
Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Comments on “Design and performance
evaluation of load distribution strategies

for multiple loads on heterogeneous linear
daisy chain networks”

Matthieu Gallet ,
Yves Robert ,
Frédéric Vivien

February 2007

Research Report No 2007-07

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr



Comments on “Design and performance evaluation of load

distribution strategies for multiple loads on heterogeneous linear

daisy chain networks”

Matthieu Gallet , Yves Robert , Frédéric Vivien

February 2007

Abstract
Min, Veeravalli, and Barlas proposed [8, 9] strategies to minimize the
overall execution time of one or several divisible loads on a heterogeneous
linear network, using one or more installments. We show on a very simple
example that the approach proposed in [9] does not always produce a
solution and that, when it does, the solution is often suboptimal. We
also show how to find an optimal scheduling for any instance, once the
number of installments per load is given. Finally, we formally prove that
under a linear cost model, as in [8, 9], an optimal schedule has an infinite
number of installments. Such a cost model can therefore not be used to
design practical multi-installment strategies.

Keywords: scheduling, heterogeneous processors, divisible loads, single-installment,
multiple-installments.

Résumé
Min, Veeravalli, and Barlas ont proposé [8, 9] des stratégies pour mini-
miser le temps d’exécution d’une ou de plusieurs tâches divisibles sur un
réseau linéaire de processeurs hétérogènes, en distribuant le travail en
une ou plusieurs tournées. Sur un exemple très simple nous montrons que
l’approche proposée dans [9] ne produit pas toujours une solution et que,
quand elle le fait, la solution est souvent sous-optimale. Nous montrons
également comment trouver un ordonnancement optimal pour toute ins-
tance, quand le nombre de tournées par tâches est spécifié. Finalement,
nous montrons formellement que lorsque les fonctions de coûts sont li-
néaires, comme c’est le cas dans [8, 9], un ordonnancement optimal a
un nombre infini de tournées. Un tel modèle de coût ne peut donc pas
être utilisé pour définir des stratégies en multi-tournées utilisables en
pratique.

Mots-clés: ordonnancement, ressources hétérogènes, tâches divisibles, tournées.



Comments on “Design and performance evaluation of load distribution strategies” 1

1 Introduction

Min, Veeravalli and Barlas proposed [8, 9] strategies to minimize the overall execution time
of one or several divisible loads on a heterogeneous linear network. Initially, the authors
targeted single-installment strategies, that is strategies under which a processor receives in
a single communication all its share of a given load. When they were not able to design
single-installment strategies, they proposed multi-installment ones.

In this research note, we first show on a very simple example that the approach pro-
posed in [9] does not always produce a solution and that, when it does, the solution is often
suboptimal. The fundamental flaw of the approach of [9] is that the authors are optimizing
the scheduling load by load, instead of attempting a global optimization. The load by load
approach is suboptimal and overconstrains the problem.

On the contrary, we show how to find an optimal scheduling for any instance, once the
number of installments per load is given. In particular, our approach always find the optimal
solution in the single-installment case. Finally, we formally prove that under a linear cost
model for communication and communication, as in [8, 9], an optimal schedule has an infinite
number of installments. Such a cost model can therefore not be used to design practical
multi-installment strategies.

Please refer to the papers [8, 9] for a detailed introduction to the optimization problem
under study. We briefly recall the framework in Section 2, and we deal with an illustrative
example in Section 3. Then we directly proceed to the design of our solution (Section 4),
we discuss its possible extensions and the linear cost model (Section 5), before concluding
(Section 6).

2 Problem and Notations

We summarize here the framework of [8, 9]. The target architecture is a linear chain of m
processors (P1, P2, . . . , Pm). Processor Pi is connected to processor Pi+1 by the communication
link li (see Figure 1). The target application is composed of N loads, which are divisible, which
means that each load can be split into an arbitrary number of chunks of any size, and these
chunks can be processed independently. All the loads are initially available on processor P1,
which processes a fraction of them and delegates (sends) the remaining fraction to P2. In turn,
P2 executes part of the load that it receives from P1 and sends the rest to P3, and so on along
the processor chain. Communications can be overlapped with (independent) computations,
but a given processor can be active in at most a single communication at any time-step: sends
and receives are serialized (this is the full one-port model).

Since the last processor Pm cannot start computing before having received its first message,
it is useful for P1 to distribute the loads in several installments: the idle time of remote
processors in the chain will be reduced due to the fact that communications are smaller in
the first steps of the overall execution.

We deal with the general case in which the nth load is distributed in Qn installments of
different sizes. For the jth installment of load n, processor Pi takes a fraction γn

j (i), and
sends the remaining part to the next processor while processing its own fraction.

