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Abstract 

In this paper, we study the problem of scheduling fiEe 
transfers through a switch. This problem is at the heart 
of a model often used for large grid computations, where 
the switch represents the core of the network intercon- 
necting the various clusters that compose the grid. We 
establish several complexity results, and we introduce 
and analyze various algorithms, from both a theoretical 
and a practical perspective. 

1 Introduction 

Computation grids are more and more used to fol- 
low the tremendous growth of the need in computation 
power. Since computation nodes can be anywhere in 
the world, there are many issues involving the schedul- 
ing of both communications and computations. Even 
when communication links are dedicated, the problems 
of maximizing the number of files that can be transmit- 
ted, and of allocating the correct bandwidth to each 
file, turn out t o  be very difficult. 

In this paper, we study the problem of scheduling 
file transmissions through a classical network switch. 
This problem could appear somewhat simplistic, but 
it is often used as a model for more general instances, 
where the switch is an Internet backbone, and where 
the different links to and from the switch are the bot- 
tlenecks; this model has already been studied in several 
papers [ l l ,  12, 6 ,  31. 

The bandwidth allocation is an important problem 
in distributed computing, and constraints are quite dif- 
ferent from those applying to the general Internet. In- 
deed, for a standard DSL line (2Mb/s), the bottleneck 
is the line itself, and the link between the provider and 

the backbone (often rated at 2.5Gb/s) is sufficient. On 
the contrary, grid sites have links which can be rated 
at  2.5Gb/s, and large bulk transfers between sites can 
take up to several days. Moreover, performance quickly 
decreases in case of congestion, since many packets can 
be dropped by the TCP/IP protocol. 

From the user point of view, any aborted transfer is a 
useless waste of (potentially scarce) computational and 
storage resources, which are reserved for a finite dura- 
tion. Thus, we have to choose which requests have to 
be accepted to ensure the best possible usage of the net- 
work. But, even if constraints are stronger for a com- 
putation grid than for the Internet, a better scheduling 
can be considered when all transfers can be forecast. 

Like many scheduling problems, most problems in 
this model are NP-complete, and we have to search 
for heuristics and approximation algorithms. The idea 
of reservation was already studied, by example by L. 
Marchal, P. Primet, Y. Robert and J. Zeng [ll], whose 
model consists of some ingress and egress links inter- 
connected over a well-provisioned WAN. Requests (i.e., 
files to send from an ingress link to an egress link) have 
to be chosen and scheduled. During the transfer of a 
file, the allocated bandwidth remains constant. How- 
ever, there is no practical reason to enforce this con- 
straint, and we should allow the bandwidth to change 
several times during the transfer, so as to give more 
flexibility to the scheduling algorithms. 

The rest of the paper is organized as follows. In sec- 
tion 2, the model and notations are detailed. Then we 
outline some interesting properties in Section 3. Com- 
plexity results are the core of Section 4. Due to lack of 
space, all proofs are omitted but can be found in the 
companion research report [a]. Algorithms and heuris- 
tics are given in Section 5, and experimental results 
are provided in Section 6.  Finally, we give some con- 
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clusions in Section 7. 

2 Model and problem definition 

We describe here the model and notations used in 
this work. Basically, our goal is to send some files (or 
requests) from ingress links (or sources) to egress links 
(or destinations) through a central switch, in order to 
maximize one of the two studied objective functions. 

Platform: We consider a switch, with a capacity Ctot, 
linked to p ingress links and p' egress links. The j- 
th  ingress link has a capacity Cj (with 1 < j 5 p), 
and the j-th egress link has a capacity C; (with 
l 5 j  5 PI). 

Requests: We have a set of n requests to schedule. 
The i-th request, 1 5 i I n, arrives in the system 
a time ri E Q+ (its release date), it should be com- 
pleted before time di E Q+: di > ri (its deadline). 
It  has to be sent from the ingress link src(i) E 
(1,. . . ,p} to the egress link dest(i) E (1;. . . ;p1}. 
This request has a size (or area) Si E Q+ and a 
weight wi E Q'. 

