Laboratoire de [UInformatique du
Parallélisme

Ecole Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON % CENTRE NATIONAL

0 DE LA RECHERCHE
n° 5668 SCIENTIFIQUE

AN

Minimizing the stretch
when scheduling flows
of divisible requests

Arnaud Legrand ,

Alan Su , October 2006
Frédéric Vivien

Research Report N° 2006-19

Ecole Normale Supérieure de
1 T %I 1N R
46 Allée d’Italie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37 ‘ I N I A
Télécopieur : +33(0)4.72.72.80.80
Adresse €lectronique : 1ip@ens-1lyon.fr

Minimizing the stretch
when scheduling flows
of divisible requests

Arnaud Legrand , Alan Su , Frédéric Vivien

October 2006

Abstract

In this paper, we consider the problem of scheduling distributed biological se-
quence comparison applications. This problem lies in the divisible load frame-
work with negligible communication costs. Thus far, very few results have
been proposed in this model. We discuss and select relevant metrics for this
framework: namely max-stretch and sum-stretch. We explain the relation-
ship between our model and the preemptive uni-processor case, and we show
how to extend algorithms that have been proposed in the literature for the
uni-processor model to the divisible multi-processor problem domain. We re-
call known results on closely related problems, we show how to minimize the
max-stretch on unrelated machines either in the divisible load model or with
preemption, we derive new lower bounds on the competitive ratio of any on-line
algorithm, we present new competitiveness results for existing algorithms, and
we develop several new on-line heuristics. We also address the Pareto opti-
mization of max-stretch. Then, we extensively study the performance of these
algorithms and heuristics in realistic scenarios. Our study shows that all pre-
viously proposed guaranteed heuristics for max-stretch for the uni-processor
model prove to be inefficient in practice. In contrast, we show our on-line
algorithms based on linear programming to be near-optimal solutions for max-
stretch. Our study also clearly suggests heuristics that are efficient for both
metrics, although a combined optimization is in theory not possible in the
general case.

Keywords: Bioinformatics, heterogeneous computing, scheduling, divisible
load, linear programming, stretch

Résumé

Dans ce rapport, nous nous intéressons a I’ordonnancement d’applications com-
parant de maniere distribuée des séquences biologiques. Ce probleme se situe
dans le domaine des taches divisibles avec cotits de communications négli-
geables. Jusqu’a présent, tres peu de résultats ont été publiés pour ce modele.
Nous discutons et sélectionnons des métriques appropriées pour notre cadre de
travail, & savoir le max-stretch et le sum-stretch. Nous expliquons les relations
entre notre modele et le cadre mono-processeur avec préemption, et nous mon-
trons comment étendre au cadre des taches divisibles sur multi-processeur les
algorithmes proposés dans la littérature pour le cas mono-processeur avec pré-
emption. Nous rappelons les résultats connus pour des problématiques proches,
nous montrons comment minimiser le max-stretch sur des machines non cor-
rélées (que les taches soient divisibles ou simplement préemptibles), nous ob-
tenons de nouvelles bornes inférieures de compétitivité pour tout algorithme
on-line, nous présentons de nouveaux résultats de compétitivité pour des al-
gorithms de la littérature, et nous proposons de nouvelles heuristiques on-line.
Nous nous intéressons également au probleme de la minimisation Pareto du
max-stretch. Ensuite, nous étudions, de maniere extensive, les performances
de tous ces algorithmes et de toutes ces heuristiques, et ce dans un cadre réa-
liste. Notre étude montre que les solutions garanties existantes minimisant le
max-stretch sur un processeur sont inefficaces dans notre cadre de travail. Ce-
pendant, nous montrons que nos algorithmes on-line basés sur la programma-
tion linéaire ont des performances proches de 'optimal pour le max-stretch. En
outre, notre étude suggere clairement les heuristiques qui sont efficaces pour
les deux métriques, bien que I'optimisation simultanée pour ces deux métriques
soit en théorie impossible dans le cas général.

Mots-clés: Bioinformatique, ordonnancement, taches divisibles,
programmation linéaire, flot pondéré, plates-formes hétérogenes

1 Introduction

The problem of searching large-scale genomic and proteomic sequence databanks
is an increasingly important bioinformatics problem. The results we present
in this paper concern the deployment of such applications in heterogeneous
parallel computing environments. In fact, this application is a part of a larger
class of applications, in which each task in the application workload exhibits an
“affinity” for particular nodes of the targeted computational platform. In the
genomic sequence comparison scenario, the presence of the required databank
on a particular node is the sole factor that constrains task placement decisions.
In this context, task affinities are determined by location and replication of the
sequence databanks in the distributed platform.

Numerous efforts to parallelize biological sequence comparison applications
have been realized (e.g., [10, 12, 28]). These efforts are facilitated by the fact that
such biological sequence comparison algorithms are typically computationally
intensive, embarrassingly parallel workloads. In the scheduling literature, this
computational model is effectively a divisible workload scheduling problem with
negligible communication overheads. The work presented in this paper concerns
this application model, particularly in the context of online scheduling (i.e., in
which the scheduler has no knowledge of any job in the workload in advance of
its release date). Thus far, this specific problem has not been considered in the
scheduling literature.

Aside from divisibility, the main difference with classical scheduling problems
lies in the fact that the platforms we target are shared by many users. Con-
sequently, we need to ensure a certain degree of fairness between the different
users and requests. Defining a fair objective that accounts for the various job
characteristics (release date, processing time) is thus the first difficulty to over-
come. After having presented our motivating application and our framework in
Section 2, we review various classical metrics in Section 3 and conclude that the
stretch of a job is an appropriate basis for evaluation. As a consequence, we
mainly focus on the max-stretch and sum-stretch metrics. To have a good back-
ground on related objectives functions and results, in Section 4 we focus on the
max-flow and sum-flow metrics. Then in Section 5 we study sum-stretch opti-
mization, in Section 6 offline max-stretch optimization, and in Section 7 Pareto
offline optimization of max-stretch. Building on the previous sections, we focus
in Section 8 on the online optimization of max-stretch. This paper contains
no section devoted to the related work as the related work will be discussed
throughout this article. However, in Section 9 we summarize the known and
new results on complexity. Finally, we present in Section 10 an experimental
evaluation of the aforementioned heuristics, and we conclude in Section 11.

The main contributions of this work are:

e OFF-LINE SUM-FLOW AND SUM-STRETCH. We show that sum-flow mini-
mization is NP-complete on unrelated machines under the divisible load
model ((R|rj, div|> F};) is NP-complete). We also show that sum-stretch
minimization is NP-complete on one machine without preemption and
also on unrelated machines under the divisible load model ((1|r;|>.S;)
and (R|r;, div|]>" S;) are NP-complete).

e OFF-LINE MAX WEIGHTED FLOW. We present polynomial-time algo-
rithms to solve the minimization of max weighted flow, off-line, on unre-

2 A. Legrand, A. Su, F. Vivien

lated machines, in the divisible load model and in the preemptive model:
(R|rj; divimax w; F;) and (R|r;; pminjmax w;F};) are polynomial.

We also propose heuristics to solve the off-line Pareto minimization of
max weighted flow, either on one machine or on unrelated machines. We
present some cases in which these heuristics are optimal and we prove
that the off-line Pareto minimization of max-flow on unrelated machines
is NP-complete.

e ON-LINE SUM-STRETCH AND MAX-STRETCH. We show that FCFS is A-
competitive for the sum-stretch and max-stretch metrics on one machine,
where A denotes the ratio of the sizes of the largest and shortest jobs
submitted to the system. We also prove that no on-line algorithm has
simultaneously better competitive ratios for these two metrics.

We show that no online algorithm has a competitive ratio less than or
equal to 1.19484 for the minimization of sum-stretch, or less than or equal
to %A‘/i_l for the minimization of max-stretch. (The previous known
bounds were respectively 1.036 and %A%)

For minimizing the sum-stretch on one machine with preemption, we show
that Smith’s ratio rule —which is then equivalent to shortest processing
time— is not an approximation algorithm and that shortest weighted re-
maining processing time is at best 2-competitive.

Finally, we propose new heuristics for the on-line optimization of max-
stretch. Through extensive simulations we compare them with solutions
found in the literature and we show their very good performance.

2 Motivating Application and Framework

2.1 Motivating Application

The only purpose of this section is to present the application that originally
motivated this work, the GriPPS [9, 17] protein comparison application. The
GriPPS framework is based on large databases of information about proteins;
each protein is represented by a string of characters denoting the sequence of
amino acids of which it is composed. Biologists need to search such sequence
databases for specific patterns that indicate biologically significant structures.
The GriPPS software enables such queries in grid environments, where the data
may be replicated across a distributed heterogeneous computing platform. To
develop a suitable application model for the GriPPS application scenario, we
performed a series of experiments to analyze the fundamental properties of the
sequence comparison algorithms used in this code. Here we report on the conclu-
sions of this study whose details can be found in Legrand, Su and Vivien [23, 22].

From our modeling perspective, the critical components of this application
are:

1. protein databanks: the reference databases of amino acid sequences,
located at fixed locations in a distributed heterogeneous computing plat-
form.

2. motifs: compact representations of amino acid patterns that are biologi-
cally important and serve as user input to the application.

Minimizing the stretch 3

3. sequence comparison servers: computational processes co-located with
protein databanks that accept as input sets of motifs and return as output
all matching entries in any subset of a particular databank.

The main characteristics of the GriPPS application are:

1. negligible communication costs. A motif is a relatively compact rep-
resentation of an amino acid pattern. Therefore, the communication over-
head induced while sending a motif to any processor is negligible compared
to the processing time of a comparison.

2. divisible loads. The processing time required for sequence comparisons
against a subset of a particular databank is linearly proportional to the
size of the subset relative to the entire databank. This property allows
us to distribute the processing of a request among many processors at the
same time without additional cost.

The GriPPS protein databank search application is therefore an example
of a linear divisible workload without communications.

In the classical scheduling literature, preemption is defined as the ability
to suspend a job at any time and to resume it, possibly on another proces-
sor, at no cost. Our application implicitly falls in this category. Indeed,
we can easily halt the processing of a request on a given processor and con-
tinue the pattern matching for the unprocessed part of the database on a
different processor (as it only requires a negligible data transfer operation
to move the pattern to the new location). From a theoretical perspective,
divisible load without communications can be seen as a generalization of
the preemptive execution model that allows for simultaneous execution of
different parts of a same job on different machines.

3. uniform machines with restricted availabilities. A set of jobs is
uniform over a set of processors if the relative execution times of jobs
over the set of processors does not depend on the nature of the jobs.
More formally, for any job J;, pi;/pir; = ki, where p;; is the time
needed to process job J; on processor i. In essence, k;; describes the
relative power of processors 7 and i’, regardless of the size or the nature
of the job being considered. Our experiments indicated a clear constant
relationship between the computation time observed for a particular motif
on a given machine, compared to the computation time measured on a
reference machine for that same motif. This trend supports the hypothesis
of uniformity. However, in practice a given databank may not be available
on all sequence comparison servers. Our model essentially represents a
uniform machines with restricted availabilities scheduling problem, which
is a specific instance of the more general unrelated machines scheduling
problem.

2.2 Framework and Notations

Formally, an instance of our problem is defined by n jobs, Ji, ..., J, and m
machines (or processors), My, ..., M,,. The job J; arrives in the system at time
r; (expressed in seconds), which is its release date; we suppose that jobs are
numbered by increasing release dates. The time at which job J; is completed

4 A. Legrand, A. Su, F. Vivien

is denoted as C;. Then, the flow time of the job J;, defined as F; = C; — r;,
is essentially the time the job spends in the system. The value p; ; denotes the
amount of time it would take for machine M; to process job J;. Note that p; ;
can be infinite if the job J; cannot be executed on the machine M;, e.g., for our
motivating application, if job J; requires a databank that is not present on the
machine M;. Finally, each job is assigned a weight or priority w;.

Due to the divisible load model, each job may be divided into an arbitrary
number of sub-jobs, of any size. Furthermore, each sub-job may be executed
on any machine at which the data dependences of the job are satisfied. Thus,
at a given moment, many different machines may be processing the same job
(with a master scheduler ensuring that these machines are working on different
parts of the job). Therefore, if we denote by «; ; the fraction of job J; processed
on M;, we enforce the following property to ensure each job is fully executed:
Vj, Zz Q5 = 1.

When a size W} can be defined for each job J; —e.g., in the uni-processor
case— we denote by A the ratio of the sizes of the largest and shortest jobs
submitted to the system: A = E?;‘;Vm‘;;)

As we have seen, for the particular case of our motivating application, we
could replace the unrelated times p; ; by the expression Wj - ¢;, where W; de-
notes the size (in Mflop) of the job J; and ¢; denotes the computational capacity
of machine M; (in second-Mflop™!). To maintain correctness for the biological
sequence comparison application, we separately maintain a list of databanks
present at each machine and enforce the constraint that a job J; may only be
executed on a machine that has a copy of all data upon which job J; depends.
However, since the theoretical results we present do not rely on these restric-
tions, we retain the more general scheduling problem formulation (i.e., unrelated
machines). As a consequence, all the values we consider in this article are non-
negative rational numbers (except the previously mentioned case in which p; ;
is infinite if J; cannot be processed on M;).

2.3 Relationships with the Uni-Processor Case with Pre-
emption

We first prove that any schedule in the uniform machines model with divisibility
has a canonical corresponding schedule in the uni-processor model with preemp-
tion. This is especially important as many interesting results in the scheduling
literature only hold for the preemptive computation model (denoted pmin).

Lemma 1. For any platform My, ..., M,, composed of uniform processors,
i.e., such that for any job J;, p;; = Wj - c;, one can define a platform made of
a single processor M with p=1/>, C%, such that:

For any divisible schedule of J1, ..., J, on {Mjy, ..., My, } there exists a pre-
emptive schedule of Jy, ..., J, on M with smaller or equal completion times.

Proof. The main idea is that our m heterogeneous processors can be seen as
an equivalent processor of power 1/, Ci Figure 1 illustrates this idea. More
formally, given an instance composed of n jobs Jy, ..., J, and m machines P,
..., Py, such that p; ; = W; - ¢;, we define Jy, ..., J,, with the same release date
as the initial jobs and a processing time p; = W;/(3_, é) Let us denote by s(*)
the time of the t-th preemption and by A(®) the length of time interval before

Minimizing the stretch)

the next preemption. Last, if we define agt) the fraction of job J; processed

on M; between the ¢-th and the (¢ + 1)—th7 preemption (i.e., during the time

interval [s(), () + AW]), by construction we have for all P;: 3 al(-fj)-pi,j <

A® then Zj agf;chi < A® | hence Zj agf;Wj < ¥ Therefore, we have
t o\ w; O\ ~
Zi Z:j O‘z(‘,J)’Wj <A® Zz c% and Zj (Zz O‘E;) S L T Ej (E, OZEJ)) Dj < AWM,

It is thus possible to process (3, ozftj)) of job J; in time interval [s(®), sG],
hence defining a valid schedule for our new instance. As preemptions in the new
schedule only occur within the ones of the old schedule, no completion time is

ever increased. []

As a consequence, any complexity result for the preemptive uni-processor
model also holds for the uniform divisible model. Thus, throughout this article,
in addition to addressing the multi-processor case, we will also closely examine
the uni-processor case.

Unfortunately, this line of reasoning is no longer valid when the computa-
tional platform exhibits restricted availability, as defined in Section 2. In the
uni-processor case, a schedule can be seen as a priority list of the jobs (see the
article of Bender, Muthukrishnan, and Rajaraman [7] for example). For this
reason, whenever we will present heuristics for the uniprocessor case they will
follow the same basic approach: maintain a priority list of the jobs and at any
moment, execute the one with the highest priority. In the multi-processor case
with restricted availability, an additional scheduling dimension must be resolved:
the spatial distribution of each job.

The example in Figure 2 explains the difficulty of this last problem. In the
uniform situation, it is always beneficial to fully distribute work across all avail-
able resources: each job’s completion time in situation B is strictly better than
the corresponding job’s completion time in situation A. However, introducing
restricted availability confounds this process. Consider a case in which tasks
may be limited in their ability to utilize some subset of the platform’s resources
(e.g., their requisite data are not present throughout the platform). In situa-
tion C of Figure 2, one task is subject to restricted availability: the P, computa-
tional resource is not able to service this task. Deciding between various schedul-
ing options in this scenario is non-trivial in the general case, so we apply the
following simple rule to build a schedule for general platforms from uni-processor

1 while some processors are idle do
heuristics: 2 Select the job with the highest priority and distribute its processing
on all appropriate processors that are available.

An other important characteristic of our problem is that we target a platform
shared by many users. As a consequence, we need to ensure a certain degree
of fairness between the different requests. Given a set of requests, how should
we share resources amongst the different requests? The next section examines
objective functions that are well-suited to achieve this notion of fairness.

6 A. Legrand, A. Su, F. Vivien

- IR e

AR ey
e T B | |
\/
Geommmion Using uniformity — Equivalent monoprocessor
of heterogeneity preemptive schedule

Figure 1: Geometrical transformation of a divisible uniform problem into a
preemptive uni-processor problem
= Ad

P {
ERERE

P

|
_L

|
|
|
A T
|
|

e i e e e

-t -t

A: initial schedule B: uniform processing C" restricted vailz;bﬂity

e Bl Bl Tl el ol

Figure 2: Illustrating the difference between the uniform model and the re-
stricted availability model.

3 Objective Functions

We first recall several common objective functions in the scheduling literature
and highlight those that are most relevant to our work (Section 3.1). Then, we
show that the optimization of certain objectives are mutually exclusive (Sec-
tion 3.2).

3.1 Looking for a Fair Objective Function

The most common objective function in the parallel scheduling literature is the
makespan: the maximum of the job termination times, or max; C;. Makespan
minimization is conceptually a system-centric approach, seeking to ensure effi-
cient platform utilization. Makespan minimization is meaningful when there is
only one user and when all jobs are submitted simultaneously. However, individ-
ual users sharing a system are typically more interested in job-centric metrics,
such as job flow time (also called response time): the time an individual job
spends in the system. Optimizing the average (or total) flow time, > ; Fj, suf-
fers from the limitation that starvation is possible, i.e., some jobs may be delayed
to an unbounded extent [5]. By contrast, minimization of the maximum flow
time, max; F};, does not suffer from this limitation, but it tends to favor long
jobs to the detriment of short ones. To overcome this problem, one common ap-
proach [11] focuses on the weighted flow time, using job weights to offset the bias
against short jobs. Sum weighted flow and maximum weighted flow metrics can
then be analogously defined. Note however that the starvation problem iden-

Minimizing the stretch 7

tified for sum-flow minimization is inherent to all sum-based objectives, so the
sum weighted flow suffers from the same weakness. The stretch is a particular
case of weighted flow, in which a job’s weight is inversely proportional to its size:
w; = 1/W; [5]. On a single processor, the stretch of a job can be seen as the
slowdown it experiences when the system is loaded. In a network context, the
stretch can be seen as the inverse of the overall bandwidth allocated to a given
transfer (i.e., the amount of data to transfer divided by the overall time needed
to complete the transfer). However this kind of definition does not account for
the affinity of some tasks with some particular machines (e.g., the scarcity of a
particular database). That is why we think a slightly different definition should
be used in an unrelated machines context. The stretch is originally defined to
represent the slowdown a job experiences when the system is loaded. In the
remaining of this article, we will thus define the stretch as a particular case of
weighted flow, in which a job’s weight is inversely proportional to its process-
ing time when the system is empty: w; = >, ﬁ in our divisible load model.
This definition matches the previous one in a sfngle processor context and is
thus a reasonably fair measure of the level of service provided to an individual
job. It is more relevant than the flow in a system with highly variable job sizes.
Consequently, this article focuses mainly on the sum-stretch (>°.S;) and the
max-stretch (max.S;) metrics.

3.2 Sum-Stretch and Max-Stretch Cannot Be Optimized
Simultaneously

Finally, we prove that simultaneously optimizing the objectives we have defined
earlier (sum-stretch and max-stretch) may be impossible in certain situations.
In this section, we only consider the single processor case.

Theorem 1. Consider any online algorithm which has a competitive ratio of
p(A) for the sum-stretch. We assume that this competitive ratio is not trivial,
i.e., that p(A) < A2. Then, there exists for this algorithm a sequence of jobs
that leads to starvation, and thus for which the obtained maz-stretch is arbitrarily
greater than the optimal max-stretch.

Using the exact same construction, we can show that for any online algorithm
which has a non-trivial competitive ratio of p(A) < A for the sum-flow, there
exists a sequence of jobs leading to starvation and where the obtained max-flow
is arbitrarily greater than the optimal one.

We must comment on our assumption about non-trivial competitive ratios.
This comes from the fact that ignoring job sizes leads on a single processor
to a A2-competitive online algorithm for sum-stretch and A-competitive online
algorithm for sum-flow:

Theorem 2. First come, first served is:
o AZ_competitive for the online minimization of sum-stretch,
o A-competitive for the online minimization of max-stretch,
o A-competitive for the online minimization of sum-flow, and

e optimal for the online minimization of max-flow (classical result, see Ben-
der et al. [5] for example).

8 A. Legrand, A. Su, F. Vivien

Proof. We first prove the result for sum-stretch, then for max-stretch, and finally
for sum-flow.

