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Abstract
One has a large workload that is “divisible”—its constituent work’s gran-
ularity can be adjusted arbitrarily—and one has access to p remote com-
puters that can assist in computing the workload. The problem is that
the remote computers are subject to interruptions of known likelihood
that kill all work in progress. One wishes to orchestrate sharing the
workload with the remote computers in a way that maximizes the ex-
pected amount of work completed. Strategies for achieving this goal,
by balancing the desire to checkpoint often, in order to decrease the
amount of vulnerable work at any point, vs. the desire to avoid the
context-switching required to checkpoint, are studied. Strategies are de-
vised that provably maximize the expected amount of work when there
is only one remote computer (the case p = 1). Results are presented
that suggest the intractability of such maximization for higher values of
p, which motivates the development of heuristic approaches. Heuristics
are developed that replicate work on several remote computers, in the
hope of thereby decreasing the impact of work-killing interruptions.

Keywords: Fault-tolerance, scheduling, divisible loads, probabilities

Résumé
Une grande quantité de travail, qui peut être arbitrairement divisée, doit
être traitée. Pour ce faire, nous avons p ordinateurs distants à notre dis-
position. Le problème est que ces ordinateurs sont susceptibles d’être
vicimes d’interruptions, de probabilité connue, détruisant le travail en
cours. On souhaite orchestrer le partage du travail entre les ordinateurs
de manière à maximiser la quantité de travail que l’on peut espérer com-
pléter. On étudie des stratégies visant à atteindre ce but en équilibrant
l’envie d’effectuer souvent des sauvegardes, de manière à diminuer la
quantité de travail risquant d’être perdue, et le désir d’éviter les change-
ments de contexte nécessaires aux sauvegardes. On définit des stratégies
qui maximise l’espérance de la quantité de travail faite quand il y a un
seul ordinateur (p = 1). On montre des résultats qui suggèrent que la
maximisation de cette espérance, pour des valeurs de p plus grandes, est
intractable. On présente alors des heuristiques qui répliquent du travail
dans l’espoir de minimiser l’impact des interruptions.

Mots-clés: Tolérance aux pannes, ordonancement, tâches divisibles, probabilités
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1 Introduction

Technological advances and economic constraints have engendered a variety of modern com-
puting platforms that allow a person who has a massive, compute-intensive workload to enlist
the help of others’ computers in executing the workload. The resulting cooperating com-
puters may belong to a nearby or remote cluster (of “workstations”; cf. [30]), or they could
be geographically dispersed computers that are available under one of the increasingly many
modalities of Internet-based computing—such as Grid computing (cf. [16, 21, 20]), global com-
puting (cf. [18]), or volunteer computing (cf. [27]). In order to avoid unintended connotations
concerning the organization of the remote computers, we avoid evocative terms such as “clus-
ter” or “grid” in favor of the generic “assemblage.” Advances in computing power never come
without cost. These new platforms add various types of uncertainty to the list of concerns that
must be addressed when preparing one’s computation for allocation to the available comput-
ers: notably, computers can slow down unexpectedly, even failing ever to complete allocated
work. The current paper follows in the footsteps of sources such as [3, 10, 14, 23, 29, 34],
which present analytic studies of algorithmic techniques for coping with uncertainty in com-
putational settings. Whereas most of these sources address the uncertainty of the computers
in an assemblage one computer at a time, we attempt here to view the assemblage as a “team”
wherein one computer’s shortcomings can be compensated for by other computers, most no-
tably by judiciously replicating work, i.e., by allocating some work to more than one computer.
Such a team-oriented viewpoint has appeared mainly in experimental studies (cf. [26]); ours
is the first analytical study to adopt such a point of view.

The problem. We have a large computational workload whose constituent work is divisible
in the sense that one can partition chuks of work into arbitrary granularities (cf. [13]). We also
have access to p ≥ 1 identical computers to help us compute the workload via worksharing
(wherein the owner of the workload allocates work to remote computers that are idle; cf. [35]).

We study homogeneous assemblages in the current paper in order to concentrate
only on developing technical tools to cope with uncertainty within an assemblage.
We hope to focus in later work on the added complexity of coping with uncertainty
within a heterogeneous assemblage, whose computers may differ in power and
speed.

We address here the most draconian type of uncertainty that can plague an assemblage of
computers, namely, vulnerability to unrecoverable interruptions that cause us to lose all work
currently in progress on the interrupted computer. We wish to cope with such interruptions—
whether they arise from hardware failures or from a loaned/rented computer’s being reclaimed
by its owner, as during an episode of cycle-stealing (cf. [3, 14, 31, 32, 34]). The scheduling
tool that we employ to cope with these interruptions is work replication, the allocation of
chunks of work to more than one remote computer. The only external resource to help us use
this tool judiciously is our assumed access to a priori knowledge of the risk of a computer’s
having been interrupted—which we assume is the same for all computers.1

The goal. Our goal is to maximize the expected amount of work that gets computed by
the assemblage of computers, no matter which, or how many computers get interrupted.

1As in [14, 31, 34], our scheduling strategies can be adapted to use statistical, rather than exact, knowledge
of the risk of interruption—albeit at the cost of weakened performance guarantees.
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Therefore, we implicitly assume that we are dealing with applications for which even partial
output is meaningful, e.g., Monte-Carlo simulations.

Three challenges. The challenges of scheduling our workload on interruptible remote com-
puters can be described in terms of three dilemmas. The first two apply even to each remote
computer individually.2

1. If we send each remote computer a large amount of work with each transmission,
then we both decrease the overhead of packaging work-containing messages and

maximize the opportunities for “parallelism” within the assemblage of remote
computers,

but we thereby maximize our vulnerability to losing work because of a remote
computer’s being interrupted.

On the other hand,

2. If we send each remote computer a small amount of work with each transmission,
then we minimize our vulnerability to interruption-induced losses,
but we thereby maximize message overhead and minimize the opportunities for

“parallelism” within the assemblage of remote computers.

The third dilemma arises only when there are at least two remote computers.3

3. If we replicate work, by sending the same work to more than one remote computer,
then we lessen our vulnerability to interruption-induced losses,
but we thereby minimize both the opportunities for “parallelism” and the expected

productivity advantage from having access to the remote computers.

Approaches to the challenges. (1) “Chunking” our workload. We cope with the first two
dilemmas by sending work allocations to the remote computers as a sequence of chunks4 rather
than as a single block to each computer. This approach, which is advocated in [14, 31, 32, 34],
allows each computer to checkpoint at various times and, thereby, to protect some of its work
from the threat of interruption. (2) Replicating work. We allocate certain chunks that are
especially vulnerable to being interrupted to more than one remote computer in order to
enhance their chances of being computed successfully. We use work replication judiciously, in
deference to the third dilemma.

Under our model, the risk of a computer’s being interrupted increases as the
computer operates, whether it works on our computation or not. This assumption
models, e.g., interruptions from hardware failures or from returning owners in
cycle-stealing scenarios. Thus, certain chunks of our workload are more vulnerable
to being interrupted than others. To wit, the first “round” of allocated chunks
involves our first use of the remote computers; hence, these chunks are less likely
to be interrupted than are the chunks that are allocated in the second“round”: the
remote computers will have been operating longer by the time the second “round”
occurs. In this manner, the second-“round” chunks are less vulnerable than the
third-“round” chunks, and so on.

2We put “parallelism” in quotes when stating these dilemmas because remote computers are (usually) not
synchronized, so they do not truly operate in parallel.

3The pros and cons of work replication are discussed in [26].
4We use the generic “chunk” instead of “task” to emphasize tasks’ divisibility: by definition, divisible work-

loads do not have atomic tasks.
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Because communication to remote computers is likely to be costly in time and overhead, we
limit such communication by orchestrating work replication in an a priori, static manner,
rather than dynamically, in response to observed interruptions. While we thereby duplicate
work unnecessarily when there are few interruptions among the remote computers, we also
thereby prevent our computer, which is the server in the studied scenario, from becoming
a communication bottleneck when there are many interruptions. Our cost concerns are cer-
tainly justified when we access remote computers over the Internet, but also when accessing
computers over a variety of common local-area networks (LANs). Moreover, as noted earlier,
we get a good “return” from our conservative work replication, by increasing the expected
amount of work done by the remote computers.

In summation, we assume: that we know the instantaneous probability that a remote com-
puter will have been interrupted by time t; that this probability is the same for all remote
computers; that the probability increases linearly with the amount of time that the computer
has been available. These assumptions, which we share with [14, 31, 34], seem to be neces-
sary in order to derive scheduling strategies that are provably optimal. As suggested in these
sources (cf. footnote 1), one can use approximate knowledge of these probabilities, obtained,
say, via trace data, but this will clearly weaken our performance claims for our schedules. Also
as noted earlier, the challenge of allowing individual computers to have different probabilities
must await a sequel to the current study.

Related work. The literature contains relatively few rigorously analyzed scheduling algo-
rithms for interruptible “parallel” computing in assemblages of computers. Among those we
know of, only [3, 14, 31, 32, 34] deal with an adversarial model of interruptible computing.
One finds in [3] a randomized scheduling strategy which, with high probability, completes
within a logarithmic factor of the optimal fraction of the initial workload. In [14, 31, 32, 34],
the scheduling problem is viewed as a game against a malicious adversary who seeks to in-
terrupt each remote computer in order to kill all work in progress and thereby minimize the
work amount of completed during an interruptible computation. Among the experimental
sources, [37] studies the use of task replication on a heterogeneous desktop grid whose con-
stituent computers may become definitively unavailable the objective is to eventually process
all work.

There is a very large literature on scheduling divisible workloads on assemblages of computers
that are not vulnerable to interruption. We refer the reader first to [13] and its myriad intellec-
tual progeny; not all of these sources share the current study’s level of detailed argumentation.
One finds in [2], its precursor [33], and its accompanying experimental study [1], an intriguing
illustration of the dramatic impact on the scheduling problem for heterogeneous assemblages
of having to account for the transmission of the output generated by the computation; a
different aspect of the same observation is noted in [9]. Significant preliminary results about
assemblages in which communication links, as well as constituent computers, are heteroge-
neous appear in [9]. Several studies focus on scheduling divisible computations but focus on
algorithmically simpler computations whose tasks produce no output. A near-optimal algo-
rithm for such scheduling appears in [38] under a simplified model, in which equal-size chunks
of work are sent to remote computers at a frequency determined by the computers’ powers.
The body of work exemplified by [11, 12, 13, 17, 19] and sources cited therein allow hetero-
geneity in both communication links and computers, but schedule outputless tasks, under a
simple communication model. (It is worth noting that one consequence of a linear, rather
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than affine communication cost model is that it can be advantageous to distribute work in
many small pieces, rather than in a few large chunks; cf. [12, 38].) A significant study that
shares our focus on tasks having equal sizes and complexities, but that allows workstations to
redistribute allocated tasks, appears in [5, 7]. Under the assumption of unit computation time
per task, these sources craft linear-programming algorithms that optimize the steady-state
processing of tasks. The distribution of inputs and subsequent collection of results form an
integral part of [2, 9]; these problems are studied as independent topics in [6].

Even the subset of the divisible workload literature that focuses on collective communication
in assemblages of computers is enormous. Algorithms for various collective communication
operations appear in [4, 25]. One finds in [22] approximation algorithms for a variant of
broadcasting under which receipt of the message “triggers” a “personal” computation whose
cost is accounted for within the algorithm.

We do not enumerate here the many studies of computation on assemblages of remote com-
puters, which focus either on systems that enable such computation or on specific algorithmic
applications. However, we point to [28] as an exemplar of the former type of study and to
[36] as an exemplar of the latter.

2 The Technical Framework

We supply the technical details necessary to turn the informal discussion in the Introduction
into a framework in which we can develop and rigorously validate scheduling guidelines.

2.1 The Computation and the Computers

We begin with W units of divisible work that we wish to execute on an assemblage of p ≥ 1
identical computers that are susceptible to unrecoverable interruptions that “kill” all work
currently in progress. All computers share the same instantaneous probability of being in-
terrupted, and this probability increases with the amount of time the computer has been
operating (whether working on our computation or not). We know this probability exactly.5

Because we deal with a single computational application and identical computers,
we lose no generality by expressing our results in terms of units of work, rather
than the execution time of these units. We paraphrase the following explanation
from [2], which uses a similar convention.

Our results rely only on the fact that all work units have the same size and
complexity: formally, there is a constant c > 0 such that executing w units of work
takes cw time units. The work units’ (common) complexity can be an arbitrary
function of their (common) size: c is simply the ratio of the fixed size of a work
unit to the complexity of executing that amount of work.

As discussed in the Introduction, the danger of losing work in progress when an interruption
incurs mandates that we not just divide our workload into W/p equal-size chunks and allocate

5As stated earlier, our analyses can be modified to accommodate probabilities that are known only statis-
tically.
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one chunk to each computer in the assemblage. Instead, we “protect” our workload as best
we can, by:

• partitioning it into chunks of identical (not-necessarily integer) size—which will be the
unit of work that we allocate to the computers
• prescribing a schedule for allocating chunks to computers
• allocating some chunks to more than one computer, as a divisible-load mode of work

replication.

As noted in the Introduction, we treat intercomputer communication as a resource to be used
very conservatively—which is certainly justified when communication is over the Internet,
and often when communication is over common local-area networks (LANs). Specifically,
we try to avoid having our computer become a communication bottleneck, by orchestrating
chunk replications in an a priori, static manner—even though this leads to duplicated work
when there are few or no interruptions—rather than dynamically, in response to observed
interruptions. We find that when p is small, chopping work into equal-size chunks is either
optimal (when p = 1) or asymptotically optimal (when p = 2). Motivated by this discovery,
we simplify the heuristic schedules we derive for general values of p, by restricting attention
to schedules that employ equal-size chunks. We select the common size of the chunks and the
regimen for allocating them to the computers in the assemblage, based on the value of p and
of the (common) probability (or, rate) of interruption.

2.2 Modeling Interruptions and Expected Work

2.2.1 The interruption model

Within our model, all computers share the same risk function, i.e., the same instantaneous
probability, Pr(w), of having been interrupted by the end of “the first w time units.”

Recall that we measure time in terms of work units that could have been executed
“successfully,” i.e., with no interruption. In other words “the first w time units” is
the amount of time that a computer would have needed to compute w work units
if it had started working on them when the entire worksharing episode began.

This time scale is shared by all computers in our homogeneous setting; it is per-
sonalized to each computer in a heterogeneous setting.

Of course, Pr(w) increases with w; we assume that we know its value exactly: see, however,
footnote 1.

It is useful in our study to generalize our measure of risk by allowing one to consider many
baseline moments. We denote by Pr(s, w) the conditional probability that a remote computer
will be interrupted during the next w “time units,” given that it has not been interrupted
during the first s “time units.” Thus, Pr(w) = Pr(0, w) and Pr(s, w) = Pr(s+ w)− Pr(s).

We let6 κ ∈ (0, 1] be a constant that weights our probabilities in a way that reflects the
common size of our work chunks. We illustrate the role of κ as we introduce two specific
common risk functions Pr, the first of which is our focus in the current study.

6As usual, (a, b] (resp., [a, b]) denotes the real interval {x | a < x ≤ b} (resp., {x | a ≤ x ≤ b}).
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Linearly increasing risk. The risk function that will be the main focus of our study is
Pr(w) = κw. It is the most natural model in the absence of further information: the failure
risk grows linearly, in proportion to the time spent, or equivalently to the amount of work
done. This linear model covers a wide range of cycle-stealing scenarios, but also situations
when interruptions are due to hardware failures.

In this case, we have the density function

dPr =
{
κdt for t ∈ [0, 1/κ]
0 otherwise

so that

Pr(s, w) = min
{

1,
∫ s+w

s
κdt

}
= min{1, κw} (1)

The constant 1/κ will recur repeatedly in our analyses, since it can be viewed as the time
by which an interruption is certain, i.e., will have occurred with probability 1. To enhance
legibility of the rather complicated expressions that populate our analyses, we henceforth
denote the quantity 1/κ by X.