Constraints: A schedule has to respect some con- 
straints to be valid: 

a request is either processed, or discarded: 
'di E (1;. . . ; n)! xi E (0; 1). Any valid sched- 
ule has to choose if the request i is processed 
(xi = 1) or not (xi = O), and then allocates 
an instantaneous bandwidth bi : R+ -+ Qf. 
Some requests may not be scheduled at  all, 
while some other requests may only be par- 
tially completed (in which case we will con- 
sider that they were not completed at  all). 

bi is a function, which is integrable over R+, 

bandwidth functions are non-negative func- 
tions: 'dt>OO:'di'i{l l ; . . . :n},bi(t)>O, 

deadlines are strictly enforced: W > di, Qi E 
{l; . . . n},  bi(t) = 0, 

a request cannot be processed before its re- 
lease date: 'dt < ri;'di E (1:. . . :n};  bi(t) = 0, 

we cannot exceed the capacity of an 
ingress link: Qt 2 0, 'dj € {I:. . . : p } ,  
C. z,src(z)=j . . b i ( t )<Cj ,  

we cannot exceed the capacity of an 
egress link: W > 0, Vj' E {l, . . . ,pf}, 
Ci,dest(i)=jr bi(t) I Clr, 
we cannot exceed the switch capacity: W > 
0: C:=i bi(t) 5 Got, 

any chosen request has to be entirely pro- 
cessed: Qi E (1; . . . ; n): xi Jof' bi (t)dt = 
xisi. 

This formulation allows a reqtiest to  begin 
without being finished. Such scenario has 
no interest in off-line scheduling strategies, 
but should be considered for online algo- 
rithms, where a new request can be preferred 
to one currently being processed. Note that 
if we don't want to allow such scenarios, we 
simply write bi(t)dt = xiSi- 

Objective functions: Two different objective func- 
tions are studied: 

the number of requests that are processed: 
Cy=l xi; 
the profit generated by processed requests: 
EL1 xiwi- 

3 Some problem properties 

In this section, we prove some simplifying lemmas, 
which allow to focus on certain types of schedules, 
thereby reducing the solution space. 

3.1 Step functions are sufficient. 

So far, we have not specified any constraint on the 
form of the bi functions (except their integrability). 
Now, we show that we can suppose, without any loss of 
generality, that the his are step functions, with a small 
number of steps. 

Lemma 1. We consider a platform with a capacity 
Ctot, p ingress links (with respective capacities Cj) 
and p' egress links (with respective capacities Ci). Let 
(bi)llil, be any schedule. Then we can build a sched- 
ule (b:)llil,, which realizes the same objective, and 
where the bi are step functions with at most 2n steps: 
the bandwidths only change when a request joins the 
system (release date) or when one is completed. 

3.2 Ingress and egress links of same band- 
width. 

Now, we want to specialize the bi functions in an- 
other way: a bandwidth can only take two different 
values, 0 or C. So, only one request can be sent in a 
given link, at a given time. 

Lemma 2. Consider a platform with p ingress links 
and p' egress links, of same capacity C. Consider an 
unspecified schedule (bi, xi)l5il,. Then there exists a 
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schedule (bi)ll i ln of same  objective, such  that ,  a t  a n y  
t i m e  t and for every request i ,  b i ( t )  E ( 0 :  C ) .  

3.3 Satisfiability of all requests. 

Lemma 3. Consider  any  platform and a given subset 
of n requests. T h e n  we can determine,  in polynomial 
t i m e  in n, p,  and p' (where p i s  the  n v m b e r  of ingress 
l inks and p' the  number of egress links), whether  there 
exists a schedule which can process all these  requests. 
If such a schedule exists, we  can  find one  in polynomial 
t i m e  too. 

Let { t l :  . . . : t,) be equal to Uy=l{ri: di), with 0 5 
ti < . . . < t ,  (we have q I: 2 n ) .  We define to = 0 and 
tq+l = fee. Now we define: 

birl . . . ; bi,, the q different values of each bi func- 
tion. We have bi ( t )  = bi,, for t E [t,-1, t,[. 

a l : .  . . ;aq defined by a, = t ,  - t,-1. 

1 if dest(i) = j' 
* y : , ,  : - - 0 :  ~ : , . : Y : , . = { ~  else 

Then our problem is equivalent to solve the following 
linear program: 

3.4 An upper bound on the optimal solu- 
tion. 

By using the previous result, we can deduce an up- 
per bound on the number of processed requests in 
an optimal solution, which will be useful to compare 
heuristics. 

