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Abstract
In this work we are interested in the problem of scheduling and redistributing data on
master-slave platforms. We consider the case were the workers possess initial loads,
some of which having to be redistributed in order to balance their completion times.
We examine two different scenarios. The first model assumes that the data consists of
independent and identical tasks. We prove the NP-completeness in the strong sense
for the general case, and we present two optimal algorithms for special platform types.
Furthermore we propose three heuristics for the general case. Simulations consolidate
the theoretical results.
The second data model is based on Divisible Load Theory. This problem can be solved
in polynomial time by a combination of linear programming and simple analytical
manipulations.

Keywords: Master-slave platform, scheduling, data redistribution, one-port model,
independent tasks, divisible load theory.

Résumé
Dans ce travail on s’interesse au problème d’ordonnancement et de redistribution de
données sur plates-formes mâıtre-esclaves. On considère le cas où les esclaves pos-
sèdent des données initiales, dont quelques-unes doivent être redistribuées pour équi-
librer leur dates de fin.
On examine deux scénarios différents. Le premier modèle suppose que les données sont
des tâches indépendantes identiques. On prouve la NP-complétude dans le sens fort
pour le cas général, et on présente deux algorithmes pour des plates-formes spéciales.
De plus on propose trois heuristiques pour le cas général. Des résultats expérimentaux
obtenus par simulation viennent à l’appui des résultats théoriques.

Mots-clés: Plate-forme mâıtre-esclave, ordonnancement, équilibrage de charge, modèle
un-port, tâches indépendantes, tâches divisibles.
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1 Introduction

In this work we consider the problem of scheduling and redistributing data on master-slave ar-
chitectures in star topologies. Because of variations in the resource performance (CPU speed
or communication bandwidth), or because of unbalanced amounts of current load on the workers,
data must be redistributed between the participating processors, so that the updated load is better
balanced in terms that the overall processing finishes earlier.

We adopt the following abstract view of our problem. There are m+1 participating processors
P0, P1, . . . , Pm, where P0 is the master. Each processor Pk, 1 ≤ k ≤ m initially holds Lk data
items. During our scheduling process we try to determine which processor Pi should send some
data to another worker Pj to equilibrate their finishing times. The goal is to minimize the global
makespan, that is the time until each processor has finished to process its data. Furthermore
we suppose that each communication link is fully bidirectional, with the same bandwidth for
receptions and sendings. This assumption is quite realistic in practice, and does not change the
complexity of the scheduling problem, which we prove NP-complete in the strong sense.

We examine two different scenarios for the data items that are situated at the workers. The
first model supposes that these data items consist in independent and uniform tasks, while the
other model uses the Divisible Load Theory paradigm (DLT) [4].

The core of DLT is the following: DLT assumes that communication and computation loads
can be fragmented into parts of arbitrary size and then distributed arbitrarily among different
processors to be processed there. This corresponds to perfect parallel jobs: They can be split into
arbitrary subtasks which can be processed in parallel in any order on any number of processors.

Beaumont, Marchal, and Robert [2] treat the problem of divisible loads with return messages
on heterogeneous master-worker platforms (star networks). In their framework, all the initial load
is situated at the master and then has to be distributed to the workers. The workers compute their
amount of load and return their results to the master. The difficulty of the problem is to decide
about the sending order from the master and, at the same time, about the receiving order. In this
paper problems are formulated in terms of linear programs. Using this approach the authors were
able to characterize optimal LIFO1 and FIFO2 strategies, whereas the general case is still open.
Our problem is different, as in our case the initial load is already situated at the workers. To the
best of our knowledge, we are the first to tackle this kind of problem.

Having discussed the reasons and background of DLT, we dwell on the interest of the data
model with uniform and independent tasks. Contrary to the DLT model, where the size of load
can be diversified, the size of the tasks has to be fixed at the beginning. This leads to the first
point of interest: When tasks have different sizes, the problem is NP complete because of an ob-
vious reduction to 2-partition [12]. The other point is a positive one: there exists lots of practical
applications who use fixed identical and independent tasks. A famous example is BOINC [5],
the Berkeley Open Infrastructure for Network Computing, an open-source software platform for
volunteer computing. It works as a centralized scheduler that distributes tasks for participating
applications. These projects consists in the treatment of computation extensive and expensive sci-
entific problems of multiple domains, such as biology, chemistry or mathematics. SETI@home [22]
for example uses the accumulated computation power for the search of extraterrestrial intelligence.
In the astrophysical domain, Einstein@home [11] searches for spinning neutron stars using data
from the LIGO and GEO gravitational wave detectors. To get an idea of the task dimensions, in
this project a task is about 12 MB and requires between 5 and 24 hours of dedicated computation.

As already mentioned, we suppose that all data are initially situated on the workers, which
leads us to a kind of redistribution problem. Existing redistribution algorithms have a different
objective. Neither do they care how the degree of imbalance is determined, nor do they include
the computation phase in their optimizations. They expect that a load-balancing algorithm has
already taken place. With help of these results, a redistribution algorithm determines the required
communications and organizes them in minimal time. Renard, Robert, and Vivien present some

1Last In First Out
2First In First Out
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optimal redistribution algorithms for heterogeneous processor rings in [20]. We could use this
approach and redistribute the data first and then enter in a computation phase. But our problem
is more complicated as we suppose that communication and computation can overlap, i.e., every
worker can start computing its initial data while the redistribution process takes place.

To summarize our problem: as the participating workers are not equally charged and/or because
of different resource performance, they might not finish their computation process at the same time.
So we are looking for mechanisms on how to redistribute the loads in order to finish the global
computation process in minimal time under the hypothesis that charged workers can compute at
the same time as they communicate.

The rest of this report is organized as follows: Section 2 presents some related work. The
data model of independent and identical tasks is treated in Section 3: In Section 3.2 we discuss
the case of general platforms. We are able to prove the NP-completeness for the general case
of our problem, and the polynomiality for a restricted problem. The following sections consider
some particular platforms: an optimal algorithm for homogeneous star networks is presented in
Section 3.3, Section 3.4 treats platforms with homogenous communication links and heteroge-
neous workers. The presentation of some heuristics for heterogeneous platforms is the subject
in Section 3.5. Simulative test results are shown in Section 4. Section 5 is devoted to the DLT
model. We propose a linear program to solve the scheduling problem and propose formulas for
the redistribution process.

2 Related work

Our work is principally related with three key topics. Since the early nineties Divisible Load
Theory (DLT) has been assessed to be an interesting method of distributing load in parallel
computer systems. The outcome of DLT is a huge variety of scheduling strategies on how to
distribute the independent parts to achieve maximal results. As the DLT model can be used
on a vast variety of interconnection topologies like trees, buses, hypercubes and so on, in the
literature theoretical and applicative elements are widely discussed. In his article Robertazzi
gives Ten Reasons to Use Divisible Load Theory [21], like scalability or extending realism. Probing
strategies [13] were shown to be able to handle unknown platform parameters. In [8] evaluations of
efficiency of DLT are conducted. The authors analyzed the relation between the values of particular
parameters and the efficiency of parallel computations. They demonstrated that several parameters
in parallel systems are mutually related, i.e., the change of one of these parameters should be
accompanied by the changes of the other parameters to keep efficiency. The platform used in this
article is a star network and the results are for applications with no return messages. Optimal
scheduling algorithms including return messages are presented in [1]. The authors are treating
the problem of processing digital video sequences for digital TV and interactive multimedia. As a
result, they propose two optimal algorithms for real time frame-by-frame processing. Scheduling
problems with multiple sources are examined [17]. The authors propose closed form solutions for
tree networks with two load originating processors.

Redistribution algorithms have also been well studied in the literature. Unfortunately
already simple redistribution problems are NP complete [15]. For this reason, optimal algorithms
can be designed only for particular cases, as it is done in [20]. In their research, the authors
restrict the platform architecture to ring topologies, both uni-directional and bidirectional. In the
homogeneous case, they were able to prove optimality, but the heterogenous case is still an open
problem. In spite of this, other efficient algorithms have been proposed. For topologies like trees
or hypercubes some results are presented in [25].

The load balancing problem is not directly dealt with in this paper. Anyway we want
to quote some key references to this subject, as the results of these algorithms are the starting
point for the redistribution process. Generally load balancing techniques can be classified into
two categories. Dynamic load balancing strategies and static load balancing. Dynamic techniques
might use the past for the prediction of the future as it is the case in [7] or they suppose that the
load varies permanently [14]. That is why for our problem static algorithms are more interesting:
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we are only treating star-platforms and as the amount of load to be treated is known a priory
we do not need prediction. For homogeneous platforms, the papers in [23] survey existing results.
Heterogeneous solutions are presented in [19] or [3]. This last paper is about a dynamic load
balancing method for data parallel applications, called the working-manager method: the
manager is supposed to use its idle time to process data itself. So the heuristic is simple: when
the manager does not perform any control task it has to work, otherwise it schedules.

3 Load balancing of independent tasks using the one-port
bidirectional model

3.1 Framework

In this part we will work with a star network S = P0, P1, . . . , Pm shown in Figure 1. The processor
P0 is the master and the m remaining processors Pi, 1 ≤ i ≤ m, are workers. The initial data are
distributed on the workers, so every worker Pi possesses a number Li of initial tasks. All tasks
are independent and identical. As we assume a linear cost model, each worker Pi has a (relative)
computing power wi for the computation of one task: it takes X.wi time units to execute X tasks
on the worker Pi. The master P0 can communicate with each worker Pi via a communication link.
A worker Pi can send some tasks via the master to another worker Pj to decrement its execution
time. It takes X.ci time units to send X units of load from Pi to P0 and X.cj time units to send
these X units from P0 to a worker Pj . Without loss of generality we assume that the master is
not computing, and only communicating.

P1

P0

PiP2 Pm

w1 wm

cmc1

wi

cic2

w2

Figure 1: Example of a star network.

The platforms dealt with in sections 3.3 and 3.4 are a special case of a star network: all
communication links have the same characteristics, i.e., ci = c for each processor Pi, 1 ≤ i ≤ k.
Such a platform is called a bus network as it has homogeneous communication links.

We use the bidirectional one-port model for communication. This means, that the master
can only send data to, and receive data from, a single worker at a given time-step. But it can
simultaneously receive a data and send one. A given worker cannot start an execution before it
has terminated the reception of the message from the master; similarly, it cannot start sending
the results back to the master before finishing the computation.

The objective function is to minimize the makespan, that is the time at which all loads have
been processed. So we look for a schedule σ that accomplishes our objective.