Geometrically decaying lifespan. A commonly studied risk function, which models a
variety of common “failure” scenarios, is Pr(w) = 1 − exp−κw, wherein the probability of a
computer’s surviving for one more “time step” decays geometrically. More precisely,

Pr(w, 1) = Pr(w+ 1)− Pr(w) = (1− exp−κ(w+1))− (1− exp−κw) = (1− exp−κ) exp−κw .

One might expect such a risk function, for instance, when interruptions are due to someone’s
leaving work for the day; the longer s/he is absent, the more likely it is that s/he is gone for
the night.

In this case, we have the density function dPr = κ exp−κt dt, so that

Pr(s, w) =
∫ s+w

s
κ exp−κt dt = exp−κs(1− exp−κw).

2.2.2 Expected work production

Risk functions help us finding an efficient way to chunk work for, and allocate work to, the
remote computers, in order to maximize the expected work production of the assemblage. To
this end, we focus on a workload consisting of W work units, and we let jobdone be the random
variable whose value is the number of work units that the assemblage executes successfully
under a given scheduling regimen. Stated formally, we are striving to maximize the expected
value (or, expectation) of jobdone.

We perform our study under two models, which play different roles as one contemplates the
problem of scheduling a large workload. The models differ in the way they account for the
way a chunk defines the notion of a “time unit.” The actual time for processing a chunk of
work has several components:
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• There is the overhead for transmitting the chunk to the remote computer. This may be
a trivial amount of actual time if one must merely set up the communication, or it may
be a quite significant amount if one must, say, encode the chunk before transmitting it.
In the latter case, the overhead can be proportional to the chunk size.
• There is the time to actually transmitting the chunk, which is proportional to the chunk

size.
• There is the actual time that the remote computer spends executing the chunk, which,

by assumption, is proportional to the chunk size.
• There is the time that the remote computer spends checkpointing after computing a

chunk. This may be a trivial amount of actual time—essentially just a context switch—
if the chunk creates little output (perhaps just a YES/NO decision), or it may be a
quite significant amount if the chunk creates a sizable output (e.g., a matrix inversion).

In short, there are two classes of time-costs, those that are proportional to the size of a chunk
and those that are fixed constants. It simplifies our formal analyses to fold the first class of
time-costs into a single quantity that is proportional to the size of a chunk and to combine
the second class into a single fixed constant. When chunks are large, the second cost will be
minuscule compared to the first. This suggests that the fixed costs can be ignored, but one
must be careful: if one ignores the fixed costs, then there is no disincentive to, say, deploying
the workload to the remote computers in n+1 chunks, rather than n. Of course, increasing the
number of chunks tends to make chunks smaller—which increases the significance of the second
cost! One could, in fact, strive for adaptive schedules that change their strategies depending
on the changing ratios between chunk sizes and fixed costs. However, for the reasons discussed
earlier, we prefer to seek static scheduling strategies, at least until we have a well-understood
arsenal of tools for scheduling interruptible divisible workloads. Therefore, we perform the
current study with two fixed cost models, striving for optimal schedules under each. (1) The
free-initiation model is characterized by not charging the owner of the workload a per-chunk
cost. This model focuses on situations wherein the fixed costs are negligible compared to the
chunk-dependent costs. (2) The charged-initiation model, which more accurately reflects the
costs incurred with real computing systems, is characterized by accounting for both the fixed
and chunk-dependent costs.

The free-initiation model. This model, which assesses no per-chunk cost, is much the
easier of our two models to analyze. The results obtained using this model approximate
reality well when one knows a priori that chunks must be large. One situation that mandates
large chunks is when communication is over the Internet, so that one must have every remote
computer do a substantial amount of the work in order to amortize the time-cost of message
transmission (cf. [27]). In such a situation, one will keep chunks large by placing a bound
on the number of scheduling “rounds,” which counteracts this model’s tendency to increase
the number of “rounds” without bound. Importantly also: the free-initiation model allows
us to obtain predictably good bounds on the expected value of jobdone under the charged-
initiation model, in situations where such bounds are prohibitively hard to derive directly;
cf. Theorem 1.

Under the free-initiation model, the expected value of jobdone under a given scheduling regi-
men Θ, denoted E(f)(jobdone,Θ), the superscript “f” denoting “free(-initiation),” is

E(f)(jobdone,Θ) =
∫ ∞

0
Pr(jobdone ≥ u under Θ) du.
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Let us illustrate this model via three simple calculations of E(f)(jobdone,Θ). In these calcu-
lations, the regimen Θ allocates the whole workload and deploys it on a single computer. To
enhance legibility, let the phrase “under Θ” within “Pr(jobdone ≥ u under Θ)” be specified
implicitly by context.

Deploying the workload as a single chunk. Under regimen Θ1 the whole workload is deployed
as a single chunk on a single computer. By definition, E(f)(W,Θ1) for an arbitrary risk
function Pr is given by

E(f)(W,Θ1) = W (1− Pr(W )) . (2)

Deploying the workload in two chunks. Regimen Θ2 specifies how the workload is split into
the two chunks of respective sizes ω1 > 0 and ω2 > 0, where ω1 + ω2 = W . The following
derivation determines E(f)(W,Θ2) for an arbitrary risk function Pr.

E(f)(W,Θ2) =
∫ ω1

0
Pr(jobdone ≥ u)du+

∫ ω1+ω2

ω1

Pr(jobdone ≥ u)du

=
∫ ω1

0
Pr(jobdone ≥ ω1)du+

∫ ω1+ω2

ω1

Pr(jobdone ≥ ω1 + ω2)du

= ω1(1− Pr(ω1)) + ω2(1− Pr(ω1 + ω2)). (3)

Deploying the workload in n chunks. Continuing the reasoning of the cases n = 1 and n = 2,
we finally obtain the following general expression for E(f)(W,Θn) for an arbitrary risk function
Pr, when Θn partitions the whole workload into n chunks of respective sizes ω1 > 0, ω2 > 0,
. . . , ωn > 0 such that ω1 + · · ·+ ωn = W .

E(f)(W,Θn) =
∫ ω1

0
Pr(jobdone ≥ u)du+

∫ ω1+ω2

ω1

Pr(jobdone ≥ u)du

+ · · ·+
∫ ω1+···+ωn−1+ωn

ω1+···+ωn−1

Pr(jobdone ≥ u)du

=
∫ ω1

0
Pr(jobdone ≥ ω1)du+

∫ ω1+ω2

ω1

Pr(jobdone ≥ ω1 + ω2)du

+ · · ·+
∫ ω1+···+ωn−1+ωn

ω1+···+ωn−1

Pr(jobdone ≥ ω1 + · · ·+ ωn)du

= ω1(1− Pr(ω1)) + ω2(1− Pr(ω1 + ω2)) (4)
+ · · ·+ ωn(1− Pr(ω1 + · · ·+ ωn)).

Optimizing expected work-production on one remote computer. One goal of our study is to
learn how to craft, for each integer n, a scheduling regimen Θn that maximizes E(f)(W,Θn).
However, we have a more ambitious goal, which is motivated by the following observation.

Many risk functions—such as the linear risk function—represent situations wherein the remote
computers are certain to have been interrupted no later than a known eventual time. In such a
situation, one might get more work done, in expectation, by not deploying the entire workload:
one could increase this expectation by making the last deployed chunk even a tiny bit smaller
than needed to deploy all W units of work.
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We shall see the preceding observation in operation in Theorem 2 for the free-
initiation model and in Theorem 3 for the charged-initiation model.

Thus, our ultimate goal when considering a single remote computer (the case p = 1), is to
determine, for each integer n:

• how to select n chunk sizes that collectively sum to at most W (rather than to exactly
W as in the preceding paragraphs),
• how to select n chunks of these sizes out of our workload,
• how to schedule the deployment of these chunks

in a way that maximizes the expected amount of work that gets done. We formalize this goal
via the function E(f)(W,n):

E(f)(W,n) = max{ω1(1− Pr(ω1)) + · · ·+ ωn(1− Pr(ω1 + · · ·+ ωn))},

where the maximization is over all n-tuples of positive chunk sizes that sum to at most W :

{ω1 > 0, ω2 > 0, . . . , ωn > 0} such that ω1 + ω2 + · · ·+ ωn ≤W

The charged-initiation model. This model is much harder to analyze than the free-
initiation model, even when there is only one remote computer. In compensation, the charged-
initiation model often allows one to determine analytically the best numbers of chunks and of
“rounds” (when there are multiple remote computers). Under the charged-initiation model,
an explicit fixed cost, ε units of work, is added to the cost of computing of each chunk,
to reflect the overhead when a remote computer begins processing each new chunk. This
overhead could reflect the cost of the communication needed to transmit the chunk to the
remote computer, or it could reflect the cost of the interrupt plus context switch incurred as
the remote computer checkpoints some work. Under this model, the expected value of jobdone
under a given scheduling regimen Θ, denoted E(c)(jobdone,Θ), the superscript “c” denoting
“charged(-initiation)” is

E(c)(jobdone,Θ) =
∫ ∞

0
Pr(jobdone ≥ u+ ε) du.

Letting E(c)(W,k) be the analogue for the charged-initiation model of the parameterized free-
initiation expectation E(f)(W,k), we find that, when the whole workload is deployed as a
single chunk,

E(c)(W,Θ1) = W (1− Pr(W + ε)) ,

and when work is deployed as two chunks of respective sizes ω1 and ω2,

E(c)(W,Θ2) = ω1(1− Pr(ω1 + ε)) + ω2(1− Pr(ω1 + ω2 + 2ε)).

Relating the two models. The free-initiation model enables us to obtain bounds on the
charged-initiation model, in the manner indicated by the following theorem.
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Theorem 1. (Charged-initiation output vs. Free-initiation output)
The optimal n-chunk expected value of jobdone under the charged-initiation model, E(c)(W,n),
is never greater than the analogous quantity, E(f)(W,n), for the free-initiation model; the
latter quantity cannot exceed the former by more than n times the size of the overhead ε.
Symbolically,

E(f)(W,n) ≥ E(c)(W,n) ≥ E(f)(W,n)− nε. (5)

Proof. The lefthand bound in (5) is obvious, because risk functions are nondecreasing—so
that, for any given scheduling regimen, the expected value of jobdone under the charged-
initiation model cannot exceed the expected value under the free-initiation model.

To derive the righthand bound in (5), let us focus on the optimal scheduling regimen Θ under
the free-initiation model. Θ schedules the load via n chunks of size ω1 > 0, . . . , ωn > 0. Let
ω′i = max{0, ωi− ε}, and let Θ′ denote the scheduling regimen that executes n chunks of sizes
ω′1, ..., ω′n, in that order (except that zero-length chunks are not really executed). We account
for these zero-length chunks in the following equations, via the function

1ω′i
=
{

1 if ω′i 6= 0
0 if ω′i = 0.

Since Θ′ implicitly specifies a scheduling regimen for the charged-initiation model when using
≤ n chunks, the expected value of jobdone under Θ′ obviously cannot exceed the expected
value under the best scheduling regimen for the charged-initiation model when using ≤ n
chunks. Therefore,

E(c)(W,n) ≥ E(c)(W,Θ′)

=
n∑
i=1

ω′i

(
1− Pr

(
n∑
i=1

ω′i + ε1ω′i

))

=
n∑
i=1

ω′i

(
1− Pr

(
n∑
i=1

1ω′i
(ω′i + ε)

))

=
n∑
i=1

ω′i

(
1− Pr

(
n∑
i=1

1ω′i
ωi

))

≥
n∑
i=1

ω′i

(
1− Pr

(
n∑
i=1

ωi

))

=
n∑
i=1

ωi

(
1− Pr

(
n∑
i=1

ωi

))
− ε

n∑
i=1

(
1− Pr

(
n∑
i=1

ωi

))
≥ E(f)(W,Θ)− nε
= E(f)(W,n)− nε

which yields the righthand bound.

3 Scheduling for a Single Remote Computer

This section is devoted to studying how to schedule optimally when there is only a single
remote computer that is subject to the linear risk of interruption: Pr(w) = min (1, κw).
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Some of the results we derive bear a striking similarity to their analogues in [14], despite
certain substantive differences in models.

3.1 An Optimal Schedule under the Free-Initiation Model

We begin with a simple illustration of why the risk of losing work because of an interruption
must affect our scheduling strategy, even when there is only one remote computer and even
when dispatching a new chunk of work incurs no cost, i.e., under the free-initiation model.

When the amount of work W is no larger than X (recall that κ = 1/X is the constant that
accounts for the size of the work-unit), then instantiating the linear risk function, Pr(W ) =
κW , in (2) shows that the expected amount of work achieved when deploying the entire
workload in a single chunk is

E(f)(W,Θ1) = W − κW 2.

Similarly, instantiating this risk function in (3) shows that the expected amount of work
achieved when deploying the entire workload using two chunks, of respective sizes ω1 > 0 and
ω2 > 0 is (recalling that ω1 + ω2 = W )

E(f)(W,Θ2) = ω1(1− ω1κ) + ω2(1− (ω1 + ω2)κ))
= W − (ω2

1 + ω1ω2 + ω2
2)κ

= W −W 2κ+ ω1ω2κ.

We observe that
E(f)(W,Θ2)− E(f)(W,Θ1) = ω1ω2κ > 0.

Thus, as one would expect intuitively: For any fixed total workload, one increases the expec-
tation of jobdone by deploying the workload as two chunks, rather than one—no matter how
one sizes the chunks.

Continuing with the preceding reasoning, we can actually characterize the optimal—i.e.,
expectation-maximizing—schedule for any fixed number of chunks. (We thereby also identify
a weakness of the free-initiation model: increasing the number of chunks always increases
the expected amount of work done—so the (unachievable) “optimal” strategy would deploy
infinitely many infinitely small chunks.)

Theorem 2. (One remote computer: free-initiation model)
Say that one wishes to deploy W ∈ [0, X] units of work to a single remote computer in at
most n chunks, for some positive integer n. In order to maximize the expectation of jobdone,
one should have all n chunks share the same size, namely, Z/n units of work, where

Z = min
{
W,

n

n+ 1
X

}
.

In expectation, this optimal schedule completes

E(f)(W,n) = Z − n+ 1
2n

Z2κ

units of work.
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Note that for fixed W , E(f)(W,n) increases with n.

Proof. Let us partition the W -unit workload into n + 1 chunks, of respective sizes ω1 ≥ 0,
. . . , ωn ≥ 0, ωn+1 ≥ 0, with the intention of deploying the first n of these chunks.

(a) Our assigning the first n chunks nonnegative, rather than positive sizes affords
us a convenient way to talk about “at most n chunks” using only the single pa-
rameter n. (b) By creating n+ 1 chunks rather than n, we allow ourselves to hold
back some work in order to avoid what would be a certain interruption of the nth
chunk. Formally, exercising this option means making ωn+1 positive; declining the
option—thereby deploying all W units of work—means setting ωn+1 = 0.

Each specific such partition specifies an n-chunk schedule Θn. Our challenge is to choose the
sizes of the n + 1 chunks in a way that maximizes E(f)(W,Θn). To simplify notation, let
Z = ω1 + · · ·+ ωn denote the portion of the entire workload that we actually deploy.

Extending the reasoning from the cases n = 1 and n = 2, one obtains easily from (4) the
expression

E(f)(W,Θn) = ω1(1− ω1κ) + ω2(1− (ω1 + ω2)κ) + · · ·+ ωn(1− (ω1 + · · ·+ ωn)κ)

= Z − Z2κ +

 ∑
1≤i<j≤n

ωiωj

κ. (6)

Standard arguments show that the bracketed sum in (6) is maximized when all ωi’s share the

common value Z/n, in which case, the sum achieves the value
1
n2

(
n

2

)
Z2κ. Since maximizing

the sum also maximizes E(f)(W,Θn), simple arithmetic yields:

E(f)(W,Θn) = Z − n+ 1
2n

Z2κ.

