
Scheduling communication requests traversing a switch:
complexity and algorithms

Matthieu Gallet Yves Robert Frkdkric Vivien

Laboratoire de l7Informatique du Parallelisme
UMR CNRS-ENS Lyon-INRIA-UCBL 5668

Lyon, France
{MatthiemGallet, Yves.Robert, Frederic.Vivien)@ens-1yon.fr

Abstract

In this paper, we study the problem of scheduling fiEe
transfers through a switch. This problem is at the heart
of a model often used for large grid computations, where
the switch represents the core of the network intercon-
necting the various clusters that compose the grid. We
establish several complexity results, and we introduce
and analyze various algorithms, from both a theoretical
and a practical perspective.

1 Introduction

Computation grids are more and more used to fol-
low the tremendous growth of the need in computation
power. Since computation nodes can be anywhere in
the world, there are many issues involving the schedul-
ing of both communications and computations. Even
when communication links are dedicated, the problems
of maximizing the number of files that can be transmit-
ted, and of allocating the correct bandwidth to each
file, turn out t o be very difficult.

In this paper, we study the problem of scheduling
file transmissions through a classical network switch.
This problem could appear somewhat simplistic, but
it is often used as a model for more general instances,
where the switch is an Internet backbone, and where
the different links to and from the switch are the bot-
tlenecks; this model has already been studied in several
papers [l l , 12, 6 , 31.

The bandwidth allocation is an important problem
in distributed computing, and constraints are quite dif-
ferent from those applying to the general Internet. In-
deed, for a standard DSL line (2Mb/s), the bottleneck
is the line itself, and the link between the provider and

the backbone (often rated at 2.5Gb/s) is sufficient. On
the contrary, grid sites have links which can be rated
at 2.5Gb/s, and large bulk transfers between sites can
take up to several days. Moreover, performance quickly
decreases in case of congestion, since many packets can
be dropped by the TCP/IP protocol.

From the user point of view, any aborted transfer is a
useless waste of (potentially scarce) computational and
storage resources, which are reserved for a finite dura-
tion. Thus, we have to choose which requests have to
be accepted to ensure the best possible usage of the net-
work. But, even if constraints are stronger for a com-
putation grid than for the Internet, a better scheduling
can be considered when all transfers can be forecast.

Like many scheduling problems, most problems in
this model are NP-complete, and we have to search
for heuristics and approximation algorithms. The idea
of reservation was already studied, by example by L.
Marchal, P. Primet, Y. Robert and J. Zeng [ll], whose
model consists of some ingress and egress links inter-
connected over a well-provisioned WAN. Requests (i.e.,
files to send from an ingress link to an egress link) have
to be chosen and scheduled. During the transfer of a
file, the allocated bandwidth remains constant. How-
ever, there is no practical reason to enforce this con-
straint, and we should allow the bandwidth to change
several times during the transfer, so as to give more
flexibility to the scheduling algorithms.

The rest of the paper is organized as follows. In sec-
tion 2, the model and notations are detailed. Then we
outline some interesting properties in Section 3. Com-
plexity results are the core of Section 4. Due to lack of
space, all proofs are omitted but can be found in the
companion research report [a]. Algorithms and heuris-
tics are given in Section 5, and experimental results
are provided in Section 6. Finally, we give some con-

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1107 $20.00 O 2007 IEEE

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:43 from IEEE Xplore. Restrictions apply.

clusions in Section 7.

2 Model and problem definition

We describe here the model and notations used in
this work. Basically, our goal is to send some files (or
requests) from ingress links (or sources) to egress links
(or destinations) through a central switch, in order to
maximize one of the two studied objective functions.

Platform: We consider a switch, with a capacity Ctot,
linked to p ingress links and p' egress links. The j-
th ingress link has a capacity Cj (with 1 < j 5 p),
and the j-th egress link has a capacity C; (with
l 5 j 5 PI).

Requests: We have a set of n requests to schedule.
The i-th request, 1 5 i I n, arrives in the system
a time ri E Q+ (its release date), it should be com-
pleted before time di E Q+: di > ri (its deadline).
It has to be sent from the ingress link src(i) E
(1,. . . ,p} to the egress link dest(i) E (1;. . . ;p1}.
This request has a size (or area) Si E Q+ and a
weight wi E Q'.

