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SUMMARY

Feautrier’s scheduling algorithm is the most powerful existing algorithm for parallelism
detection and extraction. But it has always been known to be suboptimal. However, the
question whether it may miss some parallelism because of its design was still open. We
show that this is not the case. Therefore, to find more parallelism than this algorithm
does, one needs to get rid of some of the hypotheses underlying its framework.
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1. INTRODUCTION

One of the fundamental steps of automatic parallelization is the detection and extraction of
parallelism. This extraction can be done in very different ways, from the try and test of ad
hoc techniques to the use of powerful scheduling algorithms. In the field of dense matrix code
parallelization, lots of algorithms have been proposed along the years. Among the main ones,
we have the algorithms proposed by Lamport [12], Allen and Kennedy [2], Wolf and Lam [18],
Feautrier [9, 10], and Darte and Vivien [7]. This collection of algorithms spans a large domain
of techniques (loop distribution, unimodular transformations, linear programming, etc.) and
a large domain of dependence representations (dependence levels, direction vectors, affine
dependences, dependence polyhedra). One may wonder which algorithm to chose from such a
collection. Fortunately, we have some theoretical comparative results on these algorithms, as
well as some optimality results.

Allen and Kennedy’s, Wolf and Lam’s, and Darte and Vivien’s algorithms are optimal for
the representation of the dependences they respectively take as input [6]. This means that each
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Figure 1. Schematic representation of the domains of the main dependence representations and of the
main parallelism detection algorithms. Each dependence representation, named in italic, is represented
by the domain of all the sets of dependences that it can describe. Each parallelism detection algorithm,
named in bold, is associated with the dependence representation it was designed for. Feautrier’s
algorithm can in fact be used on the four dependence representations and is optimal whenever one of

the other algorithms is optimal.

of these algorithms extracts all the parallelism contained in its input (some representation of
the code dependences). Wolf and Lam’s algorithm is a generalization of Lamport’s; Darte
and Vivien’s algorithm is a generalization of those of Allen and Kennedy, and of Wolf and
Lam, and is generalized by Feautrier’s [6]. Finally, Feautrier’s algorithm can handle any of the
dependence representations used by the other algorithms [6]. These results are summarized on
Figure 1.

It appears from these results that Feautrier’s algorithm is the most powerful algorithm
we have at hand. Although this algorithm has always be known to be suboptimal, its exact
efficiency was so far unknown. Hence the questions we address in this paper: What are its
weaknesses? Is its suboptimality only due to its framework or also to its design? What can be
done to improve this algorithm? How can we build a more powerful algorithm?

These questions may seem rather theoretical. However, Feautrier’s algorithm has a very
interesting property: when called on a program, it does not output a single answer, but exhibits
all the schedules (in its framework) that are valid for the program. Therefore, this algorithm can
be used as a tool which exhibits the set of all the valid schedules, and this set can be searched
for a solution to a particular problem: in automatic parallelization, it could be a schedule that
respects a given mapping of the computations [5]; in program optimization it could be an affine
occupancy vector that enables to shrink the memory used by the program [17]; etc. Therefore,
even outside the scope of automatic parallelization, Feautrier’s algorithm appears to be an
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ON THE OPTIMALITY OF FEAUTRIER’S SCHEDULING ALGORITHM 3

interesting tool to build program optimizations on. However, before considering using such a
tool, one would like to know how sound and powerful it is!

In Section 2 we briefly recall Feautrier’s algorithm. Then we discuss its weaknesses in
Section 3. In Section 4 we present what seems to be a “better” algorithm. Section 5 presents
the major new result of this paper: to find “more” parallelism than Feautrier’s algorithm one
needs to use far more powerful techniques. This result is proved in Section 6.

2. THE ALGORITHM

Feautrier uses schedules to detect and extract parallelism. This section gives a brief overview
of the problem and of Feautrier’s algorithm. All the missing details can be found either in
[9, 10] or [6].

2.1. Framework: static control programs

To enable an exact dependence analysis, the control-flow must be predictable at compile
time. The necessary restrictions define the class of the static control programs. These are
the programs:

• whose only data structures are integers, floats, arrays of integers, and arrays of floats,
with no pointers or pointer-like mechanisms;

• whose elementary statements are assignments of scalars or array elements;
• whose only control structure are sequences and do loops with constant steps;
• where the array subscripts and the loop bounds are affine functions of surrounding loop

indices and structural parameters.

Static control programs are mainly sets of nested loops. Figure 2 presents Example 1 which is
an example of such a program. Let S be any statement. The iteration domain of S, denoted
DS , is the set of all possible values of the vector of the indices (the iteration vector) of the
loops surrounding S: in Example 1, DS = {(i, j) | 1 ≤ i ≤ N, 1 ≤ j ≤ i}. In static control
programs, an iteration domain is always a polyhedron. In other words, there always exist a
matrix A and a vector b such that : DS = {x | A.x ≤ b}.

2.2. Dependence representation

In the framework of static control programs, an exact dependence analysis is feasible [8]
and each exact dependence relation e from statement Se to statement Te is defined by a Z-
polyhedron De, the domain of existence of the dependence relation, and a quasi-affine † function
he as follows: for any value j ∈ De, operation Te(j) depends on operation Se(he(j, N)), which
we note:

j ∈ De ⇒ Se(he(j, N)) → Te(j)

†See the original paper [8] for more details.
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4 F. VIVIEN

DO i=1, N
DO j=1, i
S: a(i,i+j+1) = a(i-1,2*i-1) + a(j,2*j)
ENDDO
ENDDO

Figure 2. Example 1.

e1: S(i−1, i−1) → S(i, j), he1(i, j)=(i−1, i−1)
De1 = {(i, j) | 2 ≤ i ≤ N, 1 ≤ j ≤ i}

e2: S(j, j−1) → S(i, j), he2(i, j)=(j, j−1)
De2 = {(i, j) | 1 ≤ i ≤ N, 2 ≤ j ≤ i}

Figure 3. Dependence relations for Example 1.

where N is the vector of structural parameters. Obviously, the description of the exact
dependences between two statements may involve the union of many such dependence relations.
A dependence relation e describes for any value j ∈ De a dependence between the two
operations Se(he(j, N)) and Te(j), what we call an operation to operation dependence. In
other words, a dependence relation is a set of elementary operation to operation dependences.
Figure 3 presents the dependence relations for Example 1.

Following Feautrier [9], we suppose that all the quasi-affine functions we have to handle are
in fact affine functions and that all Z-polyhedra are in fact polyhedra (at the possible cost of
a conservative approximation of the dependences).

2.3. Searched schedules

Feautrier does not look for any type of functions to schedule affine dependences. He only
considers nonnegative functions, with rational values, that are affine functions in the iteration
vector and in the vector of structural parameters. Therefore he only handles (affine) schedules
of the form:

Θ(S, j, N) = XS .j + YS .N + ρS (1)

where XS and YS are non-parameterized rational vectors and ρS is a rational constant. The
hypothesis of nonnegativity of the schedules is not restrictive as all schedules must be lower
bounded.