Viewing this expression for E(f)(W,Θn) as a function of Z, we note that the function is
unimodal, increasing until Z =

n

(n+ 1)κ
and decreasing thereafter. Setting this value for

Z, gives us the maximum value for E(f)(W,Θn), i.e., the value of E(f)(W,n). The theorem
follows.

3.2 An Optimal Schedule under the Charged-Initiation Model

Under the charged-initiation model—i.e., on a computing platform wherein processing a new
chunk of work (for transmission or checkpointing) does incur a cost (that we must account
for)—deriving the optimal strategy becomes dramatically more difficult, even when there is
only one remote computer and even when we know a priori how many chunks we wish to
employ.

Theorem 3. (One remote computer: charged-initiation model)
Say that one wishes to deploy W ∈ [0, X] units of work, where X ≥ ε, to a single remote
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computer in at most n chunks, for some positive integer n. Let n1 =
⌊

1
2

(√
1 + 8X/ε− 1

)⌋
and n2 =

⌊
1
2

(√
1 + 8W/ε+ 1

)⌋
. The unique regimen for maximizing E(c)(jobdone) specifies

m = min{n, n1, n2} chunks: the first has size7

ω1,m =
Z

m
+
m− 1

2
ε

where

Z = min
{
W,

m

m+ 1
X − m

2
ε

}
; (7)

and the (i+ 1)th chunk inductively has size

ωi+1,m = ωi,m − ε.

In expectation, this schedule completes

E(c)(W,n) = Z − m+ 1
2m

Z2κ− m+ 1
2

Zεκ+
(m− 1)m(m+ 1)

24
ε2κ (8)

units of work.

Proof. We proceed by induction on the number n of chunks we want to partition our W units
of work into. We denote by E(c)

opt(W,n) the maximum expected amount of work that a schedule
can complete under such a partition.

Focus first on the case n = 1. When work is allocated in a single chunk, the maximum
expected amount of total work completed is, by definition:

E(c)
opt(W, 1) = max

0≤ω1,1≤W
E(c)(ω1,1) where E(c)(ω1,1) = max

0≤ω1,1≤W
ω1,1(1− (ω1,1 + ε)κ).

We determine the optimal size of ω1,1 by viewing this quantity as a variable in the closed
interval [0,W ] and maximizing E(c)(ω1,1) symbolically. We thereby find that E(c)(ω1,1) is
maximized by setting

ω1,1 = min
{
W,

1
2κ
− ε

2

}
,

so that

E(c)
opt(W, 1) =


1

4κ
− ε

2
+
ε2

4
κ if W >

1
2κ
− ε

2
,

W −W 2κ−Wεκ otherwise.

(Note that ω1,1 has a non-negative size because of the natural hypothesis that X ≥ ε.)

We now proceed to general values of n by induction. We begin by assuming that the conclu-
sions of the theorem have been established for the case when the workload is split into n ≥ 1
positive-size chunks. We also assume that n is no greater than min{n1, n2}. In other words,
we assume that any optimal solution with at most n chunks used n positive-size chunks.

As our first step in analyzing how best to deploy n+ 1 positive-size chunks, we note that the
only influence the first n chunks of work have on the probability that the last chunk will be
computed successfully is in terms of their cumulative size.

7The second subscript of ω reminds us how many chunks the workload is divided into.
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Let us clarify this last point, which follows from the failure probability model.
Denote by An the cumulative size of the first n chunks of work in the expectation-
maximizing (n+ 1)-chunk scenario; i.e., An =

∑n
i=1 ωi,n+1. Once An is specified,

the probability that the remote computer will be interrupted while working on the
(n+ 1)th chunk depends only on the value of An, not on the way the An units of
work have been divided into chunks.

This fact means that once one has specified the cumulative size of the workload that comprises
the first n chunks, the best way to partition this workload into chunks is as though it were
the only work in the system, i.e., as if there were no (n + 1)th chunk to be allocated. Thus,
one can express Eopt(W,n + 1) in terms of An (whose value must, of course, be determined)
and Eopt(An, n), via the following maximization.

Eopt(W,n+ 1) = max
{
Eopt(An, n) + ωn+1,n+1 (1− (An + ωn+1,n+1 + (n+ 1)ε)κ)

}
,

where the maximization is over all values for An in which

An > 0 allowing for the n previous chunks
ωn+1,n+1 ≥ 0 allowing for an (n+ 1)th chunk

An + ωn+1,n+1 ≤ W because the total workload has size W
An + ωn+1,n+1 + (n+ 1)ε ≤ X reflecting the risk and cost models

The last of these inequalities acknowledges that the remote computer is certain to be inter-
rupted (with probability 1) before it can complete the (n+ 1)th chunk of work, if its overall
workload is no smaller than X − (n+ 1)ε.

We now have two cases to consider, depending on the size of An.

Case 1: An <
n

n+ 1
X − n

2
ε.

By assumption, the expectation-maximizing regimen deploys An units of work via its first n
chunks. By induction, expression (8) tells us that the expected amount of work completed by
deploying these An units is

E(c)
opt(An, n) = An −

n+ 1
2n

A2
nκ−

n+ 1
2

Anεκ+
(n− 1)n(n+ 1)

24
ε2κ.

Let Z denote the total work that is actually allocated: Z = An + ωn+1,n+1. In the following
calculations, we write ωn+1,n+1 as Z − An, in order to represent the (n + 1)-chunk scenario
entirely via quantities that arise in the n-chunk scenario.

We focus on

E(1)(An, ωn+1,n+1) = Eopt(An, n) + (Z −An) (1− (Z + (n+ 1)ε)κ)

=
(
An −

n+ 1
2n

A2
nκ−

n+ 1
2

Anεκ+
(n− 1)n(n+ 1)

24
ε2κ

)
+ (Z −An) (1− (Z + (n+ 1)ε)κ)

=
(
Z +

n+ 1
2

ε

)
Anκ−

n+ 1
2n

A2
nκ

+ Z(1− (Z + (n+ 1)ε)κ) +
(n− 1)n(n+ 1)

24
ε2κ.
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For a given value of Z, we look for the best value for An using the preceding expression. We
note first that

∂E(1)(An, ωn+1,n+1)
∂An

= −n+ 1
n

Anκ+ Zκ+
n+ 1

2
εκ.

We note next that, for fixed Z, the quantity E(1)(An, ωn+1,n+1) begins to increase with An and
then decreases. The value for An that maximizes this expectation, which we denote A(opt)

n , is

A(opt)
n = min

{
W,

n

n+ 1
Z +

n

2
ε

}
.

When W ≤ (n/(n+ 1))Z+ 1
2nε, A

(opt)
n = W , meaning that the (n+ 1)th chunk is empty, and

the schedule does not optimize the expected work. (In the charged-initiation model an empty
chunk decreases the overall probability). Consequently, we focus for the moment on the case

A(opt)
n =

n

n+ 1
Z +

n

2
ε (9)

(thereby assuming that W ≥ (n/(n+ 1))Z + 1
2nε). Therefore, we have

E(1)(A(opt)
n , ωn+1,n+1) = − n+ 2

2(n+ 1)
Z2κ+ Z − n+ 2

2
εZκ+

n(n+ 1)(n+ 2)
24

ε2κ.

We maximize E(1)(A(opt)
n , ωn+1,n+1) via the preceding expression by viewing the expectation

as a function of Z. We discover that E(1)(A(opt)
n , ωn+1,n+1) is maximized when

Z = Z(opt) = min
{
n+ 1
n+ 2

X − n+ 1
2

ε, W

}
. (10)

For this case to be meaningful, the (n + 1)th chunk must be nonempty, so that A(opt)
n < Z;

i.e., Z > 1
2n(n+ 1)ε. Therefore, we must simultaneously have:

1. (n+1)/(n+2)X− 1
2(n+1)ε > 1

2n(n+1)ε, so that X > 1
2(n+1)(n+2)ε, which requires

that n ≤
⌊

1
2

(√
1 + 8X/ε− 3

)⌋
.

2. W > 1
2n(n+ 1)ε, which requires that n ≤

⌊
1
2

(√
1 + 8W/ε− 1

)⌋
.

We can now check the sanity of the result.

Z(opt) + (n+ 1)ε ≤ n+ 1
n+ 2

X − n+ 1
2

ε+ (n+ 1)ε < X,

because of the just established condition 1
2(n+ 1)(n+ 2)ε < X. We also have,

A(opt)
n =

n

n+ 1
Z +

n

2
ε ≤ n

n+ 1

(
n+ 1
n+ 2

X − n+ 1
2

ε

)
+
n

2
ε =

n

n+ 2
X <

n

n+ 1
X − n

2
ε

because 1
2(n+1)(n+2)ε < X. Therefore, the solution is consistent with the defining hypothesis

for this case—namely, that An <
n

n+ 1
X − n

2
ε.
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Before moving on to case 2, we note that the value (9) does, indeed, extend our inductive
hypothesis. To wit, the optimal total amount of allocated work, Z(opt), has precisely the
predicted value, and the sizes of the first n chunks do follow a decreasing arithmetic progression
with common difference ε (by using the induction hypothesis). Finally, the last chunk has
the claimed size:

ωn+1,n+1 = Z(opt) −A(opt)
n =

1
n+ 1

Z(opt) − n

2
ε.

We turn now to our remaining chores. We must derive the expectation-maximizing chunk sizes
for the second case, wherein An is “big.” And, we must show that the maximal expected work
completion in this second case is always dominated by the solution of the first case—which
will lead us to conclude that the regimen of the theorem is, indeed, optimal.

Case 2: An ≥
n

n+ 1
X − n

2
ε.

By (7), if the current case’s restriction on An is an inequality, then An cannot be an optimal
cumulative n-chunk work allocation. We lose no generality, therefore, by focusing only on the
subcase when the defining restriction of An is an equality:

An =
n

n+ 1
X − n

2
ε.

For this value of An, call it A?n, we have

Eopt(W,n+ 1) = max
(
Eopt(A?n, n) + ωn+1,n+1 (1− (A?n + ωn+1,n+1 + (n+ 1)ε)κ)

)
,

where the maximization is over all values of ωn+1,n+1 in the closed interval [0, W −A?n].

To determine a value of ωn+1,n+1 that maximizes Eopt(W,n + 1) for A?n, we focus on the
function

E(2)(An, ωn+1,n+1) = Eopt(An, n) + ωn+1,n+1 (1− (An + ωn+1,n+1 + (n+ 1)ε)κ)

=
(
An −

n+ 1
2n

A2
nκ−

n+ 1
2

Anεκ+
(n− 1)n(n+ 1)

24
ε2κ

)
+ ωn+1,n+1 (1− (An + ωn+1,n+1 + (n+ 1)ε)κ)

= −κω2
n+1,n+1 +

(
−n+ 2

2
κε+

1
n+ 1

)
ωn+1,n+1

+
n
(
(n+ 1)2(n+ 2)ε2κ2 − 12(n+ 1)εκ+ 12

)
24(n+ 1)κ

.

Easily,
∂E(2)(An, ωn+1,n+1)

∂ωn+1,n+1
= −2κωn+1,n+1 −

n+ 2
2

κε+
1

n+ 1
.

Knowing A?n exactly, we infer that the value of ωn+1,n+1 that maximizes E(2)(A?n, ωn+1,n+1) is

ωn+1,n+1 = min
{

1
2(n+ 1)

X − 1
4

(n+ 2)ε, W − n

n+ 1
X − n

2
ε

}
.

The second term dominates this minimization whenever

W ≥ 2n+ 1
2n+ 2

X +
n− 2

4
ε;



Static Strategies for Worksharing with Unrecoverable Interruptions 17

therefore, if W is large enough—as delimited by the preceding inequality—then

E(2)(A?n, ωn+1,n+1) =
2n2 + 2n+ 1

4(n+ 1)2
X − 2n2 + 3n+ 2

4(n+ 1)
ε+

(n+ 2)(2n2 + 5n+ 6
48

κε2,

When W does not achieve this threshold, then

E(2)(A?n, ωn+1,n+1) =−W 2κ+
(
n− 2

2
κε+

2n+ 1
n+ 1

)
W

+
(n2 + 3n+ 14)nκε2

24
− n2

n+ 1
ε− n

2(n+ 1)
X.

For the found solution to be meaningful, the (n + 1)th chunk must be nonempty, i.e.,
ωn+1,n+1 > 0. This has two implications.

1. X > (n+1)(n+2)
2 ε, which is true as long as n ≤

⌊
1
2

(√
1 + 8X/ε− 3

)⌋
.

2. W − (n/(n + 1))X − 1
2nε > 0, which implies W > 1

2n(n + 1)ε because X ≥ W . This

inequality on W is true as long as n ≤
⌊

1
2

(√
1 + 8W/ε− 1

)⌋
.

Because X > 1
2(n+ 1)(n+ 2)ε, we have

An + ωn+1,n+1 + (n+ 1)ε ≤ n

n+ 1
X − n

2
ε+

1
2(n+ 1)κ

− 1
4

(n+ 2)ε+ (n+ 1)ε ≤ X.

For both Case 1 and Case 2, if either condition[
n ≤

⌊
1
2

(√
1 + 8X/ε− 3

)⌋]
or

[
n ≤

⌊
1
2

(√
1 + 8W/ε− 1

)⌋]
does not hold, then there is no optimal schedule with (n + 1) nonempty chunks. (We will
come back later to the case where one of these conditions does not hold.) If both conditions
hold, then Case 1 always has an optimal schedule, but Case 2 may not have one.

To complete the proof, we must verify that the optimal regimen always corresponds to Case 1
(as suggested by the theorem), never to Case 2 (whenever Case 2 defines a valid solution).
We accomplish this by considering two cases, depending on the size W of the workload. We
show that the expected work completed under the regimen of Case 1 is never less than under
the regimen of Case 2.

Case A: W ≥ n+ 1
n+ 2

X − n+ 1
2

ε.

Under this hypothesis, and under Case 1, the workload that is actually deployed has size

Z =
n+ 1
n+ 2

X − n+ 1
2

ε,

so that, in expectation,

E(1)(W,n+ 1) = Z − n+ 1
2n

Z2κ− n+ 1
2

Zεκ+
(n− 1)n(n+ 1)

24
ε2κ

=
n+ 1

2(n+ 2)
X − n+ 1

2
ε+

(n+ 1)(n+ 2)(n+ 3)
24

ε2κ.
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units of work are completed. Moreover, because

n+ 1
n+ 2

X − n+ 1
2

ε ≤ 2n+ 1
2n+ 2

X +
n− 2

4
ε,

the most favorable value for E(1)(W,n + 1) under Case 2 lies within the range of values for
the current case. Because the value of E(1)(W,n+ 1) is constant whenever

W ≥ n+ 1
n+ 2

X − n+ 1
2

ε,

we can reach the desired conclusion by just showing that this value is no smaller than

E(2)

(
2n+ 1
2n+ 2

X +
n− 2

4
ε, n+ 1

)
. Thus, we need only focus on the specific value

Wlim =
2n+ 1
2n+ 2

X +
n− 2

4
ε

for W . For this value, we have:

E(2)(Wlim, n+ 1) = −W 2
limκ+

(
n− 2

2
κε+

2n+ 1
n+ 1

)
Wlim +

(n2 + 3n+ 14)nκε2

24

− n2

n+ 1
ε− n

2(n+ 1)
X

=
2n2 + 2n+ 1

4(n+ 1)2
X − 2n2 + 3n+ 2

4(n+ 1)
ε+

(n+ 2)(2n2 + 5n+ 6)
48

ε2κ.

By explicit calculation, we finally see that

E(1)(W,n+ 1)− E(2)(Wlim, n+ 1) =

(
4 + (n4 + 6n3 + 13n2 + 12n+ 4)κ2ε2

)
n

16(n+ 1)2(n+ 2)κ

− (4n2 + 12n+ 8)κεn
16(n+ 1)2(n+ 2)κ

=

(
4 + (n+ 1)2(n+ 2)2κ2ε2 − 4(n+ 1)(n+ 2)κε

)
n

16(n+ 1)2(n+ 2)κ

=
((n+ 1)(n+ 2)κε− 2)2 n

16(n+ 1)2(n+ 2)κ
≥ 0.