Constraints: A schedule has to respect some con-
straints to be valid:

a request is either processed, or discarded:
'di E (1;. . . ; n)! xi E (0; 1). Any valid sched-
ule has to choose if the request i is processed
(xi = 1) or not (xi = O), and then allocates
an instantaneous bandwidth bi : R+ -+ Qf.
Some requests may not be scheduled at all,
while some other requests may only be par-
tially completed (in which case we will con-
sider that they were not completed at all).

bi is a function, which is integrable over R+,

bandwidth functions are non-negative func-
tions: 'dt>OO:'di'i{l l ; . . . :n},bi(t)>O,

deadlines are strictly enforced: W > di, Qi E
{l; . . . n}, bi(t) = 0,

a request cannot be processed before its re-
lease date: 'dt < ri;'di E (1:. . . :n}; bi(t) = 0,

we cannot exceed the capacity of an
ingress link: Qt 2 0, 'dj € {I:. . . : p } ,
C. z,src(z)=j . . b i (t)<Cj ,

we cannot exceed the capacity of an
egress link: W > 0, Vj' E {l, . . . ,pf},
Ci,dest(i)=jr bi(t) I Clr,
we cannot exceed the switch capacity: W >
0: C:=i bi(t) 5 Got,

any chosen request has to be entirely pro-
cessed: Qi E (1; . . . ; n): xi Jof' bi (t)dt =
xisi.

This formulation allows a reqtiest to begin
without being finished. Such scenario has
no interest in off-line scheduling strategies,
but should be considered for online algo-
rithms, where a new request can be preferred
to one currently being processed. Note that
if we don't want to allow such scenarios, we
simply write bi(t)dt = xiSi-

Objective functions: Two different objective func-
tions are studied:

the number of requests that are processed:
Cy=l xi;
the profit generated by processed requests:
EL1 xiwi-

3 Some problem properties

In this section, we prove some simplifying lemmas,
which allow to focus on certain types of schedules,
thereby reducing the solution space.

3.1 Step functions are sufficient.

So far, we have not specified any constraint on the
form of the bi functions (except their integrability).
Now, we show that we can suppose, without any loss of
generality, that the his are step functions, with a small
number of steps.

Lemma 1. We consider a platform with a capacity
Ctot, p ingress links (with respective capacities Cj)
and p' egress links (with respective capacities Ci). Let
(bi)llil, be any schedule. Then we can build a sched-
ule (b:)llil,, which realizes the same objective, and
where the bi are step functions with at most 2n steps:
the bandwidths only change when a request joins the
system (release date) or when one is completed.

3.2 Ingress and egress links of same band-
width.

Now, we want to specialize the bi functions in an-
other way: a bandwidth can only take two different
values, 0 or C. So, only one request can be sent in a
given link, at a given time.

Lemma 2. Consider a platform with p ingress links
and p' egress links, of same capacity C. Consider an
unspecified schedule (bi, xi)l5il,. Then there exists a

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1107 $20.00 O 2007 IEEE

COMPUTER
SOCIETY

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:43 from IEEE Xplore. Restrictions apply.

schedule (bi)ll i ln of same objective, such that , a t a n y
t i m e t and for every request i , b i (t) E (0 : C) .

3.3 Satisfiability of all requests.

Lemma 3. Consider any platform and a given subset
of n requests. T h e n we can determine, in polynomial
t i m e in n, p, and p' (where p i s the n v m b e r of ingress
l inks and p' the number of egress links), whether there
exists a schedule which can process all these requests.
If such a schedule exists, we can find one in polynomial
t i m e too.

Let { t l : . . . : t,) be equal to Uy=l{ri: di), with 0 5
ti < . . . < t , (we have q I: 2 n) . We define to = 0 and
tq+l = fee. Now we define:

birl . . . ; bi,, the q different values of each bi func-
tion. We have bi (t) = bi,, for t E [t,-1, t,[.

a l : . . . ;aq defined by a, = t , - t,-1.