3.2 General platforms

Using the notations and the platform topology introduced in Section 3.1, we now formally present
the Scheduling Problem for Master-Slave Tasks on a Star of Heterogeneous Pro-
cessors (SPMSTSHP).
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Worker c w load
P1 1 1 13
P2 8 1 13
P3 1 9 0
P4 1 10 0

Figure 2: Platform parameters.

P4

t = 0 t = M

P2

P3

P1

Figure 3: Example of an optimal schedule on a
heterogeneous platform, where a sending worker
also receives a task.

Definition 1 (SPMSTSHP).
Let N be a star-network with one special processor P0 called “master” and m workers. Let

n be the number of identical tasks distributed to the workers. For each worker Pi, let wi be the
computation time for one task. Each communication link, linki, has an associated communication
time ci for the transmission of one task. Finally let T be a deadline.

The question associated to the decision problem of SPMSTSHP is: “Is it possible to redistribute
the tasks and to process them in time T?”.

One of the main difficulties seems to be the fact that we cannot partition the workers into dis-
joint sets of senders and receivers. There exists situations where, to minimize the global makespan,
it is useful, that sending workers also receive tasks. (You will see later in this report that we can
suppose this distinction when communications are homogeneous.)

We consider the following example. We have four workers (see Figure 2 for their parameters)
and a makespan fixed to M = 12. An optimal solution is shown in Figure 3: Workers P3 and P4 do
not own any task, and they are computing very slowly. So each of them can compute exactly one
task. Worker P1, who is a fast processor and communicator, sends them their tasks and receives
later another task from worker P2 that it can compute just in time. Note that worker P1 is both
sending and receiving tasks. Trying to solve the problem under the constraint that no worker
also sends and receives, it is not feasible to achieve a makespan of 12. Worker P2 has to send
one task either to worker P3 or to worker P4. Sending and receiving this task takes 9 time units.
Consequently the processing of this task can not finish earlier than time t = 18.

Another difficulty of the problem is the overlap of computation and the redistribution process.
Subsequently we examine our problem neglecting the computations. We are going to prove an
optimal polynomial algorithm for this problem.

3.2.1 Polynomiality when computations are neglected

Examining our original problem under the supposition that computations are negligible, we get a
classical data redistribution problem. Hence we eliminate the original difficulty of the overlap of
computation with the data redistribution process. We suppose that we already know the imbalance
of the system. So we adopt the following abstract view of our new problem: the m participating
workers P1, P2, . . . Pm hold their initial uniform tasks Li, 1 ≤ i ≤ m. For a worker Pi the chosen
algorithm for the computation of the imbalance has decided that the new load should be Li − δi.
If δi > 0, this means that Pi is overloaded and it has to send δi tasks to some other processors. If
δi < 0, Pi is underloaded and it has to receive−δi tasks from other workers. We have heterogeneous
communication links and all sent tasks pass by the master. So the goal is to determine the order
of senders and receivers to redistribute the tasks in minimal time.
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As all communications pass by the master, workers can not start receiving until tasks have
arrived on the master. So to minimize the redistribution time, it is important to charge the master
as fast as possible. Ordering the senders by non-decreasing ci-values makes the tasks at the earliest
possible time available.

Suppose we would order the receivers in the same manner as the senders, i.e., by non-decreasing
ci-values. In this case we could start each reception as soon as possible, but always with the
restriction that each task has to arrive first at the master (see Figure 4(b)). So it can happen that
there are many idle times between the receptions if the tasks do not arrive in time on the master.
That is why we choose to order the receiver in reversed order, i.e., by non-increasing ci-values (cf.
Figure 4(c)), to let the tasks more time to arrive. In the following lemma we even prove optimality
of this ordering.

P1 P2 P4

P0

P3

δ1 = 3 δ4 = −2

c4 = 3

δ2 = 1

c2 = 5 c3 = 1

c1 = 2

δ3 = −2

(a) Example of load imbalance
on a heterogeneous platform
with 4 workers.

T = 14

{
{

P1

P2

P3

P4

senders

receivers

(b) The receivers are ordered by non-
decreasing order of their ci-values.

{

T = 12

{

P1

P2

P3

P4

receivers

senders

(c) The receivers are ordered by non-
increasing order of their ci-values.

Figure 4: Comparison of the ordering of the receivers.

Theorem 1. Knowing the imbalance δi of each processor, an optimal solution for heteroge-
neous star-platforms is to order the senders by non-decreasing ci-values and the receivers by non-
increasing order of ci-values.

Proof. To prove that the scheme described by Theorem 1 returns an optimal schedule, we take
a schedule S′ computed by this scheme. Then we take any other schedule S. We are going to
transform S in two steps into our schedule S′ and prove that the makespans of the both schedules
hold the following inequality: M(S′) ≤M(S).

In the first step we take a look at the senders. The sending from the master can not start
before tasks are available on the master. We do not know the ordering of the senders in S but
we know the ordering in S′: all senders are ordered in non-decreasing order of their ci-values. Let
i0 be the first task sent in S where the sender of task i0 has a bigger ci-value than the sender
of the (i0 + 1)-th task. We then exchange the senders of task i0 and task (i0 + 1) and call this
new schedule Snew. Obviously the reception time for the second task is still the same. But as
you can see in Figure 5, the time when the first task is available on the master has changed: after
the exchange, the first task is available earlier and ditto ready for reception. Hence this exchange
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improves the availability on the master (and reduces possible idle times for the receivers). We use
this mechanism to transform the sending order of S in the sending order of S′ and at each time
the availability on the master is improved. Hence at the end of the transformation the makespan
of Snew is smaller than or equal to that of S and the sending order of Snew and S′ is the same.

t t

Pi0

Pi0+1

Pi0

Pi0+1

Figure 5: Exchange of the sending order makes tasks available earlier on the master.

In the second step of the transformation we take care of the receivers (cf. Figures 6 and 7).
Having already changed the sending order of S by the first transformation of S into Snew, we start
here directly by the transformation of Snew. Using the same mechanism as for the senders, we call
j0 the first task such that the receiver of task j0 has a smaller ci-value than the receiver of task
j0 + 1. We exchange the receivers of the tasks j0 and j0 + 1 and call the new schedule Snew(1) .
j0 is sent at the same time than previously, and the processor receiving it, receives it earlier than
it received j0+1 in Snew. j0+1 is sent as soon as it is available on the master and as soon as the
communication of task j0 is completed. The first of these two conditions had also to be satisfied
by Snew. If the second condition is delaying the beginning of the sending of the task j0 + 1 from
the master, then this communication ends at time tin + cπ′(j0) + cπ′(j0+1) = tin + cπ(j0+1) + cπ(j0)

and this communication ends at the same time than under the schedule Snew ( here π(j0) (π′(j0))
denotes the receiver of task j0 in schedule Snew (Snew(1) , respectively)). Hence the finish time of
the communication of task j0 + 1 in schedule Snew(1) is less than or equal to the finish time in
the previous schedule. In all cases, M(Snew(1)) ≤ M(Snew). Note that this transformation does
not change anything for the tasks received after j0+1 except that we always perform the scheduled
communications as soon as possible. Repeating the transformation for the rest of the schedule
Snew we reduce all idle times in the receptions as far as possible. We get for the makespan
of each schedule Snew(k) : M(Snew(k)) ≤ M(Snew) ≤ M(S). As after these (finite number of)
transformations the order of the receivers will be in non-decreasing order of the ci-values, the
receiver order of Snew(∞) is the same as the receiver order of S′ and hence we have Snew(∞) = S′.
Finally we conclude that the makespan of S′ is smaller than or equal to any other schedule S and
hence S′ is optimal.

t t
idle idle

n n

tin tin

Pπ(j0)

Pπ(j0+1)

Pπ(j0)

Pπ(j0+1)

Figure 6: Exchange of the receiving order suits better with the available tasks on the master.

t t
idle

n

tin tin

Pπ(j0)

Pπ(j0+1)

Pπ(j0)

Pπ(j0+1)

Figure 7: Deletion of idle time due to the exchange of the receiving order.
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3.2.2 NP-completeness of the original problem

Now we are going to prove the NP-completeness in the strong sense of the general problem. For
this we were strongly inspired by the proof of Dutot [10, 9] for the Scheduling Problem for
Master-Slave Tasks on a Tree of Heterogeneous Processors (SPMSTTHP). This proof
uses a two level tree as platform topology and we are able to associate the structure on our star-
platform. We are going to recall the 3-partition problem which is NP-complete in the strong sense
[12].

Definition 2 (3-Partition).
Let S and n be two integers, and let (yi)i∈1..3n be a sequence of 3n integers such that for each

i, S
4 < yi < S

2 .
The question of the 3-partition problem is “Can we partition the set of the yi in n triples such

that the sum of each triple is exactly S?”.

Theorem 2. SPMSTSHP is NP-complete in the strong sense.

Proof. We take an instance of 3-partition. We define some real numbers xi, 1 ≤ i ≤ 3n, by
xi = 1

4S + yi

8 . If a triple of yi has the sum S, the corresponding triple of xi corresponds to the sum
7S
8 and vice versa. A partition of yi in triples is thus equivalent to a partition of the xi in triples

of the sum 7S
8 . This modification allows us to guarantee that the xi are contained in a smaller

interval than the interval of the yi. Effectively the xi are strictly included between 9S
32 and 5S

16 .

Reduction. For our reduction we use the star-network shown in Figure 8. We consider the
following instance of SPMTSHP: Worker P owns 4n tasks, the other 4n workers do not hold
any task. We work with the deadline T = E + nS + S

4 , where E is an enormous time fixed to
E = (n + 1)S. The communication link between P and the master has a c-value of S

4 . So it can
send a task all S

4 time units. Its computation time is T + 1, so worker P has to distribute all its
tasks as it can not finish processing a single task by the deadline. Each of the other workers is
able to process one single task, as its computation time is at least E and we have 2E > T , what
makes it impossible to process a second task by the deadline.

P0

P

T+1 E

Q0Q1

E+SE+(n−1)S
Qn−1

S
8

S
8

S
4

EEEE

P2

E

P1 Pi

x1 x2 x3n−1 x3n

S
8

P3n−1 P3n

xi

Figure 8: Star platform used in the reduction.

This structure of the star-network is particularly constructed to reproduce the 3-partition
problem in the scope of a scheduling problem. We are going to use the bidirectional 1-port
constraint to create our triplets.
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Creation of a schedule out of a solution to 3-partition. First we show how to construct
a valid schedule of 4n tasks in time S

4 + nS + E out of a 3-partition solution. To facilitate the
lecture, the processors Pi are ordered by their xi-values in the order that corresponds to the
solution of 3-partition. So, without loss of generality, we assume that for each j ∈ [0, n − 1],
x3j+1 + x3j+2 + x3j+3 = 7S

8 . The schedule is of the following form:

1. Worker P sends its tasks as soon as possible to the master, i.e., every S
4 time units. So it is

guaranteed that the 4n tasks are sent in nS time units.