Case B: W ≤ n+ 1
n+ 2

X − n+ 1
2

ε.

In this case, the regimen of Case 1 deploys all W units of work, thereby completing, in
expectation,

E(1)(W,n+ 1) = W − n+ 1
2n

W 2κ− n+ 1
2

Wεκ+
(n− 1)n(n+ 1)

24
ε2κ.

units of work. Moreover,

n+ 1
n+ 2

X − n+ 1
2

ε ≤ 2n+ 1
2n+ 2

X +
n− 2

4
ε,



Static Strategies for Worksharing with Unrecoverable Interruptions 19

so that the regimen of Case 2 also deploys all W units of work, thereby completing, in
expectation,

E(2)(W,n+ 1) =−W 2κ+
(
n− 2

2
κε+

2n+ 1
n+ 1

)
W

+
(n2 + 3n+ 14)nκε2

24
− n2

n+ 1
ε− n

2(n+ 1)
X.

units of work.

Explicit calculation now shows that

E(1)(W,n+ 1)− E(2)(W,n+ 1) =
n

2(n+ 1)
W 2κ− n

n+ 1
(1 + (n+ 1)εκ)W

+
n

2(n+ 1)
(1 + 2nκε− (n+ 1)κ2ε2)X.

Viewed as a function of W , this difference is, thus, unimodal, decreasing up to its global
minimum, which occurs at W = X + (n+ 1)ε, and increasing thereafter. The largest value of
W allowed by the current case is

Wmax =
n+ 1
n+ 2

X − n+ 1
2

ε,

so this is also the value on which the difference E(1)(W,n + 1) − E(2)(W,n + 1) reaches its
minimum within its domain of validity. Thus, we need only focus on the behavior of the
difference at the value W = Wmax. At this value,

E(1)(Wmax, n+ 1)− E(2)(Wmax, n+ 1) =
n(5n+ 1)ε2κ

8
+

(n− 1)nε
2(n+ 1)(n+ 2)

+
n

2(n+ 1)(n+ 2)2κ
.

This quantity is obviously positive, which means that E(1)(Wmax, n+ 1) > E(2)(Wmax, n+ 1).

We thus see that, for workloads of any size W , one completes at least as much expected work
via the schedule of Case 1 as via the schedule of Case 2.

In summation, if

n ≤ min
{⌊

1
2

(√
1 + 8X/ε− 3

)⌋
,

⌊
1
2

(√
1 + 8W/ε− 1

)⌋}
, (11)

then Case 1 specifies the optimal schedule that uses no more than n + 1 chunks. Of course,
this inequality translates to the conditions of the theorem (where it is written for n chunks
instead of n+ 1).

Note that if n exceeds either quantity in the minimization of (11), then one never improves
the expected amount of work completed by deploying the workload in more than n chunks.
This is another consequence of our remark about An at the beginning of this proof. If there
exists a value of m for which there exists a schedule S that uses ≥ n + 1 nonempty chunks,
then replacing the first n+ 1 chunks in this solution with the optimal solution for n chunks,
using a workload equal to the first n+ 1 chunks of S, yields a schedule that, in expectation,
completes strictly more work than S.
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4 Scheduling for Two Remote Computers

Before we approach the general case of p remote computers, we study the case of two remote
computers, in order to adduce principles that will be useful in the general case. We first estab-
lish characteristics of optimal schedules under general risk functions, then restrict attention
to the linear risk model. Throughout this section, we consider two remote computers, P1 and
P2, under the free-initiation model.

4.1 Two Remote Computers under General Risk

Focus on a distribution of work to P1 and P2 under which, for i = 1, 2, Pi receives ni chunks
to execute, call them Wi,1, . . . , Wi,ni , to be scheduled in this order; as usual we denote |Wi,j |
by ωi,j . We do not assume any a priori relation between the way P1 and P2 break their
allocated work into chunks; in particular, any work that is allocated to both P1 and P2 may
be chunked quite differently on the two machines.

Theorem 4. (Two remote computers: free-initiation model; general risk)
Let Θ be a schedule for two remote computers, P1 and P2. Say that, for both P1 and P2, the
probability of being interrupted never decreases as a computer processes more work. There
exists a schedule Θ′ for P1 and P2 that, in expectation, completes as much work as does Θ
and that satisfies the following three properties; cf. Fig. 1.

Maximal work deployment. Θ′ deploys as much of the overall workload as possible. There-
fore, the workloads it deploys to P1 and P2 can overlap only if their union is the entire
overall workload.

Local work priority. Θ′ has P1 (resp., P2) process all of the allocated work that it does not
share with P2 (resp., P1) before it processes any shared work.

Shared work “mirroring.” Θ′ has P1 and P2 process their shared work “in opposite orders.”
Specifically, say that P1 chops its allocated work into chunks W1,1, . . . ,W1,n1, while P2

chops its allocated work into chunks W2,1, . . . ,W2,n2.

Say that there exist chunk-indices a1, b1 > a1 for P1, and a2, b2 > a2 for P2 such that:
chunks W1,a1 and W2,a2 both contain a shared “piece of work”A, and chunks W1,b1 and
W2,b2 both contain a shared “piece of work” B.

Then if Θ′ has P1 execute A before B (i.e., P1 executes chunkW1,a1 before chunkW1,b1),
then Θ′ has P2 execute B before A (i.e., P2 executes chunk W2,b2 before chunk W2,a2).

Proof. We need to refine our description of workloads. We describe the overall workload of
size W via a partition X = {X1, ...,Xm} such that, for j = 1, 2, each element Xi ∈ X is either
included in a chunk of Pj or does not intersect any chunk of Pj . Symbolically:

(∀i ∈ [1..m])

[
Xi ∩

n1⋃
k=1

Wj,k = ∅

]
OR (∃k ∈ [1..n1]) [Xi ⊂ Wj,k] .
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W1,2 W1,3

W2,3 W2,2 W2,1

W1,1

Figure 1: The shape of an optimal schedule for two computers, as described in Theorem 4;
n1 = n2 = 3. The top row displays P1’s chunks, the bottom row P2’s. Vertically aligned parts
of chunks correspond to shared work; shaded areas depict unallocated work (e.g., none of the
work in W2,1 is allocated to P1).

We then define, for j = 1, 2 and i = 1, . . . nj ,

δj(i) =
{

0 just when element Xi ∈ X does not intersect any chunk of Pj
1 otherwise.

When δj(i) = 1, we denote by σj(i) the chunk of Pj that contains Xi, so that Xi ⊂ Wj,σj(i).

We can now specify the expectation E of jobdone under the described distribution of chunks
to P1 and P2. The probability that element Xi ∈ X is computed successfully is:

• 0 if Xi is not allocated to either P1 or P2;

• 1− Pr
(∑σ1(i)

j=1 ω1,j

)
if Xi is allocated to P1 but not to P2, i.e., if δ1(i)(1− δ2(i)) = 1;

• 1− Pr
(∑σ2(i)

j=1 ω2,j

)
if Xi is allocated to P2 but not to P1, i.e., if (1− δ1(i))δ2(i) = 1;

• 1 − Pr
(∑σ1(i)

j=1 ω1,j

)
Pr
(∑σ2(i)

j=1 ω2,j

)
if Xi is allocated to both P1 and P2, i.e., if

δ1(i)δ2(i) = 1.

We thus end up with the following overall expression for E , the expected amount of work
completed under the described distribution:

E =
m∑
i=1

|Xi| · Ξi,

where

Ξi = δ1(i)δ2(i)

1− Pr

σ1(i)∑
j=1

ω1,j

Pr

σ2(i)∑
j=1

ω2,j


+ δ1(i)(1− δ2(i))

1− Pr

σ1(i)∑
j=1

ω1,j


+ (1− δ1(i))δ2(i)

1− Pr

σ2(i)∑
j=1

ω2,j

 .
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We now verify the existence of an optimal schedule Θ that satisfies each of the three claimed
properties. In fact, we prove a slightly stronger claim, by verifying these properties of Θ for
the partition elements rather than for the chunks.

Maximal work deployment. Say, for contradiction, that some piece of the overall workload
is allocated to both P1 and P2, while another piece is allocated to neither. Since we can
arbitrarily subdivide the partition X , we may assume with no loss of generality that

• the doubly allocated piece is a partition element Xi;
• the unallocated piece is a partition element Xj of the same size as Xi.

We construct a new allocation by substituting Xj for Xi in W1,σ1(i); in the overall expecta-
tion, only the terms involving Xi and Xj are affected by this substitution. Now, before the
substitution, the total contribution of these terms to the overall expectation was:

|Xi| ×

1− Pr

σ1(i)∑
k=1

ω1,k

Pr

σ2(i)∑
k=1

ω2,k

+ |Xj | × 0.

After the substitution, this contribution becomes:

|Xi| ×

1− Pr

σ2(i)∑
k=1

ω2,k

+ |Xj | ×

1− Pr

σ1(i)∑
k=1

ω1,k

 .

Because |Xi| = |Xj |, the latter contribution is never less than the former, differing from it by
the nonnegative quantity

|Xi| ×

1− Pr

σ1(i)∑
k=1

ω1,k

− Pr
σ2(i)∑
k=1

ω2,k

+ Pr

σ1(i)∑
k=1

ω1,k

Pr

σ2(i)∑
k=1

ω2,k

.

= |Xi| ×

1− Pr

σ1(i)∑
k=1

ω1,k

1− Pr

σ2(i)∑
k=1

ω2,k

.

We have thus verified that there is always an optimal schedule that honors the first claimed
property. We shall henceforth restrict attention to such schedules.

Local work priority. Assume next, for contradiction, that under the optimal schedule Θ,
there are two elements Xi,Xj ∈ X such that:

1. Xi is allocated to P1 but not to P2: symbolically, δ1(i)(1− δ2(i)) = 1;

2. Xj is allocated to both P1 and P2: symbolically, δ1(i)δ2(i) = 1;

3. Schedule Θ attempts to execute Xi after Xj on P1: symbolically, σ1(i) ≥ σ1(j).

As before, we may assume, with no loss of generality, that |Xi| = |Xj |. We now construct
a new schedule for P1 by substituting Xj for Xi in W1,σ1(i) and substituting Xi for Xj in
W1,σ1(j), while leaving the schedule of P2 unchanged. Once again, these substitutions affect
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only the terms involving Xi and Xj in the overall expectation. The total contribution of these
terms before the substitution was:

|Xi| ×

1− Pr

σ1(i)∑
k=1

ω1,k

+ |Xj | ×

1− Pr

σ1(j)∑
k=1

ω1,k

Pr

σ2(j)∑
k=1

ω2,k

 .

After the substitution, the contribution becomes

|Xi| ×

1− Pr

σ1(j)∑
k=1

ω1,k

+ |Xj | ×

1− Pr

σ1(i)∑
k=1

ω1,k

Pr

σ2(j)∑
k=1

ω2,k

 .

Because |Xi| = |Xj |, we see that the substitution increases the overall expectation by the
quantity

|Xi| ×

Pr
σ1(i)∑
k=1

ω1,k

− Pr
σ1(j)∑

k=1

ω1,k

×
1− Pr

σ2(j)∑
k=1

ω2,k

 ,

This quantity is nonnegative because

• the probability Pr(w) is nondecreasing in w;
•
∑σ1(i)

k=1 ω1,k ≥
∑σ1(j)

k=1 ω1,k, because σ1(i) ≥ σ1(j).

The modified schedule completes, in expectation, at least as much work as Θ, and it satisfies
the second property.

Shared work “mirroring.” Finally, consider a schedule under which there are two partition
elements, Xi and Xj , such that:

1. Both Xi and Xj are allocated to both P1 and P2: symbolically, δ1(i)δ2(i) = δ1(j)δ2(j) =
1;

2. The optimal schedule Θ attempts to execute Xi after Xj on both P1 and P2: symbolically,
[σ1(i) ≥ σ1(j)] and [σ2(i) ≥ σ2(j)].

As before, we may assume with no loss of generality that the |Xi| = |Xj |. We now construct a
new schedule by substituting Xj for Xi inW1,σ1(i) and substituting Xi to Xj inW1,σ1(j), leaving
the schedule of P2 unchanged. Once again, these changes affect only the terms involving Xi
and Xj in the overall expectation. The total contribution of these terms before the substitution
was:

|Xi|×

1− Pr

σ1(i)∑
k=1

ω1,k

Pr

σ2(i)∑
k=1

ω2,k

+|Xj |×

1− Pr

σ1(j)∑
k=1

ω1,k

Pr

σ2(j)∑
k=1

ω2,k

 .

After the substitution, their contribution becomes:

|Xi|×

1− Pr

σ1(j)∑
k=1

ω1,k

Pr

σ2(i)∑
k=1

ω2,k

+|Xj |×

1− Pr

σ1(i)∑
k=1

ω1,k

Pr

σ2(j)∑
k=1

ω2,k

 .
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Because |Xi| = |Xj |, the substitutions have increased the overall expectation by the quantity:

|Xi| ×

Pr
σ1(j)∑

k=1

ω1,k

− Pr
σ1(i)∑
k=1

ω1,k

Pr
σ2(j)∑

k=1

ω2,k

− Pr
σ2(i)∑
k=1

ω2,k

 .

This quantity is nonnegative because Xi and Xj are processed in the same order on P1 and
on P2. The modified schedule thus completes, in expectation, at least as much work as Θ,
and it satisfies the third property.

4.2 Two Remote Computers under Linear Risk

4.2.1 Allocating work in a single chunk

We now specialize from general risk functions to the linear risk functions. We first consider
the case wherein each computer processes its allocated work as a single chunk. Even this
simple case turns out to be surprisingly difficult to schedule optimally when there is more
than one remote computer. Indeed, our experience with this case leads us to abandon the
quest for exactly optimal schedules, in favor of the more easily accessed asymptotically optimal
schedules.

“Asymptotically optimal”here means that the expected amount of work completed
by these schedules deviates from exact maximality by an amount that shrinks as
the size of the workload grows without bound.

To render the single-chunk scheduling problem tractable, we restrict attention to schedules
that are symmetric, in the sense that they allocate the same amount of work to each remote
computer. It seems intuitive that there is always a symmetric schedule among the optimal
single-chunk schedules, but we have yet to verify this.

Say that our workload consists of W units of work that we somehow order linearly. We denote
by 〈a, b〉 the sub-workload obtained by eliminating: the initial a units of work and all work
beyond the initial b units. For instance, 〈0,W 〉 denotes the entire workload, 〈0, 1

2W 〉 denotes
the first half of the workload, and 〈12W,W 〉 denotes the last half of the workload.

Theorem 5. (Two remote computers: linear risk; single chunk allocation)
Say that we wish to deploy W units of work on two computers, deploying a single chunk per
computer. The following symmetric schedule Θ completes, in expectation, a maximum amount
of work.

• If W ≤ 1
2X, then Θ deploys the entire workload on both remote computers; symbolically,

W1,1 =W2,1 = 〈0,W 〉;

• if 1
2X < W ≤ X, then Θ deploys the first half of the workload on one computer and the

second half on the other; symbolically, W1,1 = 〈0, 1
2W 〉, and W2,1 = 〈12W,W 〉;

• if X < W , then Θ deploys only X units of the workload, allocating the first half to one
computer and the second half to the other; symbolically, W1,1 = 〈0, 1

2X〉, and W2,1 =
〈12X,X〉.
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Proof. Our derivation of the optimal schedule builds on the following principle (which we have
encountered before). When we deploy work as a single chunk, we never make that chunk as
large as X, for then we risk certain interruption, hence, in expectation, completes no work. In
order to see how to optimally deploy work as a single chunk, we consider separately schedules
that allow overlapping deployments to the two computers and those that do not.

