ}+ c1 + p1 + max{c1, p1}} = 3(1 +
√

3) + ε,

as ε < 1+
√

3
2 .

• The first of the two jobs, j and k, to be scheduled is scheduled on P2 (or P3) and the other
one on P1. Then, the best achievable makespan is:

max{c1 + p1,max{c1, τ}+ c2 + p2,max{c1 + 2p1,max{c1, τ}+ c2 + c1 + p1}}
= max{1 +

√
3 + ε, 3 + 2

√
3,max{1 +

√
3 + 2ε, 3 + 2

√
3 + ε}

= 3 + 2
√

3 + ε.

• The first of the two jobs j and k to be scheduled is scheduled on P1 and the other one on
P2 (or P3). Then, the best achievable makespan is:

max{c1 + p1,max{max{c1, τ}+ c1 + p1, c1 + 2p1},max{c1, τ}+ c1 + c2 + p2}
= max{1 +

√
3 + ε,max{2 + 2

√
3 + ε, 1 +

√
3 + 2ε}, 4 + 3

√
3}

= 4 + 3
√

3.

• One of the jobs j and k is scheduled on P2 and the other one on P3.

max{c1 + p1,max{c1, τ}+ c2 + p2,max{c1, τ}+ c2 + c3 + p3}
= max{1 +

√
3 + ε, 3 + 2

√
3, 4 + 2

√
3}

= 4 + 2
√

3.

• The case where j and k are both executed on P2, or both on P3, leads to an even worse
makespan than the previous case. Therefore, we do not need to study it.

Therefore, the best achievable makespan for A is: 3 + 2
√

3 + ε (as ε < 1). However, we could have
scheduled i on P2, j on P3, and then k on P1, thus achieving a makespan of:

max{c2 + p2,max{c2, τ}+ c3 + p3,max{c2, τ}+ c3 + c1 + p1}
= max{2 +

√
3,max{1, 1}+ 2 +

√
3,max{1, 1}+ 2 +

√
3 + ε, }

= 3 +
√

3 + ε.
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Therefore, we have a competitive ratio of:

ρ ≥ 3 + 2
√

3 + ε

3 +
√

3 + ε
>

1 +
√

3

2
− ε.

This contradicts the hypothesis on ρ.

Theorem 8. There is no scheduling algorithm for the problem Q,MS | online, ri, pj , cj |
∑

(Ci−
ri) whose competitive ratio ρ is strictly lower than

√
13−1
2 .

Proof. Assume that there exists a deterministic on-line algorithm A whose competitive ratio is

ρ =
√

13−1
2 − ε, with ε > 0. We will build a platform and an adversary to derive a contradiction.

The platform is made up of three processors P1, P2, and P3 such that p1 = ε, p2 = p3 = τ + c1−1,

c2 = c3 = 1, and τ =

√
52c2

1
+12c1+1−(6c1+1)

4 . Note that τ < c1 and that:

lim
c1→+∞

τ

c1
=

√
13− 3

2

Therefore the exists a value N0 such that:

c1 ≥ N0 ⇒ c1 > ε and τ > ε.

The value of c1 will be defined later on. For now, we just assume that c1 ≥ N0.

Initially, the adversary sends a single task i at time 0. A executes the task i, either on P1

with a sum-flow at least equal to c1 + p1, or on P2 or P3, with a sum-flow at least equal to
c2 + p2 = c3 + p3 = τ + c1.

At time-step τ , we check whether A made a decision concerning the scheduling of i, and which
one:

1. If A scheduled the task i on P2 or P3, the adversary does not send any other task. The
best possible sum-flow is then c2 + p2 = c3 + p3 = τ + c1. The optimal scheduling being of
sum-flow c1 + p1 = c1 + ε, we have a competitive ratio of:

ρ ≥ τ + c1

c1 + ε
.

However,

lim
c1→+∞

τ + c1

c1 + ε
=

√
13−3
2 c1 + c1

c1
=

√
13− 1

2
.

Therefore, there exists a value N1 such that:

c1 ≥ N1 ⇒ τ + c1

c1 + ε
>

√
13− 1

2
− ε

2
,

which contradicts the hypothesis on ρ. We will now suppose that c1 ≥ max{N0, N1}. Then
the algorithm A cannot schedule task i on P2 or P3.

