
Optimal Fine and Medium Grain Parallelism Detection
in Polyhedral Reduced Dependence Graphs

Alain Darte and FrCdCric Vivien *
Laboratoire LIP, URA CNRS 1398
Ecole Normale SupCrieure de Lyon

F - 69364 LYON Cedex 07
{ darte,fvivien } @lip.ens-1yon.fr

Abstract

This paper proposes an optimal algorithm for detecting
fine or medium grain paralellism in nested loops whose de-
pendences are described by an approximation of distance
vectors by polyhedra. In particulal; it is optimal for direc-
tion vectors, which generalizes Wolf and Lam’s algorithm
to the case of several statements. I t relies on a dependence
uniformization process and on parallelization techniques
related to system of uniform recurrence equations.

(a) @)

Figure 1. Reduced Dependence Graph for Ex-
ample 1: (a) by levels, (b) by direction vectors.

1. Introduction: a motivating example

Consider the following simple code:

Example 1

D O i = l , n
DOj= l ,n

ENDDO
a(i, j) = a(i, i) + a(i, j - 1) (Statement S)

ENDDO

The exact dependence relations are the following:

i f1 5 i L n, 15 j < n
if 1 5 i < j 5 n

s(i,j) 3 s(i,j + 1)
S(i , j) 3 S(j , i)
S(j , i) 3 S(i , j) { if 1 5 i < j _< n

Let us apply well knownparallelization algorithms to this
code, Allen and Kennedy’s algorithm (that uses levels of de-
pendences), Wolf and Lam’s algorithm (that uses direction
vectors), Darte and Robert’s algorithm, and Feautrier’s al-
gorithm (that both use exact dependences). Figure l shows
the corresponding (reduced) dependence graphs when de-
pendence edges are labeled respectively with levels and di-
rection vectors.

*Supported by the CNRS-INRIA project ReMal?

1089-795X/96 $5.00 0 1996 IEEE
Proceedings of PACT ’96

Allen and Kennedy [l] The basic technique of the algo-
rithm is the decomposition of the reduced dependence
graph into strongly connected components. Here, the
levels of the three dependences are respectively 2, 1,
and 1. There is a dependence cycle at depth 1 and at
depth 2. Therefore, no parallelism is detected.

Wolf and Lam [17] The algorithm is based on a cone sep-
aration technique adapted to the case of direction vec-
tors. Here, the respective dependence vectors are
(0, l), (+, -), and (+, -). In the second dimension,
the 1 and the - prevents to detect two levels of fully
permutable loops. Therefore, the code remains un-
changed. No parallelism is detected.

DarteandRobert[3,4] Darte and Robert look for an
affine schedule for each statement that satisfies all
dependences. Exact dependence analysis is needed,
and a quite large linear system (obtained by the
duality theorem of linear programming) has to be
solved. This technique leads to the valid schedule
T(i, j) = 2i + j - 3. One level of parallelism is
detected.

Feautrier [lo, 111 Feautrier’s technique is similar to Darte
and Robert’s technique for the one-dimensional case
(except that the linear program is obtained by the
affine form of Farkas’ lemma). Here, the same

281

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

mailto:lip.ens-1yon.fr

schedule is found, T(i , j) = 2 i + j - 3. However,
Feautrier’s algorithm is more general, since it is able
to derive multi-dimensional affine schedule when no
one-dimensional schedule exists. So far, Feautrier’s
algorithm is indeed the most powerful algorithm for
parallelism detection in nested loops.

In this particular example, the representation of depen-
dences by level and by direction vectors is not accurate
enough to reveal parallelism, this is the reason why Allen
and Kennedy’s algorithm, and Wolf and Lam’s algorithm are
not able to detect any parallelism. Exact dependence analy-
sis, associated to linear programming methods that require to
solve large’ parametric linear programs to be solved, reveals
one degree of parallelism. The corresponding parallelized
code is:

DO3 =3,3n
DOPAR i = max (I, IF]) , min (n, [+I)

a(i, 3 - 22) = a b - 2 i , i) + a(z, 3 - 22 - 1)
ENDDO

ENDDO

However, there is a large gap between the complexity of
the two first algorithms and the complexity of the two last
algorithms, both in terms of dependence abstractions and
in terms of running complexity. The goal of this paper is
to fill this gap and to propose an intermediate algorithm,
thus of medium complexity but still optimal for all classical
approximations of dependences, namely approximations of
distance vectors by polyhedra.

In Example 1, exact dependence analysis is indeed not
necessary to reveal maximal parallelism. One has just to
notice that there is one uniform dependence d = (0 , l) and
asetofdistancevectors { (j - i , i - j) = (j-i)(l, -1) 11 5
j - i 5 n - 1) that can be approximated by the set P =
{ (l , - l) + X (l , - l) I O < X) . Pisapolyhedronwithone
vertex w = (1, -1) and oneray r = (1, -1).

