
On the Optimality
of Feautrier’s Scheduling Algorithm

Frédéric Vivien

ICPS-LSIIT, Université Louis Pasteur, Strasbourg, Pôle Api, F-67400 Illkirch, France.

Abstract. Feautrier’s scheduling algorithm is the most powerful exist-
ing algorithm for parallelism detection and extraction. But it has always
been known to be suboptimal. However, the question whether it may
miss some parallelism because of its design was still open. We show that
this is not the case. Therefore, to find more parallelism than this algo-
rithm does, one needs to get rid of some of the hypotheses underlying its
framework.

1 Introduction

One of the fundamental steps of automatic parallelization is the detection and
extraction of parallelism. This extraction can be done in very different ways,
from the try and test of ad hoc techniques to the use of powerful scheduling
algorithms. In the field of dense matrix code parallelization, lots of algorithms
have been proposed along the years. Among the main ones, we have the algo-
rithms proposed by Lamport [10], Allen and Kennedy [2], Wolf and Lam [15],
Feautrier [7,8], and Darte and Vivien [5]. This collection of algorithm spans a
large domain of techniques (loop distribution, unimodular transformations, lin-
ear programming, etc.) and a large domain of dependence representations (de-
pendence levels, direction vectors, affine dependences, dependence polyhedra).
One may wonder which algorithm to chose from such a collection. Fortunately,
we have some theoretical comparative results on these algorithms, as well as
some optimality results.

Allen and Kennedy’s, Wolf and Lam’s, and Darte and Vivien’s algorithms
are optimal for the representation of the dependences they respectively take as
input [4]. This means that each of these algorithms extracts all the parallelism
contained in its input (some representation of the code dependences). Wolf and
Lam’s algorithm is a generalization of Lamport’s; Darte and Vivien’s algorithm
is a generalization of those of Allen and Kennedy, and of Wolf and Lam, and is
generalized by Feautrier’s [4]. Finally, Feautrier’s algorithm can handle any of
the dependence representations used by the other algorithms [4].

It appears from these results that Feautrier’s algorithm is the most powerful
algorithm we have at hand. Although this algorithm has always be known to
be suboptimal, its exact efficiency was so far unknown. Hence the questions we
address in this paper: What are its weaknesses? Is its suboptimality only due to
its framework or also to its design? What can be done to improve this algorithm?
How can we build a more powerful algorithm?

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 299–309.
c© Springer-Verlag Berlin Heidelberg 2002



300 F. Vivien

In Section 2 we briefly recall Feautrier’s algorithm. Then we discuss its weak-
nesses in Section 3. In Section 4 we present what seems to be a “better” algo-
rithm. Section 5 presents the major new result of this paper: to find “more”
parallelism than Feautrier’s algorithm one needs to use far more powerful tech-
niques.

2 The Algorithm

Feautrier uses schedules to detect and extract parallelism. This section gives an
overview of his algorithm. The missing details can be found either in [7,8] or [4].

Framework: Static Control Programs. To enable an exact dependence anal-
ysis, the control-flow must be predictable at compile time. The necessary restric-
tions define the class of the static control programs. These are the programs:

– whose only data structures are integers, floats, arrays of integers, and arrays
of floats, with no pointers or pointer-like mechanisms;

– whose elementary statements are assignments of scalars or array elements;
– whose only control structure are sequences and do loops with constant steps;
– where the array subscripts and the loop bounds are affine functions of sur-

rounding loop indices and structural parameters.

Static control programs are mainly sets of nested loops. Figure 1 presents an
example of such a program. Let S be any statement. The iteration domain of
S, denoted DS , is the set of all possible values of the vector of the indices (the
iteration vector) of the loops surrounding S: in Example 1, DS = {(i, j) | 1 ≤
i ≤ N, 1 ≤ j ≤ i}. An iteration domain is always a polyhedron. In other words,
there always exist a matrix A and a vector b such that : DS = {x | A.x ≤ b}.