Disjoint allocations. Focus first on schedules that deploy non-overlapping workloads to
the two remote computers. These two workloads, W1,1 and W2,1, are independent, so we
can invoke Theorem 2 to discover their optimal sizes. We see that the optimal strategy is
to deploy Z = min{W,X} units of work in total. We determine the optimal allocation of
this work to the remote computers, in respective chunk sizes ω1,1 and ω2,1 = Z − ω1,1, by
considering the expectation of jobdone.

E = ω1,1 ((1− ω1,1κ) + (Z − ω1,1)(1− (Z − ω1,1)κ))
= −2ω2

1,1κ+ 2ω1,1Zκ+ Z − Z2κ.,

Easily, E is maximized when ω1,1 = ω2,1 = 1
2Z. The optimal value of E is, then, E = W− 1

2Z
2κ.

(Note that we did not need to assume that the optimal schedule is symmetric in this case; we
actually proved that it should be.)

Overlapping allocations to the two computers. The principle enunciated at the begin-
ning of this proof implies that an optimal schedule that deploys overlapping workloads to the
two remote computers never allocates a full X units of work to either computer. We can,
therefore, simplify our calculations by restricting attention henceforth to the case W < 2X.
Since we consider only symmetric schedules, the common size s of the allocations to both
computers satisfies s ≥ W

2 , by Theorem 4. We thus obtain the following expression for the
expectation of jobdone as a function of s.

E(s) = 2(W − s)(1− sκ) + (2s−W )(1− s2κ2)
= −2s3κ2 + (2 +Wκ)s2κ− 2sWκ+W.

We seek the maximizing value of s.

E ′(s) =
d
ds
E(s) = 2[−3s2κ+ (2 +Wκ)s−W ]κ.

The discriminant of the bracketed quadratic polynomial is

∆ = W 2κ2 − 8Wκ+ 4 = (Wκ− 2(2 +
√

3))(Wκ− 2(2−
√

3)).

Because W < 2X we have, Wκ < 2(2 +
√

3). We branch on the relative sizes of W and
2(2−

√
3)X:

W > 2(2−
√

3)X. In this case, ∆ < 0, so the polynomial has no real roots, and E(s) is
decreasing with s. Because s ∈ [1

2W,W ], E(s) is maximized when s = W/2.

W ≤ 2(2−
√

3)X. This case is far more complicated than its predecessor. Let us denote the
two roots of our quadratic polynomial by s− and s+, as follows:

s− =
2 +Wκ−

√
W 2κ2 − 8Wκ+ 4

6κ
and s+ =

2 +Wκ+
√
W 2κ2 − 8Wκ+ 4

6κ
.
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One sees that E ′(s) decreases as s progresses from −∞ to s−, then decreases as s progresses
from s− to s+, then decreases once more as s increases beyond s+. We must determine how
these three intervals overlap E ’s domain of validity, viz., s ∈ [1

2W, W ].

We note first that 1
2W ≤ s−. Indeed:

W/2 ≥ s−

just when W/2 ≥ 2 +Wκ−
√
W 2κ2 − 8Wκ+ 4

6κ

just when
√
W 2κ2 − 8Wκ+ 4 ≥ 2(1−Wκ)

only if 0 ≥ 3W 2κ2

We invoke here the fact that Wκ ≤ 1, because W ≤ 2(2 −
√

3)X ≤ X. We remark next
that E ′(W ) = 2Wκ(1− 2Wκ), so that E ′(W ) ≥ 0 and W ∈ [s−, s+] when W ≤ X

2 ; moreover,
W > s+ when W > 1

2X. Indeed, if we assume that 1
2X < W ≤ s+ (the lower bound implying

5Wκ− 2 ≥ 0), then we reach a contradiction:

W ≤ s+

just when W ≤ 2 +Wκ+
√
W 2κ2 − 8Wκ+ 4

6κ

just when 5Wκ− 2 ≤
√
W 2κ2 − 8Wκ+ 4

only if 2Wκ ≤ 1.

So, once again we have two cases to consider:

W ≤ X/2. In this case, we have W ∈ [s−, s+], so that E(s) achieves its maximum either
when s = 1

2W or when s = W . Hence E(s)’s maximum is either

E(W/2) = W − 1
2
W 2κ or E(W ) = W −W 3κ2.

When W ≤ 1
2X, which is the case here, the latter value dominates, so the optimal deployment

is ω1,1 = ω2,1 = W .

W > X/2. In this case, W > s+, so that E(s) achieves its maximum either when s = W/2
or when s = s+. We compare the values at these points by computing both E(s+) and
E(s+)− E(W/2). We find that

E(s+) =
(W 2κ2 − 8Wκ+ 4)

3
2 +W 3κ3 − 12W 2κ2 + 30Wκ+ 8

54κ

and

E(s+)− E(W/2) =
[W 2κ2 − 8Wκ+ 4]3/2 + [W 3κ3 + 15W 2κ2 − 24Wκ+ 8]

54κ
. (12)

Easily, both of the bracketed polynomials in (12) decrease as W progresses along its current
hypothesized interval, from 1

2X through 2(2−
√

3)X; therefore, the difference E(s+)−E(W/2)
decreases as W proceeds along the same interval. Since the difference vanishes at the point
W = 1

2X, we conclude that the optimal deployment in this case is ω1,1 = ω2,1 = 1
2W .
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Moving beyond Theorem 5. The preceding analysis determines the optimal schedule
for only two remote computers that each process their allocations as single chunks. The
complexity of even this simple case has led us to abandon our focus on exactly optimal
schedules in the sequel, in favor of a hopefully more tractable search for schedules that are
asymptotically optimal.

Since one can view schedules under the free-initiation model as “asymptotic ver-
sions” of schedules under the charged-initiation model—cf. Theorem 1—our shift
in focus is not a drastic one.

This shift in focus notwithstanding, it is worth seeking significant restricted situations wherein
one can tractably discover exactly optimal schedules. One obvious candidate for special
consideration is the family of schedules that allocate the entire workload to each remote
computer—which seems to be desirable when Wκ is small enough. We conjecture that, for
such schedules, an optimal strategy would have the two computers chop the workload into
chunks of the same size and then process these chunks in “opposite orders” (as defined in the
third property of Theorem 4). When all remote computers chop the workload into n chunks,
this scheduling strategy completes, in expectation,

E = W − W 3κ2

6

(
1 +

3
n

+
2
n2

)
units of work (cf. Theorem 6 below). Extensive numerical simulations suggest that such a
scheduling strategy is, indeed, optimal as long as n ≤ 3. However, we know that the strategy
is suboptimal once one allows n to exceed 3. Indeed, for n = 4, the strategy completes, in
expectation, W − 5

16W
3κ2 units of work, which is strictly less than the W − 757−73

√
73

432 W 3κ2

units completed, in expectation, by the strategy specified schematically in Fig. 2 (with m = 1
and α =

√
73−7
6 W ).

The boxes in Figs. 2 and 3 contain chunk sizes. In Fig. 2, for instance, each
computer uses m chunks of size α, two chunks of size 1

4(W −mα), and one chunk
of size 1

2(W −mα).

Furthermore, the schedule in Fig. 2 is suboptimal as soon as we allow computers to chop work
into eight chunks. To wit, Fig. 3 presents an 8-chunk schedule that completes, in expectation,
W − 229−44

√
22

98 W 3κ2 ≈ W − 0.230834W 3κ2 units of work, when α = 4
√

22−17
14 W , while the

schedule of Fig. 2, using 8 chunks per computer (specifically, m = 5 and α = 19−
√

193
42 W )

completes, in expectation, W − 18293−965
√

193
21168 W 3κ2 ≈ W − 0.230857W 3κ2 units of work.

(The schedule of Fig. 3 is not even optimal for 8 chunks, but the best schedule we found
numerically was almost identical but slightly less regular.)

The increasing complexities of the preceding “counterexample” schedules suggest how hard
it will be to search for, and characterize, exactly optimal schedules—even in the presence of
simplifying assumptions, such as that the whole workload is distributed to each computer.
Since our simulations suggest that simple regular solutions often complete, in expectation,
almost as much work as do complex exactly optimal schedules, we henceforth aim for simply
structured asymptotically optimal schedules.
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m× α

W−mα
4

W−mα
2

W−mα
4

Figure 2: Counterexample to the optimality
of schedules that employ equal-size chunks.

W−2α
8

W−2α
8

W−2α
8

W−2α
8

W−2α
8

W−2α
8

W−2α
8

W−2α
8

α α

Figure 3: Counterexample to the optimality
of the schedule of Fig. 2.

4.2.2 Asymptotically optimal schedules

This section is devoted to Algorithm 1, whose prescribed schedules for two remote computers
branch on the value of Wκ. We show in Theorem 6 that the proposed schedules are all
asymptotically optimal; they are exactly optimal when Wκ ≥ 2.

Algorithm 1: Scheduling for 2 computers using at most n chunks per computer
if W ≥ 2X then1

∀i ∈ [1, n], W1,i ←
〈
i− 1
n
· n

n+ 1
X,

i

n
· n

n+ 1
X

〉
2

∀i ∈ [1, n], W2,i ←
〈
W − i

n
· n

n+ 1
X, W − i− 1

n
· n

n+ 1
X

〉
3

if W ≤ X then4

∀i ∈ [1, n], W1,i =W2,n−i+1 ←
〈
i− 1
n

W,
i

n
W

〉
5

if X < W < 2X then6

`← bn/3c7

∀i ∈ [1, `], W1,i ←
〈
i− 1
`

(W −X),
i

`
(W −X)

〉
8

∀i ∈ [1, `], W2,i ←
〈
W − i

`
(W −X), W − i− 1

`
(W −X)

〉
9

∀i ∈ [1, 2l],10

W1,l+i =W2,3l−i+1 ←
〈

(W −X) +
i− 1

2`
(2X −W ), (W −X) +

i

2`
(2X −W )

〉

Theorem 6. The schedules specified by Algorithm 1 are:

1. optimal when W ≥ 2X; in expectation, they complete

E(f,2)(W,Algorithm 1(n)) =
n− 1
n

X

units of work, which tends to8 X;

2. asymptotically optimal when W ≤ X; in expectation, they complete

E(f,2)(W,Algorithm 1(n)) = W − 1
6
W 3κ2

(
1 +

3
n

+
2
n2

)
8“tends to” means “as n grows without bound.”
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units of work, which tends to W − 1
6W

3κ2;

3. asymptotically optimal when X < W < 2X; letting ` = bn/3c, in expectation, they
complete

E(f,2)(W,Algorithm 1(n)) = 2W − 1
3
X −W 2κ+

1
6
W 3κ2

+
1
`

((
1 +

1
`

)
W −

(
1 +

2
3`

)
X − 1

2`
W 2κ− 1

4

(
1− 1

3`

)
W 3κ2

)
units of work, which tends to 2W − 1

3X −W
2κ+ 1

6W
3κ2.

Proof. We prove the theorem’s three assertions in turn.

1. Case: W ≥ 2X.

By definition of X, a computer is certain to be interrupted when processing a workload
of size at least X. Therefore, when W ≥ 2X, Theorem 4 tells us that the two computers
are working on disjoint subsets of the workload. Then Theorem 2 defines the sizes of
these workloads and the way they are partitioned into chunks. Theorem 2 also gives us
the expectation of jobdone.

2. Case: W ≤ X.

We must prove two things: that the proposed schedule is asymptotically optimal and
that its expectation for jobdone is what we claim it is. Let us take any positive integer n.
Then, the expectation of jobdone under Algorithm 1 is no greater than this expectation
under the optimal scheduling:

E(f,2)(W,n) ≥ E(f,2)(W,Algorithm 1(n)).

Following the series of transformations illustrated by Figure 4, we show that the optimal
scheduling with n chunks has not a better expectation than the solution of Algorithm 1
with 2n + 1 chunks. Each transformation is a non-decreasing transformation from the
point of view of the expectation of jobdone.

We start from an optimal scheduling for n chunks satisfying Theorem 4 (see Figure 4(a)).
First, we add a possibly empty (n + 1)-th chunk to the workload of each computer so
that each computer processes the whole workload (see Figure 4(b)). Obviously, this
transformation does not decrease the expectation. Then, we subdivide the chunks so
that the boundaries of the chunks of a computer coincide with the boundaries of the
chunks of the other computer (see Figure 4(c)). Formally, let B1 (resp. B2) be the set
of the “places” in the workload at which there is the boundary of a chunk of computer 1
(resp. of computer 2): B1 =

⋃n+1
i=0

{∑i
j=1 ω1,j

}
(resp. B2 =

⋃n+1
i=0

{
W −

∑i
j=1 ω2,j

}
).

Then, we take the union of these two sets, and we order its elements:

B1 ∪ B2 = {b1, ..., bl} with 0 = b0 < b1 < b2 < ... < bl−1 < bl = W.

Finally, the new chunks are defined by partitioning the whole workload into l chunks
such that:

W ′1,i =W ′2,l−i+1 with ω′1,i = bi − bi−1.
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W1,2 W1,3

W2,3 W2,2 W2,1

W1,1

(a) Optimal scheduling with n chunks.

W1,2 W1,3

W2,3 W2,2 W2,1

W1,1

W2,4

W1,4

(b) Solution completed with an (n+ 1)-th chunk.

(c) Dividing chunks for chunk boundaries to coincide. (d) Solution of Algorithm 1 with 2n+ 1 chunks.

Figure 4: Series of schedule transformations to prove the asymptotic optimality of Algorithm 1
when W ≤ X.

We then remark that l is no greater than 2n+ 1: l ≤ 2n+ 1. Indeed, there are at most
n chunks boundaries on computer 1 (resp. on computer 2) which are strictly between 0
and W . Therefore, in the new schedule, there are at most 2n chunk boundaries strictly
between 0 and W , which defines at most 2n + 1 chunks with the boundaries of the
whole workload. Finally, we remark that subdividing chunks does not decrease the
overall expectation.

To move closer to the schedule produced by Algorithm 1, we replaced the l chunks we
just built, by l chunks of equal-sizes: ∀i ∈ [1, l],W ′′1,i = W ′′2,l−i+1 = [(i − 1)Wl , i

W
l ]. To

prove that this indeed gives us a better solution, we prove a more general result.

Let us consider a scheduling over two computers. Computer P1 executes the chunks V1,1,
..., V1,l1 in that order, and Computer P2 executes the chunks V2,1, ..., V2,l2 in that order.
Moreover, we suppose that the two computers have two consecutive chunks in common.
More formally, we assume that there exists two indexes i ∈ [1, l1 − 1] and j ∈ [1, l2 − 1]
such that V1,i = V2,j+1 and V1,i+1 = V2,j

9. We look at how best distribute the load
between V1,i (=V2,j+1) and V1,i+1 (=V2,j). So, we let the scheduling unchanged except
for the distribution of the load |V1,i|+|V1,i+1| between chunks V1,i and V1,i+1. Therefore,
we only focus on the contribution of these two chunks to the overall expectation:

E = |V1,i|

(
1−

(
i∑

k=1

|V1,k|κ

)(
j+1∑
k=1

|V2,k|κ

))
+|V1,i+1|

(
1−

(
i+1∑
k=1

|V1,k|κ

)(
j∑

k=1

|V2,k|κ

))
.

To simplify the writing of formulas, we use the following notations: V1 =
∑i−1

k=1 |V1,k|,
V2 =

∑j−1
k=1 |V2,k|, and L = |V1,i|+ |V1,i+1|. Then,

E = |V1,i| (1− (V1 + |V1,i|)κ(V2 + L)κ) + (L− |V1,i|) (1− (V1 + L)κ(V2 + L− |V1,i|)κ) .

Therefore, the contribution of these two chunks to the expectation is equal to:

E = −(V1 + V2 + 2L)κ2|V1,i|2 + (V1 + V2 + 2L)Lκ2|V1,i|+ L(1− (V1 + L)(V2 + L)κ2)

and this expression is maximized when |V1,i| = L
2 , that is, when both chunks have the

same size.
9Theorem 4 tells us that the case V1,i = V2,j and V1,i+1 = V2,j+1 is suboptimal.