In the framework of [8, 9], loads have different characteristics. Every load n (with 1 ≤
n ≤ N) is defined by a volume of data Vcomm(n) and a quantity of computation Vcomp(n).
Moreover, processors and links are not identical either. We let wi be the time taken by Pi



2 M. Gallet , Y. Robert , F. Vivien

L1 L2

lm−1l2l1

Pm−1 PmP1 P2 P3

Figure 1: Linear network, with m processors and m− 1 links.

m Number of processors in the system.
Pi Processor i, where i = 1, . . . ,m.
wi Time taken by processor Pi to compute a unit load.
zi Time taken by Pi to transmit a unit load to Pi+1.
τi Availability date of Pi (time at which it becomes available for processing the loads).
N Total number of loads to process in the system.
Qn Total number of installments for nth load.
Vcomm(n) Volume of data for nth load.
Vcomp(n) Volume of computation for nth load.
γj

i (n) Fraction of nth load computed on processor Pi during the jth installment.
Commstart

i,n,j Start time of communication from processor Pi to processor Pi+1

for jth installment of nth load.
Commend

i,n,j End time of communication from processor Pi to processor Pi+1

for jth installment of nth load.
Compstart

i,n,j Start time of computation on processor Pi

for jth installment of nth load.
Compend

i,n,j End time of computation on processor Pi

for jth installment of nth load.

Table 1: Summary of notations.

to compute a unit load (1 ≤ i ≤ m), and zi be the time taken by Pi to send a unit load to
Pi+1 (over link li, 1 ≤ i ≤ m − 1). Note that we assume a linear model for computations
and communications, as in the original articles, and as is often the case in divisible load
literature [7, 4].

For the jth installment of the nth load, let Commstart
i,n,j denote the starting time of the

communication between Pi and Pi+1, and let Commend
i,n,j denote its completion time; similarly,

Compstart
i,n,j denotes the start time of the computation on Pi for this installment, and Compend

i,n,j

denotes its completion time. The objective function is to minimize the makespan, i.e., the time
at which all loads are computed. For the sake of convenience, all notations are summarized
in Table 1.



Comments on “Design and performance evaluation of load distribution strategies” 3

t

0 3
5

β

T (1)t1,2 T (2)

λβλα

α

7
10

2
5

3
10

t1,1

P1

P2

l1

Figure 2: The example schedule, with λ = 1
2 , α is γ1

2(1) and β is γ1
2(2).

3 An illustrative example

3.1 Presentation

To show the limitations of [8, 9], we deal with a simple illustrative example. We use 2 identical
processors P1 and P2 with w1 = w2 = λ, and z(1) = 1. We consider N = 2 identical divisible
loads to process, with Vcomm(1) = Vcomm(2) = 1 and Vcomp(1) = Vcomp(2) = 1. Note that
when λ is large, communications become negligible and each processor is expected to process
around half of both loads. But when λ is close to 0, communications are very important, and
the solution is not obvious. To ease the reading, we only give a short (intuitive) description of
the schedules, and provide their different makespans without justification (we refer the reader
to Appendix A for all proofs).

We first consider a simple schedule which uses a single installment for each load, as illus-
trated in Figure 2. Processor P1 computes a fraction γ1

1(1) = 2λ2+1
2λ2+2λ+1

of the first load, and a
fraction γ1

1(2) = 2λ+1
2λ2+2λ+1

of the second load. Then the second processor computes a fraction

γ1
2(1) = 2λ

2λ2+2λ+1
of the first load, and a fraction γ1

2(2) = 2λ2

2λ2+2λ+1
of the second load. The

makespan achieved by this schedule is equal to makespan1 =
2λ(λ2+λ+1)
2λ2+2λ+1

.

3.2 Solution of [9], one-installment

In the solution of [9], P1 and P2 have to simultaneously complete the processing of their share
of the first load. The same holds true for the second load. We are in the one-installment case
when P1 is fast enough to send the second load to P2 while it is computing the first load.
This condition writes λ ≥

√
3+1
2 ≈ 1.366.

In the solution of [9], P1 processes a fraction γ1
1(1) = λ+1

2λ+1 of the first load, and a fraction
γ1

1(2) = 1
2 of the second one. P2 processes a fraction γ1

2(1) = λ
2λ+1 of the first load L1,

and a fraction γ1
2(2) = 1

2 of the second one. The makespan achieved by this schedule is
makespan2 = λ(4λ+3)

2(2λ+1) .

Comparing both makespans, we have 0 ≤ makespan2−makespan1 ≤ 1
4 , the solution of [9]

having a strictly larger makespan, except when λ =
√

3+1
2 . Intuitively, the solution of [9] is



4 M. Gallet , Y. Robert , F. Vivien

t

T (2)

λ(1− β)

11
5

T (1)t1,1

0 6
5

7
10

2
5

t1,2

βα

λα λβ

P2

P1

l1

Figure 3: The schedule of [9] for λ = 2, with α = γ1
2(1) and β = γ1

2(2).

worse than the schedule of Section 3.1 because it aims at locally optimizing the makespan
for the first load, and then optimizing the makespan for the second one, instead of directly
searching for a global optimum. A visual representation of this case is given in Figure 3 for
λ = 2.