1 if dest(i) = j'
* y : , , : - - 0 : ~ : , . : Y : , . = { ~ else

Then our problem is equivalent to solve the following
linear program:

3.4 An upper bound on the optimal solu-
tion.

By using the previous result, we can deduce an up-
per bound on the number of processed requests in
an optimal solution, which will be useful to compare
heuristics.

Lelrauna 4. Let IL.F consider a n y plat form and a set of
,n possible requests. T h e n we can find a n upper bound
o n the nvmber of requests which can be integrally pro-
cessed, in polynomial t i m e in n, p and p', by solving a
rational l inear program.

We will use this upper bound in Section 6 to assess
the quality of our heuristics.

4 Complexity results

In this section, we study the difficulty of the schedul-
ing problem by fixing or, on the contrary, by relaxing,
some parameters, in order to see why our problem is
difficult, and which variants are NP-complete or poly-
nomial.

4.1 Off-line model

In this section, we assume that we know in advance
when a request will be submitted and what its char-
acteristics will be. We are therefore using the off-line
model.

4.1.1 Case where the switch has a total capac-
it y Ctot 5 Cj : Cj.

Here, we suppose that the total switch capacity is in-
ferior to the capacity of any link. This assumption
allows us to reuse many results on schedules for a sin-
gle processor with preemption. We consider the off-line
model, i.e., when the problem is entirely known before
the execution of the algorithm.

Lemma 5. Consider a platform with a switch capac-
i t y inferior t o the capacity of each ingress o r egress
link. Then , the maximizat ion of the number of com-
pletely processed requests (C x i) o r the maximizat ion
of t h e profit (C W , X . ~) are identical t o the maximiza-
t i o n of the number of processed tasks o n a single pro-
cessor, wi th preemption. Baptiste has found a n 0 (n4)
algorithm for 1 l r i ;pmtn l C x i [#I and a n O (n l O) one
for llr,; Sz = S ; p m t n l C x , w i [5]. Lawler has shown
that the 1 lrz; pmtn l C xiw, case was pseudo-polynomial

01.

4.1.2 Switch of unbounded capacity and ho-
mogeneous ingress and egress links

Here we remove the constraint of the limited bandwidth
of the switch.

If all requests have same size, arrive at the same
time and have the same deadline, the problem
is polynomial.

Lemma 6. Consider a platform with a n infinite to-
tal capacity, and wi th links of the same capacity C.
If all requests have same size, same release date, and
same deadline, t h e n the maximizat ion of t h e number
of integrally processed requests (C x i) i s a polynomial
problem (i n n) , and there exists a O (n 2) algorithm t o
solve it.

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1107 $20.00 O 2007 IEEE SOCIETY

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:43 from IEEE Xplore. Restrictions apply.

If all requests have same release date and dead-
line, then the problem is NP-complete, even
with one ingress link and one egress link.

Lemma 7 (Ctot = fee, Cj = C; = C, Si, wi is
NP-complete). Consider a platform with a n infinite
capacity, and wi th links wi th the same capacity C. If
the n requests have unspecified sizes and weights, the
decision problem associated t o the problem of maxi-
mizat ion of t h e weighted number of processed requests
(C wixi) i s N P - c o m p l e t e , even when there are only
one ingress link and one egress link, and when all re-
quests have the same release date and the same dead-
line .

The previous two complexity results show that re-
quest sizes and weights are both responsible for the
NP-completeness of our problem.

If all requests have same release date, same
deadline, and same weight, then the problem
remains NP-complete.

Lemma 8. Consider a platform with a n infinite total
capacity and wi th links of the s a m e capacity C , and a
set of requests of unspecified sizes, but wi th t h e same
release date ri = 0 and the same deadline di = 1.
T h e n the decision problem associated t o the maximiza-
t i o n problem of t h e number of processed requests (C xi)
i s NP-comple te .

We do not know the complexity of the case where
all requests have the same size and the same weight,
but different release dates and deadlines. However, we
conjecture that it is NP-complete too.