2. The master sends the tasks as soon as possible in incoming order to the workers. The receiver
order is the following (for all j ∈ [0, n− 1]):

• Task 4j + 1, over link of cost x3j+1, to processor P3j+1.

• Task 4j + 2, over link of cost x3j+2, to processor P3j+2.

• Task 4j + 3, over link of cost x3j+3, to processor P3j+3.

• Task 4j + 4, over link of cost S
8 , to processor Qn−1−j .

The distribution of the four tasks, 4j + 1, 4j + 2, 4j + 3, 4j + 4, takes exactly S time units
and the master needs also S time units to receive four tasks from processor P . Furthermore, each
xi is larger than S

4 . Therefore, after the first task is sent, the master always finishes to receive a
new task before its outgoing port is available to send it. The first task arrives at time S

4 at the
master, which is responsible for the short idle time at the beginning. The last task arrives at its
worker at time S

4 + nS and hence it rests exactly E time units for the processing of this task. For
the workers Pi, 1 ≤ i ≤ 3n, we know that they can finish to process their tasks in time as they
all have a computation power of E. The computation power of the workers Qi, 0 ≤ i ≤ n− 1, is
E + i× S and as they receive their task at time S

4 + (n− i− 1)× S + 7S
8 , they have exactly the

time to finish their task.

Getting a solution for 3-partition out of a schedule. Now we prove that each schedule of
4n tasks in time T creates a solution to the 3-partition problem.

As already mentioned, each worker besides worker P can process at most one task. Hence due
to the number of tasks in the system, every worker has to process exactly one task. Furthermore
the minimal time needed to distribute all tasks from the master and the minimal processing time
on the workers induces that there is no idle time in the emissions of the master, otherwise the
schedule would take longer than time T .

We also know that worker P is the only sending worker:

Lemma 1. No worker besides worker P sends any task.

Proof. Due to the platform configuration and the total number of tasks, worker P has to send all
its tasks. This takes at least nS time units. The total emission time for the master is also nS
time units: as each worker must process a task, each of them must receive one. So the emission
time for the master is larger than or equal to

∑n
i=1 xi + n× S

8 = nS. As the master cannot start
sending the first task before time S

4 and as the minimum computation power is E, then if the
master sends exactly one task to each slave, the makespan is greater than or equal to T and if one
worker besides P sends a task, the master will at least send one additional task and the makespan
will be strictly greater than T .

Now we are going to examine the worker Qn−1 and the task he is associated to.

Lemma 2. The task associated to worker Qn−1 is one of the first four tasks sent by worker P .

Proof. The computation time of worker Qn−1 is E +(n−1)S, hence its task has to arrive no later
than time S + S

4 . The fifth task arrives at the soonest at time 5S
4 + S

8 as worker P has to send
five tasks as the shortest communication time is S

8 . The following tasks arrive later than the 5-th
task, so the task for worker Qn−1 has to be one of the first four tasks.
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Lemma 3. The first three tasks are sent to some worker Pi, 1 ≤ i ≤ 3n.

Proof. As already mentioned, the master has to send without any idle time besides the initial one.
Hence we have to pay attention that the master always possesses a task to send when he finishes
to send a task. While the master is sending to a worker Pi, worker P has the time to send the
next task to the master. But, if at least one of the first three tasks is sent to a worker Qi, the
sending time of the first three tasks is strictly inferior to S

8 + 5
16S + 5

16S = 3
4S. Hence there is

obligatory an idle time in the emission of the master. This pause makes the schedule of 4n tasks
in time T infeasible.

A direct conclusion of the two precedent lemmas is that the 4-th task is sent to worker Qn−1.

Lemma 4. The first three tasks sent by worker P have a total communication time of 7
8S time

units.

Proof. Worker Qn−1 has a computation time of E + (n − 1)S, it has to receive its task no later
than time 5

4S. This implies that the first three tasks are sent in a time no longer than 7
8S.

On the other side, the 5-th task arrives at the master no sooner than time 5
4S. As the master has

to send without idle time, the emission to worker Qn−1 has to persist until this date. Necessarily
the first three emissions of the master take at minimum a time 7

8S.

Lemma 5. Scheduling 4n tasks in a time T = S
4 + nS + E units of time allows to reconstruct an

instance of the associated 3-partition problem.

Proof. In what precedes, we proved that the first three tasks sent by the master create a triple
whose sum is exactly 7

8 . Using this property recursively on j for the triple 4j + 1, 4j + 2 and
4j + 3, we show that we must send the tasks 4j + 4 to the worker Qn−1−j . With this method
we construct a partition of the set of xi in triples of sum 7

8 . These triples are a solution to the
associated 3-partition problem.

Having proven that we can create a schedule out of a solution of 3-partition and also that we
can get a solution for 3-partition out of a schedule, the proof is now complete.

3.3 An algorithm for scheduling on homogeneous star platforms: the
best-balance algorithm

In this section we present the Best-Balance Algorithm (BBA), an algorithm to schedule on
homogeneous star platforms. As already mentioned, we use a bus network with communication
speed c, but additionally we suppose that the computation powers are homogeneous as well. So
we have wi = w for all i, 1 ≤ i ≤ m.

The idea of BBA is simple: in each iteration, we look if we could finish earlier if we redistribute
a task. If so, we schedule the task, if not, we stop redistributing. The algorithm has polynomial
run-time. It is a natural intuition that BBA is optimal on homogeneous platforms, but the formal
proof is rather complicated, as can be seen in Section 3.3.2.

3.3.1 Notations used in BBA

BBA schedules one task per iteration i. Let L
(i)
k denote the number of tasks of worker k after

iteration i, i.e., after i tasks were redistributed. The date at which the master has finished receiving
the i-th task is denoted by master in(i). In the same way we call master out(i) the date at which
the master has finished sending the i-th task. Let end

(i)
k be the date at which worker k would finish

to process the load it would hold if exactly i tasks are redistributed. The worker k in iteration i

with the biggest finish time end
(i)
k , who is chosen to send one task in the next iteration, is called

sender. We call receiver the worker k with smallest finish time end
(i)
k in iteration i who is chosen

to receive one task in the next iteration.



Scheduling and data redistribution strategies on star platforms 11

In iteration i = 0 we are in the initial configuration: All workers own their initial tasks
L

(0)
k = Lk and the makespan of each worker k is the time it needs to compute all its tasks:

end
(0)
k = L

(0)
k × w. master in(0) = master out(0) = 0.

3.3.2 The Best Balance Algorithm - BBA

We first sketch BBA :
In each iteration i do:

• Compute the time end
(i−1)
k it would take worker k to process L

(i−1)
k tasks.

• A worker with the biggest finish time end
(i−1)
k is arbitrarily chosen as sender, he is called

sender.

• Compute the temporary finish times ẽnd
(i)

k of each worker if it would receive from sender
the i-th task.

• A worker with the smallest temporary finish time ẽnd
(i)

k will be the receiver, called receiver.

If there are multiple workers with the same temporary finish time ẽnd
(i)

k , we take the worker
with the smallest finish time end

(i−1)
k .

• If the finish time of sender is strictly larger than the temporary finish time ẽnd
(i)

sender of
sender, sender sends one task to receiver and iterate. Otherwise stop.

Lemma 6. On homogeneous star-platforms, in iteration i the Best-Balance Algorithm (Al-
gorithm 1) always chooses as receiver a worker which finishes processing the first in iteration i−1.

Proof. As the platform is homogeneous, all communications take the same time and all computa-
tions take the same time. In Algorithm 1 the master chooses as receiver in iteration i the worker
k that would end the earliest the processing of the i-th task sent. To prove that worker k is also
the worker which finishes processing in iteration i− 1 first, we have to consider two cases:

• Task i arrives when all workers are still working.
As all workers are still working when the master finishes to send task i, the master chooses
as receiver a worker which finishes processing the first, because this worker will also finish
processing task i first, as we have homogeneous conditions. See Figure 9(a) for an example:
the master chooses worker k as in iteration i− 1 it finishes before worker j and it can thus
start computing task i + 1 earlier than worker j could do.

• Task i arrives when some workers have finished working.
If some workers have finished working when the master can finish to send task i, we are in
the situation of Figure 9(b): All these workers could start processing task i at the same time.
As our algorithm chooses in this case a worker which finished processing first (see line 13 in
Algorithm 1), the master chooses worker k in the example.

The aim of these schedules is always to minimize the makespan. So workers who take a long
time to process their tasks are interested in sending some tasks to other workers which are less
charged in order to decrease their processing time. If a weakly charged worker sends some tasks
to another worker this will not decrease the global makespan, as a strongly charged worker has
still its long processing time or its processing time might even have increased if it was the receiver.
So it might happen that the weakly charged worker who sent a task will receive another task in
another scheduling step. In the following lemma we will show that this kind of schedule, where
sending workers also receive tasks, can be transformed in a schedule where this effect does not
appear.
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Pj

Pk

ẽnd
(i)

j

end
(i−1)
k

end
(i)
k

ẽnd
(i−1)

j

computation

communicationi + 1

i + 1

i + 1

i + 1

(a) All workers are still processing

Pj

Pk

end
(i−1)
k

end
(i−1)
j

ẽnd
(i)

j = ẽnd
(i)

k

i + 1

i + 1

i + 1

i + 1

(b) Some workers have already
finished processing

Figure 9: In iteration i: The master chooses which worker will be the receiver of task i.

Lemma 7. On a platform with homogeneous communications, if there exists a schedule S with
makespan M , then there also exists a schedule S′ with a makespan M ′ ≤ M such that no worker
both sends and receives tasks.

Proof. We will prove that we can transform a schedule where senders might receive tasks in a
schedule with equal or smaller makespan where senders do not receive any tasks.

sk

rj

sk

rj

si si

Figure 10: Scheme on how to break up sending chains.

If the master receives its i-th task from processor Pj and sends it to processor Pk, we say that
Pk receives this task from processor Pj .

Whatever the schedule, if a sender receives a task we have the situation of a sending chain (see
Figure 10): at some step of the schedule a sender si sends to a sender sk, while in another step of
the schedule the sender sk sends to a receiver rj . So the master is occupied twice. As all receivers
receive in fact their tasks from the master, it does not make a difference for them which sender
sent the task to the master. So we can break up the sending chain in the following way: We look
for the earliest time, when a sending worker, sk, receives a task from a sender, si. Let rj be a
receiver that receives a task from sender sk. There are two possible situations:

1. Sender si sends to sender sk and later sender sk sends to receiver rj , see Figure 11(a). This
case is simple: As the communication from si to sk takes place first and we have homogeneous
communication links, we can replace this communication by an emission from sender si to
receiver rj and just delete the second communication.