3.3 Solution of [9], multi-installment

The solution of [9] is a multi-installment strategy when λ <
√

3+1
2 , i.e., when communications

tend to be important compared to computations. More precisely, this case happens when P1

does not have enough time to completely send the second load to P2 before the end of the
computation of the first load on both processors.

The way to proceed in [9] is to send the second load using a multi-installment strategy.
Let Q denote the number of installments for this second load. We can easily compute the size
of each fraction distributed to P1 and P2. Processor P1 has to process a fraction γ1

1(1) = λ+1
2λ+1

of the first load, and fractions γ1
1(2), γ2

1(2), . . . , γQ
1 (2) of the second one. Processor P2 has a

fraction γ1
2(1) = λ

2λ+1 of the first load, and fractions γ1
2(2), γ2

2(2), . . . , γQ
2 (2) of the second one.

Moreover, we have the following equality for 1 ≤ k < Q:

γk
1 (2) = γk

2 (2) = λkγ1
2(1).

And for k = Q (the last installment), we have γQ
1 (2) = γQ

2 (2) ≤ λQγ1
2(1). Let βk = γk

1 (2) =
γk

2 (2). We can then establish an upper bound on the portion of the second load distributed
in Q installments:

Q∑
k=1

(2βk) ≤ 2
Q∑

k=1

(
γ1

2(1)λk
)

=
2

(
λQ − 1

)
λ2

2λ2 − λ− 1

if λ 6= 1, and Q = 2 otherwise.
We have three cases to discuss:

1. 0 < λ <
√

17+1
8 ≈ 0.64: Since λ < 1, we can write for any nonnegative integer Q:

Q∑
k=1

(2βk) <

∞∑
k=1

(2βi) =
2λ2

(1− λ)(2λ + 1)

We have 2λ2

(1−λ)(2λ+1) < 1 for all λ <
√

17+1
8 . So, even in the case of an infinite number

of installments, the second load will not be completely processed. In other words, no



Comments on “Design and performance evaluation of load distribution strategies” 5

0

t1,1

t

λ
2

λα λβ1 λβ2

α β3β1 β2

3
8

1
4

1
2

5
8

t2,2

t1,2 T (1) t3,2

P2

P1

l1

Figure 4: The example with λ = 1
2 , α = γ1

2(1) and β = γ1
2(2).

t

β2

7
6

1
3

2
3

α β1

β2β1α

t1,1 t1,2 T (1) t2,2 T (1, 2) T (2) = T (2, 2)

0 15
6

P2

P1

l1

Figure 5: The example with λ = 1, α = γ1
2(1) and β = γ1

2(2).

solution is found in [9] for this case. A visual representation of this case is given in
Figure 4 with λ = 0.5.

2. λ =
√

17+1
8 : We have 2λ2

(1−λ)(2λ+1) = 1, so an infinite number of installments is required
to completely process the second load. Again, this solution is obviously not feasible.

3.
√

17+1
8 < λ <

√
3+1
2 : In this case, the solution of [9] is better than any solution using a

single installment per load, but it may require a very large number of installments. A
visual representation of this case is given in Figure 5 with λ = 1.

In this case, the number of installments is set in [9] as Q =
⌈

ln( 4λ2−λ−1

2λ2 )

ln(λ)

⌉
. To see that

this choice is not optimal, consider the case λ = 3
4 . The algorithm of [9] achieves a

makespan equal to
(
1− γ1

2(1)
)
λ + λ

2 = 9
10 . The first load is sent in one installment and

the second one is sent in 3 installments (according to the previous equation).

However, we can come up with a better schedule by splitting both loads into two in-
stallments, and distributing them as follows:

� during the first round, P1 processes 0 unit of the first load,

� during the second round, P1 processes 317
653 unit of the first load,



6 M. Gallet , Y. Robert , F. Vivien

� during the first round, P2 processes 192
653 unit of the first load,

� during the second round, P2 processes 144
653 unit of the first load,

� during the first round, P1 processes 0 unit of the second load,

� during the second round, P1 processes 464
653 unit of the second load,

� during the first round, P2 processes 108
653 unit of the second load,

� during the second round, P2 processes 81
653 unit of the second load,

This scheme gives us a total makespan equal to 781
653

3
4 ≈ 0.897, which is (slightly) better

than 0.9. This shows that among the schedules having a total number of four install-
ments, the solution of [9] is suboptimal.