4.2 Online model

Here we suppose that the scheduler does not know
in advance the characteristics of the rcquests, which
are submitted during the execution of the scheduling
algorithm. So, the scheduler has to choose requests
and to allocate the correct bandwidths without know-
ing the future, and it cannot change already taken de-
cisions. As can be expected, this new framework is
more challenging, and decreases the quality of poten-
tial algorithms. If we note C i < n x: the number of pro-
cessed requests by an optimal-algorithm, and xi
the number of processed requests by an algorithm A,
we recall that A has a competitive ratio of p (we say
that A is pcompetitive) if, and only if, for every in-
stance of the problem we have the following inequality:

Lemma 9. Consider a platform wi th a n infinite ca-
pacity, and wi th links wi th t h e same capacity C. If all
requests have same size and same weight, n o online al-
gori thm has a competitive ratio strictly better t h a n 2 ,
if all requests have same weight, n o online algorithm
has a competitive ratio strictly better t h a n 3 and in the
general case (if weights and sizes are unspecified), n o
online algorithm has constant competitive ratio.

5 Study of several algorithms

5.1 Off-line algorithms

5.1.1 Study of Earliest Deadline First without
priorities.

With underloaded system, only one ingress link
or one egress link. We recall that an underloaded
system is a system in which all proposed requests can
be correctly processed. In the particular case in which
we have only one ingress link or one egress link (p = 1
or p' = I), the Earliest Deadline First algorithm (EDF)
is optimal [9]. EDF is less expensive than the approach
based on a linear program.

EDF is not an optimal algorithm for an under-
loaded system with at least 2 ingress links and
2 egress links. In other words, we show that this
classical algorithm is not even an approximation algo-
rithm in this case, thereby exhibiting the combinatorid
complexity induced by the many links..

Consider 'any E > 0. We can build an instance, such
that C, x, 5 E Ci x;, where (x;)lli5b is an optimal
solution.

Indeed, since we have limn,, & = 0, we can find
a n such that & 5 E. Then we define the following
instance:

EDF will begin to schedule the request 2 from t = 0 to
t = n, and then the request 1 from t = n to t = 3n.
So, the remaining n requests are not processed. On the
contrary, an optimal algorithm will begin by processing
the n requests 3,. . . : n + 2 from t = 0 to t = n then
it will schedule the requests 2 and 1 in parallel from
t = n. EDF will process only 2 requests over the n + 2
available ones, which can all be scheduled, so it has an
competitive ratio worse than < E .

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1107 $20.00 O 2007 IEEE COMPUTER

SOCIETY

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:43 from IEEE Xplore. Restrictions apply.

5.1.2 A min(p,p')-approximation if Cj = C;, =
C, Ctot = +CC, wi = 1, a n d ri,di,Si are
unspecified

Let H = Cy="=,zf the optimal number of requests which
can be completely processed.

Now, we only consider a single ingress link j. Since
all egress links have the same capacity as the single
ingress link, we can simplify the constraints of a valid
schedule, and we can only keep the constraint on the
capacity of the ingress link. We know that we can
transform any valid schedule into a schedule which uses
bandwidths equal to 0 or C (i.e., V i , Qt, bi(t) E (0: C) ,
see section 3.2). This problem then is exactly the same
problem of scheduling tasks on a single processor. So,
we note Rj the total number of requests which can be
processed in this problem. We know that this problem
is polynomial, since a O(n4) algorithm exists [4].
Of course, we have R 5 CP=, Rj, and then R 5
p x maxlcj5p(Rj). If we decide to only process the
max15j5,Rj requests (by only processing the requests
coming from a link which realizes this maximum), we
have a papproximation of the original problem.

With the same idea, but using the egress links
and not the ingress links, we can have a min(p,pf)-
approximation.

5.1.3 Greedy algorithms

Greedy algorithms are very natural for our problem.
We build three algorithms using different criteria.

1. We sort all the requests by increasing & (this
formula corresponds to the minimal average all@
cated bandwidth needed to process the request) .
If the request i can be processed with all the al-
ready chosen requests (among the i - l previous
ones) - we can check this in polynomial time ac-
cording to the lemma 3.3 -, we add it to the set of
processed requests, otherwise we reject it.