2.4. Problem statement

Once chosen the form of the schedules, the scheduling problem seems to be simple. For a
schedule to be valid, it must (and only has to) satisfy the dependences. For example, if operation
T (j) depends on operation S(i), T (j) must be scheduled after S(i) : Θ(T, j,N) > Θ(S, i, N).
Therefore, for each statement S, we just have to find a vector XS , a vector YS , and a constant
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ρS such that, for each dependence relation e, the schedule satisfies: ‡

j ∈ De ⇒ Θ(Se, he(j,N), N) + 1 ≤ Θ(Te, j,N). (2)

All the constraints are affine, and one can imagine using linear system solvers to find a solution.
Actually, there are now two difficulties to overcome:

1. Equation (2) must be satisfied for any possible value of the structural parameters.
If polyhedron De is parameterized, Equation (2) may correspond to an infinite set
of constraints, which cannot be enumerated. There are two means to overcome this
problem: the polyhedron vertices (cf. Section 4) and the affine form of Farkas’ lemma
(cf. Section 2.5). Feautrier uses the latter.

2. There does not always exist a solution for such a set of constraints. We will see, in
Section 2.6, how the use of multidimensional schedules can overcome this problem.

2.5. The affine form of Farkas’ lemma and its use

This lemma [9, 16] predicts the shape of certain affine forms.

Theorem 1 (Affine form of Farkas’ lemma) Let D be a nonempty polyhedron defined by
p inequalities: akx + bk ≥ 0, for any k ∈ [1, p]. An affine form Φ is nonnegative over D if and
only if it is a nonnegative affine combination of the affine forms used to define D:

Φ(x) ≡ λ0 +
p∑

k=1

λk(akx + bk), with λk ≥ 0 for any k ∈ [0, p].

This theorem is useful as, in static control programs, all the important sets are polyhedra :
iteration domains, dependence existence domains [8], etc. Feautrier uses this lemma to predict
the shape of the schedules and to simplify the set of constraints.

Schedules. By hypothesis, the schedule Θ(S, j, N) is a nonnegative affine form defined on a
polyhedron DS : the iteration domain of statement S. Therefore, the affine form of Farkas’
lemma states that Θ(S, j, N) is a nonnegative affine combination of the affine forms used to
define DS . Let DS = {x | ∀i ∈ [1, pS ], AS,i.x + BS,i.N + cS,i ≥ 0} (DS is thus defined by pS

inequalities). Then Theorem 1 states that there exist some nonnegative values µS,0, ..., µS,pS

such that:

Θ(S, j, N) ≡ µS,0 +
pS∑
i=1

µS,i(AS,i.j + BS,i.N + cS,i). (3)

Dependence constraints. Equation (2) can be rewritten as an affine function that is
nonnegative over a polyhedron because the schedules and the function he are affine functions:

j ∈ De ⇒ Θ(Te, j,N)−Θ(Se, he(j, N), N)− 1 ≥ 0.

‡The transformation of the inequality, from a > b to a ≥ 1 + b, is obvious for schedules with integral values
and a classical approximation for schedules with rational values [15].
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6 F. VIVIEN

Once again we can apply the affine form of Farkas’ lemma, this time the polyhedron is the
existence domain of the dependence. Let De = {x | ∀i ∈ [1, pe], Ae,i.x+Be,i.N + ce,i ≥ 0} (De

is thus defined by pe inequalities). Theorem 1 states that there exist some nonnegative values
λe,0, ..., λe,pe such that:

Θ(Te, j,N)−Θ(Se, he(j, N), N)− 1 ≡ λe,0 +
pe∑

i=1

λe,i(Ae,i.j + Be,i.N + ce,i).

Using Equation (3), we rewrite the left-hand side of this equation:(
µTe,0 +

pTe∑
i=1

µTe,i(ATe,i .j + BTe,i.N + cTe,i)

)

−

(
µSe,0 +

pSe∑
i=1

µSe,i(ASe,i.he(j, N) + BSe,i.N + cSe,i)

)
− 1

≡ λe,0 +
pe∑

i=1

λe,i(Ae,i.j + Be,i.N + ce,i). (4)

Equation 4 is a formal equality (≡). Thus, the coefficients of a given component of either of
the vectors j and N must be the same on both sides. The constant terms on both sides of this
equation must also be equal. This identification process leads to a set of (n+ q +1) equations,
equivalent to Equation (4), where n is the size of the iteration vector j, and q the size of the
parameter vector N .

The way Feautrier uses the affine form of Farkas’ lemma enables him to obtain a finite set
of linear equations and inequations, equivalent to the original scheduling problem, and that
can easily be solved using any solver of linear systems.

2.6. Extension to multidimensional scheduling

There exist some static control programs that cannot be scheduled with (monodimensional)
affine schedules (e.g. Example 1, cf. Section 4). Hence the need for multidimensional schedules,
i.e. schedules whose values are not rationals but rational vectors (ordered by lexicographic
ordering). Before introducing Feautrier’s solution, we introduce some vocabulary.

Definition 1 (Delay of an affine function, satisfied and respected dependences)
Let S(i) and T (j) be two operations of the loop nest such that T (j) depends on S(i) :
S(i) → T (j). Let τ(U, i,N) be any affine function. We call delay induced by τ on the
dependence S(i) → T (j) the difference of the “execution times” of T (j) and S(i) defined by τ :

τ(T, j,N)− τ(S, i, N).

τ respects the dependence if it induces on it a nonnegative delay.
τ satisfies the dependence if it induces on it a delay greater than one.
As we have already stated, a dependence relation is a set of elementary operation to operation

dependences. An affine function is said to fully satisfy (resp. partially satisfy) a dependence
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ON THE OPTIMALITY OF FEAUTRIER’S SCHEDULING ALGORITHM 7

relation e if and only if it satisfies all (resp. respects all and satisfies some but not all of) the
operation to operation dependences in e.

The solution proposed by Feautrier is simple and greedy. For the first dimension of the
schedules one looks for affine functions that 1) respect all the dependences; 2) satisfy as many
dependence relations as possible. The algorithm is then recursively called on the unsatisfied
dependence relations. This, plus a strongly connected component distribution§ that reminds
us of Allen and Kennedy’s algorithm, defines the algorithm below. G denotes the multigraph
defined by the statements and the dependence relations. The multidimensional schedules built
satisfy the dependences according to the lexicographic order [6].

Feautrier(G)

1. Compute the strongly connected components of G.
2. For each strongly connected component Gi of G do in topological order:

(a) Find, using the method exposed in Section 2.5, an affine schedule that induces a
nonnegative delay on all the dependences and satisfies Equation (2) for as many
dependences as possible.
Formally: find an affine function that satisfies

∀e, j ∈ De ⇒ θ(Se, he(j, N), N) + ze≤θ(Te, j,N) with 0≤ ze≤ 1 (5)

and which maximizes the sum
∑

e ze.
(b) Build the subgraph G′

i generated by the unsatisfied dependences. If G′
i is not empty,

recursively call Feautrier(G′
i).

Notations: if Θ is the multidimensional schedule of a loop nest, we denote by Θi its i-th
dimension, and by Θ(S) the multidimensional schedule it defines for the statement S.