Lelrauna 4. Let  IL.F consider a n y  plat form and a set  of 
,n possible requests. T h e n  we  can find a n  upper  bound 
o n  the  nvmber  of requests which can be integrally pro- 
cessed, in polynomial t i m e  in n, p and p', by solving a 
rational l inear program. 

We will use this upper bound in Section 6 to assess 
the quality of our heuristics. 

4 Complexity results 

In this section, we study the difficulty of the schedul- 
ing problem by fixing or, on the contrary, by relaxing, 
some parameters, in order to see why our problem is 
difficult, and which variants are NP-complete or poly- 
nomial. 

4.1 Off-line model 

In this section, we assume that we know in advance 
when a request will be submitted and what its char- 
acteristics will be. We are therefore using the off-line 
model. 

4.1.1 Case where the switch has a total capac- 
it y Ctot 5 Cj : Cj. 

Here, we suppose that the total switch capacity is in- 
ferior to the capacity of any link. This assumption 
allows us to reuse many results on schedules for a sin- 
gle processor with preemption. We consider the off-line 
model, i.e., when the problem is entirely known before 
the execution of the algorithm. 

Lemma 5. Consider  a platform with a switch capac- 
i t y  inferior t o  the  capacity of each ingress o r  egress 
link. Then ,  the  maximizat ion of the  number of com- 
pletely processed requests (C x i )  o r  the  maximizat ion 
of t h e  profit (C W , X . ~ )  are identical t o  the  maximiza-  
t i o n  of the  number  of processed tasks o n  a single pro- 
cessor, wi th  preemption. Baptiste has  found a n  0 (n4)  
algorithm for 1 l r i ;pmtn l  C x i  [#I and a n  O ( n l O )  one  
for llr,; Sz = S ; p m t n l  C x , w i  [5]. Lawler has  shown 
that  the  1 lrz; pmtn l  C xiw,  case was pseudo-polynomial 

01. 

4.1.2 Switch of unbounded capacity and ho- 
mogeneous ingress and egress links 

Here we remove the constraint of the limited bandwidth 
of the switch. 

If all requests have same size, arrive at the same 
time and have the same deadline, the problem 
is polynomial. 

Lemma 6. Consider  a platform with  a n  infinite to- 
tal capacity, and wi th  links of the  same  capacity C.  
If all requests have same  size, same  release date, and 
same  deadline, t h e n  the  maximizat ion of t h e  number 
of integrally processed requests (C x i )  i s  a polynomial 
problem ( i n  n ) ,  and there exists a O ( n 2 )  algorithm t o  
solve it. 

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07) 
0-7695-2784-1107 $20.00 O 2007 IEEE SOCIETY 

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:43 from IEEE Xplore.  Restrictions apply. 



If all requests have same release date and dead- 
line, then the problem is NP-complete, even 
with one ingress link and one egress link. 

Lemma 7 (Ctot = fee, Cj = C; = C, Si, wi is 
NP-complete). Consider  a platform with  a n  infinite 
capacity, and wi th  links wi th  the  same  capacity C. If 
the  n requests have unspecified sizes and weights, the  
decision problem associated t o  the  problem of maxi- 
mizat ion of t h e  weighted number  of processed requests 
(C wixi) i s  N P - c o m p l e t e ,  even  when  there are only 
one ingress link and one egress link, and when  all re- 
quests have the  same  release date and the  same  dead- 
line . 

The previous two complexity results show that re- 
quest sizes and weights are both responsible for the 
NP-completeness of our problem. 

If all requests have same release date, same 
deadline, and same weight, then the problem 
remains NP-complete. 

Lemma 8. Consider  a platform with  a n  infinite total 
capacity and wi th  links of the  s a m e  capacity C ,  and a 
set  of requests of unspecified sizes, but wi th  t h e  same  
release date ri = 0 and the  same  deadline di = 1. 
T h e n  the decision problem associated t o  the  maximiza-  
t i o n  problem of t h e  number  of processed requests (C xi) 
i s  NP-comple te .  

We do not know the complexity of the case where 
all requests have the same size and the same weight, 
but different release dates and deadlines. However, we 
conjecture that it is NP-complete too. 