Suppose that, as in the above algorithms, we are looking
for a linear schedule T (i , j) = z l i + zaj. For T to be a
valid schedule, we impose that X(0, l) 2 1 and X p 2 1 for
all p E P , where X = (21, ~ 2) . Instead of using Farkas’
lemma to solve the second constraint, we can remark that it
is equivalent to Xw > 1 and X r > 0. Therefore, one has
just to solve the three inequalities:

X d q l X w q l X r > O

which leads, as above, to X = (2 , l) . In other words, we
have “uniformized” the constraints and transformed the un-
derlying affine scheduling problem into a simple scheduling
problem where all dependences are uniform (d, U, and r).
However, compared to the classical framework of uniform
loop nests, there are two fundamental differences:

The number of inequalities and variables is related to the number of
constraints that define the validity domain of each dependence relation.

~

e

e

the uniform dependence vectors are not necessarily
lexico-positive (a ray equal to (0, -1) for example is
possible). This makes the problem a lot more dif-
ficult, but it can be solved by techniques related to
the problem of computability of a system of uniform
recurrence equations.

the constraint imposed for a ray r is weaker: the con-
straint is X r > 0 instead of X r > 1. This freedom
must be taken into account when deriving the paral-
lelization algorithm.

To better understand this “uniformization” principle,
think in terms of dependence path: actually, we consider
an edge e labeled by the distance vector p = w + Xr as a
path q5 that uses once the “uniform” dependence vector w
and X times the “uniform” dependence vector r. However,
we consider that the use of the dependence r counts for 0
instead of 1 (constraint X r 2 0 instead of X r 2 1) when
defining the length of the path q5 so that e and its equivalent
path q5 have same length. This simulation is summarized in
Figure 2: we introduce a new node S’ that simulates q5 and
a null-weight edge to come back to the initial node S.

v- 0

S S

Figure 2. Simulation of an edge labeled by a
polyhedron with one vertex and one ray.

This “uniformization” principle is the underlying idea of
the loop parallelization algorithm proposed in this paper.
This algorithm has the following properties:

0 It does not requires exact dependence analysis, but
it is optimal for dependence graph whose edges are
labeled by a polyhedral approximation of distance
vectors. In particular, it is optimal for level of de-
pendences and direction vectors. Actually, it behaves
exactly as Allen and Kennedy’s algorithm when de-
pendences are expressed by dependence levels and
it generalizes Wolf and Lam’s algorithm [17] to the
case of multiple statements when dependences are
expressed by direction vectors (Wolf and Lam’s algo-
rithm is optimal if there is only one statement).

e It points out precisely which dependences prevent the
parallelization or are responsible for a loss of paral-
lelism. This enlightens the link between the maximal

282

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

degree of parallelism that can be detected and the
accuracy of dependence abstractions. See [5] for a
complete study about this question.

0 By construction, it can be naturally adapted to the
search for maximal sets of fully permutable loops
which is, in theory, an equivalent problem, and, in
practice, a way to exploit medium grain parallelism.

The paper is organized as follows. In Section 2, we recall
generalities on dependence analysis and dependence graphs.
We formally define what we call polyhedral reduced depen-
dence graphs, and we demonstrate the expressive power of
this dependence abstraction.

In Section 3, we give an overview of the different steps
of the parallelization algorithm, for perfect nested loops.
Unfortunately, because of a lack of space, we can not give
the full proofs of correctness and optimality of our algorithm.
We refer to [8] in which all proofs are detailed.

Nevertheless, in Section 4, we summarize our results by
showing how they are related to techniques developed for
systems of uniform recurrence equations [6]. We illustrate
the algorithm on a quite complicated example.

Finally, in Section 6, we discuss some implementation
strategies that permit to reduce the complexity of the algo-
rithm and to clean up the solution for code generation. Then,
we briefly show how extending the algorithm to non perfect
loop nests and we conclude in Section 7.

2. Dependence abstractions

For the sake of clarity, we restrict ourselves to the case
of perfectly nested DO loops with affine loop bounds. Non
perfectly nested loops are considered in Section 6.2. With
this restriction, we can identify, as usual, the iterations of
n nested loops (n is called the depth of the loop nest) with
vectors in Zn (called the iteration vectors) contained in
a finite convex polyhedron bounded by the loop bounds
(called the iteration domain). The i-th component of an
iteration vector is the value of the i-th loop counter in the
nest, counting from the outermost to the innermost loop. In
the sequential code, the iterations are therefore executed in
the lexicographic order of their iteration vectors.

In the next sections, we denote by 2) the polyhedral iter-
ation domain, by I and J n-dimensional iteration vectors in
V, and by Si the i-th statement in the loop nest. We write
I >I J if I is lexicographically greater than J and I 21 J
i f I > i J o r I = J .

Section 2.1 recalls the different concepts of depen-
dence graphs: expanded dependence graphs (EDG), reduced
dependence graphs (RDG), apparent dependence graphs
(ADG) and the notion of distance sets. In Section 2.2,
we formally define what we call polyhedral reduced de-
pendence graphs (PRDG), i.e. reduced dependence graphs

whose edges are labeled by polyhedra. Finally, in Sec-
tion 2.3, we show how the model of PRDG generalizes
classical dependence abstractions of distance sets.