2. We sort all requests by increasing size Sf . Then we
proceed like in the previous algorithm for schedul-
ing the requests.

3. We try to process all the requests, and as long as it
is not possible, we remove the request which "ob-
structs" the largest number of other requests. This
notion of obstruction can be more formally de-
fined by Ywo different requests obstruct each other
if their respective intervals [r, ; d2 [intersect each
other, and if they have at least one common link
(ingress, or egress link)". Like in previous greedy
algorithms, we use a linear program to determine
if we can process the set of chosen requests.

5.1.4 Linear programs

We know that the optimal solution could be computed
by a semi-integral linear program, but the computa-
tion time of such a linear program is very large. We
can use a rational relaxation of the integral constraint
(on the xi variables) in order to have an approximated
solution. If xi is the integer variable (equal either to 0
or l) , indicating whether we have to process or not the
request i, then xi' will be a rational variable between 0
and 1.

('Naive" approximation. A very common method
to approximate a linear program is t o round the
rational values to the nearest integer: if xi' < 1/2,
we let xi = 0, otherwise we let xi = 1. Nonethe-
less, after having chosen a first set of requests, we
have to check whether this set is feasible, other-
wise we have to remove some requests as long as
the chosen set of requests is not correct.

"Naive" approximation, and greedy completion.
The idea is only to add a greedy step (by ex-
ample by sorting remaining requests in increasing
Si/(ri - di) order), to try to add some rejected
requests.

Randomized linear program. This idea is taken
from Coudert and Rivano [7], and consists in an
n step process. In each step, a variable xi is ran-
domly chosen, and set to 0 with a probability e;,
and otherwise to 1. The following step allows to
check whether the set of chosen requests is always
feasible; if not, we have to set the last chosen vari-
able to 0.

5.2 Online algorithms

5.2.1 FCFS

The First Come, First Served algorithm (FCFS) is a
very simple algorithm, easy to implement, and which
can have quite good results. One of its good points is
that it can work as well in an off-line context as in an
online context. In our problem, requests are sorted by
increasing release date (ri), and the request i is sched-
uled if we can complete it before its deadline (while
completing the previous scheduled requests), and we
allocate to it the maximum available bandwidth.

5.2.2 Load balancing

In this method, we have to keep a list of ready requests
(i.e., whose release date is anterior to the current time,
and whose deadline is such that we can still completely

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1107 $20.00 O 2007 IEEE COMPUTER

SOCIETY

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:43 from IEEE Xplore. Restrictions apply.

Limitation of the number of bandwidth variations
in the linear programming problem.

We have already seen in Section 3.3 that if we
have selected n requests, and if only we allow each
bandwidth function bi to change 2n times, we can
solve exactly the problem. In order to speed up
the algorithm, we will not allow anymore such a
large number of variations. We arbitrarily fix this
number nb-uar to be quite small (for example 10

Figure 1. A platform example, with several re- or 20, instead of 2n, cf. Fig. 2). So the linear pro-
quests. gram becomes smaller, and then the computation

is by far quicker.

process it). When a request is released or finishes, we
choose the requests which will be scheduled on the dif-
ferent links. We assign a priority to the requests: a
request will be more important if it does not increase
too much the load of its links, or if it was already be-
gun (to increase the number of completely processed
requests). The main drawback of this online method is
that it can interrupt some already started requests.

6 Experiments

The different heuristics (described above) were com-
pared by simulations on the Grid5000 platform [I].
The simulated platform has 10 ingress links and 10
egress links, all with a capacity of lGb/s. The used
requests have a randomly chosen size, between lOOGb
and 1Tb. Their starting time was Poisson distributed,
the parameter of this Poisson distribution is the av-
erage arrival time of the requests (between 0.1 and 5
seconds). The value of the parameter varies to obtain
heavy loaded scenarios and less loaded cases. The av-
erage bandwidth needed to send requests is between
10MB/s and lGb/s, so we can fix the corresponding
deadlines. The simulation was coded in CS t , and an
external library, LP-solve [2], was used to solve the
different linear programs used by the algorithms.