1. FCFS is A? competitive for sum-stretch minimization.

We first show that FCFS is at worst A? competitive, then we show that
this bound is tight. In this proof, S®(Z) will denote the sum-stretch
achieved by the schedule © on instance Z. §*(Z) will denote the optimal
sum-stretch for instance 7.

We show by recurrence on n that for any instance Z = {J; = (r1,p1), .., Jn =
(T, pn) }: STEFS(T) < A28*(Z). This property obviously holds for n = 1.
Let us assume that it has been proved for n and prove that it holds true
for n +1.

Let us consider Z = {J1 = (r1,p1), s Jn+1 = ("nt1,Pnt1)} an instance
with n 4 1 jobs. Without loss of generality, we assume that min; p; = 1.
We know that, without loss of generality, we may only consider priority
list based schedules (see the article of Bender, Muthukrishnan, and Ra-
jaraman [7] for example). Thus let © denote the optimal priority list for
Z. In the following, we denote by A; the set of jobs that have a lower
priority than J, 11 and As the set of jobs that have a higher priority than
Jnt1- p@(Jk) denotes the remaining processing time of Jy at time r,41
under scheduling ©.

Thus we have:

1
SG(J17"‘>JTL+1):SG(J17"‘7J77,)+ pn+1+ Z pg(k) +
Pn+1 heds

Pn+1
2

k€A,

The stretch of J,41 The cost incurred by Jp41

We also have:

SFCFS(JD R Jn+1) = SFCFS(Jla RN Jn) + Pn+i —+ Z pFCFS(k)

Pn+1 k<n

The stretch of Jp 41

1
S A%S* (Jy, .y dn) + Dn+1 + Z P CFS (k) (by recurrence hypot
Pn+1 k<n
1
SAZSO(Jy,. .) + Ps1+ Y p S (k)
Pn+1 k<n
1
= A2SO(Ty, dn) + Pot1+ Y p°(k)
pn+1 k<n

Indeed, for a priority-based scheduling, at any given time step, the re-
maining processing time of jobs is independent of the priorities.

(C]
(pn+1+ Z p@(k)> + Z P (k)

k€A, KA, Prtl

SFCFS(JL . _’Jn+1) < A2S@(J1,. . ,Jn) + P
n+1

Minimizing the stretch 9

5}
p° (k) A2 2 Pn+1
ASWehaVemgAgng W,Weget

SFCFS(Jl,”anqu) < AQS@(JM'H,J”)_’_A2 ((pn+1 + Z p@(k)> + Z p;;ﬂ)

keA, keA,
SA2SO(Jy, . Jny1) = A2S*(J1, .y Tng)

pn+1

FCFS is thus A2 competitive for sum-stretch.

We now show that the previous bound is tight by using almost the same
construction as in Theorem 1. At date 0 arrives n jobs, Ji, ..., J,, of size
A. Then, for any 1 < j < n?, at time j — 1+ L arrives job J,4; of size 1.
A possible schedule would be to process job J; during [0, %], then each of
the jobs Ji4j, ..., Jntn2 at its release date, and to wait for the completion
of the last of these jobs before completing the jobs Ji, ..., J,. The sum-

stretch would then be n2 x 1+ "QXA Fot ”QZ"A = <"("2+1) + n"g) +n? =

W. The sum-stretch achieved by FCFS on this instance would

be:
A A 1 1 M3A 2
AL (A LYot s e, ZPA ST

Therefore, the competitive ratio p(n) of FCFS on this instance is:

2n3A+3n%—n 2 _
O P — :A(2n A+3n—-1)
2n34+3n2A+nA 2712 + 371A + A
2A

Therefore, lim,, . p(n) = A%. This is all we need to conclude.

2. FCFS is A competitive for max-stretch minimization

We first show that FCFS is at worst A competitive, then we show that
this bound is tight.

Let us consider a problem instance Ji, ..., J,. We denote by C; the
completion time of job J; under FCFS. We consider any optimal schedule
©* for max-stretch. Under this schedule, let C'7 be the completion time of
job J;, and S7 its stretch. Then, we consider any job .J; which has a larger
stretch under FCFS than under ©*. Let t be the last time before C; at
which the processor was idle under FCFS. Then, by definition of FCF'S,
t is the release date r; of some job J; and, during the time interval [r;, C],
FCF'S as exactly executed the jobs J;, Jit1, ..., Ji—1, J;. Furthermore, by
definition of ¢, during that time interval FCFS neither let the processor
idle nor processed, even partially, other jobs. Therefore, as ©* completes
Jj strictly earlier than C, there is a job J, ¢ < k <1 — 1 that completes
at the earliest at time C;. Then:

C;;—rk>Cl—rl Cl_rlpl 1

> £

maxS; > Sf = = > 8 x —
i TR Pk Pk noopE A

Therefore, for any job J; which has a stretch larger under FCF'S than un-
der the optimal schedule ©, §; < A x max; §7. This inequality obviously

10

A. Legrand, A. Su, F. Vivien

holds for the other jobs. Hence the upper bound on the competitiveness
of FCF'S.

To show that this bound is tight, we use a pretty simple example with two
jobs: Ji arrives at r; = 0 and has a size of p; = A, and J5 which arrives at
ro = € and has a size of p, = 1. We will have 0 < ¢ < 1. FCFS achieves
on this example a max-stretch of 1+ A —e. SRPT achieves a max-stretch
of %, as A > 1. Hence a competitive ratio for FCFS which is at best:

1+A—¢ A
% _A_EA+1>A_E

Hence the desired result.

. FCFS is A competitive for sum-flow minimization. This proof follows the

same lines than the proof for sum-stretch minimization.

We first show that FCFS is at worst A competitive, then we show that
this bound is tight. In this proof, 7 (Z) will denote the sum-flow achieved
by the schedule © on instance Z. F*(Z) will denote the optimal sum-flow
for instance 7.

We show by recurrence on n that for any instance Z = {J; = (r1,p1), ..., Jn, =
(T, pn)}: FECFS(T) < AF*(Z). This property obviously holds for n = 1.
Let us assume that it has been proved for n and prove that it holds true
for n +1.

Let us consider Z = {J; = (r1,p1), s Jat+1 = ("nt1,Pnt1)} an instance
with n 4 1 jobs. Without loss of generality, we assume that min; p; = 1.
We know that, without loss of generality, we may only consider priority
list based schedules (see the article of Bender, Muthukrishnan, and Ra-
jaraman [7] for example). Thus let © denote the optimal priority list for
Z. In the following, we denote by A; the set of jobs that have a lower
priority than J, 11 and As the set of jobs that have a higher priority than
Jns1. p®(Jy) denotes the remaining processing time of Jj at time 7,41
under scheduling ©.

Thus we have:

FOUr oo dngn) = FOCn o) pngn +) p2 (k) + Y o
keA, k€A
The flow of Jp, 41 The cost incrured by Jp41

We also have:

FEOS(T, o Tnga) = FROS(I,) 4 o + > PR (R)

k<n

The flow of Jy,41

SAF (J1y- - dn) + Pagr + Z pPCFS (k) (by recurrence hypothesis)
k<n

SAFO(Jis o Jn) +Pugr + Y PS5 (k)

k<n

Minimizing the stretch 11
=AFO(J1, . Jn) + o1 + Y O (k)
k<n

Indeed, for a priority-based scheduling, at any given time step, the re-
maining processing time of jobs is independent of the priorities.

FES (T, Tng1) S AFO(J1, ooy Jn) + Pt + Z PO (k) + Z PO (k)
keA, keAs

As we have p® (k) < A < Ap,y1, we get

FEOES (s dngt) SAFO(Jn,ey Jn) +onga + Y, pO(R) + Y Apnp
keA, k€A,

SAFO(J1, o Tn) + Apngn + A DY () + A Y poga

keA, keAs
SAFOTL, .. Ju) = AF (1, ..., Jnt1)

We now show that the previous bound is tight by using almost the same
construction as in Theorem 1. At date 0 arrives n jobs, Ji, ..., J,, of size
A. Then, for any 1 < j < n2, at time j—l—«—% arrives job Jp4; of size 1. A
possible schedule would be to process job J; during [0, %], then each of the
jobs Jptj, ..., Jnin2 at its release date, and to wait for the completion of
the last of these jobs before completing the jobs Ji, ..., J,. The sum-flow
would then be n2 x 1+n? 4+ A+ ... +n?>4+nA = n3+n2+%A. The
sum-flow achieved by FCF'S on this instance would be:

n(n+1)

2n3A +n?(2+ A) +n(A - 2)

1
A—i—...—i—nA—&—nQ(l—!—nA—ﬁ) = TA+n3A+nQ—n = 5

Therefore, the competitive ratio p(n) of FCFS on this instance is:

2 A4n? (24+A)+n(A—-2)
2

_20A 4+ n?(2+ A) 4+ n(A - 2)
n3 +n2+ "(n2+1)A N 2n® +2n? + n(n+1)A

p(n) =

Therefore, lim,,_, 1+ p(n) = A. This is all we need to conclude. |
We now prove Theorem 1.

Proof. We first consider the case of an online algorithm for the sum-stretch
optimization problem that achieves a competitive ratio of p(A) < A2. We
arbitrarily take a value for A > 1. Then, there exists ¢ > 0, such that p(A) <
A? — . Finally, let a be any integer such that 1110? > A2 — S (note that this
is the case for any value of a which is large enough).

At date 0 arrives a jobs, Ji, ..., Ju, of size A. Let k be any integer. Then,
at any time unit ¢, 0 <t < k — 1, arrives a job J,4¢41 of size 1.

A possible schedule would be to process each of the k jobs of size 1 at its
release date, and to wait for the completion of the last of these jobs before
processing the jobs Ji, ..., Jo. The sum-stretch would then be k x 1 + % +

.+ % = % + k (1 + %) and the max-stretch would be « + %. Even if

12 A. Legrand, A. Su, F. Vivien

it is not optimal for neither one nor the other criteria, we can still use it as an
upper-bound.

In fact, with our hypotheses, the online algorithm cannot complete the exe-
cution of all the jobs J1, ..., J, as long as there are jobs of size 1 arriving at each
time unit. Otherwise, suppose that at some date t1, jobs Ji, ..., J, have all been
completed. Then, a certain number k; of unit-size jobs were completed before
time ¢1. The scenario which minimizes the sum-stretch under these constraints
is to schedule first the ky jobs Jat1, ..., Jatk, at their release dates, then to
schedule Ji, ..., J,, and then the remaining k—k; jobs of size 1. The sum-stretch
of the actual schedule can therefore not be smaller than the sum-stretch of this
schedule, which is equal to:

B+ A ki +aA 1) ak
ki 1+ 12 T “LAO‘ F(k—k)(14aA) = (‘“‘gﬂ+?>+kl+(k—kl)(1+am.

However, as, by hypothesis, we consider a p(A)-competitive algorithm, the ob-
tained schedule must at most be p(A) times the optimal schedule. This implies
that:

(204 2 b k)1 0) <) (2 4k (14 7))

=4
Oékl

(L= p(d) + 2T <k (p(d) (1+) — (1 +ad)).

1
—OéAk‘l + M

Once the approximation algorithm has completed the execution of the jobs Ji,
..., Jo. we can keep sending unit-size jobs for £ to become as large as we wish.
Therefore, for the inequality not to be violated, we must have p(A) (1 + %) -
(1+ aA) > 0. However, we have by hypothesis p(A) < A? — ¢. Therefore, we
must have A? —¢ > 1;:;5’ which contradicts the definition of c. Therefore, the
only possible behavior foAr the approximation algorithm is to delay the execution
of at least one of the jobs J, ..., J, until after the end of the arrival of the unit-
size jobs, whatever the number of these jobs. This leads to the starvation of at
least one of these jobs. Furthermore, the ratio of the obtained max-stretch to

= A?ﬁ:}fa), which may be arbitrarily large. |

the optimal s 24
e Op 1mal one 1s TraA

Intuitively, algorithms targeting max-based metrics ensure that no job is left
behind. Such an algorithm is thus extremely “fair” in the sense that everybody’s
cost (in our context the weighted flow or the stretch of each job) is made as
close to the other ones as possible. Sum-based metrics tend to optimize instead
the wutilization of the platform. The previous theorem establishes that these
two objectives can be in opposition on particular instances. As a consequence,
it should be noted that any algorithm optimizing a sum-based metric has the
particularly undesirable property of potential starvation. This observation, cou-
pled with the fact that the stretch is more relevant than the flow in a system
with highly variable job sizes, motivates max-stretch as the metric of choice in
designing scheduling algorithms in this setting.

Minimizing the stretch 13

4 Flow Optimization

On a single processor, the max-flow is optimized by FCFS (see Bender et al. [5]
for example). Using the remarks of Section 2.3, we can thus easily derive an
online optimal algorithm for (Q|r;; div|Finax). We will see in Section 6 that
(R|r;; divimax w; F;) can be solved in polynomial time using linear programing
techniques.

Regarding, sum-flow, it was proved by Baker [1], using exchange argu-
ments, that SRPT (shortest remaining processing time first) is optimal for
the (1|r;; pmin|>_ C;) problem. It is thus also optimal for (1|r;;pmin|> F})
and, using the remarks of Section 2.3, we can easily derive an online optimal
algorithm for (Q|r;; div|)_ F;). We will however see in this section that under
the uniform machines with restricted availabilities model, this problem is much
harder.

Many of the reduction we propose in this article rely on the following strongly
NP-hard problem [15]:

Definition 1 (3-Dimensional Matching (3DM)). Given three sets U = {u1, ..., Um},
V=A{v1,...,o;m}, and W = {wn,...,wn}, and a subset S CU XV x W of size

n > m, does S contain a perfect matching, that is, a subset S’ of cardinality m
that covers every element in U UV UW ¢

Theorem 3. The scheduling problem (R|r;, div|)_ F;) is NP-complete.

Proof. In this section, we present a reduction from 3-Dimensional Matching to
(R|div;r;|y" F;). We use the same idea as Sitters [31] used to prove the strong
NP-hardness of (R|pmitn|)_ C;). It should be noted that in the reduction we
propose, the machines are uniform machines with restricted availabilities. That
is why we use W; for the amount of workload of job j (in Mflop), ¢; for the
processing capability of machine ¢ (in s per Mflop) and d; ; for the availability
of machine ¢ to process job j (d;; € {1,4+00}). Therefore, for all 4, j, we have
Dij = Wj.ci.éz—,j.

Scheduling instance. Given an instance of the 3DM problem, we define one
machine U; for each element u; of the set U. This set of machines is denoted
by U as well, and we proceed in the same way for V' and W. We also define
an additional machine Z. The processing capability of each machine P; of
UUV UW U Z is defined by:

o 1 tPeUUVUW,
' | K/3 if P, = Z (the exact value of K will be precised later).

We define a set of jobs, (J;)o<j<n—1, corresponding to the set S. For each
element s; = (uq,,vg;, w,,) of S, we define a corresponding job J;. The size of
job Jj is equal to 3 and the processing time of J; is small on the machines that
correspond to the related triplet and on machine Z, and is infinite on all the
other ones:

5 — {1 if P; € {Ua,,Vs,,Ws,,Z}
2y

w =3 D=0
oo otherwise ’ J ’ J

14 A. Legrand, A. Su, F. Vivien

Hence, we have

3 if P, € {Uaj7vﬁj7W’Y_j}
P =K itP=2 ool =0

oo otherwise

Beside the set J, we also introduce two more sets of jobs: A and B. The
set A contains many small jobs that can only be processed on machine Z and
whose purpose is to prevent any job of J from using machine Z before time
2. Therefore, we have 2M jobs (A;)ogj<2m—1 that are defined as follows (the
exact value of M will be defined later):

1 P =2 3 o g
54 _ =2 w3
J oo otherwise J KM " M
Hence, we have
(A) _ /M itP =27 T(.A):i.
J 00 otherwise ’ J M

The set B contains many small jobs that can only be processed on specific
machines of U, V, and W and whose purpose is to prevent jobs J from using
machines of U, V, and W after time 1. Each machine v € U UV UW will be
associated to a set of jobs that can only be executed on u. Therefore, we have

N = 3m(nK + 2)L jobs (B})ogj<(nk+2)L—1, that are defined as follows (the
ueUUVUW
exact value of L will be defined later):

u 1 ifP=u By 1 B J
5B _ O DR SO SE
©J 0o otherwise J L J L
Hence, we have

1)

By _Jr HP=u B) _ 4. J

i = , r =14 .

Pi.j { 0o otherwise J L

We now show that the original instance of 3DM has a solution if and only if
there is a divisible schedule of the previous instance with sum-flow smaller than
or equal to

1 n—m 1
SFopt= 2M -7 + m-1 + ;(2+k.K) + 3m(nkK +2)L- -
—_——— —— —
A-jobs J-jobs from the partition J-jobs not from the partition B-jobs
—m).(n — 1).K
:2—|—2n—m+(n m)(n2 m+1) +3m(nK +2)

Equivalence of both problems. Let us start with the easy part:

Minimizing the stretch 15

Uy
Us
Us
Vi
Vs
Vs
Wi
Ws

Wi

I A-jobs

B-jobs

J-jobs

1 2 K+2 2K +2

Figure 3: Sketch of the optimal schedule.

Suppose we have a perfect matching S’ C S. Then, we can process all jobs

J; for s; € S" on the corresponding machines between time 0 and 1 (see
Figure 3). Meanwhile all A-jobs are processed on machine Z between time
0 and 2. The remaining jobs J; are processed on Z one after the other
from time 2 to time (n—m)K +2 and all B-jobs are processed on UUV UW
in parallel, one after the other, on their corresponding machines. It is then
easy to check that the sum-flow of this schedule is equal to SFp:

F(J) . 1 ifjes

I)24 kK if 7 € S" and is the k-th job to be executed on Z
FA — L

B _ 1

Let us assume that there is a schedule whose sum-flow is smaller than

SF,pt. We will first prove that without loss of generality, we can assume
that:

1. All B-jobs are processed on machines in U UV U W during time
interval [1,nK + 3]. As all B-jobs have the same processing time, we
can freely assume that on each processor, they are processed in the
order of their release dates. Therefore, as these jobs arrive right after
each others, if a machine v € U UV U W is not used to process B-
jobs during a time interval of length delta, it will delay all following
B, -jobs by delta.

First we have to see that, even by processing sequentially on Z all
tasks that can be processed on Z, any J-job has a completion time

A. Legrand, A. Su, F. Vivien

|
2 | .
| | | |
0 1 2 3
(a) Original schedule (b) Better schedule

Figure 4: No J-job completes before time 1.

smaller than nK + 2. Therefore if & Mflop of J-jobs are processed on
uw € UUV UW between time 1 and nK + 2 they necessarily delay at
least L B-jobs (the ones that have been released in [nK 42, nK +3])of
a. The sum-flow incurred by this processing is therefore larger than
a.L. By processing this load on Z rather than on u, at most n J-jobs
and 2M A-jobs would be delayed of «.K /3. Therefore as soon as L
is larger than (n + 2M)K/3, we can assume that only B-jobs can be
processed on machines U UV UW during time interval [1,nK + 3.

2. J-jobs are processed on machines UUV UW during time interval [0, 1]
and on Z during time interval [0, (n —m)K 4+ 2]; A-jobs are processed
by order of their release dates on Z during [0, (n — m)K + 2]. This
is a consequence of the fact that B-jobs are always executed at their
release dates. Therefore during the time interval [1,(n — m)K +
2], A-jobs and J-jobs are processed on Z as if there was no other
machine. Therefore, we can freely assume that they are scheduled
by increasing order of their remaining workload, starting at time 1
(SRPT is optimal on a single processor).

3. The completion time of J-jobs is at least 1. Indeed, let us assume
that there is a J-job J; whose completion time equals to 1 —e < 1.
This means that 3¢ units of J; are processed on Z during [0,1 — €]
(and therefore we have e < 1/(K + 1) < 1/K).

If Uy, is unused during [1 — ¢, 1], then by moving ¢ units of .J; from
Z to U,,, we increase the completion time of J; by € but we also
decrease the completion time of at least M jobs by eK /3. Therefore,
we strictly decrease the sum-flow as soon as K > 3.

If Uy, is used during [1—e¢, 1] to process a job .J;/, then the remaining
workload of J;/ at time 1 is larger than

3—((2—1—[3{)(1—5)—1—(3—1-;)5):1—;—5

4 3
21—E > B (as soon as M > 3/(K —4)).
From time 1, only J-jobs and A-jobs are processed on Z. As these
jobs are not processed on other machines, we know that these jobs

should be processed by increasing size of the remaining workload.

Minimizing the stretch 17

Using above results on the remaining processing workload of .J-jobs
whose completion time is larger than 1, we can freely assume that all
A-jobs are processed first. Therefore (cf. Figure 4) by 1) moving &
units of J; from Z to U,,, by 2) sliding ¢ units of A jobs to the left
on Z and by 3) moving the units of load of other J-jobs that were
processed on Uy, during [1 — ¢, 1] next to their corresponding .J-jobs
on Z, we get a new schedule where 1) the completion of J; is increased
by €, 2) the completion time of at least M A-jobs is decreased by at
least 5.%, and 3) the completion time of other J-jobs is unchanged.
Hence, this new schedule has a sum flow at least —e + M .5.% smaller
than the original one.