4.2 Online model 

Here we suppose that the scheduler does not know 
in advance the characteristics of the rcquests, which 
are submitted during the execution of the scheduling 
algorithm. So, the scheduler has to choose requests 
and to allocate the correct bandwidths without know- 
ing the future, and it cannot change already taken de- 
cisions. As can be expected, this new framework is 
more challenging, and decreases the quality of poten- 
tial algorithms. If we note C i < n  x: the number of pro- 
cessed requests by an optimal-algorithm, and xi 
the number of processed requests by an algorithm A, 
we recall that A has a competitive ratio of p (we say 
that A is pcompetitive) if, and only if, for every in- 
stance of the problem we have the following inequality: 

Lemma 9. Consider a platform wi th  a n  infinite ca- 
pacity, and wi th  links wi th  t h e  same  capacity C.  If all 
requests have same size and same  weight, n o  online al- 
gori thm has  a competitive ratio strictly better t h a n  2 ,  
if all requests have same  weight, n o  online algorithm 
has  a competitive ratio strictly better t h a n  3 and in the  
general case (if weights and sizes are unspecified), n o  
online algorithm has constant competitive ratio. 

5 Study of several algorithms 

5.1 Off-line algorithms 

5.1.1 Study of Earliest Deadline First without 
priorities. 

With underloaded system, only one ingress link 
or one egress link. We recall that an underloaded 
system is a system in which all proposed requests can 
be correctly processed. In the particular case in which 
we have only one ingress link or one egress link ( p  = 1 
or p' = I),  the Earliest Deadline First algorithm (EDF) 
is optimal [9]. EDF is less expensive than the approach 
based on a linear program. 

EDF is not an optimal algorithm for an under- 
loaded system with at least 2 ingress links and 
2 egress links. In other words, we show that this 
classical algorithm is not even an approximation algo- 
rithm in this case, thereby exhibiting the combinatorid 
complexity induced by the many links.. 

Consider 'any E > 0. We can build an instance, such 
that C, x, 5 E Ci x;, where (x;)lli5b is an optimal 
solution. 

Indeed, since we have limn,, & = 0, we can find 
a n such that & 5 E. Then we define the following 
instance: 

EDF will begin to schedule the request 2 from t = 0 to 
t = n, and then the request 1 from t = n to t = 3n. 
So, the remaining n requests are not processed. On the 
contrary, an optimal algorithm will begin by processing 
the n requests 3,.  . . : n + 2 from t = 0 to t = n then 
it will schedule the requests 2 and 1 in parallel from 
t = n.  EDF will process only 2 requests over the n + 2 
available ones, which can all be scheduled, so it has an 
competitive ratio worse than < E .  
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5.1.2 A min(p,p')-approximation if Cj = C;, = 
C, Ctot = +CC, wi = 1, a n d  ri,di,Si are 
unspecified 

Let H = Cy="=,zf the optimal number of requests which 
can be completely processed. 

Now, we only consider a single ingress link j. Since 
all egress links have the same capacity as the single 
ingress link, we can simplify the constraints of a valid 
schedule, and we can only keep the constraint on the 
capacity of the ingress link. We know that we can 
transform any valid schedule into a schedule which uses 
bandwidths equal to 0 or C (i.e., V i ,  Qt, bi(t) E (0: C ) ,  
see section 3.2). This problem then is exactly the same 
problem of scheduling tasks on a single processor. So, 
we note Rj  the total number of requests which can be 
processed in this problem. We know that this problem 
is polynomial, since a O(n4) algorithm exists [4]. 
Of course, we have R 5 CP=, Rj, and then R 5 
p x maxlcj5p(Rj). If we decide to only process the 
max15j5,Rj requests (by only processing the requests 
coming from a link which realizes this maximum), we 
have a papproximation of the original problem. 

With the same idea, but using the egress links 
and not the ingress links, we can have a min(p,pf)- 
approximation. 

5.1.3 Greedy algorithms 

Greedy algorithms are very natural for our problem. 
We build three algorithms using different criteria. 

1. We sort all the requests by increasing & (this 
formula corresponds to the minimal average all@ 
cated bandwidth needed to process the request) . 
If the request i can be processed with all the al- 
ready chosen requests (among the i - l previous 
ones) - we can check this in polynomial time ac- 
cording to the lemma 3.3 -, we add it to the set of 
processed requests, otherwise we reject it. 

2. We sort all requests by increasing size Sf .  Then we 
proceed like in the previous algorithm for schedul- 
ing the requests. 