DO i=1, N
DO j=1, i
S: a(i,i+j+1) = a(i-1,2*i-1) + a(j,2*j)
ENDDO
ENDDO

Fig. 1. Example 1.

e1: S(i−1, i−1) → S(i, j), he1(i, j)=(i−1, i−1)
De1 = {(i, j) | 2 ≤ i ≤ N, 1 ≤ j ≤ i}

e2: S(j, j−1) → S(i, j), he2(i, j)=(j, j−1)
De2 = {(i, j) | 1 ≤ i ≤ N, 2 ≤ j ≤ i}

Fig. 2. Dependences for Example 1.

Dependence Representation. In the framework of static control programs,
an exact dependence analysis is feasible [6] and each exact dependence relation e
from statement Se to statement Te is defined by a polyhedron De, the domain of
existence of the dependence relation, and a quasi-affine 1 function he as follows:
1 See the original paper [6] for more details.



On the Optimality of Feautrier’s Scheduling Algorithm 301

for any value j ∈ De, operation Te(j) depends on operation Se(he(j,N)):

j ∈ De ⇒ Se(he(j,N)) → Te(j)

where N is the vector of structural parameters. Obviously, the description of the
exact dependences between two statements may involve the union of many such
dependence relations. A dependence relation e describes for any value j ∈ De

a dependence between the two operations Se(he(j,N)) and Te(j), what we call
an operation to operation dependence. In other words, a dependence relation is
a set of elementary operation to operation dependences. Figure 2 presents the
dependence relations for Example 1.

Following Feautrier [7], we suppose that all the quasi-affine functions we
have to handle are in fact affine functions (at the possible cost of a conservative
approximation of the dependences).

Searched Schedules. Feautrier does not look for any type of functions to
schedule affine dependences. He only considers nonnegative functions, with ra-
tional values, that are affine functions in the iteration vector and in the vector of
structural parameters. Therefore he only handles (affine) schedules of the form:

Θ(S, j,N) = XS .j + YS .N + ρS (1)

where XS and YS are non-parameterized rational vectors and ρS is a rational
constant. The hypothesis of nonnegativity of the schedules is not restrictive as
all schedules must be lower bounded.

Problem Statement. Once chosen the form of the schedules, the scheduling
problem seems to be simple. For a schedule to be valid, it must (and only has to)
satisfy the dependences. For example, if operation T (j) depends on operation
S(i), T (j) must be scheduled after S(i) : Θ(T, j,N) > Θ(S, i,N). Therefore, for
each statement S, we just have to find a vector XS , a vector YS , and a constant
ρS such that, for each dependence relation e, the schedule satisfies: 2

j ∈ De ⇒ Θ(Se, he(j,N), N) + 1 ≤ Θ(Te, j,N). (2)

The set of constraints is linear, and one can imagine using linear system solvers
to find a solution. Actually, there are now two difficulties to overcome:

1. Equation (2) must be satisfied for any possible value of the structural pa-
rameters. If polyhedron De is parameterized, Equation (2) may correspond
to an infinite set of constraints, which cannot be enumerated. There are two
means to overcome this problem: the polyhedron vertices (cf. Section 4) and
the affine form of Farkas’ lemma (see below). Feautrier uses the latter.

2. There does not always exist a solution for such a set of constraints. We will
see how the use of multidimensional schedules can overcome this problem.

2 The transformation of the inequality, from a > b to a ≥ 1+b, is obvious for schedules
with integral values and classical for schedules with rational values [12].



302 F. Vivien

The Affine Form of Farkas’ Lemma and Its Use. This lemma [7,13] pre-
dicts the shape of certain affine forms.

Theorem 1 (Affine Form of Farkas’ Lemma). Let D be a nonempty poly-
hedron defined by p inequalities: akx+ bk ≥ 0, for any k ∈ [1, p]. An affine form
Φ is nonnegative over D if and only if it is a nonnegative affine combination of
the affine forms used to define D:

Φ(x) ≡ λ0 +
p∑

k=1

λk(akx+ bk), with λk ≥ 0 for any k ∈ [0, p].