2.1. Dependence graphs and distance sets

Dependence relations between operations are defined by
Bernstein’s conditions [2]. Briefly speaking, two opera-
tions are considered dependent if both operations access
the same memory location and if at least one of the ac-
cesses is a write. The dependence is directed according to
the sequential order, from the first executed operation to
the last. Depending on the order of write(s) and/or read,
the dependence corresponds to the so called flow depen-
dence, anti dependence or output dependence ’. We
write: S; (I) =+ Sj (J) if statement Sj at iteration J de-
pends on statement Si at iteration I . The partial order
defined by describes the expanded dependence graph
(EDG). Note that (J - I) is always lexicographically non
negative when S; (I) =+ Sj (J) .

In general, the EDG can not be computed at compile-
time, either because some information is missing (such as
the values of size parameters or even worse, precise memory
accesses), or because generating the whole graph is too
expensive. Instead, dependences are captured through a
smaller (in general) cyclic directed graph, with s vertices,
called the reduced dependence graph (RDG) (or statement
level dependence graph).

The RDG is a compression of the EDG. In the RDG, two
statements Si and Sj are said dependent (we write Si + Sj)
if there exists at least one pair (I , J) such that Si(I) +
Sj (J) . Furthermore, the dependence Si 4 Sj is labeled
by the set { (I , J) E V’ I $ (I) =+ S j (J) } , or by an
approximation De that contains this set. The precision and
representation of this approximation makes the power of the
dependence analysis.

In other words, the RDG describes, in a condensed man-
ner, an iteration level dependence graph, called (maximal)
apparent dependence graph (ADG), that is a superset of
the EDG. The ADG and the EDG have the same vertices,
but the ADG has more edges, defined by:

(Si , I) =+ (Sj , J) (in the ADG) (j
3 e = (Si, Sj) (in the RDG) such that (I , J) E De.

For acertain class of nested loops, it is possible to express
exactly this set of pairs (I , J) (see [9]): I is given as an affine
function fi,j of J where J varies in a polyhedron Pi,j:

(1)
{ (I , J) E v2 I Si(1) =+ S j (J) } =

{(ti , j(J)lJ) I J E Pi,j c D}
In some cases, output and anti dependences can be removed by data

renaming and/or expansion. See for example [9].

283

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

In most dependence analysis algorithms however, rather
than the set of pairs (J , J) , one computes the set E, ,j of all
possible values (J - I) . Eij is called the set of distance
vectors, or distance set:

When exact dependence analysis is feasible, Equation 1
shows that the set of distance vectors is the projection of the
integer points of a polyhedron. This set can be approximated
by its convex hull or by a more or less accurate description of
a larger polyhedron (or a finite union of polyhedra). When
the set of distance vectors is represented by a finite union, the
corresponding dependence edge in the RDG is decomposed
into multi-edges.

Note that the representation by distance vectors is not
equivalent to the representation by pairs (as in Equation l),
since the information concerning the location in the EDG of
such a distance vector is lost. This may even be the cause of
a loss of parallelism. However, this representation remains
important, especially when exact dependence analysis is
either too expensive or not feasible.

Classical representations of distance sets (by increasing
precision) are:

e level of dependence, introduced for Allen and
Kennedy's parallelizing algorithm [l].

0 direction vector, introduced by Wolfe [181 and used
in Wolf and Lam's parallelizing algorithm [171.

e dependence polyhedron, introducedin [121 and used
in Irigoin and Triolet's supernode partitioning algo-
rithm [13].

In the rest of the paper, we explore this last representation.
We now first define formally reduced dependence graph
whose edges are labeled by dependence polyhedra and we
show the expressive power of this model.

2.2. Polyhedral Reduced Dependence Graphs

We first recall the mathematical definition of a polyhe-
dron and its decomposition into vertices, rays and lines.

Definition 1 (Polyhedron, polytope)
A set P of vectors in Q" is called a {convex) polyhedron

ifthere exists an integral matrix A and an integral vector b
such that:

P = {z I z E Q", Az 5 b }

A polytope is a bounded polyhedron.

A polyhedron can always be decomposed as the sum of
a (convex) polytope and of a polyhedral cone (for more
details see [16]). A polytope is defined by its vertices,

and any point of the polytope is a non-negative barycentric
combination of the polytope vertices. A polyhedral cone is
finitely generated and can be defined by its rays and lines.
Any point of a polyhedral cone is the sum of a non-negative
combination of its rays and of any combination of its lines.

Therefore, a convex dependence polyhedron P can
be equivalently defined by a set of vertices (denoted by
{q, . . . , vu}), a set of rays (denoted by {TI, . . . , rp }) , and
a set of lines (denoted by (11 , . . . , l x }) . Then, P is the set
of all vectors p such that:

W P x

i = l i=l i=l

with pi E Qt, vi E Qt, & E Q, and Cy=l pi = 1.
We now define what we call a polyhedral reduced depen-

dence graph (or PRDG), i.e. a reduced dependence graph
labeled by dependence polyhedra. Actually, we will be inter-
ested only in integral vectors that belong to the dependence
polyhedra, since dependence distance are indeed integral
vectors.

Definition 2 A polyhedral reduced dependence graph
(PRDG) is a RDG, for which each edge e is labeled by
a dependence polyhedron P(e) that approximates the set
of distance vectors: the associated ADG contains an edge
from instance I of node Si to instance J of node Sj if and
only i f (J - I) E P(e) .

In the rest of the paper, to avoid a possible confusion
between the vertices of a dependence graph and the vertices
of a dependence polyhedron, we call the first one nodes and
the second one vertices.