2.7. Extension to other dependence representations

We recall here that Feautrier can be extended to process a representation of the dependences
by levels, direction vectors, and/or polyhedra. We focus on the latter type because it is a
generalization of the two others [6, p. 266]. Let us consider a perfect loop nest¶, two instructions
S and T of same domain D, with T depending on S by a dependence e described by the
polyhedron Pe. The schedule must respect this dependence. Therefore, it must satisfy the
equation:

∀j ∈ D, ∀d ∈ Pe, (j − d) ∈ D ⇒ Θ(T, j, n) >lex Θ(S, j − d, n). (6)

The set of values of the couple (j, d) satisfying the conditions on the left-hand side of the
implication is a polyhedron as D and Pe are polyhedra. Indeed, if D = {x | Ax + b ≥ 0} and

§This distribution is rather aesthetic as the exact same result can be achieved without using it. This distribution
is intuitive and eases the computations.
¶This extension is also valid for non perfect loop nests but is far more complicated to write...
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8 F. VIVIEN

Pe = {x | Cx + d ≥ 0} then:

{(j, d) | j ∈ D, d ∈ Pe, j−d ∈ D} =

(j, d)

∣∣∣∣∣∣
 A 0

0 C
A −A

[ j
d

]
+

 b
d
b

≥ 0


which is a polyhedron. Then we can apply the affine form of Farkas’ lemma to Equation (6), as
we did for Equation (2). Hence we can schedule a loop nest whose dependences are described
by levels, direction vectors, and/or polyhedra using the affine form of Farkas’ lemma and
Feautrier’s scheme.

3. THE ALGORITHM’S WEAKNESSES

3.1. Definitions of optimality

Depending on the definition one uses, an algorithm extracting parallelism is optimal if

1. It finds all the parallelism that can be extracted in its framework (only certain program
transformations are allowed, etc.).

2. It finds all the parallelism that is contained in the representation of the dependences it
handles.

3. It finds all the parallelism that is contained in the program to be parallelized (not taking
into account the dependence representation used nor the transformations allowed).

For example, Allen, Callahan, and Kennedy uses the first definition [1], and Darte and Vivien
the second [7] to prove that their respective algorithms are optimal. Feautrier uses the third
definition to prove that its algorithm is not optimal [10]. We now recall that Feautrier is
not optimal under any of the last two definitions.

3.2. The classical counter-example to optimality

Feautrier proved in his original article [9] that his algorithm was not optimal for parallelism
detection in static control programs. In his counterexample (Example 2, Figure 4) the source
of any dependence is in the first half of the iteration domain and the sink in the second half.
Cutting the iteration domain “in the middle” enables the trivial parallelization presented on
Figure 5. However, the only loop in Example 2 contains some dependences. Thus, Feautrier’s
schedules must be of dimension at least one (hence there must be at least one sequential loop
in the code after parallelization) to satisfy these dependences. Therefore, Feautrier finds no
parallelism in this example.

3.3. Weaknesses

The weaknesses in Feautrier’s algorithm are either a consequence of the algorithm framework,
or of the algorithm design.
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ON THE OPTIMALITY OF FEAUTRIER’S SCHEDULING ALGORITHM 9

DO i=0, 2n
x(i) = x(2n-i)

ENDDO

Figure 4. Example 2.

DOPAR i=0, n
x(i) = x(2n-i)

ENDDOPAR
DOPAR i=n+1, 2n

x(i) = x(2n-i)
ENDDOPAR

Figure 5. Parallelized version of Example 2.

Framework

Given a program, we extract its implicit parallelism and then we rewrite it. The new order of
the computations must be rather regular to enable the code generation. Hence the restriction
on the schedule shape: affine functions. The parallel version of Example 2 presented on Figure 5
can be expressed by a non affine schedule, but not by an affine schedule. The restriction on
the schedule shape is thus a cause of inefficiency. Another problem with Example 2 is that
Feautrier looks for a transformation conservative in the number of loops. Breaking a loop into
several loops, i.e., cutting the iteration domain into several subdomains, can enable to find more
parallelism (even with affine schedules). The limitation here comes from the hypothesis that all
instances of a statement are scheduled the same way, i.e., with the same affine function. Note
that this hypothesis is almost always made [12, 2, 18, 7], but Griebl, Feautrier, and Lengauer
have already tried to get rid of it [11].

Some of the weaknesses of Feautrier are thus due to its framework. Before thinking of
changing this framework, we must check whether one can design a more powerful algorithm,
or even improve Feautrier, in Feautrier’s framework.

Algorithm design

Feautrier is a greedy algorithm which builds multidimensional schedules whose first
dimension satisfies as many dependence relations as possible, and not as many operation to
operation dependences as possible. We may wonder with Darte [4, p. 80] whether this can be
the cause of a loss of parallelism. We illustrate this possible problem with Example 1.

The first dimension of the schedule must satisfy Equation (5), i.e. the constraints due to the
dependences, for both dependence relations e1 and e2. This gives us respectively Equations (7)
and (8):

XS

∣∣∣∣ i−1
i−1 + ze1≤XS

∣∣∣∣ i
j
⇔ ze1≤XS

∣∣∣∣ 1
j−i+1 ⇔ze1≤α + β(j − i + 1)with

2≤ i≤N
1≤j≤ i

(7)

XS

∣∣∣∣ j
j−1 + ze2 ≤ XS

∣∣∣∣ i
j

⇔ ze2 ≤ XS

∣∣∣∣ i−j
1 ⇔ ze2 ≤ α(i− j) + β with

1≤ i≤N
2≤j≤ i

(8)
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10 F. VIVIEN

if we note XS = (α, β) ‖. Equation (7) with i = N and j = 1 is equivalent to ze1 ≤ α+β(2−N).
The schedule must be valid for any (nonnegative) value of the structural parameter N , which
implies β ≤ 0. Equation (8) with i = j is equivalent to ze2 ≤ β. Hence ze2 ≤ 0 as β ≤ 0. As
ze2 must be nonnegative (cf. Equation (5)), this leads to ze2 = 0 . This means that the first
dimension of any affine schedule cannot satisfy the dependence relation e2.

The dependence relation e1 can be satisfied, a solution being XS = (1, 0) (α = 1,
β = 0). Therefore, Feautrier is called recursively on the whole dependence
relation e2. However, most of the dependences described by e2 are satisfied by the schedule
Θ(S, (i, j), N) = i (defined by XS = (1, 0)). Indeed, Equation (7) is then satisfied for any value
(i, j) ∈ De2 except when i=j. Thus, one only needed to call recursively Feautrier on
the dependence relation e′2:

S(j, j−1) → S(i, j), he2(i, j) = (j, j−1),De′2
= {(i, j) | 2≤i≤N, i = j}.

Therefore, this example shows that the search for the schedules in Feautrier is
overconstrained by design.

We may now wonder whether this overconstraining may lead Feautrier to build some
affine schedules of non minimal dimensions and thus to miss some parallelism. We first present
in Section 4 an algorithm which gets rid of this potential problem. Then, we show in Section 5
that no parallelism is lost because of this design particularity.