Static Strategies for Worksharing with Unrecoverable Interruptions 31

So replacing l coinciding chunks by l equal-size chunks does not decrease the expectation.
Finally, to obtain a well defined bound using the schedule of Algorithm 1, we just enlarge
the number of (equal-size) chunks, going from l to 2n + 1. To prove that this last
transformation do not decrease the overall expectation, we just explicit the expectation
of a solution with n equal-size chunks per computer and we show that this expectation
is non-decreasing with n.

E(f,2)(W,n) =
n∑
i=1

W

n

1−
i∑

j=1

W

n
κ
n−i+1∑
j=1

W

n
κ

 .

E(f,2)(W,n) =
n∑
i=1

W

n

1−
i∑

j=1

W

n
κ
n−i+1∑
j=1

W

n
κ


= W − W 3

n3
κ2

n∑
i=1

(i(n+ 1− i))

= W − W 3κ2

6

(
1 +

3
n

+
2
n2

)
.

The last expression is obviously a sum of non-decreasing functions in n.

We have therefore proved that for any positive value of n:

E(f,2)(W,Algorithm 1(2n+ 1)) ≥ E(f,2)(W,n) ≥ E(f,2)(W,Algorithm 1(n)).

The optimal expectation is obviously a non-decreasing function upper bounded by W ,
therefore it converges. Because of the above inequality, the optimal expectation has the
same limit than the expectation of Algorithm 1, whose expectation is thus asymptoti-
cally optimal.

3. Case: X < W < 2X.

As for the previous case, we must prove two things: that the proposed schedule is
asymptotically optimal and that its expectation for jobdone is what we claim it is. Let
us take any positive integer n. Then, the expectation of jobdone under Algorithm 1 is
no greater than this expectation under the optimal scheduling:

E(f,2)(W,n) ≥ E(f,2)(W,Algorithm 1(n)).

Following the series of transformations illustrated by Figure 5, we show that the optimal
scheduling with n chunks is not a better expectation than the solution of Algorithm 1
with 3(n+ 1) chunks. Each transformation is a non-decreasing transformation from the
point of view of the expectation of jobdone.

We start from an optimal scheduling for n chunks satisfying Theorem 4 (see Figure 5(a)).
By definition of X any computer-workload no smaller than X is obviously strictly sub-
optimal. In the first transformation (see Figure 5(b)) we add a (n+ 1)-th chunk to the
workload of each computer for each computer-workload to be exactly equal to X. Ob-
viously, this transformation does not change the expectation. Then, we subdivide the
chunks so that the boundaries of the chunks of a computer coincide with the boundaries
of the chunks of the other computer (see Figure 5(c)). For a formal description of this
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W −X X W

(a) Optimal scheduling with n chunks.

W −X X W

(b) Each workload is extended up to a size X with an
(n+ 1)-th chunk.

W −X X W

(c) Dividing chunks for chunk boundaries to coincide.

W −X X W

(d) In each of the three main parts, equalizing the size
of chunks.

W −X X W

(e) Solution of Algorithm 1 with 3(n+ 1) chunks.

Figure 5: Series of schedule transformations to prove the asymptotic optimality of Algorithm 1
when X < W < 2X.

process, see the proof of the case W ≤ X. Subdividing chunks does not decrease the
expectation. We must still count how many chunks we may have in each of the three
main parts of the workload, that is, in the intervals [0,W −X], [W −X,X], and [X,W ].
Note that each of the interval bounds is a chunk boundary. The chunk boundaries in
[0,W−X] can only come from original chunks of P1 and from the bound of the (n+1)-th
chunk we added to P2 (which gives a bound at W −X). Therefore, there are at most
n+ 1 chunks in [0,W −X]. The same is true for [X,W ]. Now, looking at the interval
[W −X,X], all the boundaries of the chunks W1,2, ..., W1,n could have strictly lied in
this interval. The same thing is true for the chunks W2,2, ..., W2,n. Therefore, in the
worst case, there can be 2n chunk boundaries strictly between W − X and X. This
gives us at most 2n+ 1 chunks in the interval [W −X,X]. Algorithm 1(3(n+1)) builds
a solution with n + 1 chunks in the interval [0,W −X], 2n + 2 chunks in the interval
[W − X,X], and n + 1 chunks in the interval [X,W ]. Therefore, in none of the three
main parts of the schedule does it have less chunks than the solution we just built.

The third transformation is done interval per interval. In each of the intervals [0,W−X],
[W −X,X], and [X,W ] we distribute the interval workload equally among the chunks
(see Figure 5(d)). From the proof of the case W ≤ X we know that this transformation
does not decrease the expectation when it is solely applied to the interval [W −X,X].
Therefore, what only remains to prove is that this transformation when solely applied
to the interval [0,W −X] does not decrease the expectation (the fact that the different
intervals do not impact each other is due to our failure model and to the fact that no
chunk simultaneously strictly belong to two intervals). To establish the desired result
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we only consider two consecutive chunks of P1, V1,i and V1,i+1 belonging in the interval
[0,W −X] (and thus which do not intersect the workload of P2). The contribution of
these two chunks to the expectation is:

E = |V1,i|

1−
i∑

j=1

|V1,j |κ

+ |V1,i+1|

1−
i+1∑
j=1

|V1,j |κ

 .

Using the notations L = |V1,i|+ |V1,i+1| and V =
∑i−1

j=1 V1,j , we have:

E = |V1,i| (1− (V + |V1,i|)κ) + (L− |V1,i|) (1− (V + L)κ)
= −|V1,i|2κ+ L|V1,i|κ+ L(1− (V + L)κ).

This last expression is obviously maximized when |V1,i| = L
2 , that is, when the two

consecutive chunks have the same size.

The last transformation increases the number of same-size jobs in each of the three
phases of the scheduling for these numbers to respectively be n+ 1, 2(n+ 1), and n+ 1
(see Figure 5(b)). We already know, from the study of the case W ≤ X, that this is not
decreasing the expectation for the chunks in the interval [W −X,X]. We now show that
this is also the case for chunks in the interval [0,W −X]. The cumulative expectation
for the m equal-size chunks of the interval [0,W −X] is:

E =
∑m

i=1
W−X
m

(
1−

∑i
j=1

W−X
m κ

)
= (W −X)− (W−X)2κ

m2

∑m
i=1 i

= (W −X)−
(

1
2 + 1

2m

)
(W −X)2κ

which is obviously increasing with m.

The expectation of jobdone, with l =
⌊
n
3

⌋
, for the scheduling of Algorithm 1(n) is then

equal to:

E =
∑l

i=1
W−X
l

(
1− iW−Xl κ

)
+
∑2l

i=1
2X−W

2l

(
1−

(
W −X + i2X−W

2l

)
κ
(
X − (i− 1)2X−W

2l

)
κ
)

+
∑l

i=1
W−X
l

(
1− iW−Xl κ

)
= 2W − 1

3X −W
2κ+ W 3κ2

6
+1
l

((
1 + 1

l

)
W −

(
1 + 2

3l

)
X − 1

2lW
2κ− 1

4

(
1− 1

3l

)
W 3κ2

)
.

5 Scheduling for p Remote Computers

We finally turn to the general case, wherein there are p remote computers. We have discovered
this case of general p to be much more difficult than the already challenging case p = 2, so
we devote our efforts here to searching for efficient heuristic schedules.

In order to appreciate how hard it is to extend the case p = 2 even to p = 3, the
reader is invited to seek an analogue of Theorem 4 for p = 3. As one example, we
have not discovered a 3-computer analogue of “mirroring,” and our attempts to do
so have all fallen to unobvious schedules such as those discussed after Theorem 5.
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Because of the difficulty of the general scheduling problem, we adopt a pragmatic approach,
by focusing only on the linear risk model, and by restricting attention to “well-structured”
schedules that employ same size chunks.

Our restriction to same-size chunks has two major antecedents. (1) The optimal
schedules for the case p = 1 and the asymptotically schedules for the case p =
2 mandate using same-size chunks. This suggests that such chunking may be
computationally beneficial. (2) This restriction greatly simplifies the specification
and implementation of schedules for the case of general p, by imposing simplifying
structure on this extremely hard scheduling problem.

All of the schedules we develop here operate as follows.

1. They partition the total workload into (disjoint) slices that they assign to—and replicate
on—disjoint subsets (coteries) of remote computers. (Each computer partitions each
slice into same-size chunks.)

2. They orchestrate the processing of the slices on each coterie of remote computers.

5.1 The Partitioning Phase

We begin with some simple partitioning heuristics that are tailored to the linear risk function—
but we suggest how they can be adapted to other risk functions. We partition our scheduling
problem into three subproblems, based on the size of the workload we wish to schedule.
This partition—which acknowledges the futility of deploying a workslice of size > X on any
computer, in the light of our interruption model—gives us two easy subproblems and one
challenging one that will occupy the rest of our attention.

W is “very small.” When W ≤ X, we deploy the entire workload in a single slice, which
we replicate on all p computers.

W is “very large.” When W ≥ pX, we deploy p slices of common size X, to be processed
independently on the remote computers. We abandon the remaining W − pX units of work,
in acknowledgment of our interruption model. (We assume here that work is not prioritized,
so we do not care which pX units we deploy.)

W is of “intermediate” size. The case X < W < pX is the interesting challenge, as
there is no compelling scheduling strategy. In this case, we deploy Z = min(W,pX) units of
work in to the p remote computers. We partition this work into q = dZκe slices, each of size
sl = Z/q, then deploy these slices on disjoint coteries of remote computers. We load balance
computing resources as much as possible, by replicating each slice on either bp/qc or dp/qe
remote computers.

Among the ways in which we have tailored the preceding scenario to the linear risk
function is by demanding that slices have size ≤ X. For general risk functions,
we would introduce a parameter λ that specifies the maximum probability of
interruption that the user would allow for a slice. We would then use λ to compute
the maximum allowable slice size maxsl by insisting that Pr(maxsl) = λ. For
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instance if λ = 1/2, then with the linear risk function we would set maxsl = 1
2X,

while with the exponential risk function we would set maxsl = (ln 2)X. The
amount of work we actually deploy would now be Z = min(W, p × maxsl). This
would mandate using q = dZ/maxsle slices, of common size sl = Z/q.

We now specify the partition procedure, Algorithm 2, which takes three inputs: the total
amount of work W , the number p of computers, and the maximum allowable risk λ. The
algorithm returns the number of slices, their sizes, and the number of remote computers that
each slice is deployed to.

Algorithm 2: The partitioning algorithm for p computers.
procedure Partition(W,p, λ)1

begin2

/*Determine maxsl such that Pr(maxsl) = λ*/3

Z ← min(W,p×maxsl)4

q ← dZ/maxsle5

sl← Z/q6

r ← p mod q; s← q − r7

Partition the computers into r coteries of cardinality bp/qc+ 1 each and8

s coteries of cardinality bp/qc each9

end10

5.2 The Orchestration Phase

The partition phase has left us with independent slices of work, each of size sl ≤ maxsl,
that will be executed by disjoint coteries of computers. All slices will be partitioned into
n chunks of common size ω = sl/n, where the “checkpointing granularity” n is specified by
the user. For each coterie Γ of computers, each chunk assigned to coterie Γ will be executed
by all gΓ ∈ {bp/qc , 1 + bp/qc} computers in the coterie. Our challenge is to determine
how to orchestrate the gΓ executions of each chunk—i.e., to determine when (at which times
step) and where (on which computer) to execute which chunk—in a way that maximizes the
expected amount of work completed by the total assemblage of p computers. The remainder
of our study is dedicated to this orchestration phase.

5.2.1 General schedules

Let us motivate our approach to the orchestration problem via the following example, wherein
each slice is partitioned into n = 12 chunks, and each coterie contains g = 4 computers. Since
each coterie of computers operates independently of all others, we can specify the overall
schedule coterie by coterie. For each coterie Γ and its associated slice, we represent a possible
schedule for Γ’s executing the slice via a table such as Table 1; we call these tables execution
charts. Rows in these charts enumerate the computers in the associated coterie Γ, and columns
enumerate the indices of the chunks into which coterie Γ’s slice is chopped. Chart-entry Ci,j
is the step at which chunk j is processed by computer Pi.
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XXXXXXXXXXXComputer
Chunk

1 2 3 4 5 6 7 8 9 10 11 12

P1 1 6 9 12 2 5 8 11 3 4 7 10
P2 12 1 6 9 11 2 5 8 10 3 4 7
P3 9 12 1 6 8 11 2 5 7 10 3 4
P4 6 9 12 1 5 8 11 2 4 7 10 3

Table 1: An execution chart for a coterie of four computers. In this example, chunk 5 is
executed by P2 at step C2,5 = 11.

Any g× n integer matrix whose rows are permutations of [1..n] can be used as the execution
chart for a valid schedule for the slice, under which each Pi executes each chunk j (specifically,
at step Ci,j). One can use such a chart to calculate the expected amount of work completed
under the schedule that the chart specifies. To wit, chunk j will not be executed under a
schedule only if all g computers in the coterie are interrupted before they complete the chunk.
This occurs with probability

g∏
i=1

Pr(Ci,jω) =
g∏
i=1

Pr (Ci,jsl/n) ,

so the expectation of the total work completed from the slice is

E(sl, n) = (sl/n)
n∑
j=1

(
1−

g∏
i=1

Pr (Ci,jsl/n)

)

= sl

1− 1
n

(
slκ

n

)g n∑
j=1

g∏
i=1

Ci,j

 . (13)

The last expression, (13), is specific to the linear-risk model: because each Ci,j ≤ n, we have
Pr(Ci,jω) = Ci,jωκ under the linear-risk model, so we need not take the minimum of the last
expression with 1 (as in (1)).

We derive the following upper bound:

Proposition 1.

E(sl, n) ≤ Emax = sl ·

(
1−

(
sl · κ(n!)1/n

n

)g)
.

Proof. Let cpj =
∏g
i=1Ci,j be the j-th column product in the chart. From the expression

of E(sl, n), we see that it is maximum when the sum of the n column products is minimum.
But the product of the column products is constant, because each row is a permutation of
[1..n]: we have

∏n
j=1 cpj = (n!)g. The sum is minimum when all products are equal (to (n!)

g
n ),

whence the result.

Stirling’s formula gives a useful approximation of the upper bound when n is large:

Emax ≈ sl ·
(

1−
(

sl.κ

e

)g)
.



Static Strategies for Worksharing with Unrecoverable Interruptions 37

5.2.2 Group schedules: introduction

Referring back to Table 1, we observe that chunks 1, 2, 3, and 4 are always executed at
the same steps, by different computers; the same is true for chunks 5, 6, 7, 8 as a group, and
for chunks 9, 10, 11, 12 as a group. The twelve chunks of the slice thus partition naturally
into three groups. By respecifying the schedule of Table 1 as the group(-oriented) schedule

Group 1 Group 2 Group 3
chunks 1–4 chunks 5–8 chunks 9–12

1 2 3
6 5 4
9 8 7
12 11 10

Table 2: Execution chart for a group-oriented schedule. Rows represent time steps for the first
computer in each group associated with each column; the remaining computers’ schedules are
obtained by cyclic downward permutations of the rows.

of Table 2, we significantly simplify the specification. Note that the meanings of rows and
columns have changed in this re-orientation: compare Tables 1 and 2 as we describe the
changes. In the group(-oriented) execution chart of Table 2, each column corresponds to a
group of chunks; entry (i, j) of the chart specifies the step at which each computer executes
its ith chunk within group j. The schedule for computer Pj , where j ∈ {2, 3, 4}, is obtained
by cyclically permuting (downward) the schedule for P1 j − 1 times. The important feature
here is that this orchestration has each computer attempt to execute each chunk exactly once.