2.3. Simulation of classical dependence representa-
tions

We now come back to more classical dependence ab-
stractions: level of dependence and direction vector. We
recall their definition and show that RDGs labeled by direc-
tion vectors or levels of dependence are actually particular
cases of polyhedral reduced dependence graphs.

2.3.1 Direction vectors

When the set of distance vectors is a singleton, the depen-
dence is said uniform and the only distance vector is called a
uniform dependence vector. Otherwise, the set of distance
vectors can still be represented by a n-dimensional vector
(called the direction vector), whose components belong to
ZU{*}U(Zx {+, -}). Itsi-thcomponentisanapproxima-
tion of the i-th components of all possible distance vectors:
z if the dependence is uniform in this dimension with unique
value z , z+ (resp. z -) if all i-th components are greater

284

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

(resp. smaller) than or equal to z , and * if the i-th compo-
nent may take any value. In general, + (resp. -) is used as
shorthand for 1+ (resp. (-1)-).

A direction vector is nothing but an approximation by a
polyhedron, with a single vertex and whose rays and lines,
if any, are canonical vectors. For example, the direction
vector (2+, *, -, 3) defines the polyhedron with one vertex
(2 ,0, -1,3), two rays (l , O , 0,O) and (O , O , -1,O), and one
line (0, 1,0,0).

2.3.2 Level of dependences

The representation by level is the less accurate (thoughpow-
erful [7]) dependence abstraction. In a loop nest with n
nested loops, the set of distance vectors is approximated by
an integer 1, in [l . . . n] U {CO}, defined as the largest integer
such that the I - 1 first components of the distance vectors
are null, or 00 if all components are null.

A dependence level is also a representation by a polyhe-
dron. For example, level 2, in a 3-dimensional loop nest,
means direction vector (0,1+, *) which corresponds to the
polyhedron with one vertex (0, 1 , 0), one ray (0, 1 , 0) and
one line (O , O , 1).

3. Overview of the parallelization algorithm

Our parallelization algorithm consists of two main steps,
a “uniformization” step presented in Section 3.2 and a
“scheduling” step summarized in Section 3.3. We illustrate
both steps with Example 2 below.

3.1. Illustrating example

We will work out the following example, assuming that
in the reduced dependence graph, edges are labeled by di-
rection vectors.

Example 2

D O i = l , n
D O j = l , n

DO k=l, j
a(i, j, k) = c(i, j, k - 1) + 1
b(i, j, k)=a(i - l , j + i , k) +b(i, j - 1 , k)
c(i, j, k + 1) = c(i, j, k) + b(i, j - 1 , k + i)

+ a(i, j - k, k + 1)
ENDDO

ENDDO
ENDDO

The graph depicted in Figure 3 has been found by the de-
pendence analyzer Tiny [191.

The reader can check that neither Allen and Kennedy’s
algorithm, nor Wolf and Lam’s algorithm, is able to find the

1 I;
? I n

Figure 3. Reduced dependence graph with di-
rection vectors, for Example 2.

full parallelism for this code: the third statement seems to
be purely sequential.

However, the parallelism detection algorithm that we pro-
pose in the next sections is able to build the following multi-
dimensional schedule: (ai + 1,2k) for the first statement,
(2i, j) for the second statement and (22’ + 1 , 2 k + 3) for the
third statement. This schedule corresponds to the code with
explicit parallelism given below (but in which no effort has
been made so as to remove “if” tests). For each statement,
one level of parallelism has been detected.

This code has been generated by the the procedure “code-
gen” of the Omega Calculator delivered with Petit [15],
thanks to Bill Pugh’s team. We point out that it is a “virtual”
code in the sense that it only reveals hidden parallelism. We
do not claim that it must be implemented as such.

DOSEQ i = 1, n
DOSEQ j = 1 , n

DOPAR k = 1, j

ENDDO
b(i, j, k) = a(i - 1, j + i, k) + b(i, j - 1, k)

ENDDO
DOSEQ k = 1 , n + 1

IF (k 5 n) THEN
DOPAR j = k, n

ENDDO
a(i, j, k) = c(i, j, k - 1) + 1

ENDIF
IF (k 2 2) THEN

DOPARj=k- 1,n
c(i, j, k) = c(i, j, k - 1)+ b(i, j - 1, k + i - 1)

+ a(i, j - k + 1, k)
ENDDO

ENDIF
ENDDO

ENDDO

285

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

3.2. Uniformization step

We first show how PRDGs (polyhedral reduced depen-
dence graphs) can be captured into an equivalent (but sim-
pler to manipulate) structure, the structure of uniform de-
pendence graphs, i.e. graphs whose edges are labeled by
constant dependence vectors. This uniformization scheme
is achieved by the translation algorithm, given below.

The initial PRDG that describes the dependences in the
code to be parallelized is called the original graph and
denoted by Go = (VI E) . The uniform RDG, equivalent to
Go, built by the translation algorithm, is called the uniform
graph or the translated of Go and is denoted by G, =

The translation algorithm builds G, by scanning all edges
of Go. It starts from G, = (W, F) = (V, 0), and for
each edge e of E , it adds to G, new nodes and new edges
depending on P(e) . We call virtual nodes the nodes that
are created as opposed to actual nodes which correspond to
nodes of Go.