2. Sender sk sends to receiver rj and later sender si sends to sender sk, see Figure 11(b). In this
case the reception on receiver rj happens earlier than the emission of sender si, so we can
not use exactly the same mechanism as in the previous case. But we can use our hypothesis
that sender sk is the first sender that receives a task. Therefore, sender si did not receive any
task until sk receives. So at the moment when sk sends to rj , we know that sender si already
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owns the task that it will send later to sender sk. As we use homogeneous communications,
we can schedule the communication si → rj when the communication sk → rj originally
took place and delete the sending from si to sk.

As in both cases we gain in communication time, but we keep the same computation time, we
do not increase the makespan of the schedule, but we transformed it in a schedule with one less
sending chain. By repeating this procedure for all sending chains, we transform the schedule S in
a schedule S′ without sending chains while not increasing the makespan.

rj

si

sk

time time

(a) Sender si sends to receiving sender sk and
then sender sk sends to receiver rj .

rj

si

sk

time time

(b) Sender sk sends first to receiver rj and
then receives from sender si.

Figure 11: How to break up sending chains, dark colored communications are emissions, light
colored communications represent receptions.

Proposition 1. Best-Balance Algorithm (Algorithm 1) calculates an optimal schedule S on
a homogeneous star network, where all tasks are initially located on the workers and communication
capabilities as well as computation capabilities are homogeneous and all tasks have the same size.

Proof. To prove that BBA is optimal, we take a schedule Salgo calculated by Algorithm 1. Then
we take an optimal schedule Sopt. (Because of Lemma 7 we can assume that in the schedule Sopt

no worker both sends and receives tasks.) We are going to transform by induction this optimal
schedule into our schedule Salgo.

As we use a homogeneous platform, all workers have the same communication time c. Without
loss of generality, we can assume that both algorithms do all communications as soon as possible
(see Figure 12). So we can divide our schedule Salgo in sa steps and Sopt in so steps. A step
corresponds to the emission of one task, and we number in this order the tasks sent. Accordingly
the s-th task is the task sent during step s and the actual schedule corresponds to the load
distribution after the s first tasks. We start our schedule at time T = 0.

T = 0

1 2 3 n

1 2 n− 1 n

receptions by the master:

sendings from the master:

Figure 12: Occupation of the master.

Let S(i) denote the worker receiving the i-th task under schedule S. Let i0 be the first step
where Sopt differs from Salgo, i.e., Salgo(i0) 6= Sopt(i0) and ∀i < i0, Salgo(i) = Sopt(i). We look for
a step j > i0, if it exists, such that Sopt(j) = Salgo(i0) and j is minimal.

We are in the following situation: schedule Sopt and schedule Salgo are the same for all tasks
[1..(i0 − 1)]. As worker Salgo(i0) is chosen at step i0, then, by definition of Algorithm 1, this
means that this worker finishes first its processing after the reception of the (i0 − 1)-th tasks (cf.
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Algorithm 1 Best-Balance Algorithm

1: /* initialization */

2: i← 0
3: master in(i) ← 0
4: master out(i) ← 0
5: ∀k L

(0)
k ← Lk

6: end
(0)
k ← L

(0)
k × w

7: /* the scheduling */

8: while true do
9: sender ← maxk end

(i)
k

10: master in(i+1) ← master in(i) + c
11: task arrival worker = max(master in(i+1),master out(i)) + c

12: ∀k ẽnd
(i+1)

k ← max(end
(i+1)
k , task arrival worker) + w

13: select receiver such that ẽnd
(i+1)

receiver = mink ẽnd
(i+1)

k and if there are several processors with

the same minimum ẽnd
(i+1)

k , choose one with the smallest end
(i)
k

14: if end
(i)
sender ≤ ẽnd

(k+1)

receiver then
15: /* we can not improve the makespan anymore */

16: break
17: else
18: /* we improve the makespan by sending the task to the receiver */

19: master out(i+1) ← task arrival worker
20: end

(i+1)
sender ← end

(i)
sender − w

21: L
(i+1)
sender ← L

(i)
sender − 1

22: end
(i+1)
receiver ← ẽnd

(i+1)

receiver

23: L
(i+1)
receiver ← L

(i)
receiver + 1

24: for all j 6= receiver and j 6= sender do
25: end

(i+1)
j ← end

(i)
j

26: L
(i+1)
j ← L

(i)
j

27: end for
28: i← i + 1
29: end if
30: end while
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Lemma 6). As Sopt and Salgo differ in step i0, we know that Sopt chooses worker Sopt(i0) that
finishes the schedule of its load after step (i0 − 1) no sooner than worker Salgo(i0).

Case 1: Let us first consider the case where there exists such a step j. So Salgo(i0) = Sopt(j)
and j > i0. We know that worker Sopt(j) under schedule Sopt does not receive any task between
step i0 and step j as j is chosen minimal.

We use the following notations for the schedule Sopt, depicted on Figures 13, 14, and 15:

Tj: the date at which the reception of task j is finished on worker Sopt(j), i.e., Tj = j× c+ c (the
time it takes the master to receive the first task plus the time it takes him to send j tasks).

Ti0 : the date at which the reception of task i0 is finished on worker Sopt(i0), i.e., Ti0 = i0× c + c.

Fpred(j): time when computation of task pred(j) is finished, where task pred(j) denotes the last
task which is computed on worker Sopt(j) before task j is computed.

Fpred(i0): time when computation of task pred(i0) is finished, where task pred(i0) denotes the
last task which is computed on worker Sopt(i0) before task i0 is computed.

We have to consider two sub-cases:

• Tj ≤ Fpred(i0) (Figure 13(a)).
This means that we are in the following situation: the reception of task j on worker Sopt(j)
has already finished when worker Sopt(i0) finishes the work it has been scheduled until step
i0 − 1.

In this case we exchange the tasks i0 and j of schedule Sopt and we create the following
schedule S′opt:
S′opt(i0) = Sopt(j) = Salgo(i0),
S′opt(j) = Sopt(i0)
and ∀i 6= i0, j, S′opt(i) = Sopt(i). The schedule of the other workers is kept unchanged. All
tasks are executed at the same date than previously (but maybe not on the same processor).

Sopt(i0)

Salgo(i0) = Sopt(j)

Ti0

Fpred(j)

Tj

Fpred(i0)

j + 1

i0i0

j + 1

i0 + k

j

j

i0 + k

i0

(a) Before the exchange.

Fpred(i0)

Sopt(i0)

Salgo(i0) = Sopt(j)

Ti0
Tj

Tpred(j)

j

j + 1

i0

i0

j i0 + k

i0 + k

j + 1

i0

(b) After exchange.

Figure 13: Schedule Sopt before and after exchange of tasks i0 and j.

Now we prove that this kind of exchange is possible.

We know that worker Sopt(j) is not scheduled any task later than step i0−1 and before step
j, by definition of j. So we know that this worker can start processing task j when task j has
arrived and when it has finished processing its amount of work scheduled until step i0 − 1.
We already know that worker Sopt(j) = Salgo(i0) finishes processing its tasks scheduled until
step i0 − 1 at a time earlier than or equal to that of worker Sopt(i0) (cf. Lemma 6). As
we are in homogeneous conditions, communications and processing of a task takes the same
time on all processors. So we can exchange the destinations of steps i0 and j and keep the
same moments of execution, as both tasks will arrive in time to be processed on the other
worker: task i0 will arrive at worker Sopt(j) when it is still processing and the same for task
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j on worker Sopt(i0). Hence task i0 will be sent to worker Sopt(j) = Salgo(i0) and worker
Sopt(i0) will receive task j. So schedule Sopt and schedule Salgo are the same for all tasks
[1..i0] now. As both tasks arrive in time and can be executed instead of the other task, we
do not change anything in the makespan M . And as Sopt is optimal, we keep the optimal
makespan.

• Tj ≥ Fpred(i0) (Figure 14(a)).
In this case we have the following situation: task j arrives on worker Sopt(j), when worker
Sopt(i0) has already finished processing its tasks scheduled until step i0 − 1.
In this case we exchange the schedule destinations i0 and j of schedule Sopt beginning at
tasks i0 and j (see Figure 14). In other words we create a schedule S′opt:
∀i ≥ i0 such that Sopt(i) = Sopt(i0): S′opt(i) = Sopt(j) = Salgo(i0)
∀i ≥ j such that Sopt(i) = Sopt(j): S′opt(i) = Sopt(i0)
and ∀i ≤ i0 S′opt(i) = Sopt(i). The schedule Sopt of the other workers is kept unchanged. We

recompute the finish times F
(s)
Sopt

(j) of workers Sopt(j) and Sopt(i0) for all steps s > i0.

Ti0

Fpred(j)

Tj

Fpred(i0)

Salgo(i0) = Sopt(j)

Sopt(i0)

i0 i0 + k

i0 i0 + k

j

j + 1j

j + 1

(a) Before exchange.

Tj

Fpred(i0)Fpred(j)

Ti0

Sopt(i0)

Salgo(i0) = Sopt(j)

i0

j + 1

i0 + k

j

i0j j + 1

i0 + ki0

(b) After exchange.

Figure 14: Schedule Sopt before and after exchange of lines i0 and j.

Now we prove that this kind of exchange is possible. First of all we know that worker Salgo(i0)
is the same as the worker chosen in step j under schedule Sopt and so Salgo(i0) = Sopt(j).
We also know that worker Sopt(j) is not scheduled any tasks later than step i0−1 and before
step j, by definition of j. Because of the choice of worker Salgo(i0) = Sopt(j) in Salgo, we
know that worker Sopt(j) has finished working when task j arrives: at step i0 worker Sopt(j)
finishes earlier than or at the same time as worker Sopt(i0) (Lemma 6) and as we are in the
case where Tj ≥ Fpred(i0), Sopt(j) has also finished when j arrives. So we can exchange the
destinations of the workers Sopt(i0) and Sopt(j) in the schedule steps equal to, or later than,
step i0 and process them at the same time as we would do on the other worker. As we have
shown that we can start processing task j on worker Sopt(i0) at the same time as we did
on worker Sopt(j), and the same for task i0, we keep the same makespan. And as Sopt is
optimal, we keep the optimal makespan.