3.4 Conclusion

Despite its simplicity (two identical processors and two identical loads), the analysis of this
illustrative example clearly outlines the limitations of the approach of [9]: this approach does
not always return a feasible solution and, when it does, this solution is not always optimal.
In the next section, we show how to compute an optimal schedule when dividing each load
into any prescribed number of installments.

4 Optimal solution

We now show how to compute an optimal schedule, when dividing each load into any pre-
scribed number of installments. Therefore, when this number of installment is set to 1 for each
load (i.e., Qn = 1, for any n in [1, N ]), the following approach solves the problem originally
target by Min, Veeravalli, and Barlas.

To build our solution we use a linear programming approach. In fact, we only have to list
all the (linear) constraints that must be fulfilled by a schedule, and write that we want to
minimize the makespan. All these constraints are captured by the linear program in Figure 6.
The optimality of the solution comes from the fact that the constraints are exactly all the
constraints a schedule must fulfill, and a solution to the linear program is obviously always
feasible. This linear program simply encodes the following constraints (where a number in
brackets is the number of the corresponding constraint on Figure 6):

� Pi cannot start a new communication to Pi before the end of the corresponding com-
munication from Pi−1 to Pi (1),

� Pi cannot start to receive the next installment of the nth load before having finished to
send the current one to Pi+1 (2),

� Pi cannot start to receive the first installment of the next load before having finished
to send the last installment of the current load to Pi+1 (3),

� any transfer has to begin at a nonnegative time (4),

� the duration of any transfer is equal to the product of the time taken to transmit a unit
load (5) by the volume of data to transfer,



Comments on “Design and performance evaluation of load distribution strategies” 7

∀i < m− 1, n ≤ N, j ≤ Qn Commstart
i+1,n,j ≥ Commend

i,n,j (1)

∀i < m− 1, n ≤ N, j < Qn Commstart
i,n,j+1 ≥ Commend

i+1,n,j (2)

∀i < m− 1, n < N Commstart
i,n+1,1 ≥ Commend

i+1,n,Qn
(3)

∀i ≤ m− 1, n ≤ N, j ≤ Qn Commstart
i,n,j ≥ 0 (4)

∀i ≤ m− 1, n ≤ N, j ≤ Qn Commend
i,n,j = Commstart

i,n,j + ziVcomm(n)
m∑

k=i+1

γj
k(n) (5)

∀i ≥ 2, n ≤ N, j ≤ Qn Compstart
i,n,j ≥ Commend

i,n,j (6)

∀i ≤ m,n ≤ N, j ≤ Qn Compend
i,n,j = Compstart

i,n,j + wiγ
j
i (n)Vcalc(n) (7)

∀i ≤ m,n < N Compstart
i,n+1,1 ≥ Compend

i,n,Qn
(8)

∀i ≤ m,n ≤ N, j < Qn Compstart
i,n,j+1 ≥ Compend

i,n,j (9)
∀i ≤ m Compstart

i,1,1 ≥ τi (10)

∀i ≤ m,n ≤ N, j ≤ Qn γj
i (n) ≥ 0 (11)

∀n ≤ N
∑m

i=1

∑Q
j=1 γj

i (n) = 1 (12)

∀i ≤ m makespan ≥ Compend
i,N,Q (13)

Figure 6: The complete linear program.

� processor Pi cannot start to compute the jth installment of the nth load before having
finished to receive the corresponding data (6),

� the duration of any computation is equal to the product of the time taken to compute
a unit load (7) by the volume of computations,

� processor Pi cannot start to compute the first installment of the next load before it has
completed the computation of the last installment of the current load (8),

� processor Pi cannot start to compute the next installment of a load before it has com-
pleted the computation of the current installment of that load (9),

� processor Pi cannot start to compute the first installment of the first load before its
availability date (10),

� every portion of a load dedicated to a processor is necessarily nonnegative (11),

� any load has to be completely processed (12),

� the makespan is no smaller than the completion time of the last installment of the last
load on any processor (13).

Altogether, we have a linear program to be solved over the rationals, hence a solution in
polynomial time [6]. In practice, standard packages like Maple [3] or GLPK [5] will return
the optimal solution for all reasonable problem sizes.

Note that the linear program gives the optimal solution for a prescribed number of in-
stallments for each load. We will discuss the problem of the number of installments in the
next section.



8 M. Gallet , Y. Robert , F. Vivien

5 Possible extensions

There are several restrictions in the model of [9] that can be alleviated. First the model uses
uniform machines, meaning that the speed of a processor does not depend on the task that it
executes. It is easy to extend the linear program for unrelated parallel machines, introducing
wn

i to denote the time taken by Pi to process a unit load of type n. Also, all processors
and loads are assumed to be available from the beginning. In our linear program, we have
introduced availability dates for processors. The same way, we could have introduced release
dates for loads. Furthermore, instead of minimizing the makespan, we could have targeted
any other objective function which is an affine combination of the loads completion time and
of the problem characteristics, like the average completion time, the maximum or average
(weighted) flow, etc.