We generalize this description. When n is a multiple of g, we can sometimes convert the full
g× n execution chart C, as exemplified by Table 1, to the g× n/g group(-oriented) execution
chart Ĉ exemplified by Table 2. There are n/g groups, each of size g, and chart-entry Ĉi,j
denotes the step at which group j of chunks is executed for the ith time. It is tacitly assumed
that chunk-indices within each group are cyclically permuted (downward) at each step, so
that each chunk ends up being processed by each computer. Thus, in order for a chart Ĉ to
specify a valid group schedule, its total set of entries must be a permutation of [1..n]. When
Ĉ does specify a valid group schedule, the expected amount of work it completes, under the
linear risk model, is:

E(sl, n) = sl

1− g

n

(
sl · κ

n

)g n/g∑
j=1

g∏
i=1

Ĉi,j

 . (14)

The preceding expression exposes the importance of the constant

K(Θ) =
n/g∑
j=1

g∏
i=1

Ĉ
(Θ)
i,j

as a measure of a group schedule Θ’s performance; to wit,

E(Θ)(sl, n) = sl− K(Θ) · g
κ

(
slκ

n

)g+1

. (15)
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Thus: A smaller value of K(Θ) corresponds to a larger value of E(Θ)(sl, n).

Group schedules are very natural, because they are symmetric: all computers play the same
role as the work is processed, differing only in the times at which they process different chunks.
Intuition suggests that the most productive schedules are symmetric: why should some of the
identical computers be treated differently by “nature” than others? Indeed, the following
upper bound on the expected work production of group schedules—which is the best we have
been able to prove—does not distinguish symmetric schedules from general ones—but we have
not yet been able to prove that no difference exists.

Proposition 2. For any group schedule Θ,

E(Θ)(sl, n) ≤ Emax = sl− slg+1κg(n!)g/n

ng
.

Proof. Let cpj =
∏g
i=1Gi,j be the j-th column product. As before, E(sl, n) is maximum when

the sum of the n
g column products is minimum. The product of these column products is

equal to a constant (n!). The sum is minimum when all products are equal to (n!)
g
n , hence

the same result as for Proposition 1.

Note that Proposition 2 affords us an easy lower bound, Kmin on the K value of any group
schedule with the parameters g and n:

Kmin =
⌈

n

g
(n!)g/n

⌉
.

5.2.3 Group schedules: specific schedules

Our group schedules strive to maximize expected work completion by having every computer
attempt to compute every chunk. Of course, there are many ways to achieve this coverage,
and the form of the risk function will make some ways more advantageous than others with
respect to maximizing expected work completion. As an extreme example, in the case p = 2,
for every risk function, it is advantageous to have the remote computers process the work
they share “in opposite orders” (Theorem 4). We now specify and compare the performance
of five group schedules whose chunk-scheduling regimens seem to be a good match for the
way the linear risk function “predicts” interruptions. We specify each schedule Θ via its group
execution chart Ĉ(Θ)—see Fig. 6—and we represent the performance of each schedule Θ via
its performance constant K(Θ). The beneficent structures of these schedules is evidenced by
our ability to present explicit symbolic expressions for their K constants.

Cyclic scheduling (Fig. 6(a)). Under this simplest scheduling regimen, Θcyclic, groups
are executed sequentially, in a round-robin fashion. Specifically, the chunks of group j are
executed at steps j, j + n/g, j + 2n/g, and so on. We find that

K(Θcyclic) =
n/g∑
j=1

g−1∏
k=0

(j + kn/g) .
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Group 1 Group 2 Group 3
1 2 3
4 5 6
7 8 9
10 11 12

(a) Cyclic: K = 3104

Group 1 Group 2 Group 3
1 2 3
6 5 4
9 8 7
12 11 10
(b) Reverse: K = 2368

Group 1 Group 2 Group 3
1 2 3
4 5 6
9 8 7
12 11 10

(c) Mirror: K = 2572

Group 1 Group 2 Group 3
1 2 3
6 5 4
7 8 9
12 11 10

(d) Snake: K = 2464
Group 1 Group 2 Group 3

1 2 3
8 6 4
9 7 5
10 11 12
(e) Fat snake: K = 2364

Figure 6: Five group schedules with their associated K values. For this instance, Kmin = 2348.

The weakness of Θcyclic is that chunks in low-index groups have a higher probability of being
completed successfully than do chunks in high-index groups—because chunks remain in the
same relative order throughout the computation. The remaining schedules that we consider
aim to compensate for this imbalance via different intuitively motivated strategies.

Reverse scheduling (Fig. 6(b)). A schedule Θreverse produced under this regimen executes
the chunks in each group once in the initially-specified order, and then executes them in the
reverse order n/g− 1 times. The schedule thereby strives to compensate for the imbalance in
chunks’ likelihoods of being completed created by their initial order of processing. (Θreverse is
the schedule specified in Table 2.) Under Θreverse, the chunks in group j are executed at step
j, and thereafter at steps 2n/g − j + 1, 3n/g − j + 1, 4n/g − j + 1, and so on. We find that

K(Θreverse) =
n/g∑
j=1

j ×
g−1∏
k=1

((k + 1)n/g − j + 1) .

Mirror scheduling (Fig. 6(c)). The mirror schedule Θmirror, which is defined only when g
is even, represents a compromise between the cyclic and reverse scheduling strategies. Θmirror

compensates for the imbalance in likelihood of completion only during the second half of the
computation. Specifically, Θmirror mimics Θcyclic for the first g/2 phases of processing a group,
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and it mimics Θreverse for the second g/2 phases. We find that

K(Θmirror) =
n/g∑
j=1

1
2
g−1∏
k=0

(j + kn/g) ((p− k)n/g − j + 1) .

Snake-like scheduling (Fig. 6(d)). Our fourth schedule, Θsnake, compensates for the im-
balance of the cyclic schedule by mimicking Θcyclic at every odd-numbered step and mimicking
Θreverse at every even-numbered step, thereby lending a snake-like structure to the execution
chart Ĉ(Θsnake). We find that

K(Θsnake) =
n/g∑
j=1

1
2
g−1∏
k=0

(j + 2kn/g) (2(k + 1)n/g − j + 1) .

Fat snake-like scheduling (Fig. 6(e)). Our final, fifth schedule, Θfat−snake, qualitatively
adopts the same strategy as does Θsnake, but it slows down the return phase of the latter
schedule. Consider, for illustration, three consecutive rows of Ĉ(Θfat−snake). The first row is
identical to its shape in Ĉ(Θcyclic). The return phase of Fat snake distributes elements of the
two remaining rows in the reverse order, two elements at a time. The motivating intuition is
that the slower return would further compensate for the imbalance in Θcyclic. We find that

K(Θfat−snake) =
n/g−1∑
j=0

1
3
g−1∏
k=0

(1 + j + 3kn/g) (3(k + 1)n/g − 2j − 1) (3(k + 1)n/g − 2j) .

We derive the following performance bounds for these five schedules

Proposition 3. The values of K(Θ) for our five scheduling algorithms satisfy the following
lower and upper bounds:

1
n

≤ K(Θcyclic)

g! (n/g)g+1 ≤ 1

1
2g

≤ K(Θreverse)

g! (n/g)g+1 ≤ 1
2(n + g)

1
n

≤ K(Θmirror)

g! (n/g)g+1 ≤ 1

g

n2
≤ K(Θsnake)

g! (n/g)g+1 ≤ 1

1
(g − 1)n

≤ K(Θfat−snake)

g! (n/g)g+1 ≤ g
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Proof. The calculations are straightforward. For the Cyclic schedule, we have

Kcyclic =

n
g∑

j=1

g−1∏
k=0

(
j + k

n

g

)
.

We derive the lower bound by replacing index j by 0 in the summation (except in the term
k = 0 where we replace j by 1):

Kcyclic ≥
n

g

(
g−1∏
k=1

k
n

g

)
= (g − 1)!

(
n

g

)g

=
1
n
g!
(

n

g

)g+1

.

Similarly, we let j = n
g in each term of the summation to get the upper bound. We proceed

in a similar way for the other three variants.

We explicit the computations for Fat snake, as they are a bit less obvious. For the lower
bound we have:

Kfat−snake =
∑ n

g
−1

j=0

∏ g
3
−1

k=0

(
1 + j + 3k n

g

)(
3(k + 1)n

g − 2j − 1
)(

3(k + 1)n
g − 2j

)
≥
∑ n

g
−1

j=0

∏ g
3
−1

k=0

(
1 + 3k n

g

)(
3(k + 1)n

g − 2n
g + 1

)(
3(k + 1)n

g − 2n
g + 2

)
≥ n

g

∏ g
3
−1

k=0

(
1 + 3k n

g

)(
(3k + 1)n

g

)(
(3k + 1)n

g

)
≥
(

n
g

)3∏ g
3
−1

k=1

(
3k n

g

)(
(3k + 1)n

g

)(
(3k + 1)n

g

)
≥
(

n
g

)3∏ g
3
−1

k=1

(
(3k − 1)n

g

)(
3k n

g

)(
(3k + 1)n

g

)
=
(

n
g

)g
(g − 2)!

For the upper bound we derive:

Kfat−snake =
∑ n

g
−1

j=0

∏ g
3
−1

k=0

(
1 + j + 3k n

g

)(
3(k + 1)n

g − 2j − 1
)(

3(k + 1)n
g − 2j

)
≤
∑ n

g
−1

j=0

∏ g
3
−1

k=0

(
n
g + 3k n

g

)(
3(k + 1)n

g

)(
3(k + 1)n

g

)
≤ n

g

∏ g
3
−1

k=0

(
(3k + 1)n

g

)(
(3k + 3)n

g

)(
(3k + 3)n

g

)
≤
(

n
g

)g+1 (∏ g
3
−2

k=0 (3k + 2)(3k + 3)(3k + 4)
)

(g − 2)g2

=
(

n
g

)g+1
(g − 2)!(g − 2)g2 ≤

(
n
g

)g+1
(g)!g

From the size of its bounds on K(Θsnake), Proposition 3 suggests that schedule Θsnake may be
the most efficient of the five group-scheduling algorithms we have considered, especially when
we checkpoint often, i.e., when n is large. We evaluate this possibility via the experiments
reported at the end of this subsection. While still focusing on mathematical analyses of our
schedules, though, we use Stirling’s formula to derive more evocative bounds on K(Θsnake):
Kmin ≤ K(Θsnake) ≤ Kupper, where

Kmin ≈
e

g

(
n

g

)g+1

and Kupper = g!
(

n

g

)g+1

≈ e
√

2π
√
g

(
n

g

)g+1

.
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We conclude this subsection by adding a last element to our set of group schedules. The
resulting “greedy” procedure strives to iteratively balance the probability of success for each
group of chunks. As we do not get any asymptotic estimation for Greedy, we content ourselves
with a numerical estimate.

Greedy scheduling (Table 3). The greedy scheduling algorithm, Θgreedy, iteratively assigns
a step to each group of chunks so as to balance the current success probabilities as much
as possible. At each step, Θgreedy constructs one new row of the execution chart Ĉ(greedy).
Remember that, after k steps, the probability that a chunk in group j will be interrupted is
proportional to the product Π

k

i=1Ĉ
(greedy)
ij of the entries in column j of the chart. The idea is

to sort current column products and to assign the smallest time-step to the largest product,
and so on. Table 3 illustrates a computation with n = 12 and g = 4. In this example, Θgreedy

is identical to Θreverse, hence achieves the same performance constant K(Θgreedy) = K(Θreverse) =
2368.

Step 1 1 2 3
CCP 1 2 3

Step 2 6 5 4
CCP 6 10 12

Step 3 9 8 7
CCP 54 80 84

Step 4 12 11 10
CCP 6 880 12

Table 3: A computation by Θgreedy. CCP denotes the Current Column Product.

For the record, and for the curious reader: Table 4 provides an example for which none of
our group schedules is optimal, and Table 5 shows an example for which Θgreedy differs from,
and outperforms, Θreverse.

1 2 3
4 5 6
7 8 9

1 2 3
6 5 4
7 8 9

1 2 3
6 5 4
9 8 7

1 2 3
8 6 4
9 7 5

1 2 3
8 5 4
9 7 6

K(Θcyclic) = 270 K(Θsnake) = 230 K(Θreverse) = K(Θgreedy) = 218 K(Θfatsnake) = 216 Koptimal = Kmin = 214

Table 4: Comparing group schedules for n = 9 and g = 3. (Θmirror is missing because g is
odd). Here Θreverse and Θgreedy are identical. The optimal schedule achieves the bound Kmin.

Numerical evaluation We ran all six of our scheduling heuristics on all problems where
g ∈ [2, 100], n ∈ [2 ∗ g, 1000], and g divides n; altogether, this corresponds to 4032 instances.
We report in Table 6 two series of statistics. In the Relative series, we form the ratio of
the K value of a given heuristic on a given instance over the lowest K value found for that
instance among all the tested heuristics. For the Absolute series, we form the ratio with Kmin.
In Table 6 we also report the best-of heuristic that, on each instance, runs the six other
algorithms and picks the best answer.
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1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

1 2 3 4 5
6 7 8 9 10
15 14 13 12 11
20 19 18 17 16

1 2 3 4 5
10 9 8 7 6
15 14 13 12 11
20 19 18 17 16

K(Θcyclic) = 34104 K(Θmirror) = 27284 K(Θreverse) = 24396

1 2 3 4 5
10 9 8 7 6
11 12 13 14 15
20 19 18 17 16

1 2 3 4 5
14 12 10 8 6
15 13 11 9 7
16 17 18 19 20

1 2 3 4 5
10 9 8 7 6
15 14 13 12 11
20 19 18 16 17

K(Θsnake) = 25784 K(Θfat−snake) = 24276 K(Θgreedy) = 24390

Table 5: Comparing group schedules for n = 20 and g = 4. Here the most efficient schedules
are ΘFatsnake, Θgreedy, and Θreverse (in this order). The lower bound is Kmin = 23780.

Relative Absolute Success rate
min max avg. stdv. min max avg. stdv.

Cyclic 1.1 3.786 2.143 0.664 1.1 3.786 2.239 0.592 00.00%
Reverse 1 1.295 1.055 0.065 1 1.295 1.117 0.061 12.42%
Mirror 1 2.468 1.504 0.393 1 2.468 1.575 0.338 12.37%
Snake 1 1.199 1.127 0.059 1 1.291 1.193 0.059 12.34%
Greedy 1 1.055 1.005 0.015 1 1.224 1.067 0.074 83.01%
Worm 1 1.442 1.123 0.115 1 1.530 1.192 0.143 17.07%
Best-of 1 1 1 0 1 1.224 1.061 0.069 100.00%

Table 6: Statistics on the K value of all heuristics for 2 ≤ g ≤ 100 and 2g ≤ n ≤ 1000
(minimum, maximum, average value and standard deviation over the 4032 instances).

Θgreedy is clearly the best heuristic: it finds the best schedule for 83% of the instances, and
its solutions are never more than 6% worse than the best solution found. More importantly,
its performance constant is never more than 23% larger than the lower bound Kmin, and, on
average, it is less than 7% larger than this bound. In fact, only Θfat−snake happens sometimes to
find better solutions than Θgreedy; however, these improvements are marginal, as one can see by
comparing the absolute performance of Θgreedy and best-of. As a result of this experimentation,
we retain only Θgreedy as the exemplar of group schedules for the experiments of Section 6.

5.3 Choosing the Optimal Number of Chunks

To this point, we have assumed that the number n of chunks per computer was given to
us. In fact, we show now that (happily) one does not have to guess at this value. We begin
to flesh out this remark by noting that we can easily obtain an explicit expression for the
expected work completed by any group schedule under the charged-initiation model, from
that schedule’s analogous expectation under the free-initiation model.
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Theorem 7. (p remote computers: charged-initiation model)
Let C be a group schedule defined by the execution chart

Ci,j
∣∣
i∈{1,...,g},j∈{1,...,n/g} .

If sl(c) ≤ min {sl, X − nε}, then:

E(c,n)(sl(c), C) =
sl(c)

sl(c) + nε
E(f,n)(sl(c) + nε, C).

Proof. Because of the condition sl(c) ≤ min {sl + nε,X}, Eq. (15) can be used with sl(c) + nε
instead of sl. After rewritting we get:

n

sl(c) + nε

(
E(f,n)(sl(c) + nε, C)− sl(c) − nε

)
= −K(C)

((
sl(c)

n
+ ε

)
κ

)g

.