This theorem is useful as, in static control programs, all the important sets are
polyhedra : iteration domains, dependence existence domains [6], etc. Feautrier
uses it to predict the shape of the schedules and to simplify the set of constraints.

Schedules. By hypothesis, the schedule Θ(S, j,N) is a nonnegative affine form
defined on a polyhedron DS : the iteration domain of statement S. Therefore, the
affine form of Farkas’ lemma states that Θ(S, j,N) is a nonnegative affine combi-
nation of the affine forms used to define DS . Let DS = {x | ∀i ∈ [1, pS ], AS,i.x+
BS,i.N + cS,i ≥ 0} (DS is thus defined by pS inequalities). Then Theorem 1
states that there exist some nonnegative values µS,0, ..., µS,pS

such that:

Θ(S, j,N) ≡ µS,0 +
pS∑
i=1

µS,i(AS,i.j +BS,i.N + cS,i). (3)

Dependence Constraints. Equation (2) can be rewritten as an affine function
that is nonnegative over a polyhedron because the schedules and the function
he are affine functions:

j ∈ De ⇒ Θ(Te, j,N) − Θ(Se, he(j,N), N) − 1 ≥ 0.

Once again we can apply the affine form of Farkas’ lemma. Let De = {x | ∀i ∈
[1, pe], Ae,i.x+Be,i.N + ce,i ≥ 0} (De is thus defined by pe inequalities). Theo-
rem 1 states that there exist some nonnegative values λe,0, ..., λe,pe

such that:

Θ(Te, j,N) − Θ(Se, he(j,N), N) − 1 ≡ λe,0 +
pe∑

i=1

λe,i(Ae,i.j +Be,i.N + ce,i).

Using Equation (3), we rewrite the left-hand side of this equation:(
µTe,0 +

pTe∑
i=1

µTe,i(ATe,i .j +BTe,i.N + cTe,i)

)

−
(
µSe,0 +

pSe∑
i=1

µSe,i(ASe,i.he(j,N) +BSe,i.N + cSe,i)

)
− 1

≡ λe,0 +
pe∑

i=1

λe,i(Ae,i.j +Be,i.N + ce,i). (4)



On the Optimality of Feautrier’s Scheduling Algorithm 303

Equation 4 is a formal equality (≡). Thus, the coefficients of a given component
of either of the vectors j and N must be the same on both sides. The constant
terms on both sides of this equation must also be equal. This identification
process leads to a set of (n+ q+1) equations, equivalent to Equation (4), where
n is the size of the iteration vector j, and q the size of the parameter vector N .

The way Feautrier uses the affine form of Farkas’ lemma enables him to
obtain a finite set of linear equations and inequations, equivalent to the original
scheduling problem, and that can be solved using any solver of linear systems.

Extension to Multidimensional Scheduling. There exist some static con-
trol programs that cannot be scheduled with (monodimensional) affine schedules
(e.g. Example 1, cf. Section 4). Hence the need for multidimensional schedules,
i.e. schedules whose values are not rationals but rational vectors (ordered by lex-
icographic ordering). The solution proposed by Feautrier is simple and greedy.
For the first dimension of the schedules one looks for affine functions that 1)
respect all the dependences; 2) satisfy as many dependence relations as possible.
The algorithm is then recursively called on the unsatisfied dependence relations.
This, plus a strongly connected component distribution3 that reminds us of Allen
and Kennedy’s algorithm, defines the algorithm below. G denotes the multigraph
defined by the statements and the dependence relations. The multidimensional
schedules built satisfy the dependences according to the lexicographic order [4].

Feautrier(G)

1. Compute the strongly connected components of G.
2. For each strongly connected component Gi of G do in topological order:

(a) Find, using the method exposed above, an affine function that satisfies

∀e, j ∈ De ⇒ Θ(Se, he(j,N), N)+ze ≤Θ(Te, j,N) with 0≤ ze ≤ 1 (5)

and which maximizes the sum
∑

e ze.
(b) Build the subgraph G′

i generated by the unsatisfied dependences. If G′
i

is not empty, recursively call Feautrier(G′
i).