The formulation of the problem does not allow any piece of the n′th load to be processed
before the nth load is completely processed, if n′ > n. We can easily extend our solution
to allow for N rounds of the N loads, each load being still divided into several installments.
This would allow to interleave the processing of the different loads.

The divisible load model is linear, which causes major problems for multi-installment
approaches. Indeed, once we have a way to find an optimal solution when the number of
installments per load is given, the question is: what is the optimal number of installments?
Under a linear model for communications and computations, the optimal number of install-
ments is infinite, as the following theorem states:

Theorem 1. Let us consider, under a linear cost model for communications and computa-
tions, an instance of our problem with one or more load and at least two processors. Then,
any schedule using a finite number of installments is suboptimal for makespan minimization.

This theorem is proved by building, from any schedule, another schedule with a strictly
smaller makespan. The proof is available in Appendix B.

An infinite number of installments obviously does not define a feasible solution. Moreover,
in practice, when the number of installments becomes too large, the model is inaccurate, as
acknowledged in [2, p. 224 and 276]. Any communication incurs a startup cost K, which we
express in bytes. Consider the nth load, whose communication volume is Vcomm(n): it is split
into Qn installments, and each installment requires m−1 communications. The ratio between
the actual and estimated communication costs is roughly equal to ρ = (m−1)QnK+Vcomm(n)

Vcomm(n) > 1.
Since K, m, and Vcomm are known values, we can choose Qn such that ρ is kept relatively
small, and so such that the model remains valid for the target application. Another, and more
accurate solution, would be to introduce latencies in the model, as in [1]. This latter article
shows how to design asymptotically optimal multi-installment strategies for star networks. A
similar approach should be used for linear networks.

6 Conclusion

We have shown that a linear programming approach allows to solve all instances of the
scheduling problem addressed in [8, 9]. In contrast, the original approach was providing a
solution only for particular problem instances. Moreover, the linear programming approach
returns an optimal solution for any number of installments, while the original approach was
empirically limited to very special strategies, and was often sub-optimal.



Comments on “Design and performance evaluation of load distribution strategies” 9

Intuitively, the solution of [9] is worse than the schedule of Section 3.1 because it aims at
locally optimizing the makespan for the first load, and then optimizing the makespan for the
second one, and so on, instead of directly searching for a global optimum. We did not find
beautiful closed-form expressions defining optimal solutions but, through the power of linear
programming, we were able to find an optimal schedule for any instance.

A Analytical computations for the illustrative example

In this appendix, we prove the results stated in Sections 3.2 and 3.3. In order to simplify
equations, we write α instead of γ1

2(1) (i.e., α is the fraction of the first load sent from the
first processor to the second one), and β instead of γ2

2(1) (similarly, β is the fraction of the
second load sent to the second processor).

In this research note we used simpler notations than the ones used in [9]. However, as we
want to explicit the solutions proposed by [9] for our example, we need to use the original
notations to enable the reader to double-check our statements. The necessary notations
from [9] are recalled in Table 2.

Tn
cp Time taken by the standard processor (w = 1) to compute the load Ln.

Tn
cm Time taken by the standard link (z = 1) to communicate the load Ln.

Ln Size of the nth load, where 1 ≤ n ≤ N .
Lk,n Portion of the load Ln assigned to the kth installment for processing.
α

(k)
n,i The fraction of the total load Lk,n to Pi, where

0 ≤ α
(k)
n,i ≤ 1, ∀i = 1, . . . ,m and

∑m
i=1 α

(k)
n,i = 1.

tk,n The time instant at which is initiated the first communication for the kth installment
of load Ln (Lk,n).

Ck,n The total communication time of the kth installment of load Ln when Lk,n = 1;
Ck,n = T n

cm

Ln

∑m−1
p=1 zp

(
1−

∑p
j=1 α

(k)
n,j

)
.

Ek,n The total processing time of Pm for the kth installment of load Ln when Lk,n = 1;
Ek,n = α

(k)
n,mwmTn

cp
1

Ln
.

T (k, n) The finish time of the kth installment of load Ln; it is defined as the time instant
at which the processing of the kth installment of load Ln ends.

T (n) The finish time of the load Ln; it is defined as the time instant
at which the processing of the nth load ends, i.e., T (n) = T (Qn)
where Qn is the total number of installments required to finish processing load Ln.
T (N) is the finish time of the entire set of loads resident in P1.

Table 2: Summary of the notations of [9] used in this paper.