4. A GREEDIER ALGORITHM

4.1. The Vertex method

A polyhedron can always be decomposed as the sum of a polytope (i.e. a convex bounded
polyhedron) and a polyhedral cone, called the characteristic cone (see [16] for details). A
polytope is defined by its vertices, and any point of the polytope is a nonnegative convex
combination of the polytope vertices. A polyhedral cone is finitely generated and is defined by
its rays and lines. Any point of a polyhedral cone is the sum of a nonnegative combination of its
rays and any combination of its lines. Therefore, a polyhedron D can be equivalently defined
by a set of vertices, {v1, . . . , vω}, a set of rays, {r1, . . . , rρ}, and a set of lines, {l1, . . . , lλ}.
Then D is the set of all vectors p such that

p =
ω∑

i=1

µivi +
ρ∑

i=1

νiri +
λ∑

i=1

ξili (9)

with µi ∈ Q+, νi ∈ Q+, ξi ∈ Q, and
∑ω

i=1 µi = 1. As we have already stated, all the important
sets in static control programs are polyhedra. As we just recalled, any nonempty polyhedron

‖Example 1 contains a single statement S. Therefore, the components YS and ρS of Θ (cf. Equation (1)) have no
influence here on Equation (5) which is equivalent to: (XS .he(j, N)+YS .N +ρS)+ze ≤ (XS .j +YS .N +ρS) ⇔
XS .he(j, N) + ze ≤ XS .j.
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ON THE OPTIMALITY OF FEAUTRIER’S SCHEDULING ALGORITHM 11

is fully defined by its vertices, rays, and lines, which can be computed even for parameterized
polyhedra [13]. The vertex method, introduced by Quinton [15], uses the vertices, rays, and
lines to reduce the size of the set of constraints described by Equation (2).

Theorem 2 (The vertex method) Let D be a nonempty polyhedron defined by a set of
vertices (denoted by {v1, . . . , vω}), a set of rays (denoted by {r1, . . . , rρ}), and a set of lines
(denoted by {l1, . . . , lλ}). Let Φ be an affine form of linear part A and constant part b
(Φ(x) = A.x + b). Then the affine form Φ is nonnegative over D if and only if 1) Φ is
nonnegative on each of the vertices of D and 2) the linear part of Φ is nonnegative (respectively
null) on the rays (resp. lines) of D. This can be written :

∀p ∈ D, A.p + b ≥ 0 ⇔
∀i ∈ [1, ω], A.vi + b ≥ 0, ∀i ∈ [1, ρ], A.ri ≥ 0, and ∀i ∈ [1, λ], A.li = 0.

The polyhedra produced by the dependence analysis of programs (e.g. existence domain of
dependences) are in fact polytopes. Then, according to Theorem 2, an affine form is nonnegative
on a polytope if and only if it is nonnegative on the vertices of this polytope. We use this
property to simplify Equation (2) and define a new scheduling algorithm.

4.2. The greediest algorithm

Feautrier’s algorithm is a greedy heuristic which maximizes the number of dependence relations
satisfied by the first dimension of the schedule, and then proceeds recursively. The algorithm
below is a greedy heuristic which maximizes the number of operation to operation dependences
satisfied by the first dimension of the schedule, and then proceeds recursively. To achieve this
goal, this algorithm greedily considers the vertices of the existence domains of the dependence
relations.

Let e1, ..., en be the dependence relations in the studied program. For any i ∈ [1, n], let
vi,1, ..., vi,mi be the vertices of Dei , and let, for any j ∈ [1,mi], ei,j be the operation to operation
dependence from Sei

(hei
(vi,j , N), N) to Tei

(vi,j): ei,j : Sei
(hei

(vi,j , N), N) → Tei
(vi,j). G

denotes here the multigraph generated by the dependences ei,j .

Greedy(G)

1. Compute the strongly connected components of G.
2. For each strongly connected component Gk of G do in topological order:

(a) Find an integral affine function Θ that satisfies

∀ei,j , Θ(Sei
, hei

(vi,j , N), N) + zi,j ≤ Θ(Tei
, vi,j , N) with 0 ≤ zi,j ≤ 1 (10)

and which maximizes the sum
∑

ei,j
zi,j .

(b) Build the subgraph G′
k generated by the unsatisfied dependences. If G′

k is not
empty, recursively call Greedy(G′

k).
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12 F. VIVIEN

Lemma 1 (Correctness and maximum greediness) The output of algorithm Greedy is
a schedule and the first dimension of this schedule satisfies all the operation to operation
dependences that can be satisfied by the first dimension of an affine schedule (of the form
defined in Section 2).

Proof. Let S(i) and T (j) be any two operations of the loop nest such that T (j) depends
on S(i): S(i) → T (j). In the graph G there exists a dependence relation e which includes
the operation to operation dependence S(i) → T (j). Let v1, ..., vp be the vertices of De.
By definition of these vertices, there exist some nonnegative rationals µ1, ..., µp such that :
j =

∑p
k=1 µkvk and

∑p
k=1 µk = 1.

We first show that the multidimensional affine functions built by Greedy respect all the
dependences (by showing that the dependence from S(i) to T (j) is respected). Then we show
the maximum greediness: the first dimension of Θ satisfies all the operation to operation
dependences that can be satisfied by an affine schedule (if there exists an affine schedule whose
first dimension satisfies the dependence from S(i) to T (j) then so does the first dimension of
Θ). As a consequence, if there exists one multidimensional affine schedule for the studied set
of dependences, we show that Greedy builds such a schedule.

All dependences are respected. Before all, we must show that this algorithm effectively builds
a schedule. Equation (10) insures us that, for any k ∈ [1, p], Θ(S, he(vk, N), N) ≤ Θ(T, vk, N).
Therefore:

p∑
k=1

µkΘ(S, he (vk, N) , N) ≤
p∑

k=1

µkΘ(T, vk, N) ⇔

Θ

(
S,

p∑
k=1

µkhe (vk, N) , N

)
≤ Θ

(
T,

p∑
k=1

µkvk, N

)
⇔

Θ

(
S, he

(
p∑

k=1

µkvk, N

)
, N

)
≤ Θ

(
T,

p∑
k=1

µkvk, N

)
⇔

Θ(S, he (j, N) , N) ≤ Θ(T, j,N) ⇔
Θ(S, i, N) ≤ Θ(T, j,N)

The equivalence between the first and the second inequations (resp. between the second and
the third) comes from the facts that Θ (resp. he) is an affine function and that

∑p
k=1 µk = 1.

From what precedes, Θ (S, i, N) ≤ Θ(T, j,N), and Θ (the first dimension of the schedule)
respects the dependence between S(i) and T (j). Therefore, the schedule built by Greedy
respects all the dependences.

We still have to show that Greedy satisfies any operation to operation dependence. This
is a consequence of the next point.

As many dependences as possible are satisfied. We suppose that there exists at least one affine
schedule whose first dimension, denoted σ, satisfies the operation to operation dependence
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ON THE OPTIMALITY OF FEAUTRIER’S SCHEDULING ALGORITHM 13

S(i) → T (j): σ (S, i, N) + 1 ≤ σ (T, j,N).