3 The Algorithm’s Weaknesses

Definitions of Optimality. Depending on the definition one uses, an algorithm
extracting parallelism is optimal if it finds all the parallelism: 1) that can be
extracted in its framework (only certain program transformations are allowed,
etc.); 2) that is contained in the representation of the dependences it handles; 3)
that is contained in the program to be parallelized (not taking into account the
dependence representation used nor the transformations allowed). For example,
Allen, Callahan, and Kennedy uses the first definition [1], Darte and Vivien the
second [5], and Feautrier the third [8]. We now recall that Feautrier is not
optimal under any of the last two definitions.
3 This distribution is rather esthetic as the exact same result can be achieved without
using it. This distribution is intuitive and ease the computations.



304 F. Vivien

The Classical Counter-Example to Optimality. Feautrier proved in his
original article [7] that his algorithm was not optimal for parallelism detection in
static control programs. In his counterexample (Example 2, Figure 3) the source
of any dependence is in the first half of the iteration domain and the sink in the
second half. Cutting the iteration domain “in the middle” enables a trivial par-
allelization (Figure 4). The only loop in Example 2 contains some dependences.
Thus, Feautrier’s schedules must be of dimension at least one (hence at least one
sequential loop after parallelization), and Feautrier finds no parallelism.

DO i=0, 2n
x(i) = x(2n-i)

ENDDO

Fig. 3. Example 2.

DOPAR i=0, n
x(i) = x(2n-i)

ENDDOPAR
DOPAR i=n+1, 2n

x(i) = x(2n-i)
ENDDOPAR

Fig. 4. Parallelized version of Example 2.

Weaknesses. The weaknesses in Feautrier’s algorithm are either a consequence
of the algorithm framework, or of the algorithm design.

Framework. Given a program, we extract its implicit parallelism and then we
rewrite it. The new order of the computations must be rather regular to enable
the code generation. Hence the restriction on the schedule shape: affine func-
tions. The parallel version of Example 2 presented Figure 4 can be expressed
by a non affine schedule, but not by an affine schedule. The restriction on the
schedule shape is thus a cause of inefficiency. Another problem with Example 2
is that Feautrier looks for a transformation conservative in the number of loops.
Breaking a loop into several loops, i.e., cutting the iteration domain into several
subdomains, can enable to find more parallelism (even with affine schedules).
The limitation here comes from the hypothesis that all instances of a statement
are scheduled the same way, i.e., with the same affine function. (Note that this
hypothesis is almost always made [10,2,15,5], [9] being the exception.)

Some of the weaknesses of Feautrier are thus due to its framework. Before
thinking of changing this framework, we must check whether one can design a
more powerful algorithm, or even improve Feautrier, in Feautrier’s framework.

Algorithm design. Feautrier is a greedy algorithm which builds multidimen-
sional schedules whose first dimension satisfies as many dependence relations as
possible, and not as many operation to operation dependences as possible. We
may wonder with Darte [3, p. 80] whether this can be the cause of a loss of
parallelism. We illustrate this possible problem with Example 1.

The first dimension of the schedule must satisfy Equation (5) for both de-
pendence relations e1 and e2. This gives us respectively Equations (6) and (7):



On the Optimality of Feautrier’s Scheduling Algorithm 305

XS

∣∣∣∣ i−1i−1+ze1≤XS

∣∣∣∣ ij ⇔ ze1≤XS

∣∣∣∣1j−i+1 ⇔ze1≤α+β(j−i+1)with
2≤ i≤N
1≤j≤ i

(6)

XS

∣∣∣∣ jj−1+ze2 ≤ XS

∣∣∣∣ ij ⇔ ze2 ≤ XS

∣∣∣∣ i−j1 ⇔ ze2 ≤ α(i−j)+β with
1≤ i≤N
2≤j≤ i

(7)

if we note XS = (α, β) 4. Equation (6) with i = N and j = 1 is equivalent to
ze1 ≤ α + β(2 − N). The schedule must be valid for any (nonnegative) value
of the structural parameter N , this implies β ≤ 0. Equation (7) with i = j is
equivalent to ze2 ≤ β. Hence ze2 ≤ 0. As ze2 must be nonnegative ze2 = 0 (cf.
Equation (5)). This means that the first dimension of any affine schedule cannot
satisfy the dependence relation e2.