4. All A-jobs are processed on machine Z during time interval [0, 2].

We have just seen that any J-jobs processed on Z has a completion
time larger than 1. If o units of J; are consecutively processed on
Z during [0, 1], we can improve the total flow time by moving these
units to the last interval where J; is processed and sliding previous
jobs to the left. Therefore we do not increase any completion time
and decrease the completion time of at least [a.M K /3] A-jobs by
a.K /3, hence a strictly smaller total flow time. We can therefore
freely assume that no J-jobs are processed on Z during [0, 1].
From time 1, we can freely assume that A-jobs and J-jobs are sched-
uled by increasing order of their remaining workload. If a J-job is
processed on Z during [1,2], it means that its remaining workload
is smaller than 3/K M. Therefore, it has heavily used Us;, V3, and
W, and using the same transformation as in Figure 4, we can get
a schedule with strictly smaller total flow time. We can therefore
assume that only A-jobs are processed on Z during [0, 2].

Therefore by assuming that K > 3, M > 3/(K—4),and L > (n+2M)K/3,
we can freely assume that A-jobs and B-jobs are executed at their release
dates on their corresponding processors. Therefore, J-jobs are executed
on UUV UW during [0,1] and on Z during [2, (n — m)K + 2].

Let us now show that our scheduling problem has a solution only if there
is a perfect matching for the original 3DM instance. More precisely, we
will show that if there is no perfect matching, then the sum-flow is strictly
larger than the bound.

Let us denote by x; the amount of workload of job J; processed on ma-
chines in U UV U W during time interval [0,1]. We can suppose without
loss of generality that:

3

WV
=
\%
8
[\
\%
WV
8
S
\%
=]

We also have:
n
Zacj < 3m.
Jj=1

The sum-flow of the J-jobs is then equal to:

n

SF(z1,...,00) =Y <1+ {3;%} +kiK3_3x’“>.

j=1

18 A. Legrand, A. Su, F. Vivien

It is easy to show (using exchange techniques) that under the constraints
on the z;’s, SF(X) is strictly minimized for X = (3,...,3,0,0,...,0).
m times n — m times
Therefore, the sum-flow of a schedule can be equal to SFqp, only if SF(X) =
n+(n—m)+K(n—m)(n—m-+1)/2,ie,onlyif X =(3,...,3,0,0,...,),
which means that there exists a perfect matching for the original 3DM
instance. L

5 Sum-Stretch Optimization

In this section, we give various results regarding sum-stretch optimization. In
Section 5.1, we establish the complexity of this problem in our framework. In
the remaining sections, we focus on the one processor setting and study the
competitiveness of “classical” heuristics.

5.1 Complexity of the Offline Problem

In the general case, without preemption and divisibility, minimizing the sum-
stretch is an NP-complete problem:

Theorem 4. The scheduling problem (1|r;|>_S;) is NP-complete.

Proof. This NP-completeness result is proved by reduction from the version of
PARTITION where the two partitions have same size [15]. We first remark that
this problem is obviously in NP. Then, let us take an instance Z; of PARTITION,

i.e., aset {ay,as,...,a,} of n integers. Let us denote B = %Zléjén a;. The
question is: is there a subset J of [1;n] such that 3, ;a; = B and such that
=%

From this instance Z; of PARTITION, we build the following instance 7 of

(Lri[>2S5):

e We have n jobs, each of them corresponding to one of the integers in Z;:
for j € [1;n], J; has size W; = B + a; and arrives at time r; = 0.

e We have a job J, 1 of size W, ;1 = —L_ and which arrives at time T4l =

nto 14n?
n2p

e We have 4n? jobs, such that job Inti45, 1 < J < 4n?, has size ﬁ and
arrives at time r414; = (n+2)B+ > + (j — 1)B.

The question is: is there a schedule of the set of jobs {J; }1<j<an2+n41 such that
>5; < %nz + 2n + 1?7 Note that the size of Z5 is polynomial in the size of Z;.

We first prove that Zs has a solution if Z; has one. Therefore, we suppose
that there exists a subset .J of [1;n] such that) ._;a; = B and |J| = §. Then,
we build a solution of Zo has follows:

jeJ

1. We greedily execute the jobs {Jj}lgjgln;je] in the time interval [0; 242 B].

For any such job J;, we have: S; < 37 - "7“3 < %"THB = "7”
J

2. We execute the job J,1 at time r,411 = "T“B. Its stretch is then 1.

Minimizing the stretch 19

3. We greedily execute the jobs {J;}1<j<n;j¢s in the time interval [232B +
iz (n+2) B+ 1], For any such job J; we have: S; < --((n+2)B + 173) <

5 (n+2B+1)<(n+2)+1

4. We execute each of the jobs Jp4145, 1 < j < 4n? at their release date,
and each has a stretch of one.

This way we obtain a schedule whose sum-stretch satisfies:

n n+2 n 19
Y8yt () H 40’ = a2t L

Hence we have a solution to problem Z,.

Conversely, let us assume that problem 75 has a solution. We first show that
each of the first n jobs must be completed before the release time of the last
job, Jpi114n2. We prove this result by contradiction. So, assume that there is
a job J;, with 1 < j < n, which is completed no earlier than time r,,144p2.
As the stretch of each of the n + 4n? other jobs must be at least equal to 1, we
derive from our hypothesis:

B+—1; 2-1)B
ZS]‘ = n+ 4n2 + (n+2) +14{}%+(4n)
> n4dn? 4+ (4n*4+n+1)B
2B
= 6n%+ %n + %
> 14—9712 +2n+1

Hence our desired contradiction.

We now show that any job, except the first n ones, cannot be delayed by as
much as % time unit. Indeed, such a delay would induce an increase of stretch
of:

3 19
T =Tn?> 0’ + 20+ 1
14n?

We now define as J the set of the indices of the jobs which are completed
before job J,+1. Obviously, J only contains indices of jobs among the first n
ones. As job J,41 must be completed before the date %“B%— 141712 + %, |J] < g
Furthermore, |J| = % if, and only if, ZjEJ a; < B. Let J’ be the set of the
indices of the jobs which are completed after job J,y1 is completed and before
job Jny2 is. From what we have previously shown on the jobs J,4i14;, with
1 < j < 4n?, we infer that JU J' = {1,....,n}. Job J,41 is completed at the
earliest at time 7,41 + Wy1 = ”7”3 + 1422. Job J, 42 is completed no later
than at time ry 12+ Wyia + 3 = (n+2)B+ 12z + 3. Therefore, the set of jobs
whose indices are in J’ must be executed in a time interval which is shorter than
or equal to 222 B+ 1 + —L. Therefore |.J/| < Z. Furthermore, |J'| = % if, and

only if, 3=, ;s a; < B. We thus have |[J| = |J'| = §, > . ;a; = 3 ;e a; = B,
and J defines a solution to instance Z.

The complexity of the offline minimization of the sum-stretch with preemp-
tion is still an open problem. At the very least, this is a hint at the difficulty of
this problem. In the framework with preemption, Bender, Muthukrishnan, and
Rajaraman [7] present a Polynomial Time Approximation Scheme (PTAS) for
minimizing the sum-stretch with preemption. Chekuri and Khanna [11] present
an approximation scheme for the more general sum weighted flow minimization

20 A. Legrand, A. Su, F. Vivien

problem. As these approximation schemes cannot be extended to work in an
online setting, we will not discuss them further.

Moving to the divisible load framework, we can easily say that the complexity
of (Q|r;; div|>" S;) is open (using the remarks of Section 2.3). The minimization
of the sum-stretch is however NP-complete on unrelated machines:

Theorem 5. The scheduling problem (R|r;, div])_ S;) is NP-complete.

Proof. In this section, we present a reduction from 3-Dimensional Matching to
(R|div;r;|>" S;). We use the same idea as Sitters [31] used to prove the strong
NP-hardness of (R|pmin|d_ C;). It should be noted that in the reduction we
propose, the machines are uniform machines with restricted availabilities. That
is why we use W, for the amount of workload of job j (in Mflop), ¢; for the
processing capability of machine i (in s per Mflop) and 6; ; for the availability
of machine ¢ to process job j (0;; € {1,400}). Therefore, for all ¢, j, we have
Pij = Wj.ci.ém.

Scheduling instance. Given an instance of the 3DM problem, we define one
machine U; for each element u; of the set U. This set of machines is denoted
by U as well and we proceed in the same way for V' and W. We also define
an additional machine Z. The processing capability of each machine P; of
UUV UW U Z is defined by:

D if ,eUUVUW,
"\ K/3 ifP =2

We define a set of jobs, (J;)ogj<n—1, corresponding to the set S. For each
element s; = (uq;,vs;, w,,) of S, we define a corresponding job J;. The size of
job Jj is equal to 3 and the processing time of J; is small on the machines that
correspond to the related triplet and on machine Z, and is infinite on all the
other ones:

5(J){1 ifPiG{Uaj,VgﬁW%.,Z}’ WJ,(J):?,, r](f]):().

“J oo otherwise

Hence, we have

3 it P; € {an Vﬂj’ W'Yj}
py =K ifP=2 ;o =0, W=

oo otherwise

1+1+14+3/K K+1
3 K

Beside the set J, we also introduce two more sets of jobs: A and B. The
set A contains many small jobs that can only be processed on machine Z and
whose purpose is to prevent any job of J from using machine Z before time 1.
Therefore, we have M jobs (A,)o<j<am—1 that are defined as follows:

1 ifP=7Z A 3 A j
5 _ =2 pw_ 3w _d
J oo otherwise J KM J M
Hence, we have
(A) 1/M itP =2 (A) J (A)
;0 = 5 T = —, w = M
tJ { 00 otherwise J M J

Minimizing the stretch 21

The set B contains many small jobs that can only be processed on machines
U, V,and W and whose purpose is to prevent jobs J from using machines of U,
V,and W after time 1. Therefore, we have (n—m)NK jobs (B;)o<j<(n—m)NK—1
that are defined as follows:

it P =7 3m j
s _foo P=Z e 3mo
J 1 otherwise J N " N

Hence, we have

(4)
= s T -, w = N.
Pis 3m/N otherwise J N J

(B) {OO it =2 (B) _

We now show that the original instance of 3DM has a solution if and only
if there is a divisible schedule of the previous instance with sum-stretch smaller
than or equal to

K+1 — K+1
SSopt = M+ mTJr + Z(1+k.K)~?++ (n—m)NK
k=1
A-jobs J-jobs from the partition J-jobs not from the partition B-jobs
K+1 - — (K +1
=M-+n ; +(n m)(n ZH_ JE +)+(n—m)NK

Equivalence of both problems. Let us start with the easy part:

Suppose we have a perfect matching S’ C S. Then, we can process all
jobs J; for s; € S’ on the corresponding machines between time 0 and 1
(see Figure 5). Meanwhile all A-jobs are processed on machine Z. The
remaining jobs J; are processed on Z one after the other from time 1 to
time (n —m)K + 1 and all B-jobs are processed on U UV UW in order of
their release dates, each one being executed in parallel on all the processors
of UUVUW. It is then easy to check that the sum-stretch of this schedule
is equal to SSopt:

S(J) _ % ifjes
J 1+ kK)% if j ¢ S’ and is the k-th job to be executed on Z

—~

S =1
S =1

Let us assume that there is a schedule whose sum-stretch is no greater than

SSopt- We will first prove that without loss of generality, we can assume
that:

1. All A-jobs are processed on machine Z during time interval [0, 1].

Indeed, let us prove that if we have a schedule where some J-jobs are
processed on Z during [0, 1], we can transform this schedule in such a
way than only A-jobs are processed on Z in [0, 1] and the sum-stretch
is strictly decreased.

22 A. Legrand, A. Su, F. Vivien
l l
N
U I A-jobs
U3]
B-jobs
v L
a1
—_————
V3 J-jobs
Wi
Wa
W3
Z
| | | | |
1 K+1 2K+1 o (n—m)K+1
Figure 5: Sketch of the optimal schedule.
: l 1 1 l :
| _— | | _— |
N T
‘ l ‘ l
0 1 0 1
Situation 1 Situation 2

Figure 6: All A-jobs are processed on machine Z during time interval [0, 1].

In Figure 6 situation 1, some A-jobs are delayed by J-jobs during
I > 0 units of time. Let us consider the stretch difference between
situation 1 and 2. In situation 1, at least [IM] A-jobs are delayed
of | units of time, which implies that the sum-stretch of these jobs
is at least [lM}% larger than the sum-stretch of these jobs in
situation 2. In situation 2, the completion-time of J-jobs is at most [
units of times larger than in situation 1. The sum-stretch of J-jobs is

therefore increased of at most nl%. Situation 1 is thus better than
situation 2 only if [IM]#EM < W, ie., only if [IM] < %
We will therefore assume in the following that 6n < KM, hence
for situation 1 to be better than situation 2 we must have [IM] < 1,
which is impossible as [> 0. Therefore, delaying A-jobs for executing

J-jobs always results in a strict increase of the sum-stretch.

. All B-jobs are processed on machines in U UV U W during time

interval [1, (n — m)K + 1].

Minimizing the stretch 23

B-jobs being all equivalent with regards to processing characteristics,
they should be executed in the same order as their release dates.
They may however be locally preempted by J-jobs. Let us consider
Bj, the first B-job that is preempted and is therefore not completely

processed during [T§B), r§f)l] (see Figure 7 situation 1).

B @ -0

Il : | :

0 1 0 1
Situation 1 Situation 2

Figure 7: All A-jobs are processed on machine Z during time interval [0, 1].

In Situation 2, all J-jobs that were executed on U UV U W during
[T§B)7 T](E)ﬂ have been transfered on Z. Let us denote by « the amount
of J-jobs that has been transfered. The completion time of all .J-jobs
is therefore at most increased of aK /3. The sum-stretch of J-jobs
is therefore at most increased of n%% Likewise, the completion
time of Bj is decreased of at least 5>, hence the stretch of Bj is
decreased of at least % Therefore, if we assume in the following
that N > nm(K + 1), Situation 2 has always a better sum-stretch

than situation 1.

Therefore by assuming that

)

6n < KM
nm(K +1) <N

we can freely assume that A-jobs are executed at their release dates on Z
and B-jobs are executed at their release dates on U UV U W. Therefore,
J-jobs are executed on U UV UW during [0,1] and on Z during [1, (n —
m)K +1].

Let us now show that our scheduling problem has a solution only if there is
a perfect matching for the original 3DM instance. More precisely, we will
show that if there is no perfect matching, then the sum-stretch is strictly
larger than the bound.

Let us denote by x; the amount of workload of job J; processed on ma-
chines in UUVUW during the time interval [0, 1]. We can suppose without
loss of generality that:

We also have:

24 A. Legrand, A. Su, F. Vivien

As J-jobs all have the same release date, they should be scheduled by
increasing size of the remaining workload. Therefore, the sum-stretch of

the J-jobs is equal to:
K+1
K

SS(xy,...,x Z <
j=1

It is easy to show (using exchange techniques) that under the constraints

on the z;’s, SS(X) is strictly minimized for X = (3,...,3,0,0,...,0).

—— ———

m times n — m times
Therefore, the sum-stretch of a schedule can be equal to SSp only if

SS(X) = mEH) y (emm)eomiDIKED o only if X = (3,...,3,0,0,...,),
which means that there exists a perfect matching for the original 3DM in-
stance. []

5.2 Lower Bound on the Competitiveness of Online Algo-
rithms

Muthukrishnan, Rajaraman, Shaheen, and Gehrke [29] propose an optimal on-
line algorithm when there are only two job sizes. Mainly, they prove that there
is no optimal online algorithm for the sum-stretch minimization problem when
there are three or more distinct job sizes. Furthermore, they give a lower bound
of 1.036 on the competitive ratio of any online algorithm. The following theorem
improves this bound:

Theorem 6. No online algorithm minimizing the sum-stretch with preemption
has a competitive ratio less than or equal to 1.19484.

Proof. We first present the adversary and the analysis of the different possible
behaviors for the online algorithms. Finally we will give the optimal values of the
different parameters defining the adversary behavior («, 8, v, n, k, p, €1, €2, €3,
and e4). The final numerical resolution will show that some of these parameters
are not necessary. We decided to present the proof in all its generality rather
than to simplify it.

At time ry = 0 arrives job Jy of size py = afyn.

At time r; = afyn — e, arrives job J; of size p; = gyn.

We consider the system at time afyn + Byn — €1 — €2, and whether the
execution of Jy has been completed at that time.

1. If the execution of Jy has not yet been completed, we do not send any
more jobs. To evaluate what is the best achievable sum-stretch in these
conditions, we need to study two cases:

(a) Jp is completed before Ji. Then, by hypothesis, Jy cannot be com-
pleted earlier than at time af8yn + fyn — &1 — 5. In any case, Jp is
completed at best at time afyn + Byn. Therefore, the sum-stretch
is greater than or equal to:

afyn+ fyn —e1 — ey n (afyn + Byn) — (afyn —e1) 5 1 e1t+er &

afyn Byn a afyn ' pyn’

Minimizing the stretch 25

(b) Jp is completed before Jy. Then J; is completed at the earliest at
time r1 +p1 = afyn+ Byn—e1. In any case, Jy is completed at best
at time afyn + Byn. Therefore, the sum-stretch is greater than or
equal to:

(abyn+Byn) _, 1
afyn o

Therefore, under our hypotheses, the best achievable sum-stretch is:

€1+ e9 n €1 }
afyn pyn)’

1+

1
2++min{0,
o}

However, one could have completed first Jy before starting the processing
of Ji, hence reaching a sum-stretch of:

€1
24+ —.
pyn

We suppose that (i.e., we will ensure that the chosen values of the param-
eters are such that):

€1
pyn

Then, the competitive ratio attained is greater than or equal to:

1
24 <2++min{0,€1+€2+ = }
(0%

afyn fyn

2+é+min{0,ﬂfyln——f;/;ﬁf}

2+ 5

2. We now consider the complementary case: at time af8yn + Gyn —e1 — e
the execution of Jy has been completed. Then, we send another job to the
system. As Jy is the first job to be completed, the most favorable case
is that Jy is fully processed during the time interval [0; afyn]. We thus
assume in the following that this is the case.

At time ro = afyn + fyn — 1 — €2 arrives job J, of size ps = yn.

We consider the system at time afyn + 8yn + yn — €1 — 9 — €3, and
whether the execution of J; has been completed at that time.

(a) If the execution of J; has not yet been completed, we do not send
any more jobs. To evaluate what is the best achievable sum-stretch
in these conditions, we need to study two cases:

i. J1 is completed before Jo. Then, by hypothesis, J; cannot be
completed earlier than afyn + fyn +yn —e; — ez —e3. In any
case, Js is completed at best at time afyn+Gyn+vn. Therefore,
the sum-stretch is greater than or equal to:

(afyn + pyn +yn —e1 — g —e3) — (afyn — €1)

1+
Byn
+(aﬂ7n+57n+7”)*(01/87”+5’Y”*51*52) _
n
1 g+ € €1+e¢
34— 224 =2

g B n

26

A. Legrand, A. Su, F. Vivien

ii. Jo is completed before J;. Then J; is completed at the earliest
at time 79 + po = afByn + Byn + yn — 1 — 2. In any case, Jy
is completed at best at time afyn 4+ Byn + yn. Therefore, the
sum-stretch is greater than or equal to:

(afyn+ Byn +yn —e1 — e3) — (aByn + fyn —e1 — €3)

1+
yn
+(aﬁvn+—ﬂ7n4—7n)—(aﬁvn-—fﬁ
pyn
_a b e
_3+5+ﬂwf

Therefore, in that case, the best achievable sum-stretch is

1
3++min{51+€2_€2+53 €1 }
n

B Byn 7 Byn

However, with only these three jobs, one could have reached a better
sum-stretch by first fully execute Jy and then fully execute J;. The
sum-stretch obtained this way is equal to:

IS5 €1 +¢ € €1 +¢€
1+O+1>+@+1 2>=3+1+1 2,
pyn mn pyn mn

Of course, this is a better solution only if:

1
€1 +51+€2 <+min{€1+€2—52+63, &1 }’
pyn m B m pyn Byn

what we will ensure through the choice of the parameters. In that
case, the competitive ratio is greater than or equal to:

1 ind E1ter _ eates &y
3—|—ﬂ—|—m1n{ n 5'yn7ﬁvn}

3+ g + =k

We now consider the complementary case: at time afyn+pyn+yn—
€1 — €2 — €3 the execution of J; has been completed. Then, we send
another job to the system. As Jj is the first job to be completed and
J1 the second, the most favorable case is that Jy is fully processed
during the time interval [0; @f8vyn| and J; during the time interval
[afyn; afyn + Byn]. We thus assume in the following that this is
the case.