3. We try to process all the requests, and as long as it 
is not possible, we remove the request which "ob- 
structs" the largest number of other requests. This 
notion of obstruction can be more formally de- 
fined by Ywo different requests obstruct each other 
if their respective intervals [r, ; d2 [ intersect each 
other, and if they have at least one common link 
(ingress, or egress link)". Like in previous greedy 
algorithms, we use a linear program to determine 
if we can process the set of chosen requests. 

5.1.4 Linear programs 

We know that the optimal solution could be computed 
by a semi-integral linear program, but the computa- 
tion time of such a linear program is very large. We 
can use a rational relaxation of the integral constraint 
(on the xi variables) in order to have an approximated 
solution. If xi is the integer variable (equal either to 0 
or l ) ,  indicating whether we have to process or not the 
request i, then xi' will be a rational variable between 0 
and 1. 

('Naive" approximation. A very common method 
to approximate a linear program is t o  round the 
rational values to the nearest integer: if xi' < 1/2, 
we let xi = 0, otherwise we let xi = 1. Nonethe- 
less, after having chosen a first set of requests, we 
have to check whether this set is feasible, other- 
wise we have to remove some requests as long as 
the chosen set of requests is not correct. 

"Naive" approximation, and greedy completion. 
The idea is only to add a greedy step (by ex- 
ample by sorting remaining requests in increasing 
Si/(ri - di) order), to try to add some rejected 
requests. 

Randomized linear program. This idea is taken 
from Coudert and Rivano [7], and consists in an 
n step process. In each step, a variable xi is ran- 
domly chosen, and set to 0 with a probability e;, 
and otherwise to 1. The following step allows to 
check whether the set of chosen requests is always 
feasible; if not, we have to set the last chosen vari- 
able to 0. 

5.2 Online algorithms 

5.2.1 FCFS 

The First Come, First Served algorithm (FCFS) is a 
very simple algorithm, easy to implement, and which 
can have quite good results. One of its good points is 
that it can work as well in an off-line context as in an 
online context. In our problem, requests are sorted by 
increasing release date (ri), and the request i is sched- 
uled if we can complete it before its deadline (while 
completing the previous scheduled requests), and we 
allocate to it the maximum available bandwidth. 

5.2.2 Load balancing 

In this method, we have to keep a list of ready requests 
(i.e., whose release date is anterior to the current time, 
and whose deadline is such that we can still completely 
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Limitation of the number of bandwidth variations 
in the linear programming problem. 

We have already seen in Section 3.3 that if we 
have selected n requests, and if only we allow each 
bandwidth function bi to  change 2n times, we can 
solve exactly the problem. In order to speed up 
the algorithm, we will not allow anymore such a 
large number of variations. We arbitrarily fix this 
number nb-uar to be quite small (for example 10 

Figure 1. A platform example, with several re- or 20, instead of 2n, cf. Fig. 2). So the linear pro- 
quests. gram becomes smaller, and then the computation 

is by far quicker. 

process it). When a request is released or finishes, we 
choose the requests which will be scheduled on the dif- 
ferent links. We assign a priority to the requests: a 
request will be more important if it does not increase 
too much the load of its links, or if it was already be- 
gun (to increase the number of completely processed 
requests). The main drawback of this online method is 
that it can interrupt some already started requests. 

6 Experiments 

The different heuristics (described above) were com- 
pared by simulations on the Grid5000 platform [I]. 
The simulated platform has 10 ingress links and 10 
egress links, all with a capacity of lGb/s. The used 
requests have a randomly chosen size, between lOOGb 
and 1Tb. Their starting time was Poisson distributed, 
the parameter of this Poisson distribution is the av- 
erage arrival time of the requests (between 0.1 and 5 
seconds). The value of the parameter varies to obtain 
heavy loaded scenarios and less loaded cases. The av- 
erage bandwidth needed to send requests is between 
10MB/s and lGb/s, so we can fix the corresponding 
deadlines. The simulation was coded in CS t ,  and an 
external library, LP-solve [2], was used to solve the 
different linear programs used by the algorithms. 

6.1 Increasing the speed of algorithms 

As said before, many heuristics are based on the use 
of linear programs, like the randomized approximation. 
The size of these linear programs quickly increases with 
the number of chosen requests (O(n2) variables and 
constraints). So, we cannot think to use these heuris- 
tics with a large number of requests. By example, with 
only 200 requests, one computation was not finished 
after 60 hours. To allow tests with a large number of 
requests, two simplifications were implemented: 

Of course, we cannot expect to always obtain the 
best solution anymore, so we have to assess the 
impact of this simplification on the quality of the 
produced solutions. 