σ (S, i, N) + 1 ≤ σ (T, j,N) ⇔
σ (S, he(j, N), N) + 1 ≤ σ (T, j,N) ⇔

σ

(
S, he

(
p∑

k=1

µkvk, N

)
, N

)
+ 1 ≤ σ

(
T,

p∑
k=1

µkvk, N

)
⇔

σ

(
S,

p∑
k=1

µkhe (vk, N) , N

)
+ 1 ≤ σ

(
T,

p∑
k=1

µkvk, N

)
⇔

1 +
p∑

k=1

µkσ (S, he (vk, N) , N) ≤
p∑

k=1

µkσ (T, vk, N) (11)

As
∑p

k=1 µk = 1 with µk ≥ 0 for any k ∈ [1, p], Inequation (11) implies that there exists at
least one vertex vq such that 1+σ (S, he (vq, N) , N) ≤ σ (T, vq, N) with µq > 0. Therefore, the
first dimension, Θ, of the schedule built by Greedy satisfies the dependence corresponding to
vq. Otherwise (Θ + σ) would be an affine function inducing:

1. a nonnegative delay on any vertex (as the sum of two such affine functions);
2. a delay greater than or equal to one on all the vertices on which either Θ or σ induces

a delay greater than or equal to one; therefore (Θ + σ) would induce a delay greater
than or equal to one on vq and therefore on at least one more vertex than Θ, which is
impossible by definition of Θ.

As Θ induces a delay greater than or equal to one on vq, it induces a strictly positive delay
on S(i) → T (j). Indeed, from the inequations:

1 + σ (S, he (vq, N) , N) ≤ σ (T, vq, N)

and
∀k ∈ [1, p], σ (S, he (vk, N) , N) ≤ σ (T, vk, N)

we can obtain (using the same transformations than previously):

Θ (S, i, N) + µq ≤ Θ(T, j,N) ⇒ Θ(S, i, N) < Θ(T, j,N) .

As Θ is by construction an integral schedule, the strictly positive delay Θ (T, j,N)−Θ(S, i, N)
is greater than or equal to one, and Θ satisfies the operation to operation dependence
S(i) → T (j). �

The following lemma provides a property which is crucial for code generation.

Lemma 2 (Independence of the linear parts) Among all the schedules that algorithm
Greedy can build for any given loop nest, there exists at least one schedule Θ such that, for
any statement S in the loop nest, the set of the linear parts for statement S is independent. In
other words, if dS is the dimension of the schedule of statement S under Θ (dS is the dimension
of Θ(S)), and if, for i ∈ [1, dS ], Θi(S, j, N) = Xi

S .j + Y i
S .N + ρi

S, then {X1
S , ..., XdS

S } is an
independent set of vectors.
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14 F. VIVIEN

Proof. Let σ be any schedule built by Greedy. We note: σi(S, j, N) = xi
S .j + yi

S .N + νi
S . We

build the desired schedule Θ from σ by induction on the dimension. The induction hypothesis
at rank i is that, for any statement S, the linear parts of the first i dimensions of Θ(S) (the
only dimensions built so far) are independent and the first i dimensions of Θ satisfy all the
dependences of level less than or equal to i.

We denote by F(S, i) the set of vectors {X1
S , ..., Xi

S}. We call bj the j-th canonical vector
(whose components are all null except the j-th one which is equal to one). Finally we suppose
that all the loops have positive steps: the theorem obviously holds without this property but
the proof is far more painful to write.

Initialization of the induction. For each statement S, we let Θ1(S, j, N) = σ1(S, j, N) + b1.j
(thus X1

S = x1
S + b1). This is a valid first dimension as we have supposed that all the steps are

positive (thus all dependence distances are lexicographically nonnegative [6]). Furthermore,
this affine function satisfies all the dependences of level one (in fact, both terms of the sum
satisfy them!).

Building dimension i + 1. We suppose that the induction hypothesis is satisfied up to
dimension i included. We look for some nonnegative values λ1, ..., λi+1 as we want to define
Θi+1 as follows for any statement S:

Θi+1(S, j, N) = σi+1(S, j, N) +
i+1∑
k=1

λk.bk.j (then Xi+1
S = xi+1

S +
i+1∑
k=1

λk.bk).

First, remark that whatever the values of the λ, Θi+1(S) will be a valid (i + 1)-th dimension
satisfying all the dependences satisfied by σi+1 as the λ are all nonnegative, as all the steps are
positive (and thus all the dependence distance are lexicographically nonnegative [6]), and as,
by induction hypothesis, all the dependences up to level i are already satisfied. Furthermore,
the affine function τ(S, j, N) = bi+1.j defines a valid (i + 1)-th dimension of the schedule
satisfying all the dependences at level i + 1. By maximum greediness of Greedy (Lemma 1),
σi+1 satisfies at least all the dependences satisfied by this affine function, and so does Θi+1.
Thus, whatever the values of the λ, the first i + 1 dimensions of Θ satisfy all the dependences
of level up to i + 1 (included).

For each statement S there exists a (possibly empty) set of values of the λ, denoted P(S, i+1),
such that F(S, i + 1) = {X1

S , ..., Xi+1
S } is not an independent set of vectors. As, by induction

hypothesis, F(S, i) is an independent set of vectors, F(S, i + 1) is not independent if and only
if Xi+1

S is a combination of X1
S , ..., Xi

S :

P(S, i + 1) =

(λ1, ..., λi+1)

∣∣∣∣∣∣
λ1 ≥ 0, ..., λi+1 ≥ 0,
∃µ1, ...,∃µi,

xi+1
S +

∑i+1
j=1 λj .bj =

∑i
k=1 µk.Xk

S

 .

P(S, i + 1) is obviously a polyhedron. Furthermore, P(S, i + 1) is not equal to the whole
vector space: F(S, i) is an independent set of vectors of dimension i and, thus, it cannot
contain the vector space of dimension i + 1 generated by b1, ..., bi+1. Thus, for any statement
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ON THE OPTIMALITY OF FEAUTRIER’S SCHEDULING ALGORITHM 15

S, P(S, i+1) ( Qi+1. Therefore,
⋃

S P(S, i+1) ( Qi+1, and we can take for (λ1, ..., λi+1) any
value in Qi+1 \ (

⋃
S P(S, i + 1)) =

⋂
S

(
Qi+1 \ P(S, i + 1)

)
. �

The above proof is constructive as one can explicit the difference of two polyhedra (for
example using the polylib library [14]).

5. SCHEDULES OF MINIMAL DIMENSION

As Greedy is greedier than Feautrier, one could imagine that the former may sometimes
build schedules of smaller dimension than the latter and thus may find more parallelism. The
following theorem shows that this never happens.

Theorem 3 (The dimension of Feautrier’s schedules is minimal) Let us consider a
loop nest whose dependences are all affine, or are represented by affine functions. If we are
only looking for one affine schedule per statement of the loop nest, then the dimension of the
schedules built by Feautrier is minimal, for each statement of the loop nest.

Note that this theorem cannot be improved, as the study of Example 2 shows. The proof is
direct (not using algorithm Greedy) and is presented in Section 6.

Principle of the proof of Theorem 3. Let σ be an affine schedule whose dimension is minimal
for each statement in the studied loop nest (Lemma 3 proves that such a schedule exists).