The dependence relation e1 can be satisfied, a solution being XS = (1, 0)
(α = 1, β = 0). Therefore, Feautrier is called recursively on the whole
dependence relation e2. However, most of the dependences described by e2
are satisfied by the schedule Θ(S, (i, j), N) = i (defined by XS = (1, 0)). Indeed,
Equation (6) is then satisfied for any value (i, j) ∈ De2 except when i=j. Thus,
one only needed to call recursively Feautrier on the dependence rela-
tion e′

2: S(j, j−1) → S(i, j), he2(i, j) = (j, j−1), De′
2
= {(i, j) | 2≤i≤N, i = j}.

The search for the schedules in Feautrier is thus overconstrained by design.
We may now wonder whether this overconstraining may lead Feautrier to

build some affine schedules of non minimal dimensions and thus to miss some par-
allelism. We first present an algorithm which gets rid of this potential problem.
Later we will show that no parallelism is lost because of this design particularity.

4 A Greedier Algorithm

The Vertex Method. A polyhedron can always be decomposed as the sum
of a polytope (i.e. a bounded polyhedron) and a polyhedral cone, called the
characteristic cone (see [13] for details). A polytope is defined by its vertices,
and any point of the polytope is a nonnegative barycentric combination of the
polytope vertices. A polyhedral cone is finitely generated and is defined by its
rays and lines. Any point of a polyhedral cone is the sum of a nonnegative
combination of its rays and any combination of its lines. Therefore, a polyhedron
D can be equivalently defined by a set of vertices, {v1, . . . , vω}, a set of rays,
{r1, . . . , rρ}, and a set of lines, {l1, . . . , lλ}. Then D is the set of all vectors p
such that

p =
ω∑

i=1

µivi +
ρ∑

i=1

νiri +
λ∑

i=1

ξili (8)

with µi ∈ Q+, νi ∈ Q+, ξi ∈ Q, and
∑ω

i=1 µi = 1. As we have already stated, all
the important sets in static control programs are polyhedra, and any nonempty
4 Example 1 contains a single statement S. Therefore, the components YS and ρS of

Θ (cf. Equation (1)) have no influence here on Equation (5) which is equivalent to:
(XS .he(j, N) + YS .N + ρS) + ze ≤ (XS .j + YS .N + ρS) ⇔ XS .he(j, N) + ze ≤ XS .j.



306 F. Vivien

polyhedron is fully defined by its vertices, rays, and lines, which can be computed
even for parameterized polyhedra [11]. The vertex method [12] explains how we
can use the vertices, rays, and lines to simplify set of constraints.

Theorem 2 (The Vertex Method). Let D be a nonempty polyhedron defined
by a set of vertices, {v1, . . . , vω}, a set of rays, {r1, . . . , rρ}, and a set of lines,
{l1, . . . , lλ}). Let Φ be an affine form of linear part A and constant part b (Φ(x) =
A.x + b). Then the affine form Φ is nonnegative over D if and only if 1) Φ is
nonnegative on each of the vertices of D and 2) the linear part of Φ is nonnegative
(respectively null) on the rays (resp. lines) of D. This can be written :

∀p ∈ D, A.p+ b ≥ 0 ⇔
∀i ∈ [1, ω], A.vi + b ≥ 0, ∀i ∈ [1, ρ], A.ri ≥ 0, and ∀i ∈ [1, λ], A.li = 0.