In the solution of [9], both P1 and P2 have to finish the first load at the same time, and
the same holds true for the second load. The transmission for the first load will take α time
units, and the one for the second load β time units. Since P1 (respectively P2) will process
the first load during λ(1−α) (respectively λα) time units and the second load during λ(1−β)
(respectively λβ) time units, we can write the following equations:

λ(1− α) = α + λα (14)

λ(1− α) + λ(1− β) = (α + max(β, λα)) + λβ

There are two cases to discuss:



10 M. Gallet , Y. Robert , F. Vivien

1. max(β, λα) = λα. We are in the one-installment case when L2C1,2 ≤ T (1) − t1,2, i.e.,
β ≤ λ(1 − α) − α (equation (5) in [9], where L2 = 1, C1,2 = β, T (1) = λ(1 − α) and
t1,2 = α). The values of α and β are given by:

α =
λ

2λ + 1
and β =

1
2

This case is true for λα ≥ β, i.e., λ2

2λ+1 ≥
1
2 ⇔ λ ≥ 1+

√
3

2 ≈ 1.366.

In this case, the makespan is equal to:

makespan2 = λ(1− α) + λ(1− β) =
λ(4λ + 3)
2(2λ + 1)

.

Comparing both makespans, we have:

makespan2 −makespan1 =
λ

(
2λ2 − 2λ− 1

)
8λ3 + 12λ2 + 8λ + 2

.

For all λ ≥
√

3+1
2 ≈ 1.366, our solution is better than their one, since:

1
4
≥ makespan2 −makespan1 ≥ 0

Furthermore, the solution of [9] is strictly suboptimal for any λ >
√

3+1
2 .

2. max(β, λα) = β. In this case, P1 does not have enough time to completely send the
second load to P2 before the end of the computation of the first load on both processors.
The way to proceed in [9] is to send the second load using a multi-installment strategy.

By using 14, we can compute the value of α:

α =
λ

2λ + 1
.

Then we have T (1) = (1 − α)λ = λ+1
2λ+1λ and t1,2 = α = λ

2λ+1 , i.e., the communication
for the second request begins as soon as possible.

We know from equation (1) of [9] that αk
2,1 = αk

2,2, and by definition of the α’s, αk
2,1 +

αk
2,2 = 1, so we have αk

2,i = 1
2 . We also have C1,2 = 1 − αk

2,1 = 1
2 , E1,2 = λ

2 , Y
(1)
1,2 = 0,

X
(1)
1,2 = 1

2 , H = H(1) =
X

(1)
1,2C1,2

C1,2
= 1

2 , B = C1,2 + E1,2 −H = λ
2 .

We will denote by β1, . . . , βn the sizes of the different installments processed on each
processor (then we have Lk,2 = 2βk).

Since the second processor is not left idle, and since the size of the first installment is
such that the communication ends when P2 completes the computation of the first load,
we have β1 = T (1)− t1,2 = λα (see equation (27) in [9], in which we have C1,2 = 1

2).

By the same way, we have β2 = λβ1, β3 = λβ2, and so on (see equation (38) in [9], we
recall that B = λ

2 , and C1,2 = 1
2):

βk = λkα



Comments on “Design and performance evaluation of load distribution strategies” 11

Each processor computes the same fraction of the second load. If we have Q installments,
the total processed portion of the second load is upper bounded as follows:

Q∑
k=1

(2βk) ≤ 2
Q∑

k=1

(
αλk

)
= 2

λ

2λ + 1
λ

λQ − 1
λ− 1

=
2

(
λQ − 1

)
λ2

2λ2 − λ− 1

if λ 6= 1, and Q = 2 otherwise.

Q∑
k=1

(2βk) ≤
2λ2Q

2λ + 1
.

We have four sub-cases to discuss:

(a) 0 < λ <
√

17+1
8 ≈ 0.64: Since λ < 1, we can write for any nonnegative integer Q:

Q∑
k=1

(2βk) <

∞∑
k=1

(2βk) =
2λ2

(1− λ)(2λ + 1)

We have 2λ2

(1−λ)(2λ+1) < 1 for all λ <
√

17+1
8 . So, even in the case of an infinite

number of installments, the second load will not be completely processed. In other
words, no solution is found in [9] for this case.

(b) λ =
√

17+1
8 : We have 2λ2

(1−λ)(2λ+1) = 1, so an infinite number of installments is
required to completely process the second load. Again, this solution is obviously
not feasible.

(c)
√

17+1
8 < λ <

√
3+1
2 and λ 6= 1: In this case, the solution of [9] is better than any

solution using a single installment per load, but it may require a very large number
of installments.
Now, let us compute the number of installments. We know that the ith installment
is equal to βi = λiγ1

2(1), excepting the last one, which can be smaller than λQγ1
2(1).