We follow the notations introduced in Section 2.2: we
denote respectively by w , p , and X the number of vertices
wi, rays ri, and lines li of the polyhedron P (e) .

(W, F) .

Translation Algorithm

0 L e t W = V a n d F = @

For e = (z e , Ye) E E do

1. If p = 0 and X = 0 (the polyhedron is reduced

- Add to F w edges of weights VI, w2, . . . ,
to a polytope)

U, directed from 2, to ye.

2. I f p f O o r X f O
- Add to W a new virtual node ne,
- Add to F w edges of weights w1, 212, . . . ,

- Add to F p self-loops around ne of weights

- Add to F X self-loops around ne of weights

- Add to F X self-loops around ne of weights

- Add to F a null weight edge directed from

v, directed from 2, to ne,

T I , rz, . . . , T p ,

1 1 , 1 2 , . . . , 1 x ,

-11, - 1 2 , . . .) - l x ,

n e to Ye-

Back to Example 2 The uniform dependence graph asso-
ciated to the PRDG of Example 2 (see Figure 3) is depicted
in Figure 4. It has three new nodes (i.e. virtual nodes) that
correspond to the symbol “+” and the two symbols “-” in
the initial direction vectors.

0 I:
Figure 4. Translated uniform reduced depen-
dence graph

3.3. Scheduling step

The scheduling step takes as input the translated depen-
dence graph G, and builds a multi-dimensional schedule for
each actual node, i.e. for each node of G, that corresponds
to a node of Go. G, is assumed to be strongly connected
(otherwise, the algorithm has to be called for each strongly
connected component of G,).

It is a recursive algorithm. Each step of the recursion
builds a subgraph GI of the current graph G being processed:
GI is the subgraph of G generated by all edges of G that
belong to at least one multi-cycle (i.e. union of cycles) of
null weight.

G’ can be built by one linear programming resolution.
Indeed, it has been shown (see [6]) that the edges of G’ are
exactly the edges e for which w e = 0 in any optimal solution
of the following linear program:

where C is the connection matrix of G (with as many rows
as nodes in G, and as many columns as edges in G) and W
the dependence matrix (i.e. whose columns are the weights
of edges of G).

Once Cl is built, a set of linear constraints is derived and
a valid schedule that satisfies all dependence edges not in
G’ can be computed. Then, the algorithm keeps working on
the remaining edges, i.e. the edges of Cl (more precisely G‘
and some additional edges, see below).

The scheduling step can be summarized by the follow-
ing algorithm given below. The initial call is DARTE-
VIVIEN(G,, 1). The algorithm builds, for each actual
node S of G,, a sequence of vectors X i , . . . , X t s and

286

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

a sequence of constants p;, . . . , p? that define a valid
multi-dimensional schedule.

DARTE-VIVIEN(G, k)

1.

2.

3.

4.

5.

6.

Build GI the subgraph of null weight multi-cycles of
G.

Add in GI, all edges from 2, to ye and all self-loops
on ye if e = (ze, ye) is an edge already in GI, from
an actual node 2, to a virtual node ye.

Select a vector X and, for each node S in G, a constant
ps such that:

e = (ze, ye) E GI or ze is a virtual node

e = (ze1 Ye) 6 G’ and Z e is an actual node
* X 4 e) + Py, - Pr, L 0

* X 4 e) + Py, - Pr, 1 1

For all actual nodes S of G, let p i = ps and X i = X .

If GI is empty or has only virtual nodes, return.

If GI is strongly connected and has at least one actual
node, G is not computable (and the initial PRDG Go
is not consistent), return.

Otherwise, decompose GI into its strongly connected
components Gi and for each Gi that has at least one
actual node, call DARTE-VIVIEN(Gi, k + 1).

Remarks

0 Step (2) is necessary only for general PRDGs: for
example, it could be removed for RDGs labeled by
direction vectors. In this case, Steps (1) and (3) can
be solved by a single linear program resolution.

0 In Step (3), we do not specify, on purpose, how the
vector X and the constants p are selected, so as to
allow various selection criteria, depending if fine or
medium grain parallelism is desired. For example, a
maximal set of linearly independent vectors X can be
selected if the goal is to derive fully permutable loops
(see 151).

Back to Example 2 Consider the uniform dependence
graph of Figure 4. There are two elementary cycles of
weights (1,0,1) and (0,1, l) , and five self-loops of weights
(O , O , l), (O , O , -l), (0,1,0) (twice) and (0, - 1 , O) . There-
fore, all edges (except the edges that only belong to the cycle
of weight (1 , 0 , l)) belong to a multi-cycle of null weight.
The subgraph GI is depicted in Figure 5.

si

‘3 18

0 I:
Figure 5. Subgraph of null weight multi-cycles
for Example 2.

The constraints coming from edges in GI make that X =
(2, y, z) must be orthogonal to the weight of all cycles of
GI. Therefore, y = z = 0. Finally, considering the other
constraints, we find the solution X = (2,0,0), p s , = p s , =
1 and psa = 0.