Now, we can directly compute E(c,n)(sl(c), C):

E(c,n)(sl(c), C) =
sl(c)

n

n∑
j=1

(
1−

g∏
i=1

Pr(c)

(
Ci,j

sl(c)

n

))

=
sl(c)

n

n∑
j=1

(
1−

g∏
i=1

Ci,j

(
sl(c)

n
+ ε

)
κ

)

= sl(c) − sl(c)

n

((
sl(c)

n
+ ε

)
κ

)g n∑
j=1

g∏
i=1

Ci,j

= sl(c) − sl(c)

n

((
sl(c)

n
+ ε

)
κ

)g

K(C)

= sl(c) +
sl(c)

n

n

sl(c) + nε

(
E(f,n)(sl(c) + nε, C)− sl(c) − nε

)
=

sl(c)

sl(c) + nε
E(f,n)(sl(c) + nε, C).

Now we can determine the value of n, making only the assumption that the expectation of the
group schedule within the charged-initiation model is a unimodal function of n. (It is quite
natural to assume that this expectation is non-decreasing with n under the free-initiation
model.) We can, then, use a binary search to seek the optimum value of n. Specifically, for
each tested value m we compare the values of the expectation for m and m+ 1 to determine
if the expectation is still increasing in m, in which case m is smaller than the optimum n.
The binary search can be safely performed in the interval [1..X/ε].

6 Experiments

We have performed a suite of simulation experiments in order to gain insight into the perfor-
mance of the group heuristics on large simulated platforms that are subject to unrecoverable
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interruptions. We report only on the observed behavior of Θgreedy for two reasons, first be-
cause of its preeminence in the experiment reported in Table 6, and second, because our
simulations show only small differences among our six heuristics. The source code for all six
group heuristics can be found at http://graal.ens-lyon.fr/~abenoit/code/failure.c.

6.1 The Experimental Plan

We use randomly generated platforms made of p computers. In all experiments, we set
κ = 1, and we choose the times for interruptions randomly chosen between 0 and 1, following
a uniform distribution. The size of the workload, Wtot, varies between 1 and p. Wtot =
1 represents the case in which all computers can potentially do all the work before being
interrupted; Wtot = p represents the case in which we can do no better than deploy one slice
of size 1 on each computer (which will then compute until it is interrupted).

The key parameters in our experiment are: the number of computers, p; the total amount
of work Wtot; the chunk size, cs; and the start-up cost ε. In the experiments, three of these
parameters are fixed while the fourth one varies.

We compare several heuristics:

H1-brute– This brute replication heuristic replicates the entire workload onto all computers.
Each computer executes work in the order of receipt, starting from the first chunk, until
it is interrupted.

H2-norep– This no replication heuristic distributes the work in a round-robin fashion, with
no replication. Thus, each computer is allocated Wtot/p units of work (rounded by the
chunk size).

H3-cyclicrep– This cyclic replication heuristic distributes the work in round-robin fashion,
as does H2-norep, but it keeps distributing chunks, starting from chunk 1 again, until
each computer has a total (local) workload of 1. Note that when the number of chunks
is a multiple of p, this heuristic is identical to H2-norep, since the chunks assigned to a
computer during the replication phase were already assigned to it previously.

H4-randomrep– This random replication heuristic distributes a total workload of 1 to each
computer, but it chooses chunks randomly, to ensure that all chunks deployed on the
same computer are distinct. However, the same chunk can be assigned to several com-
puters.

H5-groupgreedy– This group greedy heuristic is the schedule Θgreedy of Section 5.2.2. Since
our number of chunks n may not be a multiple of g, the last group of computers may
not have a full g chunks to process. In this case, we ignore this last group once its
computers have been assigned as many time-steps as its number of chunks.

H6-omniscient– This last omniscient heuristic is an idealized static heuristic that knows
exactly when each computer is interrupted. This idealized knowledge obviates replica-
tion: each computer is statically allocated precisely as many chunks as it can process
before its interruption, and only distinct chunks are sent. Of course no actual heuristic
can beat this optimal omniscient heuristic.

http://graal.ens-lyon.fr/~abenoit/code/failure.c
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6.2 Experimental Results

Heuristic min max average standard deviation
H1-brute 0.017199 1.000000 0.300934 0.316694
H2-norep 0.000000 1.000000 0.941108 0.156558
H3-cyclicrep 0.333333 1.000000 0.973718 0.070451
H4-randomrep 0.166667 1.000000 0.929911 0.106433
H5-groupgreedy 0.333333 1.000000 0.980068 0.055115
H6-omniscient 1.000000 1.000000 1.000000 0.000000

Table 7: Relative statistics on the overall simulations (2,696,800 instances): the work achieved
by one heuristic on one instance is divided by the work achieved by the best heuristic for that
instance.

In the following, we output the ratio Wdone/Wtot, where Wdone is the amount of work suc-
cessfully completed by a heuristic, and Wtot is the total amount of work that had to be
processed. The experiments have been conducted by averaging the result obtained on 100
different random configurations of the system (processor failure times).

(E1) Fixed p, cs and ε

In this first experiment, we analyse the impact of the workload on the heuristics. The total
amount of work Wtot varies between 1 and the number of processors p, which are the two
extreme cases. The chunk size is fixed at 1/n+ ε, where n is the number of chunks per unit
of work. We fix the values n = 97, 100, 997 and ε = 0.001, 0.00001. Finally, we experiment
with p = 10 and p = 80 processors.

Figure 7 presents the results with ε = 0.001 for all other combinations of parameters, while
Figure 8 shows the behaviour when ε = 0.00001.

First we can notice that in all plots, as expected, H6-omniscient always return the best result,
and H1-brute the worse one. The other heuristics are more comparable with each other. In
all cases, H3-cyclicrep is better than H2-norep, but these two heuristics are equivalent when
the total number of chunks is a multiple of the number of processors, as can be observed on
Figures 7(c), 7(d), 8(c) and 8(d). Notice that the total number of chunks increases with the
total workload, which explains the particular behaviour of H3-cyclicrep in Figures 7(d) and
8(d).

Compared to these last two heuristics, H4-randomrep is generally getting better results than
H2-norep for small workloads. This can be easily explained by the fact that replication allows
to process chunks that fail in the case with no replication. However, when the workload
increases, then H4 may distribute several times the same chunk while it succeeds on the first
processor on which it was assigned. Thus, duplicated work will be completed. Of course,
when the cyclic replication is useless, H4 is also better than H3 for small workloads.

Finally, the group greedy heuristic is in most cases the best one (aside from the optimal H6),
at least when the workload is not too large. When the workload increases, since the number
of chunks is not necessarily a multiple of the cardinality of groups g, the handling of some
chunks may not be optimized. Moreover, for a high workload, a cyclic distribution of the
work will achieve a good result since not much redundant work can be done.
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Even though this experiment did not aim to show the influence of the number of chunks and
start-up cost, we can see on Figure 7 that the increase of the number of chunks leads to poorer
performance: with 997 chunks the start-up cost almost is equal to the size of the chunk! Thus
the performance of H1 drops under 0.5 even with a single processor. This is not true anymore
when the start-up cost becomes negligible, as can be seen in Figure 8.

(E2) Fixed Wtot, cs and ε

In this second experiment, we study the behaviour of the heuristics when the number of
processors increases up to 100. To compare on a fair basis, the total amount of work Wtot also
increases with the number of processors, but it is always the same ratio: we let Wtot = α.p,
where α is fixed (hence the notation “fixed Wtot”). We consider the values α = 0.3 and
α = 0.7, corresponding respectively to a low load and a high load of the system. The chunk
size is still fixed to 1/n + ε, where n is the number of chunks per unit of work. We fix the
values n = 50, 250 and ε = 0.001, 0.00001.

Figure 9 shows these results, and it demonstrates that all heuristics scale well to large plat-
forms, since the relative performance remains constant with the increase of the number of
processors. Only heuristic H1-brute has a decreasing performance, because it does not ex-
ploit the fact that several processors can process different chunks in parallel. Also, we still
observe the impact of the ratio number of chunks vs number of processors for the H3-cyclicrep
heuristic, which often behaves as H2-norep in these settings, but sometimes manages to be-
come close to H5-groupgreedy (see Figures 9(a), 9(c) and 9(e)). When the workload is more
important, H2, H3 and H5 are close to each other, and their result is better than H1 and H4,
and worse than the optimal H6 (see Figures 9(b), 9(d) and 9(f)). Notice that with a larger
start-up cost as in Figure 9(f), these heuristics are very close to the optimal.

The conclusion of this experiment is that for various parameter settings, the heuristics scale
very well to large platforms, which is an important result.

(E3) Fixed Wtot, p and ε

In this third experiment, both the total workload Wtot and the number of processors p are
fixed. We consider two different settings. In the first one, p = 10 and Wtot = 3, 7 (see
Figure 10): with a small number of processors we consider a small and large workload,
without going into the extreme cases. In the second setting, p = 80 and Wtot = 10, 70 (see
Figure 11): the goal is to see whether the number of processors has an impact of the number
of chunks that should be chosen.

For each of these settings, several start-up costs are considered: ε = 0.01 (big start-up cost),
ε = 0.001 (medium start-up cost), and ε = 0.00001 (negligible start-up cost). The goal of this
experiment is to identify how many chunks should be used in order to maximize the amount
of work done, depending on the setting.

When the start-up cost is negligible (see Figures 10(a), 10(b), 11(a), 11(b)), one should use
a large number of chunks, since having small chunks reduces the loss that occurs when a
processor fails. However, when the start-up cost increases, one should be more cautious
because this cost decreases the performance of the solution. In the case with 10 processors,
only a small number of chunks should be used when the start-up cannot be neglected. For
big start-up costs (Figures 10(e) and 10(f)), the decrease of performance is very important.
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(f) 80 processors, 997 chunks.

Figure 7: (E1) with ε = 0.001, varying Wtot.
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(f) 80 processors, 997 chunks.

Figure 8: (E1) with ε = 0.00001, varying Wtot.
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(a) α = 0.3, n = 50, ε = 0.00001.
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(b) α = 0.7, n = 50, ε = 0.00001.
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(c) α = 0.3, n = 250, ε = 0.00001.
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(e) α = 0.3, n = 50, ε = 0.001.
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(f) α = 0.7, n = 250, ε = 0.001.

Figure 9: (E2): varying p.
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It is less obvious in the intermediate case of ε = 0.001 (Figures 10(c) and 10(d)), but even
in this case, the performance decreases when the number of chunks is more important. Of
course, care should be taken about the exact number of chunk if using H3-cyclicrep whose
performance fluctuates, as observed before.

When there are more processors in the system, the influence of the start-up cost is less
important; for instance in the case of a big workload, even with ε = 0.01, one can use up to
1000 chunks per unit of work with no decrease in the performance (Figure 11(f)).

However, for all settings, if the chunk size becomes significantly smaller than the start-up
cost, the performance of all heuristics decreases.

(E4) Fixed Wtot, p, and cs

In this last set of experiments, we study the impact of the start-up cost on the solution.
Values of ε are taken between 0 and 1. We consider values of n = 10, 100, 500.

First we run simulations with p = 10 processors (see Figure 12). In this case, as soon as the
chunks are small enough (n ≥ 100), the start-up cost has an important effect on the result,
and the performance of all heuristics decreases drastically with the increase of ε. Moreover, as
soon as the start-up cost is large enough, all heuristics (except H1) find the optimal solution.
There is still a difference only in the case Wtot = 1 and n = 100 (Figure 12(c)) and for n = 10
(Figures 12(a) and 12(b)). These plots confirm the ranking of the different heuristics: H4-
randomrep is better than H2-norep and H3-cyclicrep for small values of ε in Figure 12(a), and
the group heuristic H5-groupgreedy is most of the time better than the three other heuristics.
Note that H4-randomrep has a very random behaviour which was not observed before.

Results are quite similar when tackling a platform with p = 50 processors (see Figure 13).
Due to the small workload Wtot = 1 on Figures 13(a), 13(c) and 13(e), the whole work can
be replicated onto all processors, using different permutations of chunks, and the difference
between the different heuristics can be observed. With the increase of the workload (Wtot =
10, 30) the start-up cost has less impact on the performance of the heuristics.

6.3 Summarizing the Experiments

The experiments have confirmed the fact that all of our group heuristics implement an effi-
cient way to distribute chunks. In many cases, H5-groupgreedy (Θgreedy) provides the optimal
solution. However, we observe that for some values of the parameters, H5-groupgreedy per-
forms only slightly better than simpler heuristics such as H3-cyclicrep. For heavily loaded
systems, a simple cyclic distribution of work can even be better than any sophisticated group
heuristic, because we cannot ensure that the number of chunks will always be a multiple of g,
and this cardinality may not even be fixed within a large computation: there may be groups
with different values, g or g − 1.

These experiments have also showed the impact of the start-up cost on the solution; in
particular, the simulations allow us to determine how many chunks should be used in order
to maximize the work done, for a given setting. If the start-up cost is negligible, small chunks
can be used, but this strategy becomes disadvantageous with big start-up costs.
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(b) Wtot = 7, ε = 0.00001.
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(c) Wtot = 3, ε = 0.001.
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(f) Wtot = 7, ε = 0.01.

Figure 10: (E3) with 10 processors: varying cs.
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(f) Wtot = 70, ε = 0.01.

Figure 11: (E3) with 80 processors: varying cs.
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 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
W

d
o

n
e

/W
to

t

Start-up cost

(b) Wtot = 5, n = 10.
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(c) Wtot = 1, n = 100.
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(e) Wtot = 1, n = 500.
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(f) Wtot = 5, n = 500.

Figure 12: (E4) with 10 processors: varying ε.
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(b) Wtot = 10, n = 10.
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(f) Wtot = 30, n = 10.

Figure 13: (E4) with 50 processors: varying ε.
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7 Conclusion

We have presented a model for studying the problem of scheduling large divisible workloads
on p identical remote computers that are vulnerable (with the same risk function) to unre-
coverable interruptions (Section 2). Our goal has been to find schedules for allocating work
to the computers and for scheduling the checkpointing of that work, in a manner that maxi-
mizes the expected amount of work completed by the remote computers. Most of the results
we report assume that the risk of a remote computer’s being interrupted increases linearly
with the amount of time that the computer has been available to us; a few results provide
scheduling guidelines for more general risks.

We have completely solved this scheduling problem for the case of p = 1 remote computer
(Section 3). Our solution provides exactly optimal schedules—whose expected work comple-
tion is exactly maximum—both for the free-initiation model, wherein checkpointing incurs no
overhead, and the charged-initiation model, wherein checkpointing does incur an overhead.
For the case of p = 2 remote computers, we provide schedules whose expected work com-
pletion is asymptotically optimal, as the size of the workload grows without bound; we also
provide some guidelines for deriving exactly optimal schedules (Section 4). The complexity
of the development in Section 4 suggests that the general case of p remote computers will be
prohibitively difficult, even with respect to deriving asymptotically optimal schedules. There-
fore, we settle in this general case for deriving a number of well-structured heuristics, whose
quality can be assessed via explicit expressions for their expected work outputs (Section 5).
Simulations suggest that one of our six heuristics—regrettably, the computationally most
complicated one—is the clear winner in terms of performance. An extensive suite of simula-
tion experiments suggests that all of our heuristics provide schedules with good expected work
output, and that the “clear winner” in the competition of Section 5 does, indeed, dominate
the others (Section 6).

Much remains to be done regarding this important problem, but three directions stand out
as perhaps the major outstanding challenges. One of these is to extend our (asymptotic-
)optimality results to a larger class of risk functions, thereby covering the range of situations
that our work addresses. A second is to extend our study to include heterogeneous assemblages
of remote computers, whose constituent computers differ in speed and other computational
resources. When the assemblages are heterogeneous, but even when they are homogeneous, it
would be significant to allow the assemblage’s computers to be subject to differing probabilities
of being interrupted.
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