At time r3 = affyn + Byn + yn — 1 — €2 — €3 arrives job J; of
size ps =n

We consider the system at time afyn+pyn+vy,+n—e1—eg—e3—ey,
and whether the execution of J; has been completed at that time.

i. If the execution of J> has not yet been completed, we do not
send any more jobs. To evaluate what is the best achievable
sum-stretch in these conditions, we need to study two cases:

Minimizing the stretch 27

A. J3 is completed before Js. Then, by hypothesis, J, cannot be
completed earlier than afyn+0yn+yn+n—e, —eo—e3—ey4.
In any case, J3 is completed at best at time af8yn + Byn +
yn + n. Therefore, the sum-stretch is greater than or equal
to:

€1
1+ (1 + ﬁ7n>

+(aﬁvn+ﬁ7n+7n+n—51—52—53—54)—(a57n+ﬂ'yn—51—52)

n
+(aﬂ7n+ﬂ7n+7”+n)_(0‘6’7714'67”""7/”_51—52—53)
n
1 € ez + ¢ €1 +eo+¢€
4+7+ 1 _ 3 4+ 1 2 3'
v Byn yn n

B. J3 is completed before J5. Then J3 is completed at the earli-
est at time r3+ps = afyn+pByn+yn+n—e; —eo—e3. In any
case, Jy is completed at best at time afyn + Byn + yn + n.
Therefore, the sum-stretch is greater than or equal to:

€1
b (1 - 6771}

+(aﬁ'yn+6'yn+7n+n—51—52—53)—(a67n+ﬂvn+%—51—52—63)

n
, (@Byn+ Byn+9n+n) = (afyn + fyn = &1 — e3)
n
1 € €1+e¢
=4+ -4+ 42

Therefore, in that case, the best achievable sum-stretch is

4—1—1—&—751 —&-min{51 teates €3+E4,61 +52}.
Y Bn n n n
However, with only these four jobs, one could have reached a
better sum-stretch by first fully execute Jy, then fully execute
J1, and then fully execute Jy. The sum-stretch obtained this

way is equal to:

5 g1 t+¢ €1 +¢e2+¢€ 5 €1+¢ €1+ €2 +¢€
(14— |+ {1+ 22) (1+ 28 =g 2 2 T2 T8
Byn yn n fyn - n n

Of course, this is a better solution only if:

€1

€ E1+€e2 €1+¢€ € 1
1 1 2+1 2+3<4+7+

€1texate3 e3+¢é4 51-1-62}
44 ,
pyn n n v Byn

+min { — ,

n yn n
what we will ensure through the choice of the parameters. In
that case, the competitive ratio is greater than or equal to:

1 €1 : eiteates eztes e1tes
4+v+ﬂvn+mm{ n yn 7 An }

€1 €1te2 €i1teates
4 4 ﬁ'yn+ n + —

28

A. Legrand, A. Su, F. Vivien

ii. We now consider the complementary case: at time ayn+ Gyn+

yn+n—e1 —eg —e3 —e4 the execution of Jo has been completed.
Then, we send a series of jobs to the system, as defined below.
As Jj is the first job to be completed, J; the second, and J,
the third, the most favorable case is that Jy is fully processed
during the time interval [0; afyn], Ji during the time interval
[aByn; afyn + Byn], and Jy during the time interval [aGyn +
Byn; afyn + Byn + yn]. We thus assume in the following that
this is the case.

We send to the system a series of k£ jobs, of same size p, the
inter-arrival time of these jobs being equal to p:

At time r3; = afyn+ pyn+yn+n—e1 + (j — 1)p arrives
job J3.; of size p3; =p, for 1 < j <k.

Obviously, all the k jobs of size p should be executed in the
order of their arrival. The only question to settle is when does
the execution of J3 ends 7 We have three cases to consider:

A. The execution of Js is completed before the execution of any
of the jobs Jz4j;, 1 < j < k. Then the best achievable sum-
stretch is equal to:

€ €1+e g1+ ée2+€ €
4 1+1 2+1 2 3+k<1+1>.
pyn n n P

B. The execution of J3 is completed after the execution of any
of the jobs J34;, 1 < j < k. Then the best achievable sum-
stretch is equal to:

€ €1+e¢€ €1+ea+¢ k
1+1 2+1 2 3+£

4+ + k.
Byn yn n n

C. The execution of J3 is completed between the completion of
the jobs Js4; and Js4,41, for some j € [1;k — 1]. Then the
best achievable sum-stretch is equal to:

€ €1+te¢ €1 t+E2+E€
1+1 2+1 2 3

4+
Byn m

P, . . 3
+ 2P (k—) (1 + 1) .
n p
This value is obviously a linear combination of the two pre-

vious ones, and we do not need to consider that case but just
the two extremal ones.

We would like the optimal completion order of the jobs to be Ji,
Jo, J3, 341, ..., Ja4k, Jo. The sum-stretch for such a schedule
is (terms listed in the completion order):

€ got+e€ afByn+ Byn+yn+n+k
1+<1+w21>+(1+ 2n 3)+k+ pyn + byn + P

afyn
eatez 1 1 1 kp
+ ey + af + afly + afSyn’

3
—k4d+ =4
n

Minimizing the stretch 29

Therefore, we want that:

k 1 1 1
k+—p+4+—+—+—+8—2+52+53
afyn af aBy n n
g1+te g1+ea+e €1
<min{ 4+57”+ ORI 3+k<1+ﬂl)’

4 i ot g eukeaten MR g
As we will let k tend to infinity, only the coefficients of k in the

different terms matter. Anyway, the competitive ratio in this
case is:

k+

+.
aﬁ7n+4+ +a6+aﬂv b

B(1+min {2, })+4+W+%+M

n

kp +
kt oo +d+ 2+ L4+ 2t

Therefore, to find with our construction the largest upper bound on the
competitive ratio of online algorithms minimizing the sum-stretch, we need to
find values of «, 3, v, n, k, p, €1, €2, and €3, which maximize:

1 : +
2+ a + min {O’ ﬂefyln o 6(1167673 }
2+ ﬁ'm
1 3 e1tes _ eates &1
3+ﬁ+m1n{ o B’m’ﬁ'm}
£1te€ ?
. 3+ ﬁwn + lvnz
min
4+ 2+ 5+ mm{“*if“‘”' — ate 51;;62}
A+ gl + sufee | skeaten ’
k (1 + min{fp }) e W + et 4 ket
ket g +4+i+ L+ o+ 2+

Using Mathematica [26], we found the values @ = 1.93716, § = 1.29941,
y=1,n= é ~ 2.69598, k =10'2, p=1, 1 = 0.370923, and ey =3 =, =0
and hence a ratio of 1.19485. |

5.3 Shortest Remaining Processing Time (SRPT)

In the previous section, we have recalled that shortest remaining processing
time (SRPT) is optimal for minimizing the sum-flow. When SRPT takes a
scheduling decision, it only considers the remaining processing time of a job, and
not its original processing time. Therefore, from the point of view of the sum-
stretch minimization, SRPT does not take into account the weight of the jobs
in the objective function. Nevertheless, Muthukrishnan, Rajaraman, Shaheen,
and Gehrke have shown [29] that SRPT is 2-competitive for sum-stretch.

30 A. Legrand, A. Su, F. Vivien

5.4 Smith’s Ratio Rule

Another well studied algorithm is the Smith’s ratio rule [33] also known as
shortest weighted processing time (SWPT). This is a preemptive list scheduling

where the available jobs are executed in increasing value of the ratio % What-
J

ever the weights, SWPT is 2-competitive [30] for the minimization of the sum
of weighted completion times (3 w;C;). Note that a p-competitive algorithm
for the sum weighted flow minimization (> w;(C; —r;)) is p-competitive for the
sum weighted completion time () w;C;). However, the reverse is not true: a
guarantee on the sum weighted completion time (3 w;C;) does not induce any
guarantee on the sum weighted flow (3 w;(C; —7;)). Therefore, the previous
ratio on the minimization of the sum of weighted completion times gives us no
result on the efficiency of SWPT for the minimization of the sum-stretch. Fur-
thermore, we can even prove that SWPT is not an approximation algorithm
for minimizing the sum-stretch. Indeed, SWPT schedules the available jobs by
1

increasing values of > and has thus exactly the same behavior as the short-

J
est processing time first heuristic (SPT). The following theorem states that
SPT (and thus SWPT) is not an approximation algorithm for minimizing the
sum-stretch.

Theorem 7. For any value p > 1, there is an instance on which the sum-stretch
realized by SPT is at least p times the optimal. Furthermore, we can impose
that in this instance A, the ratio of the sizes of the largest and shortest jobs
submitted to the system, is equal to 2.

Proof. Without loss of generality, we assume that p is a non-null integer. Then,
the instance is made of 4p + 1 jobs where job Ji is defined by:

k(k+1
Vk € [0;4p], rx = 8pk — kk+1)

and pr, = 8p — k.

This instance is built such that SPT preempts the execution of job J, for
0 < k < 4p — 1 one time unit before its completion. Thus the completion of
all the jobs is delayed after the completion of J;,. Then SPT completes the
execution of the jobs in the reverse order of their release dates, one every time
unit. Therefore, Jy, has a stretch of 1 and is completed at the date 24p? + 2p.
Then, job Ji, for 0 < k < 4p — 1, is completed at time (24p + 2p) + (4p — k)
and has a stretch of:

((249% +2p) + (4p — k) — (SPk - @) _ 2497 +6p— (8p+ Dk
8p —k - 4p

(we roughly bounded the denominator and we just dropped the @ term).
Therefore, the sum-stretch reached by SPT on this instance is greater than:

4=l o, 2 2
24p% + 6p — (8p + 1)k 24p> + 6
4y p°+6p—(8p+1) _ 1 24"+ 6p

4p 4p

8p+1(4p—1)4
4p 2

3
(4p) P_ 8p2+8p+§.

k=0

We now need to evaluate the optimal sum-stretch. This optimal is greater
than, or equal to, the sum-stretch realized by FIFO scheduling. Under the FIFO
scheduling, the job Jj is completed at time i + px + k and has thus a stretch of

Minimizing the stretch 31

1+ pﬁk =1+ Bp%k < 2. Therefore, the optimal sum-stretch for this instance is
no larger than 2(4p + 1). Finally, the ratio of the sum-stretch realized by SPT
on this instance and of the optimal sum-stretch is greater than or equal to:

8p® +8p+ 3
8p+2

Note that the largest job, po, as a size of 8p and the smallest, p4,, a size of 4p.
Hence, A = 2. [|

5.5 Shortest Weighted Remaining Processing Time (SWRPT)

The weakness of the SWPT heuristics is obviously that it does not take into
account the remaining processing times: it may preempt a job when it is almost
completed. To address the weaknesses of both SRPT and SWPT, one might
consider a heuristic that takes into account both the original and the remain-
ing processing times of the jobs. This is what the shortest weighted remaining
processing time heuristic (SWRPT) does. In the framework of sum-stretch min-
imization, at any time ¢, SWRPT schedules the job J; which minimizes p;p; (7).
Muthukrishnan, Rajaraman, Shaheen, and Gehrke [29] prove that SWRPT is
actually optimal when there are only two job sizes.

Neither of the proofs of competitiveness of SRPT or SWPT can be ex-
tended to SWRPT. SWRPT has apparently been studied by Megow [27], but
only in the scope of the sum weighted completion time. So far, there is no guar-
antee on the efficiency of SWRPT for sum-stretch minimization. Intuitively,
we would think that SWRPT is more efficient than SRPT for the sum-stretch
minimization. However, the following theorem shows that the worst case for
SWRPT for the sum-stretch minimization is no better than that of SRPT.

Theorem 8. For any real €, 1 > ¢ > 0, there exists an instance such that
SWRPT is not (2 — €)-competitive for the minimization of the sum-stretch.

Proof. The problematic instance is composed of two sequences of jobs. In the
first sequence, the jobs are of decreasing sizes, the size of a job being the square
root of the size of its immediate predecessor. In the second sequence, all the
jobs are of unit-size. Each job arrives at a date equal to the release date of its
predecessor plus the execution time of this predecessor, except for the second
and third jobs which arrive at dates critical for SWRPT.

Leta=1-5,n= {1og2 (log2 @ﬂ, and k = [—logy(—log, a)]. Let I
be an integer that will be defined later on. Then, we formally build the instance
J as follows:

1. Job J, arrives at time ro = 0 and is of size py = 22".

2. Job J; arrives at time r; = 22" — 22" " and is of size p; = 22" .

3. Job Jo arrives at time ro = r1 + 22" — a and is of size py = 22" ",

4. Job Jj, fqr 3 < j < n, arrives at time r; = 7j_1 + p;—1 and is of size

pi=2""

5. Job Juyj, for 1 < j < k, is of size ppy; = 2277 and arrives at time
Tnd+j = Tntj—1 +pn+j71~

32 A. Legrand, A. Su, F. Vivien

6. Job Juyr4j, for 1 < j < 1, is of size ppyrq; = 1 and arrives at time
Tn+k+j = Tntk+j—1 T Dntk+j—1-

We first study the behavior of SRPT on this instance: this gives us an
upper bound on the optimal sum-stretch. Then, we will study the sum-stretch
of SWRPT.

Study of SRPT.

e The first date at which SRPT must choose between two jobs is 7.
At 7 the remaining processing time (RPT) of Jy is p,, (Jo) = 22",
when p,, (J1) = 92""' Therefore, SRPT continues to execute Jy at
date rq, until r; + 22"7% < ro, at which date the execution of job Jy
is completed.

¢ We now consider the date 7.

pra() =22 = (o= (422" =

22%1 — ((rl + 22"71 — a) — (7“1 + 227172))

=2 (2 —2 T) =2

2n72

+ a.

Pry(J2) = 22" Therefore, SRPT executes the job J, starting at
its release date.

e The job Joij, for 1 < j < n+k+41—2,is executed at its release date.
We can indeed see that at the release date r24; the only job previously
released whose execution was not completed is J; whose remaining
processing time is p(J1) = 22" 4 o which is strictly greater than
Joyj (the jobs are released in decreasing order of their sizes).

e Once the execution of all the jobs Joy;, for 1< j<n+k+1—-2,is
completed, SRPT completes the execution of job J; which ends at
time t; equals to the sum of the sizes of all the jobs:

tp= Y 224 Y 22 4

0<i<n 1<i<k

e From what precedes, the stretch realized by SRPT on this example
is equal to one for all the jobs, except for job J;. Therefore, the
sum-stretch realized by SRPT on this instance is equal to:

tf _ (2271 _ 2271,—2)

2271,— 1

n+k+1—1+

Study of SWRPT.

e The first date at which SWRPT must choose between two jobs is 7.
At r1 the weighted remaining processing time (WRPT, denoted by
wi(J)) of Jo is wy, (Jo) = 22" *x 22", when w,, (J;) = 22" x 22" =
22", Therefore, SWRPT preempts job Jy at date r; and executes
job Ji instead.

Minimizing the stretch 33

e We now consider the date rs.
— Wy, (Jo) = wy, (Jo) = 227 x 22",
—wn(h) = (27 = (ra—)))22 = (277 = (2277 —a))
22" —q x 22"
271—2 27172 271—1
— Wy (J2) =2 X 2 =2 .
Then, whatever the value of a €]0;1[, SWRPT continues to execute
the job J; at the date 7, until its completion at date ro + . Starting
from the date ro + a and until the next release date, r3, SWRPT
executes the job Js.
¢ We now show by induction that at the date r;;, for 1 < j < n—1, the
only jobs released earlier than 714; and whose execution are not yet
completed are Jo with p, . (Jo) = 22"7* and Jj with p, (J;) = a.
We have seen that these properties hold for j = 1.

We now suppose that the properties hold until some value of j in-
cluded. Then, by induction hypotheses:

n

= Wy, (Jo) = wpy (Jo) = 2277 x 22"

— Wy, (J) = ax 22" 7

— Wy, (Jigy) =227 X 22 =92
Then, whatever the value of « €]0; 1], SWRPT continues to execute
the job J; at the date r14;, until its completion at date rii; + a.
Starting from the date r14; +« and until the next release date, roy;,

SWRPT executes the job Jii;. Then the desired properties also
hold for j + 1.

e Exactly as previously, we can show by induction that at the date

Tn+j, for 1 < j < k — 1, the only jobs released earlier than r,; and
whose execution are not yet completed are .Jo with p,. , (Jo) = 922"7?,

and Jupj-1 with pr, (Jngj-1) = a.
e We now consider the date 7,4 541-
(JO) = w’f‘l (JO) - 22”72 X 22”.
—k
- an+k+1(Jn+k) =ax2? ",
B wrn+k+1(=]n+k+1) =1x1=1

Obviously, we want SWRPT to take the wrong decision and to con-
tinue to execute job J,4p at date rypyr1. SWRPT will do that if
and only if

— Wragega

- 1
ax2 <lea< —.
227F

Therefore, we let k = [—log,(—log, a)].

e We can easily show by induction that at the date 7, 444;, for 1 < j <
[, the only jobs released earlier than 7,1 4; and whose execution are
not yet completed are Jo with pr, ., . (Jo) = 2271_27 and Jyqpti—1
with an+k+j (Jn+k+j71) = Q.

¢ Finally, SWRPT executes the job J,xr4+; during the time interval

[Prtkti + 051+ 75k + @], and then completes the execution of the
job Jo during the time interval [1 + 74 + o ty].

34 A. Legrand, A. Su, F. Vivien

e The sum-stretch realized by SWRPT is a bit more complicated to
compute than the one realized by SRPT. SWRPT stretches the
execution of job Jy over all the execution of the schedule; job J; as
a stretch of 1; and the execution of all the other jobs is increased by
a. Therefore, the sum-stretch realized by SWRPT on this instance
is equal to:

etk n+k
tf o o . tf
TEALDY (1 g)+ (14 T) = nb—141(1 o)+ o 2

We denote by R the ratio of the sum-stretch realized by SWRPT on this
instance to the optimal sum-stretch. From what precedes, we have:

>n+k_1+l(1+a)+2t7f"+a23:2k22*}‘1' > 1+
B n+k+l—1+tf’(2;;—fw_2) /n+k+l_1+%—fw2)
n+k)
However, ¢y :l+z22nﬂ =1+ f(n,k). We then have,
i=0
R> [(1+a) _ 1(1+a)
TN TR I e i) (14 gbr) +mt k=14 fm)— o)

gan—1

We then choose for n a value large enough to have 22,1%1 < m ==z k
and n are now all defined. Then,

: I(1+a) 1+«
2 P - (22 T T L
l(1+ 22371) tn+k-14+——5°= 22t

Therefore, we can choose [large enough to have

[(1+a) S _1ta e
R R T ligr 3
Then,
/1+‘f_€>(1+a)<1—il)_€>(1+a)<1_5>_5:1+a_5_5:2_5.
Lt 3 2) 8 3(1+a)) 3 373
|

6 Offline Max-Stretch Optimization

Bender, Chakrabarti, and Muthukrishnan [5] have shown that the problem of
max-stretch minimization on one machine without preemption, i.e., problem
(1]7;]Smax), cannot be approximated within a factor Q(n'~¢) for arbitrarily
small ¢ > 0, unless P=NP. In this section, we show that if we allow either
divisible loads or preemptions, we are able to minimize the maximum weighted
flow in polynomial time even on unrelated machines.

Minimizing the stretch 35

In Section 6.1, we state the relationship between minimization of the maxi-
mum weighted flow problem and deadline scheduling. Then we present a solu-
tion to maximum weighted flow minimization in the divisible load framework,
on unrelated machines. By adapting some of these techniques, we then describe
a solution to the minimization of the maximum weighted flow when preemption
(but not load divisibility) is allowed, once again on unrelated machines. These
results are given in Section 6.2.

It should be noted that, prior to our work, at least two solutions were known
for minimizing the max-stretch on one machine with preemption. Baker, Lawler,
Lenstra, and Rinnooy Kan [2] presented an O(n?) algorithm to solve an even
more general problem: (1|pmtn, prec, ;| fmax) (Where fmax is the maximum of
the costs of the jobs and the cost of a job is a non-decreasing function of its
completion time). This algorithm determines the job of least priority and then
iterates. Another solution using network flow maximization techniques was
known (We do not know any reference to this technique who was presented to
us by Michael Bender). In our divisible load framework, we do not know how to
extend this flow maximization technique to solve the case of uniform machines
with restricted availabilities, much less the more general case of unrelated pro-
cessors. Nevertheless, for the sake of completeness, we recall this solution in
Section 6.1.4.

6.1 Minimizing the Maximum Weighted Flow in the Di-
visible Model

6.1.1 Max Weighted Flow Minimization and Deadline Scheduling

Let us assume that we are looking for a schedule § under which the maximum
weighted flow is less than or equal to some objective value F. The weighted
flow of any job J; is equal to w;(C; — r;). Then, due to our hypothesis on F,
we have:

nax w;(Cj—r;)) < F & VYje[lin], wj(Cj—r;) <F <& Vjellin], C;
IIxRN

Thus, the execution of .J; must be completed before time d;(F) = r; +F /w; for
schedule S to satisfy the bound F on the maximum weighted flow. Therefore,
looking for a schedule which satisfies a given upper bound on the maximum
weighted flow is equivalent to an instance of the deadline scheduling problem.
We now show how to solve such a deadline scheduling problem in the divisible
load framework.

In deadline scheduling, each job J; has not only a release date r; but also
a deadline Jj. The problem is then to find a schedule such that each job Jj is
executed within its executable time interval [r;, d;]. We consider the set of all job
release dates and deadlines: {ry,...,r,, di,..., czn}. We define an epochal time
as a time value at which one or more points in this set occur; there are between
2 (when all jobs are released at the same date and have the same deadline) and
2n (when all job release dates and deadlines are distinct) such values. When
ordered in absolute time, adjacent epochal times define a set of time intervals.