Case 2: If there does not exist a j, i.e., we can not find a schedule step j > i0 such that worker
Salgo(i0) is scheduled a task under schedule Sopt, so we know that no other task will be scheduled
on worker Salgo(i0) under the schedule Sopt. As our algorithm chooses in step s the worker that
finishes task s+1 the first, we know that worker Salgo(i0) finishes at a time earlier or equal to that
of Sopt. Worker Salgo(i0) will be idle in the schedule Sopt for the rest of the algorithm, because oth-
erwise we would have found a step j. As we are in homogeneous conditions, we can simply displace
task i0 from worker Sopt(i0) to worker Salgo(i0) (see Figure 15). As we have Sopt(i0) 6= Salgo(i0)
and with Lemma 6 we know that worker Salgo(i0) finishes processing its tasks until step i0 − 1 at
a time earlier than or equal to Sopt(i0), and we do not downgrade the execution time because we
are in homogeneous conditions.

Once we have done the exchange of task i0, the schedules Sopt and Salgo are the same for all
tasks [1..i0]. We restart the transformation until Sopt = Salgo for all tasks [1..min(sa, so)] sched-



Scheduling and data redistribution strategies on star platforms 17

Ti0

F
(pred(i0))
Salgo

(Salgo(i0)) F
pred((i0))
Sopt

(Sopt(i0))

Sopt(i0)

Salgo(i0)

i0

i0 + ki0

i0 + ki0

(a) Before displacing

Ti0

F
(pred(i0))
Sopt

(Sopt(i0))

Sopt(i0)

Salgo(i0)

F
(pred(i0))
Salgo

(Salgo(i0))

i0i0 + k

i0 + k

i0

i0

(b) After displacing

Figure 15: Schedule Sopt before and after displacing task i0.

uled by Salgo.

Now we will prove by contradiction that the number of tasks scheduled by Salgo, sa, and Sopt,
so, are the same. After min(sa, so) transformation steps Sopt = Salgo for all tasks [1..min(sa, so)]
scheduled by Salgo. So if after these steps Sopt = Salgo for all n tasks, both algorithms redistributed
the same number of tasks and we have finished.

We now consider the case sa 6= so. In the case of sa > so, Salgo schedules more tasks than Sopt.
At each step of our algorithm we do not increase the makespan. So if we do more steps than Sopt,
this means that we scheduled some tasks without changing the global makespan. Hence Salgo is
optimal.

If sa < so, this means that Sopt schedules more tasks than Salgo does. In this case, after sa

transformation steps, Sopt still schedules tasks. If we take a look at the schedule of the (sa +1)-th
task in Sopt: regardless which receiver Sopt chooses, it will increase the makespan as we prove
now. In the following we will call salgo the worker our algorithm would have chosen to be the
sender, ralgo the worker our algorithm would have chosen to be the receiver. sopt and ropt are
the sender and receiver chosen by the optimal schedule. Indeed, in our algorithm we would have
chosen salgo as sender such that it is a worker which finishes last. So the time worker salgo finishes
processing is Fsalgo

= M(Salgo). Salgo chooses the receiver ralgo such that it finishes processing
the received task the earliest of all possible receivers and such that it also finishes processing the
receiving task at the same time or earlier than the sender would do. As Salgo did not decide to
send the (sa+1)-th task, this means, that it could not find a receiver which fitted. Hence we know,
regardless which receiver Sopt chooses, that the makespan will strictly increase (as Salgo = Sopt for
all [1..sa]). We take a look at the makespan of Salgo if we would have scheduled the (sa+1)-th task.
We know that we can not decrease the makespan anymore, because in our algorithm we decided
to keep the schedule unchanged. So after the emission of the (sa +1)-th task, the makespan would
become M(Salgo) = Fralgo

≥ Fsalgo
. And Fralgo

≤ Fropt
, because of the definition of receiver ralgo.

As M(sopt) ≥ Fropt
, we have M(Salgo) ≤ M(Sopt). But we decided not to do this schedule as

M(Salgo) is smaller before the schedule of the (sa + 1)-th task than afterwards. Hence we get
that M(Salgo) < M(Sopt). So the only possibility why Sopt sends the (sa + 1)-th task and still
be optimal is that, later on, ropt sends a task to some other processor rk. (Note that even if we
choose Sopt to have no such chains in the beginning, some might have appeared because of our
previous transformations). In the same manner as we transformed sending chains in Lemma 7,
we can suppress this sending chain, by sending task (sa + 1) directly to rk instead of sending to
ropt. With the same argumentation, we do this by induction for all tasks k, (sa + 1) ≤ k ≤ so,
until schedule Sopt and Salgo have the same number so = sa and so Sopt = Salgo and hence
M(Sopt) = M(Salgo).

Complexity: The initialization phase is in O(m), as we have to compute the finish times for
each worker. The while loop can be run at maximum n times, as we can not redistribute more
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than the n tasks of the system. Each iteration is in the order of O(m), which leads us to a total
run time of O(m× n).

3.4 Scheduling on platforms with homogeneous communication links
and heterogeneous computation capacities

In this section we present an algorithm for star-platforms with homogeneous communications and
heterogeneous workers, the Moore Based Binary-Search Algorithm (MBBSA). For a given
makespan, we compute if there exists a possible schedule to finish all work in time. If there is one,
we optimize the makespan by a binary search. The plan of the section is as follows: In Section 3.4.1
we present an existing algorithm which will be the basis of our work. The framework and some
usefull notations are introduced in Section 3.4.2, whereas the real algorithm is the subject of
Section 3.4.3.

3.4.1 Moore’s algorithm

In this section we present Moore’s algorithm [6, 18], whose aim is to maximize the number
of tasks to be processed in-time, i.e., before tasks exceed their deadlines. This algorithm gives a
solution to the 1||

∑
Uj problem when the maximum number, among n tasks, has to be processed

in time on a single machine. Each task k, 1 ≤ k ≤ n, has a processing time wk and a deadline dk,
before which it has to be processed.

Moore’s algorithm works as follows: All tasks are ordered in non-decreasing order of their
deadlines. Tasks are added to the solution one by one in this order as long as their deadlines are
satisfied. If a task k is out of time, the task j in the actual solution with the largest processing
time wj is deleted from the solution.

Algorithm 2 [6, 18] solves in O(n log n) the 1||
∑

Uj problem: it constructs a maximal set σ of
early jobs.

Algorithm 2 Moore’s algorithm
1: Order the jobs by non-decreasing deadlines: d1 ≤ d2 ≤ · · · ≤ dd

2: σ ← ∅; t← 0
3: for i := 1 to n do
4: σ ← σ ∪ {i}
5: t← t + wi

6: if t > di then
7: Find job j in σ with largest wj value
8: σ ← σ\{j}
9: t← t− wj

10: end if
11: end for

3.4.2 Framework and notations for MBBSA

We keep the star network of Section 3.1 with homogeneous communication links. In contrast
to Section 3.3 we suppose m heterogeneous workers who own initially a number Li of identical
independent tasks.

Let M denote the objective makespan for the searched schedule σ and fi the time needed by
worker i to process its initial load. During the algorithm execution we divide all workers in two
subsets, where S is the set of senders (si ∈ S if fi > M) and R the set of receivers (ri ∈ R

if fi < M). As our algorithm is based on Moore’s, we need a notation for deadlines. Let d
(k)
ri

be the deadline to receive the k-th task on receiver ri. lsi
denotes the number of tasks sender

i sends to the master and lri stores the number of tasks receiver i is able to receive from the
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master. With help of these values we can determine the total amount of tasks that must be sent
as Lsend =

∑
si

lsi
. The total amount of task if all receivers receive the maximum amount of tasks

they are able to receive is Lrecv =
∑

ri
lri

. Finally, let Lsched be the maximal amount of tasks
that can be scheduled by the algorithm.

3.4.3 Moore based binary search algorithm - MBBSA

Principle of the algorithm: Considering the given makespan we determine overcharged work-
ers, which can not finish all their tasks within this makespan. These overcharged workers will then
send some tasks to undercharged workers, such that all of them can finish processing within the
makespan. The algorithm solves the following two questions: Is there a possible schedule such
that all workers can finish in the given makespan? In which order do we have to send and receive
to obtain such a schedule?

The algorithm can be divided into four phases:

Phase 1 decides which of the workers will be senders and which receivers, depending of the
given makespan (see Figure 16). Senders are workers which are not able to process all their
initial tasks in time, whereas receivers are workers which could treat more tasks in the given
makespan M than they hold initially. So sender Pi has a finish time fi > M , i.e., the time
needed to compute their initial tasks is larger than the given makespan M . Conversely, Pi

is a receiver if it has a finish time fi < M . So the set of senders in the example of Figure 16
contains s1 and sv, and the set of receivers r1, r2, and ru.

T = 0 T = M

r1

s1

r2

ru

sv

tasks which can not be computed in time

tasks which can be computed in time

Figure 16: Initial distribution of the tasks to the workers, dark colored tasks can be computed
in-time, light colored tasks will be late and have to be scheduled on some other workers.

Phase 2 fixes how many transfers have to be scheduled from each sender such that the senders
all finish their remaining tasks in time. Sender si will have to send an amount of tasks
lsi

=
⌈

fsi
−T

wsi

⌉
(i.e., the number of light colored tasks of a sender in Figure 16).

Phase 3 computes for each receiver the deadline of each of the tasks it can receive, i.e., a pair
(d(i)

rj , rj) that denotes the i-th deadline of receiver rj . Beginning at the makespan M one
measures when the last task has to arrive on the receiver such that it can be processed in
time. So the latest moment that a task can arrive so that it can still be computed on receiver
rj is T − wrj

, and so on. See Figure 17 for an example.

Phase 4 is the proper scheduling step: The master decides which tasks have to be scheduled on
which receivers and in which order. In this phase we use Moore’s algorithm. Starting at
time t = c (this is the time, when the first task arrives at the master), the master can start
scheduling the tasks on the receivers. For this purpose the deadlines (d, rj) are ordered by
non-decreasing d-values. In the same manner as in Moore’s algorithm, an optimal schedule
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computation of initial tasks Lri

Frj

receiver rj

T − 1× wrj
T − (lrj

− 1)× wrj

T − lrj
× wrj

T − 2× wrj

MT = 0

d
(lrj )
rj d

(lrj−1)
rj d

(1)
rjd

(2)
rj

Figure 17: Computation of the deadlines d
(k)
rj for worker rj .

σ is computed by adding one by one tasks to the schedule: if we consider the deadline (d, rj),
we add a task to processor rj . The corresponding processing time is the communication time
c of rj . So if a deadline is not met, the last reception is suppressed from σ and we continue.
If the schedule is able to send at least Lsend tasks the algorithm succeeds, otherwise it fails.