2. If A did not begin to send the task i, the adversary does not send any other task. The best
sum-flow that can be achieved is then equal to τ + c1 + p1 = τ + c1 + ε, which is even worse
than the previous case. Consequently, algorithm A does not have any other choice than to
schedule task i on P1.

Then, at time-step τ , the adversary sends two tasks, j and k. We consider all the scheduling
possibilities:
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• Tasks j and k are scheduled on P1. Then the best achievable sum-flow is:

(c1 + p1) + (max{max{c1, τ}+ c1 + p1, c1 + 2p1} − τ)

+ (max{max{c1, τ}+ c1 + p1 + max{c1, p1}, c1 + 3p1} − τ)

= 6c1 + 3p1 − 2τ

= 6c1 − 2τ + 3ε

as p1 < c1.

• The first of the two jobs, j and k, to be scheduled is scheduled on P2 (or P3) and the other
one on P1. Then, the best achievable sum-flow is:

(c1 + p1) + ((max{c1, τ}+ c2 + p2)− τ)

+ (max{max{c1, τ}+ c2 + c1 + p1, c1 + 2p1} − τ)

= 4c1 + 2 + 2p1 + p2 − 2τ

= 5c1 − τ + 1 + 2ε

• The first of the two jobs j and k to be scheduled is scheduled on P1 and the other one on
P2 (or P3). Then, the best achievable sum-flow is:

(c1 + p1) + (max{max{c1, τ}+ c1 + p1, c1 + 2p1} − τ)

+ ((max{c1, τ}+ c1 + c2 + p2)− τ)

= 5c1 + c2 + 2p1 + p2 − 2τ

= 6c1 − τ + 2ε

• One of the jobs j and k is scheduled on P2 and the other one on P3.

(c1 + p1) + ((max{c1, τ}+ c2 + p2)− τ) + ((max{c1, τ}+ c2 + c3 + p3)− τ)

= 3c1 + 3c2 + p1 + 2p2 − 2τ

= 5c1 + 1 + ε

• The case where j and k are both executed on P2, or both on P3, leads to an even worse
sum-flow than the previous case. Therefore, we do not need to study it.

Therefore, the best achievable sum-flow for A is: 5c1 − τ + 1 + 2ε (as c1 > τ > ε). However, we
could have scheduled i on P2, j on P3, and then k on P1, thus achieving a sum-flow of:

(c2 + p2) + ((max{c2, τ}+ c3 + p3)− τ) + ((max{c2, τ}+ c3 + c1 + p1)− τ)

= c1 + 3c2 + p1 + 2p2

= 3c1 + 2τ + 1 + ε.

Therefore, we have a competitive ratio of:

ρ ≥ 5c1 − τ + 1 + 2ε

3c1 + 2τ + 1 + ε

However,

lim
c1→+∞

5c1 − τ + 1 + 2ε

3c1 + 2τ + 1 + ε
= lim

c1→+∞

5c1 −
√

13−3
2 c1

3c1 + 2
√

13−3
2 c1

=

√
13− 1

2

Therefore, there exists a value N2 such that:

c1 ≥ N2 ⇒ 5c1 − τ + 1 + 2ε

3c1 + 2τ + 1 + ε
>

√
13− 1

2
− ε

2
,
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which contradicts the hypothesis on ρ.

Therefore, if we initially choose c1 greater than max{N0, N1, N2}, we obtain the desired con-
tradiction.

Theorem 9. There is no scheduling algorithm for the problem Q,MS | online, ri, pj , cj | max(Ci−
ri) whose competitive ratio ρ is strictly lower than

√
2.

Proof. Assume that there exists a deterministic on-line algorithm A whose competitive ratio is
ρ =
√

2− ε, with ε > 0. We will build a platform and an adversary to derive a contradiction. The
platform is made up of three processors P1, P2, and P3 such that p1 = ε, p2 = p3 =

√
2c1 − 1,

c1 = 2(1 +
√

2), c2 = c3 = 1, and τ = (
√

2− 1)c1. Note that τ < c1, and that c1 + p1 < p2.

Initially, the adversary sends a single task i at time 0. A executes the task i, either on P1 with
a max-flow at least equal to c1 + p1 = c1 + ε, or on P2 or P3, with a max-flow at least equal to
c2 + p2 = c3 + p3 =

√
2c1.