We denote each time interval I; by I; = [inf I},sup I;[. Finally, we denote by
0

(
Qi j

the fraction of job J; processed by machine M; during the time interval I;.

< rj+Fjw;j.

36 A. Legrand, A. Su, F. Vivien

In this framework, System (1) lists the constraints that should hold true in any
valid schedule:

1. release date: job J; cannot be processed before it is released (Equa-
tion (1a));

2. deadline: job J; cannot be processed after its deadline (Equation (1b));

3. resource usage: during a time interval, a machine cannot be used longer
than the duration of this time interval (Equation (1c));

4. job completion: each job must be processed to completion (Equation (1d)).
la) Vi,Vj5,Vt, r; >suply = a® = ¢
(J J i.J
1b) Vi, Vj,vt, d; <infl, =o' =0
J j i
lc) Vi, Vi, a(t?.pi i <suply —inf I, 1
%,7 5]

J
Ad) v, 323 el =1
t i

Lemma 2. System (1) has a solution if, and only if, there exists a solution to
the deadline scheduling problem.

System (1) can be solved in polynomial time by any linear solver system as all its
variables are rational. Building a valid schedule from any solution of System (1)
is straightforward as for any time interval I;, and on any machine M;, the job
fractions agf)- can be scheduled in any order.

One may think that by applying a binary search on possible values of the
objective value F, one would be able to find the optimal maximum weighted
flow, and an optimal schedule. However, a binary search on rational values will
not terminate. By setting a limit on the precision of the binary search, the
number of process iterations is bounded, and the quality of the approximation
can be guaranteed. However, as we now show, we can adapt our search to always
find the optimal in polynomial time.

6.1.2 Solving on a Range.

So far we have used System (1) to check whether our problem has a solution
whose maximum weighted flow is smaller than some objective value F. We now
show that we can use it to check whether our problem has a solution for some
particular range of objective values. Later we show how to divide the whole
search space into a polynomial number of search ranges.

First, let us suppose there exist two values F; and Fp, F; < F3, such that
the relative order of the release dates and deadlines, 71, . .., 7y, d1(F), ..., dn(F),
when ordered in absolute time, is independent of the value of F €]Fy; Fa[. Then,
on the objective interval |Fy, Fa[, as before, we define an epochal time as a
time value at which one or more points in the set {r1,...,7,,d1(F),...,d,(F)}
occurs. Note that an epochal time which corresponds to a deadline is no longer
a constant but an affine function in F. As previously, when ordered in absolute
time, adjacent epochal times define a set of time intervals, that we denote by
I,..., L, 7). The durations of time intervals are now affine functions in F.

Minimizing the stretch 37

Using these new definitions and notations, we can solve our problem on the
objective interval [Fy, Fa] using System (1) with the additional constraint that
F belongs to [Fi, Fa] (Fi < F < F2), and with the minimization of F as the
objective. This gives us System (2).

MINIMIZE ~F
UNDER THE CONSTRAINTS
(2a) Fi<F <P

2b) Vi, ViV, o =supl, = al) =0
(J J 1,)
2) Vi,ViVt, d; <infl, = al’) =0 (2)
J 1,]
(2d) Vt,Vi, Z aft; pij <suply —inf I

j
(2e) V7, ZZ@E?:I
t i

6.1.3 Particular Objectives.

The relative ordering of the release dates and deadlines only changes for values of
F where one deadline coincides with a release date or with another deadline. We
call such a value of F a milestone!. In our problem, there are at most n distinct
release dates and as many distinct deadlines. Thus, there are at most w
milestones at which a deadline function coincides with a release date. There
are also at most 21 milestones at which two deadline functions coincides
(two affine functions intersect in at most one point). Let nq be the number
of distinct milestones. Then, 1 < nq < n? —n. We denote by Fi, Fs, ooy Fng
the milestones ordered by increasing values. To solve our problem we just need
to perform a binary search on the set of milestones Fi, Fs, ..., Fy,, each time
checking whether System (2) has a solution in the objective interval [F;, F; 1]
(except for i = ny in which case we search for a solution in the range [F,,, +-o0[).
There is a polynomial number of milestones and System (2) can be solved in
polynomial time. Therefore:

Theorem 9. (R|r;; divimaxw;F}) is polynomial : minimizing the maximum
weighted flow is a polynomial problem, in the divisible load model.

6.1.4 A Network Flow Approach for Uniform Machines

In section 6.1.1, we presented Linear program 1 to check whether there exists
a schedule whose maximum weighted flow is no greater than a given objective.
This linear program solves this problem in the unrelated machines case, that
is, the most general one. In fact, in the uniform machines framework, one can
solve this problem using a network flow maximization approach. The graph is
built as follows:

Vertices. The graph contains:

e A source;

ILabetoulle, Lawler, Lenstra, and Rinnooy Kan [19] call such a value a “critical trial value”.

38 A. Legrand, A. Su, F. Vivien

e A sink;
e One vertex Jj, for each job J;, 1 < j < n;

e One vertex (I, M;) for each couple made of a time interval I;, 1 <
t < Nynt, and of a machine M;, 1 <i < m.

Edges. The graph contains:

e One edge from the source to each node J; of capacity W, the size of
the job. This edge represents the amount of work that must be done
for the job J;.

e One edge from each node J; to each node (I, M;) if, and only if,
job J; can be executed during the time interval I, (i.e., r; < inf I,
and supt < d;). This edge is also of capacity W; (and is thus not
constraining).

e One edge from each node (I;, M;) to the sink, of capacity W:

this is the amount of work that machine M; can perform during the
time interval I;.

Figure 8 presents an example of such a graph.

There exists a schedule whose maximum weighted flow is no greater than
a given objective F if the network flow maximization problem for the graph
defined above (for the time intervals corresponding to F) has a solution whose
flow is equal to j W;. As previously, one can just check the feasibility of the
network flow problem for the milestones defined in the previous section. Then,
when it is known between which two milestones lies the optimal, the ordering of
deadlines is known, and an Earliest Deadline First scheduling leads to an optimal
solution. However, this scheme only works in the uniform machines setting as
EDF is no longer optimal for uniform machines with restricted availabilities (see
the example of Figure 2). Therefore, we do not know how to use the network
flow approach to minimize the max-stretch on uniform machines with restricted
availabilities, but this approach can obviously be used in such a framework to
check whether a given objective is feasible. Furthermore, this network flow
approach cannot be straightforwardly extended to deal with the general case of
unrelated machines (even when there are no problems of availabilities).

6.2 Minimizing the Maximum Weighted Flow with Pre-
emption (but no Divisibility)

In this section, we focus on the more classical problem with preemption but
without the divisible load assumption. We show that combining the linear
programming approach of the previous section with the work of Lawler and
Labetoulle [20] leads to a polynomial-time algorithm to solve this problem on
unrelated machines. Note that the network flow approach we just recalled en-
ables to minimize the max-stretch with preemption on one machine.

Following the work of Gonzalez and Sahni [16], Lawler and Labetoulle [20]
present a scheme to build in polynomial-time a preemptive schedule of makespan
C for a set of jobs Ji, ..., J,, of null release dates (Vj,7; = 0), under the condition
that Linear System (3) has a solution. This system simply states that:

1. all jobs must be fully processed (Equation (3a));

Minimizing the stretch 39

sup I; —inf I;
c1

sup [1 —inf I;
c2

sup I; —inf I}

source

sup Io—inf Iy
c3

sup Iz —inf I3
c1

sup Iz —inf I3

(I3, M) =

sup I3—inf I3
€3

Figure 8: Graph used to check, on uniform machines and through network flow
maximization, whether there exists a schedule of a given maximum weighted
flow. This example has two jobs, three machines, and three time intervals
defined by the epochal times ry < ro < di < ds.

2. the whole processing of a job cannot take a time larger than C (Equa-
tion (3b));

3. the whole utilization time of a machine cannot be longer than a time C
(Equation (3c)).

Obviously, these constraints must be satisfied by any preemptive schedule whose
makespan is no longer than C. The constructive result obtained by Lawler and
Labetoulle shows that such a schedule exists if, and only if, this set of constraints
has a solution.

(3a) Vj, Zaw:l

=1

(3b) V3, Zam‘ “pij <C (3)

i=1

(3c) Vi, Y aij-pi; <C
j=1

Our problem is slightly more general in that we allow arbitrary release dates.
Additionally, our objective is to minimize the maximum weighted flow rather
than the makespan. Let us consider a maximum weighted flow objective F. As
we did in Section 6.1.1, we use this objective value to define for each job J; a
deadline d;(F) = r; + F/w;. As before, the set of release dates and deadlines
defines a set of epochal times which, in turn, defines a set of time intervals that
we denote by In,..., I, (r). Then, we claim that there exists a preemptive
schedule whose maximum weighted flow is no greater than F if, and only if,
Linear System (4) has a solution. Linear System (4) simply states that:

40 A. Legrand, A. Su, F. Vivien

1. each job must be processed to completion (Equation (4a) which corre-
sponds to Equation (3a));

2. the processing of a job during the time interval I; cannot take a time
larger than the length of I; as, in the current framework, a job cannot be
simultaneously processed by two different machines (Equation (4b) which
corresponds to Equation (3b));

3. the utilization of a machine during a time interval cannot exceed its ca-
pacity (Equation (4c) which corresponds to Equation (3c));

4. the processing of a job cannot start before it is released (Equation (4d));

5. a job must be processed before its deadline (Equation (4e)).

;) _
(4a) Vj, Zzai,j =1
t i
(4b) Vt,Vy, Zait; pi; <suply —inf I
(4c) WVt Vi, Z aEt]) pij <suply —inf I, (4)
J

(4d) Vi,VjVt,
(4e) Vi,V4,Vt, d;

sup I; = aEt]) =0

VA N\

inf I, = a{’) = 0

Any preemptive schedule whose maximum weighted flow is no greater than
F must obviously satisfy Linear System (4). Conversely, suppose that Linear
System (4) has a solution. Then, following Lawler and Labetoulle [20], we note
that the whole system effectively decomposes into a set of linear sub-systems,
one for each of the time intervals, and that the sub-system corresponding to
interval I is exactly equivalent to Linear System (3) where the objective is the
length of the time interval (i.e., C = sup I; — inf I;). Therefore, starting from a
solution of Linear System (4) we use the polynomial-time reconstruction scheme
of Lawler and Labetoulle to build a preemptive schedule for each of the time
intervals I;. The concatenation of these partial schedules gives us a solution to
our problem.

Thus far, we have shown that we are able to check the feasibility of a specific
objective value for maximum weighted flow in polynomial time. Moreover, if
such an objective is feasible a schedule that achieves this maximum weighted flow
can also be built in polynomial time. To finally solve our problem, we recall the
methodology presented in Section 6.1: Linear System (4) can be used to search
for a solution in a range of objective values, defined by consecutive milestones,
over which the linear system is valid (i.e., the relative order of release dates
and deadlines does not change). Similarly, a binary search over the milestones
—which are in polynomial number— enables us to find and build an optimal
solution in polynomial time. Therefore:

Theorem 10. (R|r;; pmtn|max w;F;) is polynomial : minimizing the mazimum
weighted flow, with preemption, is a polynomial problem.

Minimizing the stretch 41

7 Offline Max-stretch Optimization and Pareto
Optimality

7.1 Pareto-Optimality

In this section we present a few game theory notions and how they translate
to our context. This enables us to understand a major flaw of the previous
max-based metric in a general framework and how to correctly define a new
metric.

Game theory provides a general framework to model situations where many
users compete for resources. Each user (in our context, a job) is characterized by
a utility function u;. The utility functions represent the satisfaction perceived
by the user (typically function of the delay or of the capacity). The goal is to
find scheduling strategies such that the utility of each user is maximized. In
our context it is more relevant to consider cost functions rather than utility
functions. Indeed, scheduling problems are typically minimization problems as
we try to minimize the completion time, the flow or the stretch of each job (we
will therefore assume in the following that the cost y; of job J; is a function of
the completion times C'). However, as these users may compete for the same
resources, it is generally not possible to simultaneously minimize the cost of
each user. In a multi-user context, optimality is not defined as simply as in
the single-user context, and it is common to use Pareto-optimality, defined as
follows:

Definition 2 (Pareto-optimality). C' is Pareto-optimal if and only if:

In other words, C'is Pareto optimal if it is impossible to strictly decrease the
cost of a player without strictly increasing that of another. Any non-Pareto-
optimal schedule can thus be considered as non-efficient as strictly a better usage
of resources could be done. Let us consider the cost set I' C (R%)" defined as
the set of all feasible cost vectors:

I'={(11(C),...,v.(C)|there exist a valid schedule with completion times C}

Figure 9 depicts on each subfigure, for a simple scheduling instance the various
cost sets associated to the completion time, flow time and stretch metrics. The
dashed-dotted line is the optimal isoline for the considered max-based metric
(max; C; for Figure 9(b), max; F; for Figure 9(c), and max; S; for Figure 9(d)).
Any point (the bold lines) belonging to both the isoline and the cost set is thus
optimal for the max-based metric . However we can see that very few of them
are Pareto-optimal. This is due to the fact that only the first maximum has
been minimized. It is well-known in the network community (see for example [8,
25]) that max-min fairness should be recursively defined. In our setting, this
means that the first maximum should be minimized, then the second should
be minimized, and so on. Sum-based metrics obviously do not suffer from this
flaw and always produce Pareto-optimal schedules. That is why we propose to
consider the new metrics Chax Pareto, Fa.x Pareto, and Sy,.x Pareto. These
scheduling metrics are likely to be much more difficult (but also much more
meaningful) than the previous ones as we do not have to only optimize the cost

42

0 1 2 3 4 5 6
T =0, =4
Scheduling " o
instance [ro=2,pp=1

— I

Vations | T o
schedules \ IIONON o
3

5 [—

(a) Scheduling instance and various feasible
schedules.

F

6

5

4

3 S S

a3
2 X
04
1 X
[op]
0

6 £
(c) Cost set for F;. o1 and any schedule such
that F7 and Fy are smaller than 4 is opti-

mal for max; F;. However, only o1 is Pareto-
optimal for max; F}.

A. Legrand, A. Su, F. Vivien

C,
6|
5 cal
03
4* X
0y
3]
(op]
2]
1
0
1 2 3 4 5 6 C

(b) Cost set for C;. Bold lines depict opti-
mal schedule (hence o1, o2 and o3) for the
max; C; metric. However, only o1 and o2
are Pareto-optimal.

Sy
3] Tk«

o3
27 X

4

1

e
0

1 2 35

(d) Cost set for Sj. o2 and any schedule
such that S1 and S2 are smaller than 1.25
is optimal for max; S;. However, only o2 is
Pareto-optimal for max; S;.

Figure 9: Most optimal solutions to max-based metrics are not Pareto-optimal.

of the more constraining job but to optimize the cost of all jobs at the same
time.

7.2 Heuristic Pareto Minimization of Max-Stretch on One
Machine

Algorithm 1 is an obvious algorithm which recursively tries to minimize the
stretch of jobs: first it minimizes the max-stretch, then the number of jobs
whose stretch is equal to the max-stretch, then the maximum stretch of the
other jobs, and so on. We show that in some cases Algorithm 1 produces Pareto
optimal schedules for stretch minimization.

Theorem 11. Algorithm 1 produces a Pareto optimal schedule for mazx-stretch
minimization on one machine with preemption if at no iteration of the while
loop there are two jobs whose deadlines, defined at Steps 6 and/or 8, are equal.

Proof. We will prove the correction of Algorithm 1 in two steps. First we will
show that the algorithm always terminates. Then we will show that it produces
an optimal schedule if at no iteration of the while loop there are two jobs whose
deadlines, defined at Steps 6 and/or 8, are equal.

Minimizing the stretch

43

Algorithm 1: Heuristic Pareto minimization of max-stretch on one ma-
chine.

FizedStretch « ()
FreeStretch — {Jy, ..., Jn}
while FreeStretch # () do

B W N =

10
11
12
13

Compute the minimum maximum stretch S of the jobs in FreeStretch
taking into account that for any job J; such that
(Jj,S;) € FizedStretch, J; has exactly a stretch of S;.
foreach J; € FreeStretch do
| Let dj —r; +S x p;
foreach (J;,S;) € FizedStretch do
L Let Jj <—T‘j+8j X Pj
Schedule Earliest Deadline First (EDF) all the jobs (breaking ties
randomly); Let C; be the completion time of job J; under this
schedule
foreach J; € FreeStretch do

if Cj = Jj then

FreeStretch «— FreeStretch \ {J;}
L FizedStretch «— FizedStretch U{(J;,S)}

14 foreach (J;,S;) € FiredStretch do

15

16

LLetdj<—T’j+Sj X Pj

Schedule Earliest Deadline First (EDF) all the jobs

1. We first show that all algorithms steps are feasible and that the algorithms

terminates.

Initially, FizedStretch is empty and the max-stretch minimization of Step 4
is absolutely equivalent to what we have done in Section 6 and is thus
trouble-less. Later on, the problem solved at Step 4 of a given iteration
of the while loop has, as a solution, the schedule found by EDF at the
previous iteration of the while loop, because of the way we fix the stretch
values for jobs in FizedStretch. Therefore, the problem at Step 4 is always
feasible.

The algorithm terminates as the size of FreeStretch strictly decreases with
each iteration of the while loop. Indeed, at Step 11 the condition is true
for at least one job at each iteration of the while loop. Otherwise, using
EDF we would have found a schedule under which the max-stretch of the
jobs in FreeStretch would be strictly smaller than the value found at Step 4
which is impossible.

. We now suppose that, whatever the iteration of the while loop, there does

not exist two jobs whose deadlines, defined at Steps 6 and/or 8, are equal.
We then prove by induction that the computed schedule is Pareto optimal.

Initially, the set FizedStretch is empty and Step 4 computes the minimum
max-stretch &* achievable. The only question we have to answer is thus:
is the number of jobs whose stretch is fixed to &* minimal? We will
prove a stronger result: if our algorithm sets the stretch of a job J; to

44 A. Legrand, A. Su, F. Vivien

S*, then in all schedules whose max-stretch is less than or equal to &%,
the stretch of J; is actually equal to $*. We prove this by contradiction.
We thus assume that there exists some schedule © whose max-stretch is
less than or equal to §*, and under which the stretch of J; is equal to

SJ(-@) < §*. Then we define the following instance of deadline scheduling;:
the deadline of any job J; # J; is the same as under our algorithm, i.e.,
d; = r; +8* x p;, and the deadline of .J; is equal to d; = 7; + (S* —¢) x p;,
where € > 0 is chosen smaller enough such that SJ(@) < §* — ¢, and such
that the order of the deadlines we just defined, sorted by non-decreasing
values, is the same as for the ones defined by Step 6 (which is the order
found when ¢ = 0). Such an ¢ exists because we have made the hypothesis
that no two jobs have the same deadline at the first iteration of the while
loop. Our instance of deadline scheduling is feasible as it admits © as a
solution. Now, we schedule our instance using EDF. As EDF always finds a
valid schedule if one exists [13], it finds a solution for this instance. EDF
schedules the jobs under this instance exactly as it did in Algorithm 1,
as the order of the deadlines did not change, and thus finds the same
stretches. Therefore, EDF finds a stretch of S* for J; which is impossible
looking at the definition of J;’s deadline, Jj. Hence a contradiction.

The general case of the induction is proven the same way as it also relies
on the facts that 1) each time a stretch is fixed, it is the minimal maximum
due to Step 4; and 2) EDF succeeds whenever there is a valid schedule. [l

We conjecture that Algorithm 1 always produces a Pareto optimal schedule
for max-stretch minimization on one machine with preemption. This conjecture
is based on the facts that 1) the function which associates to a schedule the
vector of the stretch of the jobs, sorted in non-decreasing order, is a continuous
function; 2) we believe that the set of the instances for which Theorem 11 holds
is dense in the space of all instances.

7.3 Heuristic Pareto Minimization of Max Weighted Flow
on Unrelated Machines

Here, we target the more general case of the max weighted flow as we will need
to look at the special case of max-flow minimization.

Algorithm 2 presents the solution we propose for the general case. The
solution for uni-processor case cannot be straightforwardly extended to the gen-
eral case as the Earliest Deadline First algorithm is obviously not optimal for
non-uniform machines. Once again we (try to) recursively optimize the max
weighted flow of the jobs. We compute the best achievable max weighted flow
for the jobs whose weighted flow is not yet fixed, and we (try to) minimize the
number of jobs whose weighted flow is equal to this maximum. As always the
objective max weighted flow gives a deadline per FreeStretch job. We first min-
imize the number of distinct deadlines d such that there always is a job whose
deadline is d and which is completed at date d. Then we minimize the number
of (problematic) jobs, i.e., of jobs which are completed at their deadline.

We first show that Algorithm 2 is correct. Then we come back on Step 15,
which is not fully defined.

Lemma 3. Algorithm 2 produces a valid schedule.

Minimizing the stretch

Algorithm 2: Heuristic Pareto minimization of max weighted flow.