Algorithm 3 describes MBBSA in pseudo-code. Note that the algorithm is written for heteroge-
neous conditions, but here we study it for homogeneous communication links.

Theorem 3. MBBSA (Algorithm 3) succeeds to build a schedule σ for a given makespan M , if
and only if there exists a schedule with makespan less than or equal to M , when the platform
is made of one master, several workers with heterogeneous computation power but homogeneous
communication capabilities.

Proof. Algorithm 2 (Moore’s Algorithm) constructs a maximal set σ of early jobs on a single
machine scheduling problem. So we are going to show that our algorithm can be reduced to this
problem.

As we work with a platform with homogeneous communications, we do not have to care about
the arrival times of jobs at the master, apart from the first job. Our deadlines correspond to the
latest moments, at which tasks can arrive on the workers such that they can be processed in-time
(see Figure 17). So we have a certain number Lrecv of possible receptions for all receivers.

Phases 1 to 3 prepare our scheduling problem to be similar to the situation in Algorithm 2 and
thus to be able to use it.

In phase 1 we distinguish which processors have to be senders, which have to be receivers. With
Lemma 7 we know that we can partition our workers in senders and receivers (and workers which
are none of both), because senders will never receive any tasks. Phase 2 computes the number of
tasks Lsend that has to be scheduled. Phase 3 computes the (d(k)

rj , rj)-values, i.e., the deadlines d
(k)
rj

for each receiver rj . Step 4 is the proper scheduling step and it corresponds to Moore’s algorithm.
It computes a maximal set σ of in-time jobs, where Lsched is the number of scheduled tasks.

The algorithm returns true if the number of scheduled tasks Lsched is bigger than, or equal
to, the number of tasks to be sent Lsend.

Now we will prove that if there exists a schedule whose makespan is less than, or equal to, M ,
Algorithm 3 builds one and returns true. Consider an optimal schedule σ∗ with a makespan M .
We will prove that Algorithm 3 will return true.

We have computed, for each receiver rj , lrj
the maximal number of tasks rj can process after

having finished to process its initial load. Let Nrj denote the number of tasks received by rj

in σ∗, Nrj ≤ lrj . For all receivers rj we know the number Nrj of scheduled tasks. So we have
L∗sched =

∑
rj

Nrj
. As in an optimal schedule all tasks sent by the senders are processed on

the receivers, we know that L∗sched = L∗send. Let us denote D the set of deadlines computed in
our algorithm for the scheduling problem of which σ∗ is an optimal solution. We also define the
following set D∗ =

⋃
i

⋃
1≤j≤Nri

(M − j × wri , ri) of the Nrj latest deadlines for each receiver rj .
Obviously D∗ ⊆ D. The set of tasks in σ∗ is exactly a set of tasks that respects the deadlines in
D∗. The application of the algorithm of Moore on the same problem returns a maximal solution
if there exists a solution. With D∗ ⊂ D, we already know that there exists a solution with L∗sched

scheduled tasks. So Moore’s algorithm will return a solution with Lsched ≥ Lsched∗, as there are
more possible deadlines. On the other side, we have L∗send ≥ Lsend as Lsend is the minimal number
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Algorithm 3 Algorithm for star-platforms with homogeneous communications and heterogeneous
workers
1: /* Phase 1: Initialization */
2: initialize fi for all workers i, fi = Li × wi

3: compute R and S, order S by non-decreasing values ci such that cs1 ≤ cs2 ≤ . . .
4: /* Phase 2: Preparing the senders */
5: for all si ∈ S do
6: lsi ←

⌈
fsi

−T

wsi

⌉
7: if

⌊
T

csi

⌋
< lsi then

8: /* M too small */
9: return (false, ∅)

10: end if
11: end for
12: total number of tasks to send: Lsend ←

∑
si

lsi

13: /* Phase 3: Preparing the receivers */
14: D ← ∅
15: for all ri ∈ R do
16: lri

← 0
17: while fri ≤M − (lri + 1)× wri do
18: lri ← lri + 1
19: d

(lri
)

ri ←M − (lri
× wri

)
20: D ← D ∪ (d(lri

)
ri , ri)

21: end while
22: end for
23: number of tasks that can be received: Lrecv ←

∑
ri

lri

24: /* Phase 4: The master schedules */
25: senders send in non-decreasing order of values csi

to the master
26: order deadline-list D by non-decreasing values of deadlines dri

and rename the deadlines in
this order from 1 to Lrecv

27: σ ← ∅; t← cs1 ; Lsched = 0;
28: for i = 1 to Lrecv do
29: (di, ri)← i-th element (d(j)

rk , rk) of D
30: σ ← σ ∪ {ri}
31: t← t + cri

32: Lsched ← Lsched + 1
33: if t > di then
34: Find (dj , rj) in σ such that crj value is largest
35: σ ← σ\{(dj , rj)}
36: t← t− crj

37: Lsched ← Lsched − 1
38: end if
39: end for
40: return ((Lsched ≥ Lsend), σ)
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of tasks that have to be sent to fit in the given makespan. So we get that Lsched ≥ Lsend. As
we return true in our algorithm if Lsched ≥ Lsend, we will return true whenever there exists a
schedule whose makespan is less than, or equal to, M .

Frj

receiver rj

T = 0

computation of initial tasks Lri

M
d

(1)
rjd

(2)
rjd

(3)
rjd

(4)
rjd

(5)
rj

nrj
= 1 nrj

= 2 nrj
= 3

nrj
= 3nrj

= 2nrj
= 1

Figure 18: Number of loads scheduled to receiver rj in order to its deadlines.

Now we prove that if Algorithm 3 returns true there exists a schedule whose makespan is less
than, or equal to, M . Our algorithm returns true, if it has found a schedule σ where Lsched ≥
Lsend. If Lsched = Lsend then the schedule σ found by our algorithm is a schedule whose makespan
is less than, or equal to, M . If Lsched > Lsend, we take the Lsend first elements of σ, which still
defines a schedule whose makespan is less than, or equal to, M .

Proposition 2. Algorithm 4 returns in polynomial time an optimal schedule σ for the following
scheduling problem: minimizing the makespan on a star-platform with homogeneous communica-
tion links and heterogeneous workers where the initial tasks are located on the workers.

Algorithm 4 Algorithm to optimize the makespan.
/∗ idea: make a binary search of M ∈ [min(fi),max(fi)] ∗/
input: wi = αi

βi
, αi, βi ∈ N× N∗, ci = γi

δi
, γi, δi ∈ N× N∗

λ← lcm{βi, δi}, 1 ≤ i ≤ m
precision← 1

λ
lo← min(fi); hi← max(fi);
procedure binary-Search(lo, hi):
gap← |lo− hi|
while gap > precision do

M ← (lo + hi)/2
found← MBBSA (M)
if 6 found then

/* M is too small */
lo←M

else
/* M is maybe too big */
hi←M
σ ← found schedule

end if
gap← |lo− hi|

end while
return σ

Proof. We perform a binary search for a solution in a starting interval of [min(fi),max(fi)]. As
we are in heterogeneous computation conditions, we have heterogeneous wi-values, 1 ≤ i ≤ m,
wi ∈ Q. The communications instead are homogeneous, so we have ci = c, 1 ≤ i ≤ m, c ∈ Q. Let
the representation of the values be of the following form:

wi =
αi

βi
, αi, βi ∈ N× N∗,
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where αi and βi are prime between each other,

ci = c =
γ

δ
, γ, δ ∈ N× N∗,

where γ and δ are prime between each other.
Let λ be the least common multiple of the denominators βi and δi, λ = lcm{βi, δ}, 1 ≤ i ≤ m.

As a consequence for any i in [1..m] λ×wi ∈ N, λ× ci ∈ N. Now we have to choose the precision
which allows us to stop our binary search. For this, we take a look at the possible finish times of
the workers: all of them are linear combinations of the different ci and wi-values. So if we multiply
all values with λ we get integers for all values and the smallest gap between two finish times is at
least 1. So the precision p, i.e., the minimal gap between two feasible finish times, is p = 1

λ .

Complexity: The maximal number of different values M we have to try can be computed as
follows: we examine our algorithm in the interval [min(fi)..max(fi)]. The possible values have an
increment of 1

λ . So there are (max(fi)−min(fi))× λ possible values for M .
So the complexity of the binary search is O(log((max(fi) − min(fi)) × λ)). Now we have to

prove that we stay in the order of the size of our problem. Our platform parameters c and wi are
given in the form wi = αi

βi
and c = γi

δ . So it takes log(αi)+log(βi) to store a wi and log(γ)+log(δ)
to store a c. So our entry E has the following size:

E =
∑

i

log(αi) +
∑

i

log(βi) + log(γ) + log(δ) +
∑

i

log(Li)

We can do the following estimation:

E≥
∑

i

log(βi) + log(δ) = log

(∏
i

βi × δ

)
≥ log(λ)

So we already know that our complexity is bounded by O(|E|+ log(max(fi)−min(fi))). We can
simplify this expression: O(|E|+ log(max(fi)−min(fi))) ≤ O(|E|+ log(max(fi))). It remains to
upperbound log(max(fi)).

Remember max(fi) is defined as max(fi) = maxi(Li × wi) = Li0 × wi0 . Thus log(max(fi)) =
log(Li0)+log(wi0). Li0 is a part of the input and hence its size can be upper-bounded by the size of
the input E. In the same manner we can upperbound log(wi0) by log(wi0) = log(αi0)+ log(βi0) ≤
E.

Assembling all these upperbounds, we get O(log((max(fi)−min(fi))×λ)) ≤ O(3|E|) and hence
our proposed algorithm needs O(|E|) steps for the binary search. The total complexity finally is
O(|E| ×max(nm, n2)), where n is the number of scheduled tasks and m the number of workers.

3.5 Heuristics for heterogeneous platforms

As there exists no optimal algorithm to build a schedule in polynomial runtime (unless P = NP) for
heterogeneous platforms, we propose three heuristics. A comparative study is done in Section 4.

• The first heuristic consists in the use of the optimal algorithm for homogeneous platforms
BBA (see Algorithm 1). On heterogeneous platforms, at each step BBA optimizes the local
makespan.