From σ, we are going to build a schedule a la Feautrier of same dimension, by combining
the dimensions of σ. Let us consider one dependence relation, say e. Suppose that no affine
schedule can fully satisfy e with its first dimension. The possible inefficiency comes from the
fact that the first dimension of σ can (perhaps) satisfy some of the operation to operation
dependences in e. Therefore the dimensions of σ of rank greater than one will no more have to
satisfy these operation to operation dependences, and thus the dimensions of σ of rank greater
than one will not be constrained by these operation to operation dependences. On the opposite,
the dimensions of any schedule a la Feautrier will still have to satisfy all the operation to
operation dependences in e, even if some of them are satisfied by the first dimensions of the
schedule.

Let e be a dependence relation, of existence domain De. We suppose that e is not fully,
but partially, satisfied by the first dimension of σ (otherwise there is no problem with e). The
operation to operation dependences in e not satisfied by the first dimension of the schedule
σ define a subpolyhedron D1

e of De: this is the subset of De on which the first dimension of
σ induces a null delay. D1

e is thus defined by the equations defining De and by the null delay
equation involving the first dimension of σ:

D1
e = {j ∈ De | σ1(Te, j,N)− σ1(Se, he(j,N), N) = 0} .

The second dimension of σ must respect the dependences in D1
e , i.e., must induce a nonnegative

delay over D1
e . Therefore, the second dimension of σ is an affine form nonnegative over the

polyhedron D1
e . Using the affine form of Farkas’ lemma (Theorem 1), we obtain that the

second dimension of σ is defined from the (null delay equation on the) first dimension of
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16 F. VIVIEN

σ and from the equations defining De. From the equations obtained using Farkas’ lemma,
we build a nonnegative linear combination of the first two dimensions of σ which induces
a nonnegative delay over De (and not only on D1

e), and which satisfies all the operation to
operation dependences in e satisfied by any of the first two dimensions of σ. This way we build
a schedule a la Feautrier of same dimension than σ: a whole dependence relation is kept as
long as all its operation to operation dependences are not satisfied by the same dimension of
the schedule.

Consequences. First, a simple and important corollary of the previous theorem:

Corollary 1. Feautrier is well-defined: it always outputs a valid schedule when its input is
the exact dependences of an existing program.

The original proof relied on an assumption on the dependence relations that can be easily
enforced but which is not always satisfied: all operation to operation dependences in a
dependence relation are of the same dependence level (are satisfied by the same dimension
of the original schedule). For example, dependence relation e2 in Example 1 does not satisfy
this property.

More important, Theorem 3 shows that Feautrier’s algorithm can only miss some (significant
amount of) parallelism because of the limitations of its framework, but not because of its
design: as the dimension of the schedule is minimal, the magnitude of the schedule’s makespan
is minimal, for any statement.

Even if Greedy is a greedier algorithm than Feautrier, both outputs schedules of the
same dimension. On one hand, Greedy constrains more the first dimension of its schedules
than Feautrier. On the other hand, Feautrier sometimes overconstrains the remaining
dimensions of its schedules. Therefore, no algorithm is better than the other. They are slightly
different but we believe their main properties are the same.

Finally, a careful study of the proof of Theorem 3 shows that Lemma 2, established for
Greedy, also holds for Feautrier (to prove it, we just have to run the constructive proof
of Theorem 3 on a schedule of Greedy satisfying Lemma 2). In other words, among all the
schedules that Feautrier can build, there are some schedules whose linear parts, for any
statement, is an independent set of vectors. Thanks to this property we can soundly link the
magnitude of the schedule’s makespan to the schedule’s dimension (the schedule’s makespan
is an (Ehrhart [3]) polynomial whose degree is the schedule’s dimension).

6. THE PROOF OF THEOREM 3

Theorem 3 is proved by induction on the dimensions of the schedule. We formally state our
hypotheses and notations in Paragraph 6.2 and our induction hypotheses in Paragraph 6.3.
Then we verify the base case in Paragraph 6.4 and prove the inductive step in Paragraph 6.5.
Before that, we prove a necessary preliminary result in Paragraph 6.1.
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ON THE OPTIMALITY OF FEAUTRIER’S SCHEDULING ALGORITHM 17

6.1. Minimal dimension simultaneously for all statements

Lemma 3. If there exists at least one valid affine schedule for the studied system, then there
exists an affine schedule which is simultaneously of minimal dimension for all statements.

Proof. Let Θ1 and Θ2 be two valid schedules. For each statement S, we define dS as the
minimum of the dimensions of Θ1(S) and Θ2(S). Then, we define a new (multidimensional)
affine function Θ′

1 as follows: for each statement S, Θ′
1(S) = Θ1(S)|dS

, i.e., Θ′
1(S) is equal to

the first dS dimensions of Θ1(S). As Θ1 is a schedule, and as Θ1(S) is of dimension greater than
or equal to dS , Θ′

1 respects all the dependences, i.e. induces a lexicographically nonnegative
delay on all the dependences. We symmetrically define Θ′

2. Then Θ = Θ′
1 + Θ′

2 is a schedule.
Indeed, let us consider an operation to operation dependence between S(i) and T (j). Without
any loss of generality, we suppose that dS ≤ dT , and that dS is the dimension of Θ1(S). As
Θ1 is a schedule, it induces a lexicographically (strictly) positive delay on the dependence
between S(i) and T (j). Furthermore, as dS is the dimension of Θ1(S) and as dS ≤ dT , Θ′

1

induces a lexicographically (strictly) positive delay on the dependence between S(i) and T (j).
As Θ′

2 induces a lexicographically nonnegative delay on all the dependences, Θ′
1 + Θ′

2 induces
a lexicographically (strictly) positive delay on the considered dependence.

We can take for each statement S a schedule of minimal dimension for S. If we apply the
previous scheme to this set of schedules we end up with a schedule which is simultaneously of
minimal dimension for all statements. �

6.2. Hypotheses and notations

Hypotheses

Let Θ be an affine schedule whose dimension is minimal for each statement. The existence of
such a schedule is guaranteed by Lemma 3 on the hypothesis that there exists at least one
(multidimensional) affine schedule satisfying all the dependences in the studied system. If there
is no schedule, Theorem 3 obviously holds! From Θ, we build by induction an affine schedule
a la Feautrier, denoted by P , whose dimension is minimal for each statement.

We suppose that Θ is an integral function. If this is not the case, we just scale up Θ by the
least common multiple of the denominator of its rational coefficients.

Notations

Let e1, ..., ep be the p dependence relations of the considered loop nest. Each of these
dependence relations is a 4-tuple: ej = (Sj , Tj ,Dj , hj), where Sj and Tj are two statements,
Dj is a polyhedral domain, and hj an affine function such that ej denotes the following set of
dependences:

∀i ∈ Dj , Tj(i) depends on Sj(hj(i, N)). (12)
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18 F. VIVIEN

6.3. Induction hypotheses for dimension i

1. The first i dimensions of P fully satisfy the dependence relations e1, ..., emi , but none
of the dependence relations e1+mi

, ..., ep. Therefore, the latter must be satisfied by the
dimensions of P of rank greater than or equal to i + 1.