B W N

10
11

12

13
14
15

16
17
18

19
20

21

FizedStretch — ()
FreeStretch — {Jy, ..., Jn}

while

L
L

FreeStretch # (0 do

Compute the minimum max weighted flow S of the jobs in
FreeStretch taking into account that for any job J; such that
(Jj,S;) € FizedStretch, J; has exactly a stretch of S;
foreach J; € FreeStretch do

dj —rj+8 xpj

foreach (J;,S;) € FizedStretch do

D « {d; | Sj € FreeStretch}
foreach d € D do

In the set of time intervals defined by the release dates and
deadlines (see Section 6.1.1), let Iy, be the time interval ending at
date d: sup Iy, =d

Solve System (5) (which attempts to complete strictly before d all
jobs of deadline d)

MAXIMIZE §
UNDER THE CONSTRAINTS

Vi, V5, Vt, r; = sup Iy = agtj) =0
Vi, ¥, Ve, dj < infI, = of) =0
Vi, Vi, Zj al(vfj)v.pi’j <supl; —inf I;
Vi, Doe D Oé’Etj) =1

Vi, ijj:d agg.pi,j < (suply, —infl;,) — 4

if § =0 then
Sq « {J; € FreeStretch | d; = d}
Compute a subset S/, of Sy such that all jobs in S/, have a max
weighted flow of S, and such that all the other jobs in Sy can
simultaneously have a max weighted flow strictly smaller than
S.
foreach J; € S/, do

FreeStretch «— FreeStretch \ {J;}
L FizedStretch «— FizedStretch U {(J;,S)}

foreach (J;,S;) € FizedStretch do

Build a schedule according to the solution of Linear Program 1.

45

46 A. Legrand, A. Su, F. Vivien

Proof. The proof of correction of Algorithm 2 follows from the proof of correction
for Algorithm 1, except for the loop at Step 10. We have therefore to prove two
properties: 1) System 5 has a null solution for deadline d if and only if, whatever
the schedule, there exists a job J; such that C; = d; = d (we then say d is a
“tight” deadline); 2) there exists a valid schedule under which, whatever the
deadline d which is not tight, there is no job J; such that C; = Jj =d.

We now prove the first property. Suppose d € D is not a tight deadline.
Then there exists a schedule © such that all jobs whose deadline is d complete
strictly before the date d. We consider the time interval I, which ends at date d
(see Section 6), and any processor P;. As no jobs whose deadline is d completes
at date d, right before that date either:

1. P; is idle, and then:

sup [y, — 1antd>Za”p”/ Z a(j])p”

‘] .7
2. P; processes a job whose deadline is strictly greater than d, and then:

> aflpi, < Z% pij <suply, —infI,,.
ldj=d

In all cases:
. t
sup Iy, —inf I, — Z ag’;.pi,j >0
jld;=d

Thus, we can pick for § the strictly positive value:

min | sup [y, —inf I;, — g ajp”
i i ?
J‘dj_d

Therefore, if § =0, d is a tight schedule.
Conversely, if § > 0, we take any solution to System (5), and then, on each

processor, and during each time interval, we schedule earliest deadline first the

fractions 04(]). As § > 0, whatever the processor, inf I;, + Zﬂd g« (7]) iy <

sup I3, and, thus, all jobs those deadlines are d are completed strlctly before the
date d.

We now prove the second property. Let d; and ds be two deadlines in D.
Let ©1 and Oy be two schedules such that under ©; (resp. ©2) no job J; is
such that C; = d; = dy (resp. Cj = d; = d2). We denote by a(t’l) (resp.

045 4)) the fractlon of job J; processed on processor P; during the time interval

I under the schedule ©; (resp. ©3). We then define a third schedule, O3, by

Efjg) 2((t 1) +a(t 2)) and by scheduling, on each processor, and during each
interval, the fractlons Earliest Deadline First. One can easily check that O3 is
a valid schedule and that under ©s3, there is no job J; such that C; = Jj =d;

or Cj = d; = da. An immediate induction gives us the desired property. [|

Step 15 does not explicit how the set “S’,” should be computed, especially
as we would like this set to be as small as possible. In fact, in the general case
this problem is NP-complete, as shown by the proof of the next theorem which
states the complexity of the general max-flow minimization, and thus of the
general case.

Minimizing the stretch 47

Theorem 12. The Pareto minimization of max-flow on unrelated machines,
(R|div| Fyax Pareto), is NP-complete

As we do not have any release dates in the above theorem, we in fact prove
that (R|div|Cyax Pareto), is NP-complete. In fact we prove an even stronger
result, that is that minimizing the number of jobs whose completion date is
equal to the makespan is NP-complete on unrelated machines, and under the
divisible model.

Proof. This result is proved with a reduction from MINIMUM HITTING SET [15].

Let us consider any instance Z; of MINIMUM HITTING SET. Z; is defined by
a collection C' = {51, ..., S|¢|} of subsets of a finite set S and by an integer K.
The question is: is there a subset S’ of S, such that |S’| < K and such that S’
contains at least one element from each subset in C: for each i € [1,|C|], S;NS’" #
(). Without loss of generality we assume that S = U;S;.

From instance Z; of MINIMUM HITTING SET, we now build an instance Zs
of our problem. 7, is made of n = |S| jobs and we identify the jobs Ji, ..., Jig
with the elements x1, ..., r|g of S. The size W; of job J; is equal to the number
of subsets containing z; : W; = [{S; € C | z; € S;}|. We will have to schedule
these jobs on m = |C| processors and we identify the processors with the subsets
S1, -y Sjc|- We define the computational characteristics of the processors as

follows:
o ﬁ lf Ij € Sz',
Pij = oo otherwise.

Here the question is: is there a schedule for which the number of jobs whose
flow is equal to the optimal max-flow is less than or equal to K7

We first remark that the optimal maximum flow is equal to 1. Indeed, the
total load to be processed is 3, W; = >, [{S; € C | z; € S;}| = 37, [Si| and, at
best, processor P; can process a load of size |S;| during a unit of time. Therefore
the optimal max-flow is greater than or equal to 1. A max-flow of 1 is realized
by any schedule under which processor P; devotes a fraction ﬁ of the time
interval [0, 1] to any job J; such that x; € S;. Indeed, under such a schedule,
the share of job J; processed during the time interval [0, 1] by processor P; such
that x; € S; is equal to 1. Therefore, the overall share of job J; process during
that time interval is equal to 32, g, 1= [{Si € C'| z; € Si}| = W.

Furthermore, this proof shows that if any processor is (at least) partially idle
during the time interval [0, 1] then the max-flow achieved will be strictly greater
than one. Therefore, under any schedule achieving the optimal max-flow there
is, on each processor, a job which is run until the date 1, and thus which has
a max-flow of 1. The set of jobs whose max-flow is one in Z5 then equivalently
defines a hitting set of S in Z;. |

MINIMUM HITTING SET is equivalent to MINIMUM SET COVER [14]. There-
fore, one of the best polynomial time algorithm to approximate MINIMUM HIT-
TING SET is the greedy algorithm which at each step picks the element which
belongs to the largest number of still un-hit subsets. This greedy algorithm has
an approximation ratio of 1+ In|S| [18, 32], where |S| is the size of the set.

We do not know what is the complexity of the Pareto minimization of the
max-stretch. Seeing how efficient is the greedy heuristic for the minimum hitting

48 A. Legrand, A. Su, F. Vivien

set problem, we simply suggest to use it to solve in practice Step 15. Further-
more, one can easily see that when the set Sy at Step 14 is always reduced to a
singleton, Algorithm 2 produces an optimal schedule. Therefore:

Theorem 13. Algorithm 2 produces a Pareto optimal schedule for maz-stretch
minimization on unrelated machines under the divisible load model if the set Sy
at Step 1/ is always reduced to a singleton.

We believe that, in practice, the set Sy will always be reduced to a singleton,
and thus that Algorithm 2 will always produce optimal schedules in practice.
(Note that the case of jobs of same size and same release date is not a problem.)

8 Online Max-Stretch Optimization

In this section, we first improve a lower bound on the competitive ratio of online
algorithms for max-stretch minimization established by Bender, Chakrabarti,
and Muthukrishnan [5]. Then we present the two competitive algorithms that
have previously been proposed in the literature [5, 6]. Last we highlight some
practical limitations of these algorithms and propose new heuristics that cir-
cumvent these limitations.

8.1 Lower Bound on the Competitiveness of Online Algo-
rithms

Theorem 14. For three lengths of jobs, there is no %A‘/E_l—competitive pre-
emptive online algorithm minimizing maz-stretch.

This result is an improvement from the bound of %Aé established by Bender,
Chakrabarti, and Muthukrishnan [5]. In fact, we establish this new bound by
doing a more precise analysis of the exact same adversary. In their proof, Bender,
Chakrabarti, and Muthukrishnan implicitly assumed that the algorithm knew
in advance the ratio A of the sizes of the largest and shortest jobs.

We will see in the next section that there exist some O(v/A)-competitive
algorithms. Therefore, we have roughly bridged half of the gap between the
previous lower bound and the best existing algorithms.

Proof. We prove this result by contradiction. Therefore, let us assume that
there exists a %Aﬁfl—competitive preemptive online algorithm 4 minimizing
max-stretch. An adversary sends the following series of jobs:

Phase 1: Jobs 1 and 2 have both a size of § and arrive at time 0, i.e., p; =
pgzéandﬁ:rg:().

If these two jobs were the only ones received by the processor, the optimal
max-stretch would be 2.

Phase 2: Starting at time 20 — k, and every k time units, arrives a job of size
k (with k <). There are x such jobs. In other words, for 1 < j < z, job
Joyj arrives at time roq; = 20 4+ (j — 2)k and is of size po1; = k.

Minimizing the stretch 49

A first come, first served (FCFS) ordering of all the jobs has a stretch of 2 as,
under such a scheduling, J,; is executed during the interval [r; + k,r; + 2k].

The algorithm A is by hypothesis %A\/ﬁ_l—competitive and, as a stretch of
2 can be achieved, the date C; at which the execution of J; ends must satisfy:
% < %Aﬁ_l x 2 (we have the same constraint on C3). So far, A = %
(remember that A is the ratio of the sizes of the largest and shortest jobs in the
system) 2. Therefore, the constraint on Cj can be rewritten:

5v2

L \va-1 _
ClgiA X2><6_k\/§71.

The most favorable case for algorithm A is when it is able to (partially) delay
the execution of J; and J; and to execute each of the jobs Js, ..., Joy, at its
release date. To forbid such a behavior, we just have to choose x, the number
of jobs of size k, to be large enough for algorithm A not to be able to delay the
completion of J; and/or Jy after the completion of all the jobs of size k. If each
of the jobs Js, ..., Jat. is executed at its release date, then Coyp = 20+ (z—1)k.

We define z as follows:
n k k|-

Then, 20+ (z —1)k > k&f% and the execution of C7 and Cs must be completed
by the date 20 + (x — 1)k. Otherwise, the algorithm A fails to achieve its
guarantee as the adversary would then send at time 2§ + (x — 1)k a job of size
% to be exactly under the conditions stated by the theorem.

So, algorithm A must complete the execution of Cy and Cy by the date
20 4+ (x — 1)k. Then the adversary sends the following third series of jobs.

Phase 3: Starting at time 2 + (x — 1)k, and every time unit, arrives a job of
size 1. There are y such jobs. In other words, for 1 < j <y, job Jajey;j
arrives at time ro4,4; =204 (xr — 1)k + (j — 1) and is of size poy,4; = 1.

Let us evaluate the best max-stretch that can be achieved by any schedule. A
possible schedule would be:

1. Execute J; during the time interval [0, 6], hence a stretch of 1 for J;.
2. Execute a chunk of Jy during the time interval [d, 20 — k].

3. Execute each of the jobs of size k and 1 at the time of its arrival, hence a
stretch of 1 for each of them.

4. Complete the execution of J; during the time interval [20 + (z — 1)k +
Y, 20 + xk + y], hence a stretch of % for Js.

Therefore, the optimal max-stretch is less than or equal to: %.

20ur bound is tighter than the one established by Bender, Chakrabarti, and Muthukrishnan
because we remark that A = %, when they used A = % = 0, as if they had assumed that
the algorithm knew in advance that the ratio of the sizes of the largest and shortest jobs
submitted to the system would be §.

50 A. Legrand, A. Su, F. Vivien

Let us now evaluate the stretch realized by algorithm A. Its schedule can
end at the earliest at time 20 + zk + y. As we have forced algorithm A to end
the execution of C; and Cs by the date 20 + (x — 1)k, the schedule can end
either with a job of size 1 or with one of size k:

1. If the last job is of size 1, we denote it Joy,4;. Then, its stretch satisfies:

(20+zk+y) —(20+ (z—Dk+(j —1))
1

stretch(Jogqt5) = = k+(y—j)+1 > k+1.

2. If the last job is of size k, we denote it Jo, ;. Then, its stretch satisfies:

(20 +2k+y)— (264 (j —2)k)

=2
A +

stretch(Jag;) > = (z—j+2)+

<
E RS

Therefore, the max-stretch that algorithm A can achieve is greater than or equal
to

min{k—&-l,?—i—%}.

We then define y to maximize this value. We thus pick for y the smallest value
that enable us to have 2+ ¥ > &k + 1, i.e., we choose y = [k(k — 1)].

So far, algorithm A achieves a max-stretch greater than or equal to k + 1,
when the optimal max-stretch is less than or equal to %. Thus, if we can
choose k such that: 5 "

1 2
k1> -Av2 120 tIhty
2)
we will have reached the desire contradiction. Here, we have A = % =4. We
pick k = §2-V2. We then have:

V2
1l 2takty o 15 S\Y? 26|k | [k(k-1)]
(k+1) - 56 =kl 2+ 2+ (7 5t

NG}
1o 5 26\ k14 (k(k—1))
_ TsV2-1 ¢ oy 2T)
>kt 1= 30 <2+<2+(k> k>5+ 5
VIl (251*\/§ 1932V 4 AV g1-V2 5*1)
2

2
>0

1 i léz—ﬁ (1 _§2-2V2 _ 52\/5—4)
2

The last inequality comes from the fact that 2 —2v/2 < 0 and 2v/2 —4 < 0, and
1
it holds when ¢ is large enough (e.g., § > 22(v2-1)), [|

8.2 Competitive Online Heuristics

We have already seen in Section 3.2 that FCF'S, the optimal algorithm for the
online minimization of max-flow, is only A-competitive for the online minimiza-
tion of max-stretch. This seemingly bad result is obviously partially explained
by Theorem 14.

Minimizing the stretch 51

We now recall two existing online algorithms for max-stretch minimization
before introducing a new one. Bender, Muthukrishnan, and Rajaraman [6]
defined, for any job J;, a pseudo-stretch S;(t):

T2 if1<p < VA,
O =9 7
=7 if VA <p; <A

Then, they scheduled the jobs by decreasing pseudo-stretches, potentially pre-
empting running jobs each time a new job arrives in the system. They demon-
strated that this method is a O(v/A)-competitive online algorithm.

Bender, Chakrabarti, and Muthukrishnan [5] had previously described an-
other O(v/A)-competitive online algorithm for max-stretch. This algorithm
works as follows: each time a new job arrives, the currently running job is
preempted. Then, they compute the optimal (offline) max-stretch S* of all jobs
having arrived up to the current time. Next, a deadline is computed for each
job Jj: d;(F) = rj + a x 8*/p; Finally, a schedule is realized by executing
jobs according to their deadlines, using the Farliest Deadline First strategy. To
optimize their competitive ratio, Bender et al. set their expansion factor a to
V/A. For both heuristics, the ratio A of the sizes of the largest and shortest jobs
submitted to the system is thus assumed to be known in advance.

When they designed their algorithm, Bender et al. did not know how to
compute the (offline) optimal maximum stretch. This problem is now overcome.
The main remaining problem in this approach, from our point of view, is that
such an algorithm tries only to optimize the stretch of the most constraining
jobs. This problem is common to all algorithms minimizing a max objective.
Indeed, such an algorithm may very easily schedule all jobs so that their stretch
is equal to the objective, even if most of them could have been scheduled to
achieve far lower stretches. This problem is far from being merely theoretical,
as we will see in Section 10. We will try to circumvent it when designing our
own heuristics.

8.3 Practical Online Heuristics

The basic online heuristic we could derive from our offline algorithm would be
along the same line as the algorithm of Bender, Chakrabarti, and Muthukrish-
nan: each time a new job arrives we would preempt the running job (if any),
compute the optimal max-stretch, and schedule the jobs according to the so-
lution of System 2. The solution of System 2 specifies what fraction of each
job should be executed on each processor during each time interval. We would
implement this solution by breaking arbitrarily the ties that may appear in each
time interval.

Our first modification to this scheme is that, rather than computing the
“optimal max-stretch”, we compute the “best achievable max-stretch considering
the decisions already made”. In other words, we take into account our knowledge
of which jobs were already (partially) executed, and when. The underlying idea
being that we cannot change the past. Also, such an optimization will greatly
simplify the linear system. This modification is implemented by making trivial
modifications to System 2.

Our second modification to the above scheme is more important: we want
to optimize more than the max-stretch. The first possibility would be to use in

52 A. Legrand, A. Su, F. Vivien

an online framework our offline heuristic for the Pareto minimization of max-
stretch. To do so, instead of using a binary search and System 2 to compute the
best achievable max-stretch, we use Algorithm 2 where, at Step 4, we compute
the best achievable max-stretch rather than the optimal one. This way we define
our ONLINE-PARETO heuristics.

Another possible approach would be to specify that each job should be sched-
uled in a manner that minimizes its own stretch value, while maintaining the
overall maximal stretch value obtained. For example, one could theoretically try
to minimize the sum-stretch under the condition that the max-stretch be opti-
mal. However, as we have seen, minimizing the sum-stretch is an open problem.
So we consider a heuristic approach expressed by System (6).

- - sup I;(8*) + inf I;(S*)
MINIMIZE Jz::le ((Z <Z aE?) - 5 : -7 ,

t \i=1
UNDER THE CONSTRAINTS
(6a) Vi,Yj,Vt, r; =supl(S*) = al(tj) =0

(6b) Vi,V Vt, d;(S*) <iant(S*):>al(,f]), -0
(6c) V&Y, Yol pi; <supI(S*) — inf I,(S¥)

J
6d) Vi, > 3 al)=1
t 7

(6)
This system ensures that each job is completed no later than the deadline de-
fined by the optimal (offline) max-stretch $*. Then, under this constraint, this
system attempts to minimize an objective that resembles a rational relaxation
of the sum-stretch (or more generally of the sum weighted flow) using as an
approximation of the completion time, the weighted sum of the average exe-
cution times of a job. As we do not know the precise time within an interval
when a part of a job will be scheduled, we approximate it by the mean time of
the interval. (This heuristic obviously offers no guarantee on the sum-stretch
achieved.) This way, we obtain the following online algorithm. Each time a new
job arrives:

1. Preempt the running job (if any).

2. Compute the best achievable max-stretch S*, considering the decisions
already made.

3. With the deadlines and intervals defined by the max-stretch S*, solve
System (6).

At this point, we define three variants to produce the schedule. The first,
which we call ONLINE, assigns work simply using the values found by the linear
program for the « variables:

4. For a given processor P;, and a given interval I;(S*), all jobs J; that
complete their fraction on that processor during the same interval (i.e., all
jobs J; such that), , 0%(',tj) = 0) are scheduled under the SWRPT policy
in that interval. We call these jobs terminal jobs (for P; and I;(S*)). The

Minimizing the stretch 53

non-terminal jobs scheduled on P; during interval I;(S*) are only executed
in I;(8*) after all terminal jobs have finished.

The second variant we consider, ONLINE-EDF attempts to make changes to
the schedule at the processor level to improve the overall max- and sum-stretch
attained:

4. Consider a processor F;. The fractions o;; of the jobs that must be
partially executed on P; are processed on P; under a list scheduling policy
based on the following order: the jobs are ordered according to the interval
in which their share is completed (according to the solution of the linear
program), with ties being broken by the SWRPT policy.

Finally, we propose a third variant, ONLINE-EGDF, that creates a global pri-
ority list:

4. The (active) jobs are processed under a list scheduling policy, using the
strategy outlined in Section 2.3 to deal with restricted availabilities. Here,
the jobs are totally ordered by the interval in which their total work is
completed, with ties being broken by the SWRPT policy.

The validity of these heuristic approaches will be assessed through simulations
in the section 10.

9 Summary of Complexity Results

Table 1 summarizes the main complexity results presented in this document as
well as related work. Minimizing maxw, F}; is polynomial as soon as divisibility
or preemption is allowed whereas) w;F} is always strongly NP-hard. > F; is
easy only on simple settings (one processor with preemption of related proces-
sors with divisibility) and is strongly NP-hard in all other settings. The main
problem whose complexity is still open is (1|r;, pmitn|)>_ S;) even if (as we al-
ready have mentioned in Section 5.1) Polynomial Time Approximation Scheme
(PTAS) have been proposed for this problem.

10 Simulations

To evaluate the efficacy of various scheduling strategies when optimizing stretch-
based metrics, we implemented a simulator using the SimGrid toolkit [21], based
on the biological sequence comparison scenario. The application and platform
models used in the resulting simulator are derived from our initial observations
of the GriPPS system, described in Section 2. Our primary goal is to evaluate
the proposed heuristics in realistic conditions that include partial replication
of target sequence databases across the available computing resources. The re-
mainder of this section outlines the experimental variables we considered and
presents results describing the behavior of the heuristics in question under var-
ious parameterizations of the platform and application models.