• Another heuristic is the utilization of the optimal algorithm for platforms with homogeneous
communication links MBBSA (see Algorithm 3). The reason why MBBSA is not optimal on
heterogeneous platforms is the following: Moore’s algorithm, that is used for the scheduling
step, cares about the tasks already on the master, but it does not assert if the tasks have
already arrived. The use of homogeneous communication links eliminated this difficulty. We
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can observe that in the cases where the overcharged workers (i.e., the senders) communicate
faster than the undercharged workers (i.e., the receivers), MBBSA is also optimal. However,
the problem with this statement is that we do not know a priori which processors will work
as senders. So in the case of heterogeneous platforms, where sending workers have faster
communication links than receiving ones, the results will be optimal.

• We propose a third heuristic: the Reversed Binary-Search Algorithm (see Algorithm 5
for details). This algorithm copies the idea of the introduction of deadlines. Contrary
to MBBSA this algorithm traverses the deadlines in reversed order, wherefrom the name.
Starting at a given makespan, R-BSA schedules all tasks as late as possible until no more
task can be scheduled.

R-BSA can be divided into four phases:

Phase 1 is the same as in MBBSA. It decides which of the workers will be senders and
which receivers, depending of the given makespan (see Figure 16).

Phase 2 fixes how many transfers have to be scheduled from each sender such that the
senders all finish their remaining tasks in time. This phase is also identical to MBBSA.

Phase 3 computes for each receiver at which time it can start with the computation of the
additional tasks, this is in general the given makespan.

Phase 4 again is the proper scheduling step: Beginning at the makespan we fill backward
the idle times of the receiving workers. So the master decides which tasks have to be
scheduled on which receivers and in which order. The master chooses a worker that
can start to receive the task as late as possible and still finish it in time.

4 Simulations

In this section we present the results of our simulation experiences of the presented algorithms
and heuristics on multiple platforms. We study the heuristics that we presented in Section 3.5.

4.1 The simulations

All simulations were made with SimGrid [16, 24]. SimGrid is a toolkit that provides several func-
tionalities for the simulation of distributed applications in heterogeneous distributed environments.
The toolkit is distributed into several layers and offers several programming environments, such as
XBT, the core toolbox of SimGrid or SMPI, a library to run MPI applications on top of a virtual
environment. The access to the different components is ensured via Application Programming
Interfaces (API). We use the module MSG to create our entities.

The simulations were made on automatically created random platforms of four types: We
analyze the behavior on fully homogeneous and fully heterogeneous platforms and the mixture of
both, i.e., platforms with homogeneous communication links and heterogeneous workers and the
converse. For every platform type 1000 instances were created with the following characteristics:
In absolute random platforms, the random values for ci and wi vary between 1 and 100, whereas
the number of tasks is at least 50. In another test series we make some constraints on the
communication and computation powers. In the first one, we decide the communication power
to be inferior to the computation power. In this case the values for the communication power
vary between 20 and 50 and the computation powers can take values between 50 and 80. In the
opposite case, where communication power is supposed to be superior to the computation power,
these rates are conversed.
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Algorithm 5 Reversed Binary-Search Algorithm

1: /* Phase 1: Initialization */

2: T ←M ; Lsched ← 0; σ ← ∅
3: ∀k L

(0)
k ← Lk

4: initialize endi for all workers i: endi = Li × wi

5: compute R and S, order S by non-decreasing values ci: cs1 ≤ cs2 ≤ . . .
6: master in← cs1

7: /* Phase 2: Preparing the senders */

8: for all si ∈ S do
9: lsi

←
⌈

endsi
−T

wsi

⌉
10: if

⌊
T

csi

⌋
< lsi

then
11: /* M too small */
12: return (false, ∅)
13: end if
14: end for
15: total number of tasks to be sent: Lsend ←

∑
si

lsi

16: /* Phase 3: Determination of the last deadline */

17: for all ri ∈ R do
18: if endri ≤ T then
19: beginri

← T
20: end if
21: end for
22: /* Phase 4: The scheduling */

23: while true do
24: choose receiver such that it is the worker that can start receiving it as late as possible, i.e.,

maxi (min(begini − wi, T ))− ci is maximal and that the schedule is feasible: the task must
fit in the idle gap of the worker: (beginreceiver − wreceiver ≥ endreceiver) and the task has
to be arrived at the master: (beginreceiver − wreceiver − creceiver ≥ master in).

25: if no receiver′ found then
26: return ((Lsched ≤ Lsend), σ)
27: end if
28: beginreceiver ← beginreceiver − wreceiver

29: T ← beginreceiver − creceiver

30: Lsched ← Lsched + 1
31: σ ← σ ∪ {receiver}
32: i← i + 1
33: end while
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4.2 Trace tests

To verify the right behavior of the algorithms, we made some trace tests. So the visualization of
the runs on a small test platform are shown in this section.

We use a small platform with homogeneous communication links, c = 2, so the bandwidth is
0.5. We use four heterogeneous workers with the following w-values: P1 and P2 compute faster,
so we set w1 = w2 = 3. Worker P3 and P4 are slower ones with w3 = w4 = 4. P1 owns 8 tasks
at the beginning, P2 and P3 respectively one task, whereas worker P4 has no initial work. The
optimal makespan is M = 13, as we computed by permutation over all possible schedules.

In the following figures, computation are indicated in black. White rectangles denote inter-
nal blockings of SimGrid in the communication process of a worker. These blockings appear
when communication processes remark that the actual message is not destined for them. Grey
rectangles represent idle time in the computation process. The light grey fields finally show the
communication processes between the processors.

The schedule of BBA can be seen in Figure 19. Evidently the worker with the latest finish time
is P1, worker P2 can finish the first sent task earlier than workers P3 and P4, so it is the receiver
for the first task. In this solution, worker P1 sends four tasks, which are received by P2, P4, P2

and once again P4. The makespan is 14, so the schedule is not optimal. This does not contradict
our theoretical results, as we proved optimality of BBA only on homogeneous platforms.

Figure 19: Trace of the simulation of BBA.

MBBSA achieves as expected the optimal makespan of 13 (see Figure 20). As you can see by
comparing Figures 19 and 20, the second task scheduled by MBBSA (to worker P2) is finished pro-
cessing later than in the schedule of BBA. So MBBSA, while globally optimal, does not minimize
the completion time of each task.

Figure 20: Trace of the simulation of MBBSA.

R-BSA finds also an optimal schedule (cf. Figure 21). Even in this small test the difference of
R-BSA and MBBSA is remarkable: R-BSA tries to schedule the most tasks as possible by filling
idle times starting at the makespan. MBBSA contrarily tries to schedule tasks as soon as possible
before their deadlines are expired.
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Figure 21: Trace of the simulation of R-BSA.

4.3 Distance from the best

We made a series of distance tests to get some information of the mean qualitiy of our algorithms.
For this purpose we ran all algorithms on 1000 different random platforms of the each type, i.e.,
homogeneous and heterogeneous, as well as homogeneous communication links with heterogeneous
workers and the converse. We normalized the measured schedule makespans over the best result
for a given instance. In the following figures we plot the accumulated number of platforms that
have a normalized distance less than the indicated distance. This means, we count on how many
platforms a certain algorithm achieves results that do not differ more than X% from the best
schedule. For exemple in Figure 22(b): The third point of the R-BSA-line significates that about
93% of the schedules of R-BSA differ less than 3% from the best schedule.

Our results on homogeneous platforms can be seen in Figures 22. As expected from the
theoretical results, BBA and MBBSA achieve the same results and behave equally well on all
platforms. R-BSA in contrast shows a sensibility on the platform characteristics. When the
communication power is less than the computation power, i.e. the ci-values are bigger, R-BSA
behaves as good as MBBSA and BBA. But in the case of small ci-values or on homogeneous
platforms without constraints on the power rates, R-BSA achieves worse results.

The simulation results on platforms with homogeneous communication links and heterogeneous
computation powers (cf. Figure 23) consolidate the theoretical predictions: Independently of the
platform parameters, MBBSA always obtains optimal results, BBA differs slightly when high
precision is demanded. The behavior of R-BSA strongly depends on the platform parameters:
when communications are slower than computations, it achieves good results.

On platforms with heterogeneous communication links and homogeneous workers, BBA has
by far the poorest results, whereas R-BSA shows a good behavior (see Figure 24). In general it
outperforms MBBSA, but when the communication links are fast, MBBSA is the best.

The results on heterogeneous platforms are equivalent to these on platforms with heterogeneous
communication links and homogeneous workers, as can be seen in Figure 25. R-BSA seems to be
a good candidate, whereas BBA is to avoid as the gap is up to more than 40%.

4.4 Mean distance and standard deviation

We also computed for every algorithm the mean distance from the best on each platform type.
These calculations are based on the simulation results on the 1000 random platforms of Section 4.3.
As you can see in Table 1 in general MBBSA achieves the best results. On homogeneous platforms
BBA behaves just as well as MBBSA and on platforms with homogeneous communication links
it also performs as well. When communication links are heterogeneous and there is no knowledge
about platform parameters, R-BSA outperforms the other algorithms and BBA is by far the worse
choice.

The standard deviations of all algorithms over the 1000 platforms are shown in the right part
of Table 1. These values mirror exactly the same conclusions as the listing of the mean distances
in the left part, so we do not comment on them particularly. We only want to point out that
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Figure 22: Frequency of the distance to the best on homogeneous platforms.
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Figure 23: Frequency of the distance to the best on platforms with homogeneous communication
links and heterogeneous computation power.
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(a) General platform.
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(b) Faster communicating.
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(c) Faster computing.

Figure 24: Frequency of the distance to the best on platforms with heterogeneous communication
links and homogeneous computation power.
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(a) Heterogeneous platform (general case).
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(b) Heterogeneous platform, faster communicating.
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(c) Heterogeneous platform, faster computing.

Figure 25: Frequency of the distance to the best on heterogeneous platforms.
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Platform type Mean distance Standard deviation
Comm. Comp. BBA MBBSA R-BSA BBA MBBSA R-BSA
Hom Hom 1 1 1.0014 0 0 0.0107
Hom Hom c ≤ w 1 1 1.0061 0 0 0.0234
Hom Hom c ≥ w 1 1 1 0 0 0
Hom Het 1.0000 1 1.0068 0.0006 0 0.0181
Hom Het c ≤ w 1.0003 1 1.0186 0.0010 0 0.0395
Hom Het c ≥ w 1 1 1.0017 0 0 0.0040
Het Hom 1.1894 1.0074 1.0058 0.4007 0.0208 0.0173
Het Hom c ≤ w 1.0318 1.0049 1.0145 0.0483 0.0131 0.0369
Het Hom c ≥ w 1.0291 1.0025 1.0024 0.0415 0.0097 0.0095
Het Het 1.2100 1.0127 1.0099 0.3516 0.0327 0.0284
Het Het c ≤ w 1.0296 1.0055 1.0189 0.0450 0.0127 0.0407
Het Het c ≥ w 1.0261 1.0045 1.0046 0.0384 0.0118 0.0121

Table 1: Mean distance from the best and standard deviation of the different algorithms on each
platform type.

the standard deviation of MBBSA always keeps small values, whereas in case of heterogeneous
communication links BBA-heuristic is not recommendable.