At time-step τ , we check whether A made a decision concerning the scheduling of i, and which
one:

1. If A scheduled the task i on P2 or P3, the adversary does not send any other task. The
best possible max-flow is then c2 + p2 = c3 + p3 =

√
2c1. The optimal scheduling being of

max-flow c1 + p1 = c1 + ε, we have a competitive ratio of:

ρ ≥ c2 + p2

c1 + p1
=

√
2c1

c1 + ε
>
√

2− ε,

as c1 >
√

2. This contradicts the hypothesis on ρ. Thus the algorithm A cannot schedule
task i on P2 or P3.

2. If A did not begin to send the task i, the adversary does not send any other task. The best
max-flow that can be achieved is then equal to τ + c1 + p1 =

√
2c1 + ε, which is even worse

than the previous case. Consequently, algorithm A does not have any other choice than to
schedule task i on P1.

Then, at time-step τ , the adversary sends two tasks, j and k. We consider all the scheduling
possibilities:

• j and k are scheduled on P1. Then the best achievable max-flow is:

max{c1 + p1,max{max{c1, τ}+ c1 + p1, c1 + 2p1} − τ,

max{max{c1, τ}+ c1 + p1 + max{c1, p1}, c1 + 3p1} − τ}
= 3c1 + p1 − τ

= (4−
√

2)c1 + ε

as p1 < c1.

• The first of the two jobs, j and k, to be scheduled is scheduled on P2 (or P3) and the other
one on P1. Then, the best achievable max-flow is:

max{c1 + p1, (max{c1, τ}+ c2 + p2)− τ,

max{max{c1, τ}+ c2 + c1 + p1, c1 + 2p1} − τ}
= c1 + c2 − τ + max{p2, c1 + p1}

= 2c1
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• The first of the two jobs j and k to be scheduled is scheduled on P1 and the other one on
P2 (or P3). Then, the best achievable max-flow is:

max{c1 + p1,max{max{c1, τ}+ c1 + p1, c1 + 2p1} − τ,

(max{c1, τ}+ c1 + c2 + p2)− τ}
= 2c1 − τ + max{p1, c2 + p2}

= 3c1

• One of the jobs j and k is scheduled on P2 and the other one on P3.

max{c1 + p1, (max{c1, τ}+ c2 + p2)− τ, (max{c1, τ}+ c2 + c3 + p3)− τ}
= c1 + 2c2 + p2 − τ

= 2c1 + 1

• The case where j and k are both executed on P2, or both on P3, leads to an even worse
max-flow than the previous case. Therefore, we do not need to study it.

Therefore, the best achievable max-flow for A is: 2c1. However, we could have scheduled i on P2,
j on P3, and then k on P1, thus achieving a max-flow of:

max{c2 + p2, (max{c2, τ}+ c3 + p3)− τ, (max{c2, τ}+ c3 + c1 + p1)− τ}
= max{c2, τ}+ c2 + max{p2, c1 + p1} − τ

=
√

2c1

Therefore, we have a competitive ratio of:

ρ ≥ 2c1√
2

=
√

2,

which contradicts the hypothesis on ρ.

4 MPI experiments

To complement the previous theoretical results, we looked at some efficients on-line algorithms,
and we compared them experimentally on different kind of platforms. In particular, we include
in the comparison the two new heuristics of [23], which were specifically designed to work well on
communication-homogeneous and on computation-homogeneous platforms respectively.

4.1 The algorithms

We describe here the different algorithms used in the practical tests:

1. SRPT : Shortest Remaining Processing Time is a well known algorithm on a platform where
preemption is allowed, or with task of different size. But in our case, with identical tasks
and no preemption, its behavior is the following: it sends a task to the fastest free slave; if
no slave is currently free, it waits for the first slave to finish its task, and then sends it a new
one.

2. LS : List Scheduling can be viewed as the static version of SRPT. It uses its knowledge
of the system and sends a task as soon as possible to the slave that would finish it first,
according to the current load estimation (the number of tasks already waiting for execution
on the slave).
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3. RR : Round Robin is the simplest algorithm. It simply sends a task to each slave one by
one, according to a prescribed ordering. This ordering first choose the slave with the smallest
pi + ci, then the slave with the second smallest value, etc.

4. RRC has the same behavior than RR, but uses a different ordering: it sends the tasks
starting from the slave with the smallest ci up to the slave with the largest one.

5. RRP has the same behavior than RR, but uses yet another ordering: it sends the tasks
starting from the slave with the smallest pi up to the slave with the largest one.