In GI, there remains four strongly connected compo-
nents, and two of them are not considered since they only
have virtual nodes. The two other components have no
null weight multi-cycle. The strongly connected compo-
nent with the single node SS can be scheduled with the
vector X = (0, 1, 0), whereas studying the other strongly
connected component leads, among other solutions, to
X = (O , O , a), ps, = 0, and ps, = 3.

Finally, summarizing the results, we find, as claimed in
Section 3.1, the 2-dimensional schedules: (2i, j) for 5’2,
(2i + 1,2k) for SI and (2i + 1,2k + 3) for 5’3.

4. Properties of the parallelization algorithm

Note the particular structure of G,: it is a graph with
edges labeled by integral vectors, i.e. a uniform dependence
graph. However, the weights of the edges are not necessarily
lexicographically positive which makes a huge difference
with classical uniform dependence graphs of nested loops.

Actually, G, is very similar to a reduced dependence
graph associated to a system of uniform recurrence equa-
tions. The only difference is that some nodes of G, are
virtual nodes. This difference is small and this is why
we can still use (with slight modifications) all techniques
we previously developed for systems of uniform recurrence
equations [6].

The correctness and optimality of our algorithm comes
from this strong link between the “uniformized” graph G,
and systems of uniform recurrence equations. In particular,

287

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

we have the following results, whose proofs are detailed
in [6] and [8].

4.1. Correctness

Theorem 1 (Computability Condition) Go is computable
ifand only ifGu contains no null weight cycle with at least
one actual node.

Furthermore, 6, has no cycle of null weight containing
an actual node if and only if DA(G,) = TRUE, where DA
is the decomposition algorithm given below. Therefore, a
PRDG Go is computable if and only if DA(G,) = TRUE.

Algorithm DA is a modified version of the seminal de-
composition of Karp, Miller, and Winograd [14].

A denotes the logical AND.

Boolean DA(G)

1. Build G’ the subgraph of null weight multi-cycles of
G.

2. Compute the strongly connected components of G’
and let Gi, Gk, . . . , G/, be the s components that
have at least one actual node.

e If G‘ is empty or has only virtual nodes, return

e If G’ is strongly connected and has at least one

TRUE.

actual node, return FALSE.

e Otherwise, return A DA(G:).
S

i = l

This decomposition is related to the computability prob-
lem. However, considering at each step the dual of linear
program 3 establishes the link with the scheduling problem.
This is, without entering the details, what makes correct our
scheduling algorithm. Algorithm DA is indeed the skeleton
of the algorithm of Section 3.3.

In the scheduling algorithm, each statement S is sched-
uled by a ds-multi-dimensional schedule. ds is called the
depth of S. It is equal to the number of recursive calls
(counting the first one) needed to remove S from the graph,
except if S do not belong to a cycle, in which case ds = 0.
6, the depth of the graph, is the maximal ds.

For systems of uniform recurrence equations, the depth of
a graph is a measure of the degree of parallelism it describes.
This result still holds for PRDGs and the depth d defined
above. Indeed, we have the following results:

Theorem 2 If Go = (V, E) is computable, the multi-
dimensional scheduling function T:

V X D --+ zd
(S, I) + (... , [x ; l + p ; J , . . .)

defines a valid multi-dimensional schedule for Go.

Furthermore, this schedule is optimal, in the sense that
for each statement S (i.e. for each node of Go), the number
of instances of S that have been sequentialized by T is of
the same order as the number of instances of S that are
inherently sequentialized by the dependences.

More precisely:

Theorem 3 Assume that the iteration domain D is con-
tained in a n-dimensional cube of size O (N) and contains a
n-dimensional cube of size Q (N) . Then, the latency of the
schedule is O (N d) and the length of the longest dependence
path is R (N d) . More precisely, after code generation, each
statement S is surrounded by exactly ds sequential loops
and these loops are inherently sequential.

5. Yet another example

We illustrate our technique with a third example, in which
the maximal parallelism can be detected only if dependences
are approximated by a more accurate PRDG than a RDG
labeled by direction vectors. After parallelization, S1 is
surrounding by a single sequential loop and Sa by two.

Example 3

D O i = l , n
DO j = 1, n

D O k = 1 , n
a(i, j, k) = a(i, j - 1 , k + j) +bo, i - 1 , k)
b(i, j , k) = b(i, j, k -1) + a(i, j, k)

ENDDO
ENDDO

ENDDO

The graph Go depicted in Figure 6 has been found by the
dependence analyzer Tiny [191. The uniformization step
transforms Go into G, which is depicted in Figure 7.

There is a multi-cycle of null weight generated by all
edges whose weight is orthogonal to (1,0,0) (see Figure 7).
In GI, the strongly connected component that contains S1
and S z still has a multi-cycle of null weight that visits an
actual node (5’2). 5’1 is removed at depth 2 but 5’2 is removed
at depth 3. S2 is purely sequential, whereas one degree
of parallelism is detected for 5’1. The multi-dimensional
schedules are (i, 2 j) for SI and (i, 2 j + 1, le) for Sa.

288

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

I" I H
Figure 6. Reduced dependence graph with di-
rection vectors, for Example 3.