6.1 Increasing the speed of algorithms

As said before, many heuristics are based on the use
of linear programs, like the randomized approximation.
The size of these linear programs quickly increases with
the number of chosen requests (O(n2) variables and
constraints). So, we cannot think to use these heuris-
tics with a large number of requests. By example, with
only 200 requests, one computation was not finished
after 60 hours. To allow tests with a large number of
requests, two simplifications were implemented:

Of course, we cannot expect to always obtain the
best solution anymore, so we have to assess the
impact of this simplification on the quality of the
produced solutions.

Figure 2. The same example, with nb-var = 4.

Temporal slicing of the original problem into small
successive sub-problems.

The previous method has, as main advantage, the
property that it does not decrease too much the
quality of the results. However, witah this method,
the number of variables in linear programs can still
become too large. So, some further optimization
is needed. A naive idea is to cut the large interval
[min(ri); max(di) [in k small intervals [tj, tj+l [. If
a request i can be processed in more than one in-
terval. we arbitrarily decide to force that it is ex-
ecuted in a single interval j . Therefore, we chose
ri = max(tj,ri) and di = min(tj+l,di); So, we
force the request i to be completely processed dur-
ing this interval j (cf. Figure 3).

This method still suffers from a drawback: the
number of requests in an interval is not constant.
To ensure that the solving time will be small
enough, it is smarter to use different sizes for the
k intervals, but to assign the same number of re-

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based processing (PDP'07)
0-7695-2784-1107 $20.00 O 2007 IEEE COMPUTER

SOCIETY

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:43 from IEEE Xplore. Restrictions apply.

quests to each interval. So, we have k small linear
programs with an almost constant size.

The final problem has stronger constraints, so the
number of processed requests will decrease. IIow-
ever,the complexity will be linear in the number
of requests for each algorithm. The idea was orig-
inally to speed-up linear programs, but, of course,
this approach can be used with every heuristic.

Figure 3. The same example, after temporal
slicing

So, we can now choose between a better result cost-
ing a large amount of computations, and a worse result
obtained in a shorter time.

6.2 Same results

In this section, t,, will be the average time between
the arrival of two successive requests, and it allows to
decide if the global system is heavily loaded or not. In
the following experiments, t,, will take values between
0.1 and 5 seconds.

Influence of the number nb-var of steps of band-
width functions.

For some practical reasons, a null number of vari-
ations corresponds to the original linear program,
without any approximation. Excepting for this
special value, the greater the value of nb-var, the
better the approximation.

Figure 4 clearly shows that using this acceleration
has a great benefit for the computation time, es-
pecially for the randomized linear program. Only
three heuristics are shown on the figure, but oth-
ers are between the greedy one and the randomixed
one.

The computation time is linear in nb-var, here
between 10 and 80. We can also see from Figure
5. On this figure, some heuristics have almost the

* FCFS

3 Sl(d - r ! g m d y

+ randwnLrd Lr

Figure 4. Influence of the number of varia-
tions on the computation time (tau = 0.1).

grecdy heunstlcs
result randmlscd W

upprbmd

' EDF

Figure 5. Influence of the number of varia-
tions on the objective function (tau = 0.1).

80

70

60

50

40

30

20

10

same results, so they are grouped with the same
symbol. So this optimization is very interesting.

* LaadBalanung
'x FCFS

1 p-approxmmtlon - : 6

>

Influence of the average load of the system

orionalLP 10 ?O 30 40 50 'O

In order to compare the different heuristics, sev-
eral instances of the problem were generated, with
12,000 requests and average arrival times between
0.1 and 5 seconds. All heuristics were not tested,
since those which were too slow or not interesting
enough (like the papproximation) were rejected.

Two different parameters were used for the tempc-
ral slicing: by blocks of 200 requests for the three
greedy heuristics using linear programs, and by
blocks of 1,000 requests for other heuristics. From
now, on we call "optimal" over upper bound of the
optimal solution, computed by blocks of 1, 000 re-
quests.