2. Dimension i of P fully satisfies as many of the dependence relations e1+mi−1 , ..., ep as
possible.

3. The dimensions of Θ of rank greater than or equal to i+1 satisfy the dependence relations
ei
1+mi

, ..., ei
p where, if j ∈ [1 + mi, p], ei

j = (Sj , Tj ,Di
j , hj), with

Di
j = {x ∈ Dj | ∀k ∈ [1, i], Θk(Tj , x,N)−Θk(Sj , hj(x, N), N) = 0}.

The operation to operation dependences described by e1, ..., ep, but not in ei
1+mi

, ..., ei
p,

are satisfied by the first i dimensions of Θ. (Therefore, the first i dimensions of Θ fully
satisfy the dependence relations e1, ..., emi

.)
4. For any j in [1, i], Θj is a linear combination of P1, ..., Pj .
5. For any j in [1, i], Pj satisfies all the operation to operation dependences which are

satisfied by Θj .

6.4. Initialization of the induction: i = 1

We first prove that the different induction hypotheses hold when i = 1.
The first dimension of Θ fully satisfies some of the dependence relations (possibly none). In

other words, for some values of j ∈ [1, p], the first dimension of Θ induces a delay greater than
or equal to one on all the operation to operation dependences described by Equation (12).
Without any loss of generality, we suppose that the first dimension of Θ fully satisfies the
dependence relations e1, ..., em1 , and no other dependence relations.

Hypotheses 1 and 2. By definition, the first dimension of any schedule built by Feautrier
fully satisfies as many dependence relations as possible. Therefore, any schedule built by
Feautrier fully satisfies at least the dependence relations e1, ..., em1 . Indeed, suppose this is
not the case. Then take a schedule built by Feautrier and not fully satisfying the dependence
relations e1, ..., em1 . We add to the first dimension of this schedule the first dimension of
Θ. This way we obtain an affine schedule whose first dimension fully satisfies at least one
more dependence relation than Feautrier’s schedule. This is impossible as it contradicts the
maximization of the number of dependence relations fully satisfied (maximization of the sum∑

e ze, cf. Section 2.6).
We suppose that any schedule built by Feautrier fully satisfies only the dependence

relations e1, ..., em1 . Is this is not the case, we take any integral schedule S built by Feautrier.
We then define a new schedule T equal to Θ except for its first dimension which is the sum of
the first dimension of Θ and the first dimension of S. We replace Θ by T and we restart our
current construction from the beginning. This is valid as Θ and T have the same dimension
for any statement.

The dimensions of P of rank strictly greater than one must satisfy the dependence relations
e1+m1 , ..., ep.
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Hypotheses 4 and 5. We define the first dimension of P to be equal to the first dimension
of Θ: P1 = Θ1. Then, Θ1 is a linear combination of P1 and P1 satisfies all the operation to
operation dependences which are satisfied by Θ1.

Hypothesis 3. Let j ∈ [1 + m1, p]. Then ej is a dependence not fully satisfied by the first
dimension of Θ. As Θ is a schedule it induces a lexicographically nonnegative delay on
all dependences. Thus its first dimension induces a nonnegative delay on all dependences.
Furthermore, as Θ is integral by hypothesis, its first dimension induces on all dependences a
delay either null or greater than one. Let D1

j denote the subset of Dj corresponding to operation
to operation dependences of ej not satisfied by the first dimension of Θ. Then:

D1
j = {i ∈ Dj | Θ1(Tj , i, N)−Θ1(Sj , hj(i, N), N) = 0}.

Then the dimensions of Θ of rank strictly greater than one must satisfy the dependence
relations e1

1+m1
, ..., e1

p where, if j ∈ [1 + m1, p], e1
j = (Sj , Tj ,D1

j , hj).

6.5. Induction: from dimension i to dimension i + 1

We suppose that the induction hypotheses for i are satisfied. Then we build the (i + 1)-th
dimension of P while satisfying the induction hypotheses for i + 1.

The delay induced by Θi+1 is a nonnegative affine function over Di
j. By induction

hypothesis 3, the dimensions of Θ of rank greater than or equal to i + 1 must satisfy the
dependence relations ei

1+mi
, ..., ei

p. Therefore, Θi+1 induces a nonnegative delay on all the
dependence relations ei

1+mi
, ..., ei

p. Let us take any value of j in [1 + mi, p]. As Θi+1(Tj),
Θi+1(Sj), and hj are affine functions by hypothesis, Θi+1(Tj , x,N)−Θi+1(Sj , hj(x,N), N) is
also an affine function. Furthermore this affine function is nonnegative over Di

j , the domain of
the dependence relation ei

j . Di
j is obviously a polyhedron (cf. Equation (13)). Therefore, we can

apply the affine form of Farkas’ lemma (Theorem 1) to Θi+1(Tj , x,N)−Θi+1(Sj , hj(x, N), N)
and Di

j .

Applying the affine form of Farkas’ lemma. Let f1, ..., fq be the affine functions defining
polyhedron Dj : Dj = {x | ∀k ∈ [1, q], fk(x, N) ≥ 0}. Then, by induction hypothesis 3:

Di
j =

x

∣∣∣∣∣∣
∀k ∈ [1, q], fk(x, N) ≥ 0
∀k ∈ [1, i], Θk(Tj , x,N)−Θk(Sj , hj(x, N), N) ≥ 0
∀k ∈ [1, i], −Θk(Tj , x,N) + Θk(Sj , hj(x,N), N) ≥ 0

 . (13)
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20 F. VIVIEN

Then the affine form of Farkas’ lemma claims the existence of some nonnegative values α,
β1, ..., βq, γ1, ..., γi, and δ1, ..., δi, such that:

Θi+1(Tj , x,N)−Θi+1(Sj , hj(x,N), N) = α +
q∑

k=1

βkfk(x,N)

+
i∑

k=1

γk

(
Θk(Tj , x,N)−Θk(Sj , hj(x, N), N)

)
−

i∑
k=1

δk

(
Θk(Tj , x,N)−Θk(Sj , hj(x, N), N)

)
.

By induction hypothesis 4, for any value of j in [1, i], Θj is a linear combination of P1, ..., Pj .
Thus, there exist some nonnegative values λj,1, ..., λj,i, and µj,1, ..., µj,i such that:

Θi+1(Tj , x,N)−Θi+1(Sj , hj(x,N), N) =

α +
q∑

k=1

βkfk(x,N) +
i∑

k=1

(λj,k − µj,k)
(
Pk(Tj , x,N)− Pk(Sj , hj(x,N), N)

)
which is equivalent to:(

Θi+1(Tj) +
i∑

k=1

µj,kPk(Tj)

)
(x,N)−

(
Θi+1(Sj) +

i∑
k=1

µj,kPk(Sj)

)
(hj(x,N), N) =

α +
q∑

k=1

βkfk(x,N) +
i∑

k=1

λj,k

(
Pk(Tj , x,N)− Pk(Sj , hj(x, N), N)

)
. (14)

The right-hand side of Equation (14) is nonnegative over Dj. By induction hypothesis 1,
none of the first i dimensions of P fully satisfies a dependence relation el if l ∈ [1 + mi, p].
Thus, for any value of k in [1, i], Pk induces a nonnegative delay on the dependence relation
el, if l ∈ [1 + mi, p]. In other words, with l = j:

∀x ∈ Dj , Pk(Tj , x,N)− Pk(Sj , hj(x, N), N) ≥ 0. (15)

Furthermore, the functions f1, ..., fq are by definition nonnegative on Dj , and the constants α,
βk, and λj,k are nonnegative. Therefore, the right-hand side of Equation (14) is a nonnegative
affine combination of functions which take nonnegative values on Dj . Then, this right-hand
side takes nonnegative values on Dj , and thus on Di

j (Di
j ⊂ Dj ).