54 A. Legrand, A. Su, F. Vivien

[model =0 | model = pmin \ model = div

(1|r;; model|max w; Fy) NP([5]) ! !

(P]r;; model|max w; F;) 1 J 1

(Q|r;; model|max w; F}) 1 ! !

(R|r;; model|max w; F;) i P(Lin. Prog. Sec. 6.2) P(Lin. Prog. Sec. 6.1)
(1|rj; model|y " F;) NP([24]) P(SRPT [1]) [l
(Plrj;modell|y” Fj) 1 N P(Numerical-3DM [3]) !

(Qlrj; modell|y” Fj) i 7 P(SRPT + Sec. 2.3)
(R|rj; model|y" F;) 1 7 NP(3DM, Sec. 4)
<<1\|Tj;m0del\|§35j)> NP(Sec. 5.1) ? ?
Plr;;model|) S; 1 ? ?
(Q|r;; model]>" S;) i ? ?
(R|rj; model|) " S;) 1 ? NP(3DM, Sec. 5.1)
(1|r;; model|> w; F;) NP([24]) N P(Numerical-3DM [19]) 9
(Plrj; model|y w; F;) 1 1 1
(Qlrj; model|y S w; Fj) 1 1 1
(Rlrj; model|} w; F;) 1 1 1

Table 1: Summary of complexity results.

10.1 Simulation Settings

The platform and application models that we address in this work are quite flex-
ible, resulting in innumerable variations in the range of potentially interesting
combinations. To facilitate our studies, we concretely define certain features of
the system that we believe to be useful in describing realistic execution scenarios.
We consider in particular six such features.

Platform size: Typically, a given biological database such as those con-
sidered in this work, would be replicated at various sites, at which comparisons
against this database may be performed. Generally, the number of sites in a sim-
ulated system provides a basic measure of the aggregate power of the platform.
This parameter specifies the exact number of sites in the simulated platform.
Without loss of generality, we arbitrarily define each site to contain 10 proces-
Sors.

Processor power: Our model assumes that all the processors at any given
site are equivalent, and each processor is assumed to have access to all databases
located there. Thus for each site, a single processor value represents the pro-
cessing power at that site. We choose processor power values using benchmark
results from our previous work.

Number of databases: Applications such as GriPPS can accommodate
multiple reference databases. Our model allows for any number of distinct
databases to exist throughout the system.

Database size: Our previous work demonstrated that the processing time
needed to service a user request targeting a particular database varies linearly
according to the number of sequences found in the database in question. We
choose such values from a continuous range of realistic database sizes, with the
job size for jobs targeting a particular database scaled accordingly.

Database availability: A particular database may be replicated at multi-

Minimizing the stretch 55

ple sites, and a single site may host copies of multiple databases. We account
for these two eventualities by associating with each database a probability of
existence at each site. The same database availability applies to all databases
in the system. We further ensure that each database is available at at least one
site, and each site hosts at least one database.

Workload density: For a particular database, we define the workload
density of a system to be the ratio, on average, of the aggregate job size of user
requests against that database to the aggregate computational power available
to serve such requests. Workload density expresses a notion of the “load” of
the system. This parameter, along with the size of the database, define the
frequency of job arrivals in the system.

We define a simulation configuration as a set of specific values for each of
these six properties. Once defined, concrete simulation instances are constructed
by realizing random series for any random variables in the system. In particular,
two models are created for each instance: a platform model and a workload
model. The former is specified first by defining the appropriate number of 10-
node sites and assigning corresponding processor power values. Next, a size
is assigned to each database, and it is replicated according to the simulation’s
database availability parameter. Finally, the workload model is realized by first
generating a series of jobs for each database, using a Poisson process for job
inter-arrival times, with a mean that is computed to attain the desired workload
density. The database-specific workloads are then merged and sorted to obtain
the final workload. Jobs may arrive between the time at which the simulation
starts and 15 minutes thereafter.

In this simulation study, we use empirical values observed in the GriPPS
system logs to define a realistic range of database sizes and to generate appro-
priate values for processor speeds. The remaining four parameters — platform
size, number of distinct databases, database availability, and workload density —
are the simulation values that vary in our study. We discuss further the specifics
of the experimental design and our simulation results in Section 10.3.

10.2 Optimization of the Online Heuristic

To motivate the variants of our online heuristic described in Section 8, we con-
duct a series of experiments to evaluate their effect. In particular, we con-
sider a non-optimized version of the online heuristic, which stops after Step 2.
We consider job workloads of average density varying between 0.0125 to 4.00,
over a range of average job lengths between 15 and 60 seconds. For each job
size/workload density combination evaluated, we simulate the execution of 5000
instances, recording the maximum and sum stretch of jobs in the workload
achieved with both the optimized and non-optimized versions of the online
heuristic. The max-stretch of each is then divided by the max-stretch achieved
by the optimal algorithm, yielding a degradation factor for both heuristics on
that run. Since the optimal sum-stretch is not known, we observe the sum-
stretch of the optimized online heuristic relative to the non-optimized version.
Figures 10(a) and 10(b) present the max-stretch and sum-stretch results, respec-
tively. In the first plot, the average max-stretch degradation, compared to the
optimal result, for both versions of the heuristic over the 5000 runs of a given
configuration is plotted against the workload density of that configuration. The
second plot depicts the gain for the sum-stretch metric for the optimized heuris-

56 A. Legrand, A. Su, F. Vivien

tic, relative to the non-optimized version. These results strongly motivate the
use of the optimizations encoded by the linear program depicted in System (6).

25 20

g Non-optimized degradation ~ + Gain using optimized online
p= . Optimized degradation 18 * s
% 2t 7 £ 16
S N £ 14
3 §)
S 5t} o 12
s
g ! g 0
] :]
K 11 g 8
e { g 6f;
s osf 2 4t
I i i
g 2
< 0 0
0 1 2 3 4 5 0 1 2 3 4 5
Workload density Workload density

(a) Max-stretch degradation from op- (b) Sum-stretch gain of the optimized
timal of both versions of the online version, relative to the non-optimized
heuristic version

Figure 10: Comparison of the optimized and non-optimized versions of the online
heuristic.

10.3 Simulation Results and Analysis

We have implemented in our simulator a number of scheduling heuristics that
we plan to compare. First, we have implemented OFFLINE, corresponding to the
algorithm described in Section 6 that solves the optimal max-stretch problem.
Two versions of the online heuristic are also implemented, designated as ONLINE
and ONLINE-EGDF'. Next, we consider the SWRPT, SRPT, and SPT heuris-
tics discussed in Section 5. Then, we consider the two online heuristics proposed
by Bender et al. that were briefly described in Section 8.2. We also include two
greedy strategies. First, MCT (“minimum completion time”) simply schedules
each job as it arrives on the processor that would offer the best job completion
time. The FCFS-D1v heuristic extends this approach to take advantage of the
fact that jobs are divisible, by employing all resources that are able to execute
the job (using the strategy laid out in Section 2.3). Note that neither MCT
nor FCFS-D1v makes any changes to work that has already been scheduled.
Finally, as a basic reference, we consider a list-scheduling heuristic with random
job order denoted RAND. This heuristic works as follows: initially, we ran-
domly build an order on the jobs that may arrive; then RAND list-schedules
the jobs while using this list to define priorities, and while using the divisibility
property. All the uni-processor heuristics (SWRPT, SRPT, SPT, and Bender
et al.’s) are extended to the multi-processor case using the strategy previously
described in Section 2.3.

As mentioned earlier, two of the six parameters of our model reflect empirical
values determined in our previous work with the GriPPS system [23]. Processor
speeds are chosen randomly from one of the six reference platforms we studied,
and we let database sizes vary continuously over a range of 10 megabytes to
1 gigabyte, corresponding roughly to GriPPS database sizes. Thus, our exper-
imental results examine the behaviors of the aforementioned heuristics as we
vary our four experimental parameters:

platforms of 3, 10, and 20 clusters (sites) with 10 processors each;

Minimizing the stretch

57

Max-stretch Sum-stretch
Mean SD Max Mean SD Max
OFFLINE: 1.0000 0.0001 1.0141 1.5503 0.2940 2.9472
ONLINE: 1.0041 0.0221 3.9853 1.0495 0.0398 1.4158
ONLINE-EGDF: 1.0387 0.0681 1.7772 1.0025 0.0043 1.0935
SWRPT: 1.0515 0.0878 1.9632 1.0002 0.0010 1.0426
SRPT: 1.0688 0.1046 1.9319 1.0049 0.0050 1.1115
SPT: 1.0778 0.1229 2.3820 1.0022 0.0039 1.1814
BENDEROS3: 1.0667 0.1228 2.4877 1.0037 0.0068 1.1701
BENDERO02: 3.6651 3.0509 26.4899 1.2074 0.2532 7.1756
FCFS-Div: 7.0806 8.1259 78.0723 1.3856 0.5911 18.2120
MCT: | 34.1058 21.3104 144.1156 || 52.6756 36.9028 161.9829
RAND: 6.7452 8.8499 133.7370 1.2413 0.3723 10.3411

Table 2: Aggregate statistics over all 162 platform/application configurations.

applications with 3, 10, and 20 distinct databases;

database availabilities of 30%, 60%, and 90% for each database; and

workload density factors of 0.75, 1.0, 1.25, 1.5, 2.0, and 3.0.

The resulting experimental framework has 162 configurations. For each con-
figuration, 200 platforms and application instances are randomly generated and
the simulation results for each of the studied heuristics is recorded. Table 2
presents the aggregate results from these simulations; finer-grained results based
on various partitionings of the data may be found in the Appendix A.

Above all, we note that the MCT heuristic — effectively the policy in the
current GriPPS system — is unquestionably inappropriate for max-stretch opti-
mization: MCT was over 34 times worse on average than the best heuristic. Its
deficiency might arguably be tolerable on small platforms but, in fact, MCT
yielded max-stretch performance over ten times worse than the best heuristic
in all simulation configurations. Even after addressing the primary limitation
that the divisibility property is not utilized, the results are still disappointing:
FCFS-D1v is on average 7.0 times worse in terms of max-stretch than the best
approach we found. One of the principal failings of the MCT and FCFS-Div
heuristics is that they are non-preemptive. By forcing a small task that arrives
in a heavily loaded system to wait, non-preemptive schedulers cause such a task
to be inordinately stretched relative to large tasks that are already running.

Experimentally, we find that the first of the two online heuristics we propose
is consistently near-optimal (within 4% on average) for max-stretch optimiza-
tion. The second heuristic, ONLINE-EGDF, actually achieves consistently good
sum-stretch (within 2% of the best observed sum-stretch), but at the expense
of its performance for the max-stretch metric (within 4% of the optimal). This
is not entirely surprising as the heuristic ignores a significant portion of the
fine-tuned schedule generated by the linear program designed to optimize the
max-stretch.

We also observe that SWRPT, SRPT, and SPT are all quite effective at
sum-stretch optimization. Each is on average within 5%o of the best observed
sum-stretch for all configurations. In particular, SWRPT produces a sum-

3BENDER9S results are limited to 3-cluster platforms, due to prohibitive overhead costs
(discussed in Section 10.3).

58 A. Legrand, A. Su, F. Vivien

Max-stretch Sum-stretch
Mean SD Max Mean SD Max
OFFLINE 1.0000 0.0000 1.0000 || 1.0413 0.0593 1.6735
ONLINE 1.0016 0.0149 1.6344 || 1.0549 0.0893 1.8134
SWRPT 1.1316 0.2071 3.1643 || 1.0001 0.0009 1.0398
SRPT 1.1242 0.2003 3.0753 || 1.0139 0.0212 1.2576
SPT 1.1961 0.2667 3.9752 || 1.0229 0.0296 1.3573
BENDER98 1.1200 0.1766 2.5428 || 1.0194 0.0279 1.4466
BENDER02 3.5422 2.4870 21.4819 || 2.9872 1.9599 15.0019
FCFS-Div 8.7762 9.1900 80.7465 || 6.8979 7.7409 88.2449
RAND | 11.3059 11.1981 125.3726 || 5.8227 6.3942 68.0009

Table 3: Aggregate statistics for a single machine for all application configura-
tions.

stretch that is on average 0.2%o within the best observed sum-stretch, and at-
taining a sum-stretch within 5% of the best sum-stretch in all of the roughly
32,000 instances. However, it should be noted that these heuristics may lead
to starvation. Jobs may be delayed for an arbitrarily long time, particularly
when a long series of small jobs is submitted sequentially (the (n + 1)** job
being released right after the termination of the n'® job). Our analysis of the
GriPPS application logs has revealed that such situations occur fairly often due
to automated processes that submit jobs at regular intervals. By optimizing
max-stretch in lieu of sum-stretch, the possibility of starvation is eliminated.

Next, we find that the BENDER98 and BENDERO2 heuristics are not prac-
tically useful in our scheduling context. The results shown in Table 2 for the
BENDER98 heuristic comprise only 3-cluster platforms; simulations on larger
platforms were practically infeasible, due to the algorithm’s prohibitive over-
head costs. Effectively, for an n-task workload, the BENDER9S heuristic solves
n optimal max-stretch problems, many of which are computationally equivalent
to the full n-task optimal solution. In several cases the desired workload den-
sity required thousands of tasks, rendering the BENDER9S algorithm intractable.
To roughly compare the overhead costs of the various heuristics, we ran a small
series of simulations using only 3-cluster platforms. The results of these tests
indicate that the scheduling time for a 15-minute workload was on average under
0.28 s for any of our online heuristics, and 0.54 s for the offline optimal algorithm
(with 0.35 s spent in the resolution of the linear program and 0.19 s spent in
the online phases of the scheduler); by contrast, the average time spent in the
BENDER9S8 scheduler was 19.76 s. The scheduling overhead of BENDEROZ is far
less costly (on average 0.23 s of scheduling time in our overhead experiments),
but in realistic scenarios for our application domain, the competitive ratios it
guarantees are ineffective compared with our online heuristics for max-stretch
optimization. Note that the bad performance of BENDERO2 is not due to the
way we adapt single-machine algorithms to unrelated machines configurations
(see Section 2.3). Indeed, similar observations can be done when restricting to
single-machine configurations (see Table 3).

Finally, we remark that the RAND heuristic is slightly better than the
FCFS-D1v for both metrics. Moreover, RAND is only 24% away from the best
observed sum-stretch on average. This leads us to think that the sum-stretch

Minimizing the stretch 59

may not be a discrimating objective for our problem. Indeed, it looks as if,
whatever the policy, any list-scheduling heuristic delivers good performance for
this metric.

Finally, we note the anomalous result that the optimal algorithm is occa-
sionally beaten (in all cases by one of our online heuristic); clearly this indicates
an error in the solution of the optimal max-stretch problem. Our analysis sug-
gests that this is a floating-point precision problem that arises when very fine
variations in values of F result in different orderings of the epochal times. We
are considering potential solutions to the problem, such as scaling the linear
program variables such that precision errors between epochal times may be
avoided.

11 Conclusion

Our initial goal was to minimize the maximum stretch. We have presented a
polynomial-time algorithm to solve this problem off-line. We have also pro-
posed some heuristics to solve this problem on-line. Through simulations we
have shown that these heuristics are far more efficient than the pre-existing
guaranteed heuristics, and do not have the risk of job starvation present in clas-
sical simple scheduling heuristics like shortest remaining processing time. Along
the way we have established some NP-completeness and competitiveness results.
However, some questions remain open, like:

e What is the complexity of (1|pmtn; r;|) . S;), the sum-stretch minimization
on one machine with preemption 7

e What is the complexity of (R|div; ;| ParetoSmax), the Pareto minimization
of max-stretch on unrelated machines under the divisible load model

e Are there some approximation algorithms minimizing the sum-stretch on
unrelated machines under the divisible load model ?

e Are there some algorithms with a better competitivity factor than 2 for
the minimization of sum-stretch on a single processor 7

e Processor Sharing is a scheduling policy where time units are divided ar-
bitrarily finely between jobs and where all jobs currently in the system
get an equal share of the machine. In [5, 4], Bender et al. claim that Pro-
cessor Sharing has a competitive ratio of Q(n) for max-stretch where n is
the number of jobs. This is thus very bad compared to the known O(\/E)
competitive algorithms. However in the instance they use, A grows with
n (more precisely A = 2™). Therefore, Processor Sharing may not be
such a bad algorithm for the max-stretch minimization. It is not hard (at
least numerically) to see that the competitive ratio is Q(v/A). The open
question is therefore: what is the competitive ratio of Processor Sharing
for max-stretch ?

Acknowledgments

We would like to thank Lionel Eyraud for the many insightful discussions we
had together. We also like to thank Michael Bender who presented us some
known algorithms for minimizing max-stretch on one machine with preemption.

60

A. Legrand, A. Su, F. Vivien

References

[1]

2]

[10]

[11]

[12]

[13]

K.R. Baker. Introduction to Sequencing and Scheduling. Wiley, New York,
1974.

K.R. Baker, E.L. Lawler, J.K. Lenstra, and A.H.G Rinnooy Kan. Preemp-
tive scheduling of a single machine to minimize maximum cost subject to
release dates and precedence constraints. Operations Research, 31(2):381—
386, March 1983.

Philippe Baptiste, Peter Brucker, Marek Chrobak, Christoph Durr, Svet-
lana A. Kravchenko, and Francis Sourd. The complexity of mean flow
time scheduling problems with release times, 2006. Available at http:
//arxiv.org/abs/cs/0605078.

Michael A. Bender. New Algorithms and Metrics for Scheduling. PhD
thesis, Harvard University, May 1998.

Michael A. Bender, Soumen Chakrabarti, and S. Muthukrishnan. Flow and
stretch metrics for scheduling continuous job streams. In Proceedings of the
9th Annual ACM-SIAM Symposium On Discrete Algorithms (SODA’98),
pages 270-279. Society for Industrial and Applied Mathematics, 1998.

Michael A. Bender, S. Muthukrishnan, and Rajmohan Rajaraman. Im-
proved algorithms for stretch scheduling. In SODA ’02: Proceedings of the
thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages
762—771, Philadelphia, PA, USA, 2002. Society for Industrial and Applied
Mathematics.

Michael A. Bender, S. Muthukrishnan, and Rajmohan Rajaraman. Ap-
proximation algorithms for average stretch scheduling. J. of Scheduling,
7(3):195-222, 2004.

D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, 1987.

Christophe Blanchet, Christophe Combet, Christophe Geourjon, and
Gilbert Deléage. MPSA: Integrated System for Multiple Protein Sequence
Analysis with client/server capabilities. Bioinformatics, 16(3):286—287,
2000.

R. C. Braun, Kevin T. Pedretti, Thomas L. Casavant, Todd E. Scheetz,
C. L. Birkett, and Chad A. Roberts. Parallelization of local BLAST service
on workstation clusters. Future Generation Computer Systems, 17(6):745—
754, 2001.

Chandra Chekuri and Sanjeev Khanna. Approximation schemes for pre-
emptive weighted flow time. In Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, pages 297-305. ACM Press, 2002.

Aaron E. Darling, Lucas Carey, and Wu chun Feng. The Design, Imple-
mentation, and Evaluation of mpiBLAST. In Proceedings of ClusterWorld
2003, 2003.

M. L. Dertouzos. Control robotics: the procedural control of physical pro-
cesses. In Proceedings of IFIP Congress, pages 897813, 1974.

http://arxiv.org/abs/cs/0605078
http://arxiv.org/abs/cs/0605078

Minimizing the stretch 61

[14]

[15]

[16]

M. Protasi G. Ausiello, A. D’Atri. Structure preserving reductions among
convex optimization problems. Journal of Computer and System Sciences,
21(1):136-153, August 1980.

M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, 1991.

Teofilo Gonzalez and Sartaj Sahni. Open shop scheduling to minimize finish
time. J. ACM, 23(4):665-679, 1976.

GriPPS webpage at http://gripps.ibcp.£fr/, 2005.

D. S. Johnson. Approximation algorithms for combinatorial problems.
Journal of Computer and System Sciences, 9:256-278, 1974.

Jacques Labetoulle, Eugene L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy
Kan. Preemptive scheduling of uniform machines subject to release dates.
In W. R. Pulleyblank, editor, Progress in Combinatorial Optimization,
pages 245-261. Academic Press, 1984.

Eugene L. Lawler and Jacques Labetoulle. On preemptive scheduling of
unrelated parallel processors by linear programming. Journal of the Asso-
ciation for Computing Machinery, 25(4):612-619, 1978.

Arnaud Legrand, Loris Marchal, and Henri Casanova. Scheduling Dis-
tributed Applications: The SimGrid Simulation Framework. In Proceedings
of the 3rd IEEE Symposium on Cluster Computing and the Grid, 2003.

Arnaud Legrand, Alan Su, and Frédéric Vivien. Off-line scheduling of
divisible requests on an heterogeneous collection of databanks. Research
report 5386, INRIA, November 2004. Also available as LIP, ENS Lyon,
research report 2004-51.

Arnaud Legrand, Alan Su, and Frédéric Vivien. Off-line scheduling of di-
visible requests on an heterogeneous collection of databanks. In Proceedings
of the 14th Heterogeneous Computing Workshop, Denver, Colorado, USA,
April 2005. IEEE Computer Society Press.

J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine
scheduling problems. Annals of Discrete Mathematics, 1:343-362, 1977.