Figure 6 shows that the performance is better
if the system is less loaded (which is quite nor-
mal). The two greedy algorithms have good re-

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based processing (PDP'07)
0-7695-2764-1107 $20.00 O 2007 IEEE

COMPUTER
SOCIETY

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:43 from IEEE Xplore. Restrictions apply.

sults, around 75% of the optimal solution, if the References
system is heavily loaded. The three online heuris-
tics (EDF, FCFS and Load balancing) are very [I] The grid 5000 project. h t tp : / /m.gr id5000.
similar between each others, and they are around org.
50% of the optimal solution. This is quite good
for online algorithms. [2] Mixed integer programming (mip) solver. ht tp:

//groups. yahoo. com/group/lp-solve/.
When the system is less loaded, all heuristics per-
form well (more than 80% of the optimal solution). [3] F. Baille. Algorithmes d'approximation pour des

probldmes d'ordonnancement bicm'tdres : applica-

/
upper boulld tion b un problkme d'accds au re'seau. PhD thesis,

lsult

-- - -/- $, ? d v b e d ~

2005.
. - - ,<-,=- 7 - - .

, ' - k;addancn~g [4] P. Baptiste. An o(n4) algorithm for preemptive
,I . , e /------"-

scheduling of a single machine to minimize the

'i r~:,,, c n p i e t , , ,
number of late jobs. Operations Research Letters,
24:175-180, 1999.

[5] P. Baptiste. Polynomial time algorithms for mini-
mizing the weighted number of late jobs on a single

3 2 - - - 0 3 a 4 D a ab~vai t ~ m e machine with equal processing times. Journal of
Scheduling, 2:245-252, 1999.

Figure 6. Influence of the average arrival time [6] C. Bin-Bin and P. Vicat-Blanc Primet. A flexible
t,, on the scheduled requests number. bandwidth reservation framework for bulk data

transfers in grid networks. Research Report 2006-
20, LIP, ENS Lyon, France, jun 2006.

7 Conclusion

This work extends previous work on the optimiza-
tion of network resource sharing in grids. The ma-
jor novelty is to allow bandwidth variations during the
schedule of a request, thereby providing additional flex-
ibility to the scheduler.

Different variants of the problem were studied, in
order to assess the difficulty of the off-line and on-
line problems. Several algorithms were implemented,
tested and compared to an upper bound of the optimal
solution.

Obviously, online heuristics have worse performance
than off-line heuristics, because the online problem is
more difficult. But it could be interesting to see if
we can enhance online heuristics to derive better so-
lutions. Moreover, the use of linear programs in the
greedy heuristics slows them down, and it would be
useful to find another way of determining whether a
subset of requests is feasible or not.

In this paper, only a very simple platform (a switch)
was studied. Further extensions should deal with more
complex platforms, in order to model actual networks
more closely. While the combinatorial nature of the
scheduling problem would be even greater on such com-
plex platforms, we hope that efficient heuristics could
still be introduced and evaluated.

[7] D. Coudert and H. Rivano. Lightpath assignment
for multifibers WDM optical networks with wave-
length translators. In IEEE Globecorn, volume 3,
pages 26862690, Taiwan, Nov 2002. OPNT-01-5.

[8] M. Gallet, Y. Robert, and F. Vivien. Scheduling
communication requests traversing a switch: com-
plexity and algorithms. Research Report 2006-25,
LIP, ENS Lyon, France, jun 2006.

[9] J.R. Jackson. Scheduling a production line to min-
imize maximum tardiness. Research Report 43,
UCLA, University of California, 1955.

[lo] E.L. Lawler. A dynamic programming algorithm
for preemptive scheduling of a single machine to
minimize the number of late jobs. Annals of Op-
erations Research, 26:125-133, 1990.

[Ill L. Marchal, P. Primet, Y. Robert, and J. Zeng.
Optimizing network resource sharing in grids. Re-
search Report 200510, LIP, ENS Lyon, France,
mar 2005.

[12] L. Marchal, P. Vicat-Blanc Primet, Y. Robert,
and J. Zeng. Scheduling network requests with
transmission window. Research Report 200532,
LIP, ENS Lyon, France, jul 2005.

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1107 $20.00 O 2007 IEEE COMPUTER

SOCIETY

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:43 from IEEE Xplore. Restrictions apply.