6. SLJF : Scheduling the Last Job First is one of the two algorithms we built. We proved in [23]
that this algorithm is optimal to minimize the makespan on a communication-homogeneous
platform, as soon as it knows the total number of tasks, even with release-dates. As it name
says, it calculates, before scheduling the first task, the assignment of all tasks, starting with
the last one.

7. SLJFWC : Scheduling the Last Job First With Communication is a variant of SLJF
conceived to work on processor-homogeneous platforms. See [23] for a detailed description.

The last two algorithms were initially built to work with off-line models, because they need
to know the total number of tasks to perform at their best. So we transform them for on-line
execution as follows: at the beginning, we start to compute the assignment of a certain number of
tasks (the greater this number, the better the final assignment), and start to send the first tasks
to their assigned processors. Once the last assignment is done, we continue to send the remaining
tasks, each task being sent to the processor that would finish it the earliest. In other words, the
last tasks are assigned using a list scheduling policy.

4.2 The experimental platform

We build a small heterogeneous master-slave platform with five different computers, connected to
each other by a fast Ethernet switch (100 Mbit/s). The five machines are all different, both in terms
of CPU speed and in the amount of available memory. The heterogeneity of the communication
links is mainly due to the differences between the network cards. Each task will be a matrix, and
each slave will have to calculate the determinant of the matrices that it will receive. Whenever
needed, we play with matrix sizes so as to achieve more heterogeneity or on the contrary some
homogeneity in the CPU speeds or communication bandwidths. We proceed as follows: in a first
step, we send one single matrix to each slave one after a other, and we calculate the time needed to
send this matrix and to calculate its determinant on each slave. Thus, we obtain an estimation of
ci and pi, according to the matrix size. Then we determine the number of times this matrix should
be sent (nci

) and the number of times its determinant should be calculated (npi
) on each slave

in order to modify the platform characteristics so as to reach the desired level of heterogeneity.
Then, a task (matrix) assigned on Pi will actually be sent nci

times to Pi (so that ci ← nci
.ci),

and its determinant will actually be calculated npi
times by Pi (so that pi ← npi

.pi).
The experiments are as follows: for each diagram, we create ten random platforms, possibly

with one prescribed property (such as homogeneous links or processors) and we execute the dif-
ferent algorithms on it. Our platforms are composed with five machines Pi with ci between 0.01 s
and 1 s, and pi between 0.1 s and 8 s. Once the platform is created, we send one thousand tasks
on it, and we calculate the makespan, sum-flow, and max-flow obtained by each algorithm. After
having executed all algorithms on the ten platforms, we calculate the average makespan, sum-flow,
and max-flow. The following section shows the different results that have been obtained.

4.3 Results

In the following figures, we compare the seven algorithms: SRPT, List Scheduling, the three
Round-Robin variants, SLJF, and SLJFWC. For each algorithm we plot its normalized makespan,
sum-flow, and max-flow, which are represented in this order, from left to right. We normalize
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everything to the performance of SRPT, whose makespan, max-flow and sum-flow are therefore
set equal to 1.

First of all, we consider fully homogeneous platforms. Figure 1(a) shows that all static algo-
rithms perform equally well on such platforms, and exhibit better performance than the dynamic
heuristic SRPT. On communication-homogeneous platforms (Figure 1(b)), we see that RRC, which
does not take processor heterogeneity into account, performs significantly worse than the others;
we also observe that SLJF is the best approach for makespan minimization. On computation-
homogeneous platforms (Figure 1(c)), we see that RRP and SLJF, which do not take communica-
tion heterogeneity into account, perform significantly worse than the others; we also observe that
SLJFWC is the best approach for makespan minimization. Finally, on fully heterogeneous plat-
forms (Figure 1(d)), the best algorithms are LS and SLJFWC. Moreover, we see that algorithms
taking communication delays into account actually perform better.
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(b) Platforms with homogeneous com-
munication links
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(d) Fully heterogeneous platforms

Figure 1: Comparison of the seven algorithms on different platforms.

In another experiment, we try to test the robustness of the algorithms. We randomly change the
size of the matrix sent by the master at each round, by a factor of up to 10%. Figure 2 represents
the average makespan (respectively sum-flow and max-flow) compared to the one obtained on the
same platform, but with identical size tasks. Thus, we see that our algorithms are quite robust
for makespan minimization problems, but not as much for sum-flow or max-flow problems.
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Figure 2: Assessing the robustness of the algorithms.