The resulting code is therefore the following:

DOSEQi=l,n
DOSEQj = 1,n

DOPAR k = 1, n

ENDDO
DOSEQ k = 1, n

ENDDO

a(i, j, k) =a(i, j - 1, k +j) + b(j, i - 1, k)

b(i, j, k) = b(i, j, k -1) + a(i, j, k)

ENDDO
ENDDO

Note that this is exactly what Allen and Kennedy's algo-
rithm would find. However, if direction vectors are refined
by more accurate dependence tests, one can find that the de-
pendences can be approximated by the PRDG of Figure 8.

The reference to array b generates indeed two depen-
dences, a flow dependence whose dependence polyhedron
has one vertex (0, 1 , O) and one ray (1, -1,O), and an anti
dependence whose dependence polyhedron has one vertex
(1,-2!0) and the same ray (1,-1,O). Note inFigure 8
how this modification changes the structure of GI. SI is
now removed at depth 1 and Sz at depth 2. For both state-
ments, one more level of parallelism has been detected.
The multi-dimensional schedules are (4i + 2 j) for SI and
(4i + 2 j + 1, le) for S,.

The resulting code is therefore the following:

DOSEQ j = 3,3n
DOPAR k = 1, n

DOPARi = max(1, [?I), min(n, [*I)
a(i, j-2i, k) = a(i, j - 2i - 1, k + j -2i)

+ b(j - 2i, i - 1, k)
ENDDO

ENDDO
DOSEQ k = 1, n

DOPARi=max(l, [y I) , m i n (n , L q J)
ENDDO

b(i, j - 2i, k) = b(i, j - 2i, k -1) + a(i, j - 2i, k)

ENDDO
ENDDO

1
0
0

I!

Figure 7. Translated uniform dependence
graph for Example 3 and its corresponding GI.

I!

Figure 8. Polyhedral reduced dependence
graph for Example 3 and its corresponding GI.

289

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

6. Implementation strategies

6.1. Reasoning on cycles

Consider the constraints of Step (3) . It can be shown
that they are equivalent to the constraints X w (C) 2 1(C)
for all elementary cycles C where [(C) denotes the number
of edges e = (xe, ye) of C that do not belong to G’ and
for which x, is an actual node. Furthermore, once the con-
straints on cycles are satisfied by X , the different constants
p can be computed by a technique similar to the Bellman-
Ford algorithm, less expensive than a linear programming
resolution.

This remark suggests to adopt a two steps strategy: com-
pute X first by a linear programming approach, and then
compute the constants p by a graph-based technique. Un-
fortunately, it would increase the number of constraints,
since the number of elementary cycles in the graph may be
exponential in the number of edges. Therefore, computing
the weight of all cycles in the PRDG is not reasonable.

To avoid this problem, we propose to use a basis of
cycles, instead of considering all cycles, which simulate all
constraints on cycles with only IEl - IVI + 1 cycles. This
technique permits us to keep small the number of constraints
and variables in the linear programs to solve. Furthermore,
it guarantees that the constants p are simple if the vector
X is simple. This property is highly desirable for code
generation. Full details can be found in [8].

6.2. Extension to non perfectly nested loops

As proved in the previous sections, our scheduling algo-
rithm is perfectly adapted to a description of distance vec-
tors. When the loops are non perfectly nested, the distance
vector J - I between two statements S1 and SZ is defined
only for the first dimensions that correspond to common
loops, i.e. loops that surround both SI and S2.

Therefore, a natural way of extending the algorithm to
non perfect loop nests is to ignore, in each strongly con-
nected component that appears during the decomposition,
all dimensions that are not common dimensions. In other
words, at a given depth of the algorithm, we truncate all
vectors to the same dimension and we apply on the trun-
cated vectors the same technique as for perfectly nested
loops. Finally, we complete each vector X derived with
null components so that they fit the right dimension.

It turns out that this strategy remains optimal, as long
as no information is given on the non common dimensions.
However, if at each level, the code is non perfect then this
algorithm is not more powerful than Allen and Kennedy’s
algorithm, since there is only one common dimension at
each step.

To avoid this problem, we suggest another approach that
exploits the information on non common dimensions, and
to benefit from the power of our algorithm for perfectly
nested loops. We first transform the code into perfectly
nested loops, by loops fusions or more complex techniques,
possibly introducing “if” tests. Then, the scheduling algo-
rithm is applied on the transformed nest, reasoning on its
dependence graph. Here is an example, borrowed from the
examples proposed in Petit [151.

Example 4

DO i = 2, n
s(i) = 0
DO j = 1, i-1

ENDDO
b(i) = b(i) - s(i)

s(i) = s(i) + a(i, i) bo)

ENDDO

In this example, the dependence graph has two strongly
connected components, one with SI, the other one with Sz
and S3. We can thus apply a loop distribution to separate
SI from Sz and S,. Furthermore, we integrate S3 into the
second loop, so as to obtain only perfect loops nests. We
get:

DOPAR i = 2, n
s(i) = 0

ENDDO
DO i = 2, n

DO j = 1, i
IF (i 5 i - 1) THEN

ENDIF
IF (i = i) THEN

ENDIF

s(i) = s(i) + aQ, i) bo)

b(i) = b(i) - s(i)

ENDDO
ENDDO

Figure 9. Reduced dependence graph with di-
rection vectors, for Example 4.