The polyhedra produced by the dependence analysis of programs are in fact
polytopes. Then, according to Theorem 2, an affine form is nonnegative on a
polytope if and only if it is nonnegative on the vertices of this polytope. We use
this property to simplify Equation (2) and define a new scheduling algorithm.

The Greediest Algorithm. Feautrier’s algorithm is a greedy heuristic which
maximizes the number of dependence relations satisfied by the first dimension
of the schedule. The algorithm below is a greedy heuristic which maximizes the
number of operation to operation dependences satisfied by the first dimension of
the schedule, and then proceeds recursively. To achieve this goal, this algorithm
greedily considers the vertices of the existence domain of the dependence rela-
tions. Let e1, ..., en be the dependence relations in the studied program. For any
i ∈ [1, n], let vi,1, ..., vi,mi

be the vertices of Dei
, and let, for any j ∈ [1,mi], ei,j

be the operation to operation dependence from Sei(hei(vi,j), N) to Tei(vi,j). G
denotes here the multigraph generated by the dependences ei,j .

Greedy(G)

1. Compute the strongly connected components of G.
2. For each strongly connected component Gk of G do in topological order:

(a) Find an integral affine function Θ that satisfies

∀ei,j , Θ(Sei , hei(vi,j , N), N)+zi,j ≤ Θ(Tei , vi,j , N) with 0 ≤ zi,j ≤ 1

and which maximizes the sum
∑

ei,j
zi,j .

(b) Build the subgraph G′
k generated by the unsatisfied dependences. If G′

k

is not empty, recursively call Greedy(G′
k).

Lemma 1 (Correctness and Maximum Greediness). The output of algo-
rithm Greedy is a schedule and the first dimension of this schedule satisfies all
the operation to operation dependences that can be satisfied by the first dimension
of an affine schedule (of the form defined in Section 2).



On the Optimality of Feautrier’s Scheduling Algorithm 307

5 Schedules of Minimal Dimension

As Greedy is greedier than Feautrier, one could imagine that the former may
sometimes build schedules of smaller dimension than the latter and thus may
find more parallelism. The following theorem shows that this never happens.

Theorem 3 (The Dimension of Feautrier’s Schedules is Minimal). Let
us consider a loop nest whose dependences are all affine, or are represented by
affine functions. If we are only looking for one affine schedule per statement
of the loop nest, then the dimension of the schedules built by Feautrier is
minimal, for each statement of the loop nest.

Note that this theorem cannot be improved, as the study of Example 2 shows.
The proof is direct (not using algorithm Greedy) and can be found in [14].

Principle of the proof. Let σ be an affine schedule whose dimension is minimal
for each statement in the studied loop nest. Let e be a dependence relation,
of existence domain De. We suppose that e is not fully, but partially, satisfied
by the first dimension of σ (otherwise there is no problem with e). The oper-
ation to operation dependences in e not satisfied by the first dimension of the
schedule σ define a subpolyhedron D1

e of De: this is the subset of De on which
the first dimension of σ induces a null delay. D1

e is thus defined by the equa-
tions defining De and by the null delay equation involving the first dimension of σ
(σ1(Te, j,N)−σ1(Se, he(j,N), N) = 0). The second dimension of σ must respect
the dependences in D1

e , i.e., must induce a nonnegative delay over D1
e . There-

fore, the second dimension of σ is an affine form nonnegative over a polyhedron.
Using the affine form of Farkas’ lemma, we obtain that the second dimension of
σ is defined from the (null delay equation on the) first dimension of σ and from
the equations defining De. From the equations obtained using Farkas’ lemma,
we build a nonnegative linear combination of the first two dimensions of σ which
induces a nonnegative delay over De (and not only on D1

e), and which satisfies
all the operation to operation dependences in e satisfied by any of the first two
dimensions of σ. This way we build a schedule a la Feautrier of same dimen-
sion than σ: a whole dependence relation is kept as long as all its operation to
operation dependences are not satisfied by the same dimension of the schedule.

Consequences. First, a simple and important corollary of the previous theorem:

Corollary 1. Feautrier is well-defined: it always outputs a valid schedule
when its input is the exact dependences of an existing program.