5 Related work

We classify several related papers along the following four main lines:

Models for heterogeneous platforms– In the literature, one-port models come in two vari-
ants. In the unidirectional variant, a processor cannot be involved in more than one com-
munication at a given time-step, either a send or a receive. In the bidirectional model, a
processor can send and receive in parallel, but at most from a given neighbor in each direc-
tion. In both variants, if Pu sends a message to Pv, both Pu and Pv are blocked throughout
the communication.

The bidirectional one-port model is used by Bhat et al [7, 8] for fixed-size messages. They ad-
vocate its use because“current hardware and software do not easily enable multiple messages
to be transmitted simultaneously”. Even if non-blocking multi-threaded communication li-
braries allow for initiating multiple send and receive operations, they claim that all these
operations “are eventually serialized by the single hardware port to the network”. Experi-
mental evidence of this fact has recently been reported by Saif and Parashar [26], who report
that asynchronous MPI sends get serialized as soon as message sizes exceed a few megabytes.
Their results hold for two popular MPI implementations, MPICH on Linux clusters and IBM
MPI on the SP2.

The one-port model fully accounts for the heterogeneity of the platform, as each link has a
different bandwidth. It generalizes a simpler model studied by Banikazemi et al. [2], Liu [20],
and Khuller and Kim [16]. In this simpler model, the communication time only depends on
the sender, not on the receiver: in other words, the communication speed from a processor
to all its neighbors is the same.

Finally, we note that some papers [3, 4] depart from the one-port model as they allow a
sending processor to initiate another communication while a previous one is still on-going
on the network. However, such models insist that there is an overhead time to pay be-
fore being engaged in another operation, so there are not allowing for fully simultaneous
communications.

Task graph scheduling– Task graph scheduling is usually studied using the so-called macro-
dataflow model [21, 28, 11, 12], whose major flaw is that communication resources are not
limited. In this model, a processor can send (or receive) any number of messages in paral-
lel, hence an unlimited number of communication ports is assumed (this explains the name
macro-dataflow for the model). Also, the number of messages that can simultaneously cir-
culate between processors is not bounded, hence an unlimited number of communications
can simultaneously occur on a given link. In other words, the communication network is as-
sumed to be contention-free, which of course is not realistic as soon as the processor number
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exceeds a few units. More recent papers [30, 22, 25, 5, 6, 29] take communication resources
into account.

Hollermann et al. [14] and Hsu et al. [15] introduce the following model for task graph
scheduling: each processor can either send or receive a message at a given time-step (bidi-
rectional communication is not possible); also, there is a fixed latency between the initiation
of the communication by the sender and the beginning of the reception by the receiver. Still,
the model is rather close to the one-port model discussed in this paper.

On-line scheduling– A good survey of on-line scheduling can be found in [27, 24]. Two papers
focus on the problem of on-line scheduling for master-slaves platforms. In [18], Leung and
Zhao proposed several competitive algorithms minimizing the total completion time on a
master-slave platform, with or without pre- and post-processing. In [19], the same authors
studied the complexity of minimizing the makespan or the total response time, and proposed
some heuristics. However, none of these works take into consideration communication costs.
To the best of our knowledge, the only previously known results for on-line problems with
communication costs are those reported in our former work [23]; in the current paper, we
have dramatically improved several of the competitive ratios given in [23] and we have added
new ones.

6 Conclusion

In this paper, we have dealt with the problem of on-line scheduling independent, same-size tasks on
master-slave platforms. We enforce the one-port model, and we study the impact of heterogeneity
on the performance of scheduling algorithms.

The major contribution of this paper lies on the theoretical side, and is well summarized by
Table 1. We have provided a comprehensive set of lower bounds for the competitive ratio of any
deterministic scheduling algorithm, for each source of heterogeneity and for each target objective
function. An important direction for future work would be to see which of these bounds can be
met, if any, and to design the corresponding approximation algorithms.

On the practical side, we have to widen the scope of the MPI experiments. A detailed compar-
ison of all the heuristics that we have implemented needs to be conducted on significantly larger
platforms (with several tens of slaves). Such a comparison would, we believe, further demon-
strate the superiority of those heuristics which fully take into account the relative capacity of the
communication links.
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