So, instead of writing
∑Q

i=1 2βi =
(∑Q−1

i 2λiγ1
2(1)

)
+ 2βQ = 1, we write:

Q∑
i=1

2λiγ1
2(1) ≥ 1 ⇔

2λ2
(
λQ − 1

)
(λ− 1)(2λ + 1)

≥ 1 ⇔ 2λQ+2

(λ− 1)(2λ + 1)
≥ 2λ2

(λ− 1)(2λ + 1)
+1.

If λ is strictly smaller than 1, we obtain:

2λQ+2

(λ−1)(2λ+1) ≥
2λ2

(λ−1)(2λ+1) + 1 ⇔ 2λQ+2 ≤ 4λ2 − λ− 1

⇔ ln(λQ) ≤ ln
(

4λ2−λ−1
2λ2

)
⇔ Q ln(λ) ≤ ln

(
4λ2−λ−1

2λ2

)
⇔ Q ≥

ln
“

4λ2−λ−1

2λ2

”
ln(λ)

We thus obtain:

Q =


ln

(
4λ2−λ−1

2λ2

)
ln(λ)

 .

When λ is strictly greater than 1 we obtain the exact same result (then λ− 1 and
ln(λ) are both positive).



12 M. Gallet , Y. Robert , F. Vivien

(d) λ = 1. In this case,
Q∑

i=1

2λiγ1
2(1) ≥ 1

simply leads to Q = 2.

B Proof of Theorem 1

Proof. We first remark that in any optimal solution to our problem all processors work and
complete their share simultaneously. To prove this statement, we consider a schedule where
one processor completes its share strictly before the makespan (this processor may not be
doing any work at all). Then, under this schedule there exists two neighbor processors, Pi

and Pi+1, such that one finishes at the makespan, denoted M, and one strictly earlier. We
have two cases to consider:

1. There exists a processor Pi which finishes strictly before the makespanM and such that
the processor Pi+1 completes its share exactly at time M. Pi+1 receives all the data
it processes from Pi. We consider any installment j of any load Ln that is effectively
processed by Pi+1 (that is, Pi+1 processes a non null portion of the jth installment of load
Ln). We modify the schedule as follows: Pi enlarges by an amount ε, and Pi+1 decreases
by an amount ε, the portion of the jth installment of the load Ln it processes. Then,
the completion time of Pi is increased, and that of Pi+1 is decreased, by an amount
proportional to ε as our cost model is linear. If ε is small enough, both processors
complete their work strictly before M. With our modification of the schedule, the size
of a single communication was modified, and this size was decreased. Therefore, this
modification did not enlarge the completion time of any processor except Pi. Therefore,
the number of processors whose completion time is equal to M is decreased by at least
one by our schedule modification.

2. No processor which completes it share strictly before time M is followed by a processor
finishing at time M. Therefore, there exists an index i such that the processors P1

through Pi all complete their share exactly at M, and the processors Pi+1 through Pm

complete their share strictly earlier. Then, let the last data to be effectively processed
by Pi be a portion of the jth installment of the load Ln. Then Pi decreases by a size
ε, and Pi+1 increases by a size ε, the portion of the jth installment of load Ln that
it processes. Then the completion time of Pi is decreased by an amount proportional
to ε and the completion time of the processors Pi+1 through Pm is increased by an
amount proportional to ε. Therefore, if ε is small enough, the processors Pi through Pm

complete their work strictly before M.

In both cases, after we modified the schedule, there is at least one more processor which
completes its work strictly before time M, and no processor is completing its share after that
time. If no processor is any longer completing its share at timeM, we have obtained a schedule
with a better makespan. Otherwise, we just iterate our process. As the number of processors
is finite, we will eventually end up with a schedule whose makespan is strictly smaller than
M. Hence, in an optimal schedule all processors complete their work simultaneously (and
thus all processors work).



Comments on “Design and performance evaluation of load distribution strategies” 13

We now prove the theorem itself by contradiction. Let S be any optimal schedule using
a finite number of installments. As processors P2 through Pm initially hold no data, they
stay temporarily idle during the schedule execution, waiting to receive some data to be able
to process them. Let us consider processor P2. As the idleness of P2 is only temporary (all
processors are working in an optimal solution), this processor is only idle because it is lacking
data to process and it is waiting for some. Therefore, the last moment at which P2 stays
temporarily idle under S is the moment it finished to receive some data, namely the jth
installment of load Ln sent to him by processor P1.

As previously, Qk is the number of installments of the load Lk under S. Then from the
schedule S we build a schedule S ′ by dividing in two identical halves the jth installment of
load Ln. Formally:

� All loads except Ln have the exact same installments under S ′ than under S.

� The load Ln has (1 + Qn) installments under S ′, defined as follows.

� The first (j−1) installments of Ln under S ′ are identical to the first (j−1) installments
of this load under S.

� The jth and (j + 1)th installment of Ln under S ′ are identical to the jth installment of
Ln under S, except that all sizes are halved.