The left-hand side of Equation (14) is a delay formula. This left-hand side is obviously the
formula of the delay induced by the affine function Θi+1 +

∑i
k=1 µj,kPk on a dependence

defined by the affine function hj . As the right-hand side of Equation (14) takes nonnegative
values on Dj , Θi+1 +

∑i
k=1 µj,kPk is an affine function which induces a nonnegative delay on

ej . Furthermore, this function induces a strictly positive delay on any points of Di
j on which

Θi+1 induces a strictly positive delay (as
∑i

k=1 µj,kPk induces a nonnegative delay on these
points, cf. Equation (15)).
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Looking at dependence relations other than ej. By induction hypothesis 1, none of the first i
dimensions of P fully satisfies a dependence relation el if l ∈ [1 + mi, p]. Thus, for any value
of k in [1, i], Pk induces a nonnegative delay on Dl, and thus on Di

l , if l ∈ [1 + mi, p]. By
induction hypothesis 3, the components of Θ of rank greater than or equal to i + 1 satisfy
the dependence relations ei

l, for l ∈ [1 + mi, p]. Thus, Θi+1 induces a nonnegative delay on
ei
l, for l ∈ [1 + mi, p]. Therefore, Θi+1 +

∑i
k=1 µj,kPk induces a nonnegative delay on ei

l, for
l ∈ [1 + mi, p], as a nonnegative linear combination of functions inducing nonnegative delays.

Satisfying the conditions on all the ek’s. In summary, Θi+1+
∑i

k=1 µj,kPk is an affine function
which induces:

1. A nonnegative delay on the dependence relation ej ;
2. A nonnegative delay on the dependence relations ei

1+mi
, ..., ei

p;
3. A strictly positive delay on the operation to operation dependences of ei

j on which Θi+1

induces a strictly positive delay.

Furthermore, a quick look to the above arguments shows that these properties also hold
for Θi+1 +

∑i
k=1 νkPk, if for any k in [1, i], νk ≥ µj,k. Thus, for any k ∈ [1, i], let

µk = maxj∈[1+mi,p] µj,k. Then, Θi+1 +
∑i

k=1 µkPk is an affine function which induces:

1. A nonnegative delay on the dependence relations e1+mi
, ..., ep;

2. A strictly positive delay on the operation to operation dependences of ei
l (l ∈ [1+mi, p])

on which Θi+1 induces a strictly positive delay.

Furthermore, a quick look to the above arguments shows that these properties also hold for
Θi+1 +

∑i
k=1 νkPk, if for any k in [1, i], νk ≥ µk.

Pi+1 and induction hypotheses 4 and 5 for dimension i + 1. We are now ready to define
the (i + 1)-th component of P : Pi+1 = Θi+1 +

∑i
k=1(1 + µk)Pk (thus induction hypothesis

4 is satisfied for i + 1). From what precedes, Pi+1 induces a nonnegative delay on all the
dependence relations e1+mi

, ...ep, as required. Furthermore, Pi+1 satisfies all the operation
to operation dependences of ei

k (k ∈ [1 + mi, p]) satisfied by Θi+1. Let us consider any k in
[1+mi, p], and any operation to operation dependence f in ek. We have two cases to consider.

1. f belongs to ei
k. We have already established that Pi+1 induces a strictly positive delay

on f , if Θi+1 does so.
2. f does not belong to ei

k. Then, by definition of ei
k, this dependence is satisfied by one of the

first (i− 1) dimensions of Θ, say the l-th dimension. Thus, Θl induces a strictly positive
delay on f . Thus, because of induction hypothesis 5 at depth l, Pl induces a strictly
positive delay on f . Therefore, Pi+1 satisfies the operation to operation dependence f ,
as the coefficient of Pl in Pi+1 is (1 + µl) and not just µl.

Therefore, Pi+1 satisfies all the operation to operation dependences satisfied by Θi+1.
Furthermore, Pi+1 fully satisfies any dependence relation ej , j ∈ [1 + mi, p], if ei

j is fully
satisfied by Θi+1.
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Induction hypothesis 2 for dimension i + 1. For Pi+1 to be the (i + 1)-th dimension of a
schedule a la Feautrier, we still have to check that Pi+1 fully satisfies as many dependence
relations as possible, among ei

1+mi
, ..., ei

p. If this is not the case, Θi+1 does not fully satisfy
all the fully satisfiable ei

j . Then, we add to the (i + 1)-th dimension of Θ an affine function
that induces a nonnegative delay on all the dependence relations ei

1+mi
, ..., ei

p, and which fully
satisfies as many of them as possible. This way we obtain a new schedule of minimal dimension.
We restart our recursive construction (directly at the (i+1)-th rank). This time Pi+1 maximizes
the number of the dependence relations it fully satisfies.

Induction hypothesis 1 for dimension i+1. Without any loss of generality, let the dependence
relations fully satisfied by Pi+1 be e1+mi

, ..., emi+1 . Then, the first (i+1) dimensions of P satisfy
the dependence relations e1, ..., emi+1 , but none of the dependence relations e1+mi+1 , ..., ep.

Induction hypothesis 3 for dimension i + 1. As Pi+1 only fully satisfies the dependence
relations e1+mi

, ..., emi+1 , then Θi+1 only fully satisfies ei
1+mi

, ..., ei
mi+1

. Θ, and thus Θi+1,
is integral by hypothesis. Then the dimensions of Θ of rank greater than or equal to
i + 2 must satisfy the dependence relations ei+1

1+mi+1
, ..., ei+1

p where, if j ∈ [1 + mi+1, p],
ei+1
j = (Sj , Tj ,Di+1

j , hj), with

Di+1
j = {x ∈ Di

j | Θk(Ti+1, x,N)−Θi+1(Sj , hj(x,N), N) = 0}

which, by induction hypothesis 3, is equivalent to:

Di+1
j = {x ∈ Dj | ∀k ∈ [1, i + 1], Θk(Tj , x,N)−Θk(Sj , hj(x, N), N) = 0}.

7. CONCLUSION

Feautrier’s scheduling algorithm is the most powerful existing algorithm for parallelism
detection and extraction. But it has always been known to be suboptimal. We have shown
that Feautrier’s algorithm does not miss any significant amount of parallelism because of
its design, even if one can design a greedier algorithm. Therefore, to improve Feautrier’s
algorithm or to build a more powerful algorithm, one must get rid of some of the restrictive
hypotheses underlying its framework: affine schedules — but more general schedules will cause
great problems for code generation — and one scheduling function by statement — Feautrier,
Griebl, and Lengauer have already begun to get rid of this hypothesis by splitting the iteration
domains [11].

What Feautrier historically introduced as a “greedy heuristic” is nothing but the most
powerful algorithm in its class! This is a sound and powerful tool that may safely be used
to build other program optimization algorithms.
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