Laurent Massoulié and James Roberts. Bandwidth sharing: Objectives and
algorithms. Transactions on Networking, 10(3):320-328, june 2002.

Mathematica 5.2. http://www.wolfram.com/.

Nicole Megow. Performance analysis of on-line algorithms in machine
scheduling. Diplomarbeit, Technische Universitéit Berlin, April 2002.

Perry L. Miller, Prakash M. Nadkarni, and N. M. Carriero. Parallel com-
putation and FASTA: confronting the problem of parallel database search
for a fast sequence comparison algorithm. Computer Applications in the
Biosciences, 7(1):71-78, 1991.

http://gripps.ibcp.fr/
http://www.wolfram.com/

62

[29]

A. Legrand, A. Su, F. Vivien

S. Muthukrishnan, Rajmohan Rajaraman, Anthony Shaheen, and Johannes
Gehrke. Online scheduling to minimize average stretch. In IEEE Sympo-
sium on Foundations of Computer Science, pages 433-442, 1999.

Andreas S. Schulz and Martin Skutella. The power of a-points in preemp-
tive single machine scheduling. Journal of Scheduling, 5(2):121-133, 2002.
D0I:10.1002/jos.093.

René Sitters. Complexity of preemptive minsum scheduling on unrelated
parallel machines. Journal of Algorithms, 57(1):37-48, September 2005.

Petr Slavik. A tight analysis of the greedy algorithm for set cover. In STOC
’96: Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pages 435—441, New York, NY, USA, 1996. ACM Press.

Wayne E. Smith. Various optimizers for single-stage production. Naval
Research Logistics Quarterly, 3:59-66, 1956.

DOI: 10.1002/jos.093

Minimizing the stretch

A Detailed simulation results

63

In each of the following sections, we show the aggregate results when the value
of one of the parameters is fixed. Remember that we were only able to run the
BENDERYS8 heuristic on platforms containing 3 clusters, as this heuristic is too
computationally intensive.

A.1 Platform size

A.1.1 Platforms with 3 clusters

Max-stretch

Sum-stretch

Mean SD Max Mean SD Max
OFFLINE: 1.0000 0.0000 1.0000 1.3250 0.2498 2.4069
ONLINE: 1.0032 0.0155 1.4115 1.0344 0.0345 1.3726
ONLINE-EGDF: 1.0319 0.0701 1.7086 1.0024 0.0055 1.0935
SWRPT: 1.0358 0.0771 1.8640 1.0004 0.0015 1.0426
SRPT: 1.0618 0.1110 1.9075 1.0050 0.0067 1.1115
SPT: 1.0645 0.1222 2.3820 1.0027 0.0053 1.1814
BENDER9S: 1.0667 0.1228 2.4877 1.0037 0.0068 1.1701
BENDERO02: 3.5760 3.2157 23.6092 1.2250 0.3121 7.1756
FCFS-Div: 7.4381 8.9431 78.0723 1.4789 0.7843 18.2120
MCT: | 13.8534 4.3962 33.5998 || 17.7493 4.7573 30.0000
RAND: | 6.7376 9.3419 110.6094 1.3057 0.5162 10.3411
A.1.2 Platforms with 10 clusters
Max-stretch Sum-stretch
Mean SD Max Mean SD Max
OFFLINE: 1.0000 0.0001 1.0141 1.6130 0.2441 2.6638
ONLINE: 1.0043 0.0138 1.1924 1.0556 0.0400 1.4158
ONLINE-EGDF: 1.0417 0.0688 1.7772 1.0026 0.0038 1.0804
SWRPT: 1.0563 0.0901 1.9632 1.0002 0.0006 1.0155
SRPT: 1.0718 0.1030 1.9319 1.0049 0.0042 1.0482
SPT: 1.0814 0.1224 2.2304 1.0020 0.0031 1.0501
BENDERO02: 3.6420 2.9046 26.4899 1.1998 0.2230 4.0204
FCFS-Div: | 6.9444 7.7630 65.0442 1.3486 0.4774 7.8634
MCT: | 32.4503 10.3601 84.0270 || 48.3618 15.8681 84.5814
RAND: | 6.6204 8.3570 133.7370 1.2166 0.2826 4.9971

64

A.1.3 Platforms with 20 clusters

Max-stretch

Sum-stretch

A. Legrand, A. Su, F. Vivien

Mean SD Max Mean SD Max
OFFLINE: 1.0000 0.0002 1.0138 1.7129 0.2372 2.9472
ONLINE: 1.0050 0.0321 3.9853 1.0584 0.0401 1.2823
ONLINE-EGDF: 1.0424 0.0647 1.6915 1.0026 0.0032 1.0496
SWRPT: 1.0624 0.0932 1.8335 1.0001 0.0003 1.0092
SRPT: 1.0729 0.0991 1.7652 1.0048 0.0035 1.0255
SPT: 1.0876 0.1231 2.1120 1.0018 0.0028 1.0575
BENDERO02: 3.7774 3.0213 23.1174 1.1974 0.2113 4.9324
FCFS-Div: 6.8593 7.5936 63.0236 1.3292 0.4381 10.4772
MCT: | 56.0138 18.5169 144.1156 || 91.9157 32.1370 161.9829
RAND: 6.8776 8.8223 94.4395 1.2016 0.2515 5.9159
A.2 Number of distinct databases
A.2.1 Platforms with 3 databases
Max-stretch Sum-stretch
Mean SD Max Mean SD Max
OFFLINE: 1.0000 0.0002 1.0141 1.4677 0.3132 2.5464
ONLINE: 1.0029 0.0127 1.3012 1.0559 0.0441 1.4158
ONLINE-EGDF: 1.0225 0.0511 1.7488 1.0024 0.0050 1.0935
SWRPT: 1.0329 0.0711 1.8607 1.0002 0.0012 1.0426
SRPT: 1.0384 0.0781 1.7566 1.0035 0.0049 1.1115
SPT: 1.0456 0.0973 2.3820 1.0016 0.0045 1.1814
BENDERIS: 1.0275 0.0776 1.8799 1.0023 0.0076 1.1701
BENDERO2: 2.3000 2.0686 26.4899 1.1424 0.2468 7.1756
FCFS-Div: 3.5064 4.8832 58.4923 1.2411 0.5462 18.2120
MCT: | 31.2451 19.5496 144.1156 || 54.6849 36.6557 161.9829
RAND: 3.8050 5.6166 90.8444 1.1695 0.3372 10.3411
A.2.2 Platforms with 10 databases
Max-stretch Sum-stretch
Mean SD Max Mean SD Max
OFFLINE: 1.0000 0.0001 1.0071 1.6036 0.2817 2.9472
ONLINE: 1.0044 0.0148 1.1998 1.0493 0.0396 1.3390
ONLINE-EGDF: 1.0426 0.0712 1.6915 1.0027 0.0041 1.0600
SWRPT: 1.0566 0.0913 1.8640 1.0002 0.0009 1.0182
SRPT: 1.0754 0.1077 1.9319 1.0053 0.0049 1.0476
SPT: 1.0860 0.1280 2.2304 1.0023 0.0036 1.0537
BENDERIS: 1.0758 0.1265 1.9866 1.0042 0.0065 1.0591
BENDERO2: 4.0399 3.1009 25.4483 1.2306 0.2463 4.4978
FCFS-Div: 7.8969 8.2566 65.0442 1.4290 0.5754 8.9419
MCT: | 34.1196 21.3731 134.7519 || 51.6103 37.0315 156.1615
RAND: 7.4619 9.1068 108.2149 1.2626 0.3656 8.8585

Minimizing the stretch

A.2.3 Platforms with 20 databases

Max-stretch

65

Sum-stretch

Mean SD Max Mean SD Max

OFFLINE: 1.0000 0.0001 1.0074 1.5796 0.2672 2.7573
ONLINE: 1.0051 0.0328 3.9853 1.0433 0.0340 1.2488
ONLINE-EGDF: 1.0508 0.0762 1.7772 1.0025 0.0035 1.0394
SWRPT: 1.0650 0.0958 1.9632 1.0002 0.0008 1.0183
SRPT: 1.0927 0.1165 1.9075 1.0058 0.0050 1.0485
SPT: 1.1019 0.1335 2.1120 1.0026 0.0035 1.0359
BENDER9S: 1.0969 0.1439 2.4877 1.0047 0.0060 1.0399
BENDERO2: | 4.6555 3.3236 23.6092 1.2492 0.2533 4.9373
FCFS-Div: | 9.8384 9.2215 78.0723 1.4866 0.6212 12.3190
MCT: | 36.9529 22.5209 119.9420 || 51.7317 36.9415 158.3175
RAND: 8.9688 10.3148 133.7370 1.2917 0.4004 8.9272

A.3 Availability of databases

A.3.1 Database probability of existence on a given site : 30%

Max-stretch

Sum-stretch

Mean SD Max Mean SD Max

OFFLINE: 1.0000 0.0002 1.0141 1.4703 0.2775 2.5464
ONLINE: 1.0047 0.0160 1.3095 1.0530 0.0458 1.4158
ONLINE-EGDF: 1.0471 0.0800 1.7248 1.0035 0.0049 1.0804
SWRPT: 1.0511 0.0896 1.8640 1.0004 0.0011 1.0327
SRPT: 1.0627 0.1014 1.8393 1.0048 0.0050 1.1115
SPT: 1.0626 0.1094 2.3820 1.0010 0.0028 1.0814
BENDER9S: 1.0654 0.1258 2.1281 1.0039 0.0074 1.0868
BENDER02: 2.3291 1.9570 22.9606 1.1281 0.1706 4.4978
FCFS-Div: 4.0977 5.5896 78.0723 1.2235 0.4190 8.9419
MCT: | 23.9806 12.3453 89.7986 | 33.1679 19.1335 112.7939
RAND: 3.9224 5.8244 110.6094 1.1535 0.2989 8.9272

A.3.2 Database probability of existence on a given site : 60%

Max-stretch

Sum-stretch

Mean SD Max Mean SD Max

OFFLINE: 1.0000 0.0000 1.0000 1.6007 0.2610 2.5336
ONLINE: 1.0051 0.0328 3.9853 1.0486 0.0367 1.3019
ONLINE-EGDF: 1.0505 0.0754 1.7772 1.0028 0.0047 1.0935
SWRPT: 1.0639 0.0962 1.8898 1.0003 0.0011 1.0426
SRPT: 1.0799 0.1100 1.9075 1.0051 0.0050 1.0696
SPT: 1.0860 0.1270 2.1050 1.0018 0.0034 1.1814
BENDER9S: 1.0803 0.1346 2.4877 1.0039 0.0076 1.1701
BENDERO2: 3.3056 2.4023 25.4483 1.1865 0.1913 3.4303
FCFS-Div: 5.9105 6.3989 60.7870 1.3132 0.4350 8.7054
MCT: | 35.7327 19.8489 123.7441 || 51.8688 30.4313 130.4241
RAND: 5.4348 6.6610 102.6913 1.1948 0.2669 6.7886

66 A. Legrand, A. Su, F. Vivien

A.3.3 Database probability of existence on a given site : 90%

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

OFFLINE: 1.0000 0.0001 1.0071 1.5799 0.3232 2.9472
ONLINE: 1.0027 0.0113 1.3012 1.0468 0.0357 1.2488
ONLINE-EGDF: 1.0184 0.0344 1.4777 1.0012 0.0025 1.0395
SWRPT: 1.0395 0.0745 1.9632 1.0001 0.0005 1.0152
SRPT: 1.0640 0.1013 1.9319 1.0047 0.0049 1.0496
SPT: 1.0849 0.1300 2.2304 1.0037 0.0048 1.0790
BENDERYS: 1.0545 0.1047 1.9443 1.0033 0.0052 1.0691
BENDERO2: 5.3607 3.6792 26.4899 1.3076 0.3314 7.1756
FCFS-Drv: | 11.2335 9.9195 65.0442 1.6200 0.7727 18.2120
MCT: | 42.6042 25.2723 144.1156 || 72.9901 44.7169 161.9829
RAND: | 10.8784 11.3979 133.7370 1.3756 0.4769 10.3411

A.4 'Workload density
A.4.1 Workload density : 0.75

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

OFFLINE: 1.0000 0.0000 1.0000 1.4654 0.2881 2.5336
ONLINE: 1.0013 0.0079 1.2057 1.0198 0.0147 1.1480
ONLINE-EGDF: 1.0247 0.0519 1.5012 1.0008 0.0021 1.0394
SWRPT: 1.0255 0.0548 1.6027 1.0002 0.0008 1.0255
SRPT: 1.0475 0.0932 1.7643 1.0023 0.0037 1.0472
SPT: 1.0392 0.0818 1.9365 1.0010 0.0026 1.0587
BENDER9S: 1.0368 0.0896 1.9365 1.0016 0.0045 1.0525
BENDERO2: 2.7145 2.3926 22.5747 1.0853 0.1131 3.0139
FCFS-Div: | 4.6039 6.1862 62.2448 1.1508 0.2684 5.9253
MCT: | 39.1553 23.6937 144.1156 || 53.3850 36.9288 154.3724
RAND: | 3.7086 5.0954 60.0587 1.0919 0.1657 3.2309

A.4.2 Workload density : 1.00

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

OFFLINE: 1.0000 0.0000 1.0000 1.5234 0.2858 2.5426
ONLINE: 1.0019 0.0087 1.1440 1.0274 0.0169 1.1884
ONLINE-EGDF: 1.0271 0.0556 1.5563 1.0012 0.0027 1.0445
SWRPT: 1.0288 0.0578 1.5671 1.0002 0.0009 1.0327
SRPT: 1.0513 0.0924 1.7708 1.0032 0.0041 1.0485
SPT: 1.0480 0.0894 2.0199 1.0014 0.0029 1.0456
BENDERIS: 1.0447 0.0933 1.7561 1.0020 0.0048 1.0868
BENDERO2: | 3.0927 2.6444 22.8899 1.1177 0.1337 2.7041
FCFS-Div: 5.5388 6.8298 71.9520 1.2137 0.3254 6.0325
MCT: | 36.7420 22.3685 134.3679 | 53.1007 36.8163 152.9597
RAND: | 4.7113 6.2268 81.8277 1.1345 0.2309 8.8585

Minimizing the stretch

A.4.3 Workload density : 1.25

Max-stretch

67

Sum-stretch

Mean SD Max Mean SD Max

OFFLINE: 1.0000 0.0000 1.0000 1.5516 0.2853 2.9472
ONLINE: 1.0026 0.0106 1.1729 1.0355 0.0205 1.2104
ONLINE-EGDF: 1.0308 0.0597 1.6414 1.0016 0.0030 1.0551
SWRPT: 1.0365 0.0662 1.5101 1.0003 0.0012 1.0426
SRPT: 1.0575 0.0955 1.9319 1.0039 0.0046 1.1115
SPT: 1.0564 0.0966 1.8204 1.0017 0.0030 1.0426
BENDER9S: 1.0554 0.1159 2.4877 1.0029 0.0070 1.1701
BENDER02: 3.4449 2.8426 22.9606 1.1532 0.1560 2.9629
FCFS-Div: 6.5364 7.7728 65.0442 1.2777 0.3804 7.2526
MCT: | 34.8658 21.3744 127.5231 | 52.7995 36.8593 159.6311
RAND: 5.6220 7.2981 85.1995 1.1703 0.2481 5.2819

A.4.4 Workload density : 1.50

Max-stretch

Sum-stretch

Mean SD Max Mean SD Max

OFFLINE: 1.0000 0.0001 1.0074 1.5728 0.2878 2.7333
ONLINE: 1.0032 0.0117 1.1761 1.0440 0.0227 1.1874
ONLINE-EGDF: 1.0354 0.0620 1.6724 1.0021 0.0037 1.0935
SWRPT: 1.0447 0.0735 1.6301 1.0003 0.0010 1.0297
SRPT: 1.0629 0.0934 1.7531 1.0045 0.0041 1.0444
SPT: 1.0711 0.1092 1.9319 1.0022 0.0043 1.1814
BENDER9S: 1.0660 0.1185 1.9866 1.0036 0.0062 1.0935
BENDERO2: 3.6751 2.9187 20.3285 1.1841 0.1771 2.9620
FCFS-Div: 7.1922 7.9417 63.1781 1.3362 0.4199 6.2480
MCT: | 33.5215 20.5764 106.5829 || 52.7373 36.9175 154.1226
RAND: 6.3964 7.6214 73.6742 1.2100 0.2784 7.3297

A.4.5 Workload density : 2.00

Max-stretch

Sum-stretch

Mean SD Max Mean SD Max

OFFLINE: 1.0000 0.0002 1.0141 1.5886 0.2907 2.5459
ONLINE: 1.0053 0.0169 1.3012 1.0626 0.0294 1.2213
ONLINE-EGDF: 1.0444 0.0689 1.7248 1.0030 0.0039 1.0543
SWRPT: 1.0629 0.0919 1.8040 1.0003 0.0009 1.0212
SRPT: 1.0779 0.1046 1.6729 1.0061 0.0047 1.0494
SPT: 1.0946 0.1260 2.0122 1.0026 0.0039 1.0612
BENDER9S: 1.0785 0.1262 2.1281 1.0048 0.0071 1.0783
BENDERO2: | 4.1787 3.2459 23.1174 1.2574 0.2350 4.2284
FCFS-Div: 8.3660 8.6189 78.0723 1.4770 0.5581 6.8518
MCT: | 31.5851 19.6851 106.2579 || 52.2391 36.7108 152.0034
RAND: 8.1857 9.3891 102.6913 1.2993 0.3466 5.3855

68 A. Legrand, A. Su, F. Vivien

A.4.6 Workload density : 3.00

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

OFFLINE: 1.0000 0.0002 1.0138 1.5998 0.3051 2.7573
ONLINE: 1.0107 0.0468 3.9853 1.1077 0.0451 1.4158
ONLINE-EGDF: 1.0695 0.0920 1.7772 1.0063 0.0063 1.0932
SWRPT: 1.1108 0.1288 1.9632 1.0003 0.0009 1.0147
SRPT: 1.1161 0.1280 1.9075 1.0092 0.0054 1.0696
SPT: 1.1577 0.1713 2.3820 1.0040 0.0053 1.0814
BENDERYS: 1.1191 0.1612 2.1814 1.0073 0.0088 1.0730
BENDERO2: | 4.8847 3.6020 26.4899 1.4466 0.3960 7.1756
FCFS-D1v: | 10.2462 9.6467 64.9648 1.8582 0.9777 18.2120
MCT: | 28.7654 18.0957 94.9790 | 51.7919 37.1771 161.9829
RAND: | 11.8473 12.7634 133.7370 1.5416 0.5989 10.3411

	1 Introduction
	2 Motivating Application and Framework
	2.1 Motivating Application
	2.2 Framework and Notations
	2.3 Relationships with the Uni-Processor Case with Preemption

	3 Objective Functions
	3.1 Looking for a Fair Objective Function
	3.2 Sum-Stretch and Max-Stretch Cannot Be Optimized Simultaneously

	4 Flow Optimization
	5 Sum-Stretch Optimization
	5.1 Complexity of the Offline Problem
	5.2 Lower Bound on the Competitiveness of Online Algorithms
	5.3 Shortest Remaining Processing Time (SRPT)
	5.4 Smith's Ratio Rule
	5.5 Shortest Weighted Remaining Processing Time (SWRPT)

	6 Offline Max-Stretch Optimization
	6.1 Minimizing the Maximum Weighted Flow in the Divisible Model
	6.1.1 Max Weighted Flow Minimization and Deadline Scheduling
	6.1.2 Solving on a Range.
	6.1.3 Particular Objectives.
	6.1.4 A Network Flow Approach for Uniform Machines

	6.2 Minimizing the Maximum Weighted Flow with Preemption (but no Divisibility)

	7 Offline Max-stretch Optimization and Pareto Optimality
	7.1 Pareto-Optimality
	7.2 Heuristic Pareto Minimization of Max-Stretch on One Machine
	7.3 Heuristic Pareto Minimization of Max Weighted Flow on Unrelated Machines

	8 Online Max-Stretch Optimization
	8.1 Lower Bound on the Competitiveness of Online Algorithms
	8.2 Competitive Online Heuristics
	8.3 Practical Online Heuristics

	9 Summary of Complexity Results
	10 Simulations
	10.1 Simulation Settings
	10.2 Optimization of the Online Heuristic
	10.3 Simulation Results and Analysis

	11 Conclusion
	A Detailed simulation results
	A.1 Platform size
	A.1.1 Platforms with 3 clusters
	A.1.2 Platforms with 10 clusters
	A.1.3 Platforms with 20 clusters

	A.2 Number of distinct databases
	A.2.1 Platforms with 3 databases
	A.2.2 Platforms with 10 databases
	A.2.3 Platforms with 20 databases

	A.3 Availability of databases
	A.3.1 Database probability of existence on a given site : 30%
	A.3.2 Database probability of existence on a given site : 60%
	A.3.3 Database probability of existence on a given site : 90%

	A.4 Workload density
	A.4.1 Workload density : 0.75
	A.4.2 Workload density : 1.00
	A.4.3 Workload density : 1.25
	A.4.4 Workload density : 1.50
	A.4.5 Workload density : 2.00
	A.4.6 Workload density : 3.00