The reduced dependence graph, with direction vectors,
for the two last statements is depicted in Figure 9. It is easy

290

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

to see that the corresponding uniformized dependence graph
has no multi-cycle of null weight. Therefore, there is some
parallelism. Indeed, applying our scheduling algorithm, we
find that the vector X = (2, y) has to satisfy the constraints
y 2 1, z+y 2 2,z 2 0, and y 2 0. We find X = (0,2) and
psa = 1 and ps3 = 0 which corresponds to the following
code (once again without any effort to remove if test):

DOPAR i = 2, n
s(i) = 0

ENDDO
DOj= l ,n

IF (i 2 2) THEN

ENDIF
DOPARi=j+l,n

ENDDO

bo) =bo) - ~(i)

s(i) = s(i) + a(i, i) b(j)

ENDDO

7. Conclusion

We have presented an original scheduling algorithm to
parallelize loops whose dependences are described through
polyhedral reduced dependence graphs, i.e. reduced depen-
dence graphs whose edges are labeled by an approximation
of distance vectors by polyhedra. This representation of
dependences is a generalization of direction vectors.

Our algorithm is nearly optimal, in the sense that it detects
the maximal number of parallel loops that can be found,
as long as the only information available is the polyhedral
reduced dependence graph. In particular, our algrp-ithm is
optimal for direction vectors, which generalizes Wolf and
Lam’s algorithm to the case of multiple statements.

We illustrated the practical efficiency of our algorithm on
several examples, examples with direction vectors as well
as examples with more general polyhedral representations
of distance vectors. All examples have been derived auto-
matically with the algorithm we implemented and with the
help of tools such as Tiny or Petit.

It remains some work to do for handling non perfectly
nested loops. Our algorithm is indeed well adapted for per-
fectly nested loops, or for common loops in non perfect
codes. However, to better exploit information on non com-
mon loops, a promising approach is to develop a method
to transform non perfect loop nests into perfect loop nests.
This transformation remains to be fully automatized.

References

[3] A. Darte and Y. Robert. Constructive methods for schedul-
ing uniform loop nests. IEEE Trans. Parallel Distributed
Systems, 5(8):814-822,1994.

[4] A. Darte and Y. Robert. Affine-by-statement scheduling of
uniform and affine loop nests over parametric domains. J.
Parallel and Distributed Computing, 29:43-59,1995.

[5] A. Darte and F. Vivien. A classification of nested loops
parallelization algorithms. In INRIA-IEEE Symposium on
Emerging Technologies and Factory Automation, pages 2 17-
224. IEEE Computer Society Press, 1995.

[6] A. Darte and F. Vivien. Revisiting the decomposition of
Karp, Miller, and Winograd. Parallel Processing Letters,
5(4):551-562, Dec. 1995.

[7] A. Darte and F. Vivien. On the optimality of Allen and
Kennedy’s algorithm for parallelism extraction in nested
loops. Technical Report 96-05, LIP, ENS-Lyon, France, Feb.
1996. Extended version of Europar’96.

[8] A. Darte and F. Vivien. Optimal fine and medium grain paral-
lelism in polyhedral reduced dependence graphs. Technical
Report 96-06, LIP, ENS-Lyon, France, Apr. 1996.

191 P. Feautrier. Dataflow analysis of array and scalarreferences.
Int. J. Parallel Programming, 20(1):23-5 1,199 1.

[lo] P. Feautrier. Some efficient solutions to the affine schedul-
ing problem, part I, one-dimensional time. Int. J. Parallel
Programming, 21(5):313-348, Oct. 1992.

[111 P. Feautrier. Some efficient solutions to the affine scheduling
problem, part 11, multi-dimensional time. Int. J . Parallel
Programming, 21(6):389-420, Dec. 1992.

[12] F. Irigoin and R. Triolet. Computing dependence direction
vectors and dependence cones with linear systems. Techni-
cal Report ENSMP-CAI-87-E94, Ecole des Mines de Paris,
Fontainebleau (France), 1987.

[13] F. Irigoin and R. Triolet. Supemode partitioning. In Proc.
ISth Annual ACM Symp. Principles of Programming Lan-
guages, pages 319-329, San Diego, CA, Jan. 1988.

[14] R. Karp, R. Miller, and S. Winograd. The organization of
computations for uniform recurrence equations. Journal of
the ACM, 14(3):563-590, July 1967.

I151 W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman,
and D. Wonnacott. New user in te~ace for Petit and other
interfaces: user guide. University of Maryland, June 1995.

[16] A. Schrijver. Theory of Linear and Integer Programming.
John Wiley and Sons, New York, 1986.

[171 M. E. Wolf and M. S. Lam. A loop transformation theory and
an algorithm to maximize parallelism. IEEE Trans. Parallel
Distributed Systems, 2(4):452-471, Oct. 1991.

[181 M. Wolfe. Optimizing Supercompilers for Supercomputers.
MIT Press, Cambridge MA, 1989.

[191 M. Wolfe. TINI: a loop restructuring research tool. Oregon
Graduate Institute of Science and Technology, Dec. 1990.

[l] J. Allen and K. Kennedy. Automatic translations of Fortran
programs to vector form. ACM Toplas, 9:491-542,1987.

[2] A. J. Bemstein. Analysis of programs for parallel processing.
In IEEE Trans. on El. Computers, EC-1.5, 1966.

291

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