The original proof relied on an assumption on the dependence relations that can
be easily enforced but which is not always satisfied: all operation to operation
dependences in a dependence relation are of the same dependence level. For
example, dependence relation e2 in Example 1 does not satisfy this property.



308 F. Vivien

More important, Theorem 3 shows that Feautrier’s algorithm can only miss
some (significant amount of) parallelism because of the limitations of its frame-
work, but not because of its design: as the dimension of the schedule is minimal,
the magnitude of the schedule’s makespan is minimal, for any statement.

6 Conclusion

Feautrier’s scheduling algorithm is the most powerful existing algorithm for par-
allelism detection and extraction. But it has always been known to be subop-
timal. We have shown that Feautrier’s algorithm do not miss any significant
amount of parallelism because of its design, even if one can design a greedier
algorithm. Therefore, to improve Feautrier’s algorithm or to build a more pow-
erful algorithm, one must get rid of some of the restrictive hypotheses underlying
its framework: affine schedules — but more general schedules will cause great
problems for code generation — and one scheduling function by statement —
Feautrier, Griebl, and Lengauer have already begun to get rid of this hypothesis
by splitting the iteration domains [9].

What Feautrier historically introduced as a “greedy heuristic” is nothing but
the most powerful algorithm in its class!

References

1. J. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scientific
programs for parallel execution. In Proceedings of the Fourteenth Annual ACM
Symposium on Principles of Programming Languages, pages 63–76, Munich, Ger-
many, Jan. 1987.

2. J. R. Allen and K. Kennedy. PFC: A program to convert Fortran to parallel form.
Technical Report MASC-TR82-6, Rice University, Houston, TX, USA, 1982.

3. A. Darte. De l’organisation des calculs dans les codes répétitifs. Habilitation thesis,
ècole normale supérieure de Lyon, 1999.

4. A. Darte, Y. Robert, and F. Vivien. Scheduling and Automatic Parallelization.
Birkhäuser Boston, 2000. ISBN 0-8176-4149-1.

5. A. Darte and F. Vivien. Optimal Fine and Medium Grain Parallelism Detection in
Polyhedral Reduced Dependence Graphs. Int. J. of Parallel Programming, 1997.

6. P. Feautrier. Dataflow analysis of array and scalar references. International Journal
of Parallel Programming, 20(1):23–51, 1991.

7. P. Feautrier. Some efficient solutions to the affine scheduling problem, part I:
One-dimensional time. Int. J. Parallel Programming, 21(5):313–348, Oct. 1992.

8. P. Feautrier. Some efficient solutions to the affine scheduling problem, part II:
Multi-dimensional time. Int. J. Parallel Programming, 21(6):389–420, Dec. 1992.

9. M. Griebl, P. Feautrier, and C. Lengauer. Index set splitting. International Journal
of Parallel Programming, 28(6):607–631, 2000.

10. L. Lamport. The parallel execution of DO loops. Communications of the ACM,
17(2):83–93, Feb. 1974.

11. V. Loechner and D. K. Wilde. Parameterized polyhedra and their vertices. Inter-
national Journal of Parallel Programming, 25(6), Dec. 1997.



On the Optimality of Feautrier’s Scheduling Algorithm 309

12. P. Quinton. Automata Networks in Computer Science, chapter The systematic
design of systolic arrays. Manchester University Press, 1987.

13. A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, New
York, 1986.

14. F. Vivien. On the Optimality of Feautrier’s Scheduling Algorithm. Technical Re-
port 02-04, ICPS-LSIIT, ULP-Strasbourg I, France, http://icps.u-strasbg.fr,
2002.

15. M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In SIGPLAN
Conference PLDI, pages 30–44. ACM Press, 1991.

http://icps.u-strasbg.fr

	1 Introduction 
	2 The Algorithm 
	3 The Algorithm's Weaknesses 
	4 A Greedier Algorithm 
	5 Schedules of Minimal Dimension 
	6 Conclusion 
	References