� The last (Qn−j) installments of Ln under S ′ are identical to the last (Qn−j) installments
of this load under S.

We must first remark that no completion time is increased by the transformation from S
to S ′. Therefore the makespan of S ′ is no greater than the makespan of S. We denote by
Commstart

1,n,j (respectively Commend
1,n,j) the time at which processor P1 starts (resp. finishes)

sending to processor P2 the jth installment of load Ln under S. We denote by Compstart
2,n,j

(respectively Compend
2,n,j) the time at which processor P2 starts (resp. finishes) computing

the jth installment of load Ln under S. We use similar notations, with an added prime, for
schedule S ′. One can then easily derive the following properties:

Comm′ start
1,n,j = Commstart

1,n,j . (15)

Comm′ start
1,n,j+1 = Comm′ end

1,n,j =
Commstart

1,n,j + Commend
1,n,j

2
. (16)

Comm′ end
1,n,j+1 = Commend

1,n,j . (17)

Comp′ start
2,n,j = Comm′ end

1,n,j . (18)

Comp′ end
2,n,j = Comm′ end

1,n,j +
Compend

2,n,j − Compstart
2,n,j

2
. (19)

Comp′ start
2,n,j+1 = max{Comp′ end

2,n,j , Comm′ end
1,n,j+1}. (20)



14 M. Gallet , Y. Robert , F. Vivien

Comp′ end
2,n,j = Comp′ start

2,n,j+1 +
Compend

2,n,j − Compstart
2,n,j

2
. (21)

Using equations 16, 17, 19, 20, and 21 we then establish that:

Comp′ end
2,n,j = max

{
Commstart

1,n,j + Commend
1,n,j

2
+ Compend

2,n,j − Compstart
2,n,j ,

Commend
1,n,j +

Compend
2,n,j − Compstart

2,n,j

2

}
.

Therefore, under schedule S ′ processor P2 completes strictly earlier than under S the
computation of what was the j installment of load Ln under S. If P2 is no more idle after
the time Comp′ end

2,n,j , then it completes its overall work strictly earlier under S ′ than under
S. On the other hand, P1 completes its work at the same time. Then, using the fact that in
an optimal solution all processors finish simultaneously, we conclude that S ′ is not optimal.
As we have already remarked that its makespan is no greater than the makespan of S, we
end up with the contradiction that S is not optimal. Therefore, P2 must be idled at some
time after the time Comp′ end

2,n,j . Then we apply to S ′ the transformation we applied to S as
many times as needed to obtain a contradiction. This process is bounded as the number of
communications that processor P2 receives after the time it is idled for the last time is strictly
decreasing when we transform the schedule S into the schedule S ′.

References

[1] Olivier Beaumont, Henri Casanova, Arnaud Legrand, Yves Robert, and Yang Yang.
Scheduling divisible loads on star and tree networks: results and open problems. IEEE
Trans. Parallel Distributed Systems, 16(3):207–218, 2005.

[2] V. Bharadwaj, D. Ghose, V. Mani, and T.G. Robertazzi. Scheduling Divisible Loads in
Parallel and Distributed Systems. IEEE Computer Society Press, 1996.

[3] B. W. Char, K. O. Geddes, G. H. Gonnet, M. B. Monagan, and S. M. Watt. Maple
Reference Manual, 1988.

[4] D. Ghose and T.G. Robertazzi, editors. Special issue on Divisible Load Scheduling. Cluster
Computing, 6, 1, 2003.

[5] GLPK: GNU Linear Programming Kit. http://www.gnu.org/software/glpk/.

[6] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings
of the 16th ACM symposium on Theory of Computing (STOC’84), pages 302–311. ACM
Press, 1984.

[7] T.G. Robertazzi. Ten reasons to use divisible load theory. IEEE Computer, 36(5):63–68,
2003.

http://www.gnu.org/software/glpk/


Comments on “Design and performance evaluation of load distribution strategies” 15

[8] Han Min Wong and Bharadwaj Veeravalli. Scheduling divisible loads on heterogeneous
linear daisy chain networks with arbitrary processor release times. IEEE Trans. Parallel
Distributed Systems, 15(3):273–288, 2004.

[9] Han Min Wong, Bharadwaj Veeravalli, and Gerassimos Barlas. Design and performance
evaluation of load distribution strategies for multiple divisible loads on heterogeneous
linear daisy chain networks. J. Parallel Distributed Computing, 65(12):1558–1577, 2005.


	1 Introduction
	2 Problem and Notations
	3 An illustrative example
	3.1 Presentation
	3.2 Solution of WongVeBa05, one-installment
	3.3 Solution of WongVeBa05, multi-installment
	3.4 Conclusion

	4 Optimal solution
	5 Possible extensions
	6 Conclusion
	A Analytical computations for the illustrative example
	B Proof of Theorem 1