5 Load balancing of divisible loads using the multiport switch-
model

5.1 Framework

In this section we work with a heterogeneous star network. But in difference to Section 3 we
replace the master by a switch. So we have m workers which are interconnected by a switch and
m heterogenous links. Link i is the link that connects worker Pi to the switch. Its bandwidth is
denoted by bi. In the same way si denotes the computation speed of worker Pi. Every worker
Pi possesses an amount of initial load αi. Contrarily to the previous section, this load is not
considered to consist of identical and independent tasks but of divisible loads. This means that
an amount of load X can be divided into an arbitrary number of tasks of arbitrary size. As
already mentioned, this approach is called Divisible Load Theory - DLT [4]. The communication
model used in this case is an overlapped unbounded switched-multiport model. This means all
communications pass by a centralized switch that has no throughput limitations. So all workers
can communicate at the same time and a given worker can start executing as soon as it receives
the first bit of data. As we use a model with overlap, communication and computation can take
place at the same time.

As in the previous section our objective is to balance the load over the participating workers
to minimize the global makespan M .

5.2 Redistribution strategy

Let σ be a solution of our problem that takes a time T . In this solution, there is a set of sending
workers S and a set of receiving workers R. Let sendi denote the amount of load sent by sender
Pi and recvj be the amount of load received by receiver Pj , with sendi ≥ 0, recvj ≥ 0. As all load
that is sent has to be received by another worker, we have the following equation:∑

i∈S

sendi =
∑
j∈R

recvj = L. (1)
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In the following we describe the properties of the senders: As the solution σ takes a time T , the
amount of load a sender can send depends on its bandwidth: So it is bounded by the time-slot of

∀ senderi ∈ S,
sendi

bi
≤ T. (2)

Besides, it has to send at least the amount of load that it can not finish processing in time T . This
lowerbound can be expressed by

∀ senderi ∈ S, sendi ≥ αi − T × si. (3)

The properties for receiving workers are similar. The amount of load a worker can receive is
dependent of its bandwidth. So we have:

∀ receiverj ∈ R,
recvj

bj
≤ T. (4)

Additionally it is dependent of the amount of load it already possesses and of its computation
speed. It must have the time to process all its load, the initial one plus the received one. That is
why we have a second upperbound:

∀ receiverj ∈ S,
αj + recvj

sj
≤ T. (5)

For the rest of our paper we introduce a new notation: Let δi denote the imbalance of a worker.
We will define it as follows:

δi =

{
sendi if i ∈ S

−recvi if i ∈ R
.

With the help of this new notation we can re-characterize the imbalance of all workers:

• This imbalance is bounded by
|δi| ≤ bi × T.

– If i ∈ S, worker Pi is a sender, and this statement is true because of inequality 2.

– If i ∈ R, worker Pi is a receiver and the statement is true as well, because of inequality 4.

• Furthermore, we lower-bound the imbalance of a worker by

δi ≥ αi − T × si. (6)

– If i ∈ S, we are in the case where δi = sendi and hence this it true because of equation 3.

– If i ∈ R, we have δi = −recvi ≤ 0. Hence we get that (6) is equal to −recvi ≥ αi−T×si

which in turn is equivalent to (5).

• Finally we know as well that
∑

i δi = 0 because of equation 1.

If we combine all these constraints we get the following linear program (LP), with the addition
of our objective to minimize the makespan T . This combination of all properties into a LP is
possible because we can use the same constraints for senders and receivers. As you may have
noticed, a worker will have the functionality of a sender if its imbalance δi is positive, receivers
being characterized by negative δi-values.

Minimize T,
under the constraints

(7a) |δi| ≤ T × bi

(7b) δi ≥ αi − T × si

(7c)
∑

i

δi = 0

(7)
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All the constraints of the LP are satisfied for the (δi, T )-values of any schedule solution of the
initial problem. We call T0 the solution of the LP for a given problem. As the LP minimizes the
time T , we have T0 ≤ T for all valid schedule and hence we have found a lower-bound for the
optimal makespan.

Now we prove that we can find a feasible schedule with makespan T0. We start from an
optimal solution of the LP, i.e., T0 and the δi-values computed by some LP solvers, such as Maple
or MuPAD. With the help of these found values we are able to describe the schedule:

1. Every sender i sends a fraction of load to each receiver j. We decide that each sender sends
to each receiver a fraction of the senders load proportional to what we denote by

fi,j = δi ×
δj∑

k∈R δk
= δi ×

δj

−L
(8)

the fraction of load that a sender Pi sends to a receiver Pj . In other words we have fi,j =
δi × −recviP

k∈R(−recvk) .

2. During the whole schedule we use constant communication rates, i.e., worker j will receive
its fraction of load fi,j from sender i with a fixed receiving rate, which is denoted by λi,j :

λi,j =
fi,j

T0
. (9)

3. A schedule starts at time t = 0 and ends at time t = T0.

We have to verify that each sender can send its amount of load in time T0 and that the receivers
can receive it as well and compute it afterwards.

Let us take a look at a sender Pi: the total amount it will send is
∑

j∈R fi,j =
∑

j∈R
δi×δjP
k∈R δk

=
δi = sendi and as we started by a solution of our LP, δi respects equations 7a and 7b, thus sendi

respects the constraints 2 and 3 as well, i.e., sendi ≤ T × bi and sendi ≥ αi − T × si.
Now we consider a receiver Pj : the total amount it will receive is

∑
i∈S fi,j =

∑
i∈S

δi×δjP
k∈R δk

=
−δj = recvj . Worker Pi can receive the whole amount of recvi load in time T0 as it starts the
reception at time t = 0 and recvi respects constraints 7a and 7b, who in turn respect the initial
constraints 4 and 5, i.e., recvi ≤ T × bi and recvi ≤ T × si − αi. Now we examine if worker
Pi can finish computing all its work in time. As we use the divisible load model, worker Pi can
start computing its additional amount of load as soon as it has received its first bit and provided
the computing rate is inferior to the receiving rate. Figure 26 illustrates the computing process
of a receiver. There are two possible schedules: the worker can allocate a certain percentage of
its computing power for each stream of loads and process them in parallel. This is shown in
Figure 26(a). Processor Pi starts immediately processing all incoming load. For doing so, every
stream is allocated a certain computing rate γi,j , where i is the sending worker and j the receiver.
We have to verify that the computing rate is inferior or equal to the receiving rate.

The initial load αj of receiver Pj owns at minimum a computing rate such that it finishes right
in time T0: γj,j = αj

T0
. The computing rate γi,j , for all pairs (i, j), i ∈ S, j ∈ R, has to verify the

following constraints:

• The sum of all computing rates does not exceed the computing power sj of the worker Pj :(∑
i∈S

γi,j

)
+

αj

T0
≤ sj , (10)

• The computing rate for the amount of load fi,j has to be sufficiently big to finish in time T0:

γi,j ≥
fi,j

T0
, (11)
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• The computing rate has to be inferior or equal to the receiving rate of the amount fi,j :

γi,j ≤ λi,j , (12)

Now we prove that γi,j = fi,j

T0
is a valid solution that respects constraints (10), (11), and (12):

Equation (10) We have
(∑

i∈S γi,j

)
+ αj

T0
=
(∑

i∈S
fi,j

T0

)
+ αj

T0
=
(
−δj

T0

)
+ αj

T0
= αj−δj

T0
. Transform-

ing Equation (7b) in αj−δj ≤ T0×sj and using this upperbound we get αj−δj

T0
≤ T0×sj

T0
= sj .

Hence this constraint holds true.

Equation (11) By definition of γi,j this holds true.

Equation (12) By the definitions of γi,j and λi,j this holds true.

In the other possible schedule, all incoming load streams are processed in parallel after having
processed the initial amount of load as shown in Figure 26(b). In fact, this modeling is equivalent
to the precedent one, because we use the DLT paradigm. We used this model in equations 3 and 5.

T0
0

1

fk,j γk,j

γj,jαj

fi,j

fl,j



(
(a) Parallel processing.

0
T0

1

γj,j=1 fk,jαj γk,j

8>>>>>>>>><>>>>>>>>>:

fi,j

fl,j

(
(b) Sequential and parallel processing.

Figure 26: Different schedules to process the received load.

The following theorem summarizes our cognitions:

Theorem 4. The combination of the linear program 7 with equations 8 and 9 returns an optimal
solution for makespan minimization of a load balancing problem on a heterogeneous star platform
using the switch model and initial loads on the workers.

6 Conclusion

In this report we were interested in the problem of scheduling and redistributing data on master-
slave platforms. We considered two types of data models.

Supposing independent and identical tasks, we were able to prove the NP completeness in the
strong sense for the general case of completely heterogeneous platforms. Therefore we restricted
this case to the presentation of three heuristics. We have also proved that our problem is polyno-
mial when computations are negligible. Treating some special topologies, we were able to present
optimal algorithms for totally homogeneous star-networks and for platforms with homogeneous
communication links and heterogeneous workers. Both algorithms required a rather complicated
proof.

The simulative experiments consolidate our theoretical results of optimality. On homogeneous
platforms, BBA is to privilege over MBBSA, as the complexity is remarkably lower. The tests on
heterogeneous platforms show that BBA performs rather poorly in comparison to MBBSA and
R-BSA. MBBSA in general achieves the best results, it might be outperformed by R-BSA when
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platform parameters have a certain constellation, i.e., when workers compute faster than they are
communicating.

Dealing with divisible loads as data model, we were able to solve the fully heterogeneous
problem. We presented the combination of a linear program with simple computation formulas to
compute the imbalance in a first step and the corresponding schedule in a second step.

A natural extension of this work would be the following: for the model with independent tasks,
it would be nice to derive approximation algorithms, i.e., heuristics whose worst-case is guaranteed
within a certain factor to the optimal, for the fully heterogeneous case. However, it is often the
case in scheduling problems for heterogeneous platforms that approximation ratios contain the
quotient of the largest platform parameter by the smallest one, thereby leading to very pessimistic
results in practical situations.

More generally, much work remains to be done along the same lines of load-balancing and
redistributing while computation goes on. We can envision dynamic master-slave platforms whose
characteristics vary over time, or even where new resources are enrolled temporarily in the execu-
tion. We can also deal with more complex interconnection networks, allowing slaves to circumvent
the master and exchange data directly.
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