Figure 2. The same example, with nb-var = 4. 

Temporal slicing of the original problem into small 
successive sub-problems. 

The previous method has, as main advantage, the 
property that it does not decrease too much the 
quality of the results. However, witah this method, 
the number of variables in linear programs can still 
become too large. So, some further optimization 
is needed. A naive idea is to cut the large interval 
[min(ri); max(di) [ in k small intervals [tj, tj+l [. If 
a request i can be processed in more than one in- 
terval. we arbitrarily decide to force that it is ex- 
ecuted in a single interval j .  Therefore, we chose 
ri = max(tj,ri) and di = min(tj+l,di); So, we 
force the request i to be completely processed dur- 
ing this interval j (cf. Figure 3). 

This method still suffers from a drawback: the 
number of requests in an interval is not constant. 
To ensure that the solving time will be small 
enough, it is smarter to use different sizes for the 
k intervals, but to assign the same number of re- 
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quests to each interval. So, we have k small linear 
programs with an almost constant size. 

The final problem has stronger constraints, so the 
number of processed requests will decrease. IIow- 
ever,the complexity will be linear in the number 
of requests for each algorithm. The idea was orig- 
inally to speed-up linear programs, but, of course, 
this approach can be used with every heuristic. 

Figure 3. The same example, after temporal 
slicing 

So, we can now choose between a better result cost- 
ing a large amount of computations, and a worse result 
obtained in a shorter time. 

6.2 Same results 

In this section, t,, will be the average time between 
the arrival of two successive requests, and it allows to 
decide if the global system is heavily loaded or not. In 
the following experiments, t,, will take values between 
0.1 and 5 seconds. 

Influence of the number nb-var of steps of band- 
width functions. 

For some practical reasons, a null number of vari- 
ations corresponds to the original linear program, 
without any approximation. Excepting for this 
special value, the greater the value of nb-var, the 
better the approximation. 

Figure 4 clearly shows that using this acceleration 
has a great benefit for the computation time, es- 
pecially for the randomized linear program. Only 
three heuristics are shown on the figure, but oth- 
ers are between the greedy one and the randomixed 
one. 

The computation time is linear in nb-var, here 
between 10 and 80. We can also see from Figure 
5. On this figure, some heuristics have almost the 

* FCFS 

3 Sl(d - r ! g m d y  

+ randwnLrd Lr 

Figure 4. Influence of the number of varia- 
tions on the computation time (tau = 0.1). 
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same results, so they are grouped with the same 
symbol. So this optimization is very interesting. 
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In order to compare the different heuristics, sev- 
eral instances of the problem were generated, with 
12,000 requests and average arrival times between 
0.1 and 5 seconds. All heuristics were not tested, 
since those which were too slow or not interesting 
enough (like the papproximation) were rejected. 

Two different parameters were used for the tempc- 
ral slicing: by blocks of 200 requests for the three 
greedy heuristics using linear programs, and by 
blocks of 1,000 requests for other heuristics. From 
now, on we call "optimal" over upper bound of the 
optimal solution, computed by blocks of 1, 000 re- 
quests. 

Figure 6 shows that the performance is better 
if the system is less loaded (which is quite nor- 
mal). The two greedy algorithms have good re- 
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7 Conclusion 

This work extends previous work on the optimiza- 
tion of network resource sharing in grids. The ma- 
jor novelty is to allow bandwidth variations during the 
schedule of a request, thereby providing additional flex- 
ibility to the scheduler. 

Different variants of the problem were studied, in 
order to assess the difficulty of the off-line and on- 
line problems. Several algorithms were implemented, 
tested and compared to an upper bound of the optimal 
solution. 

Obviously, online heuristics have worse performance 
than off-line heuristics, because the online problem is 
more difficult. But it could be interesting to see if 
we can enhance online heuristics to derive better so- 
lutions. Moreover, the use of linear programs in the 
greedy heuristics slows them down, and it would be 
useful to find another way of determining whether a 
subset of requests is feasible or not. 

In this paper, only a very simple platform (a switch) 
was studied. Further extensions should deal with more 
complex platforms, in order to model actual networks 
more closely. While the combinatorial nature of the 
scheduling problem would be even greater on such com- 
plex platforms, we hope that efficient heuristics could 
still be introduced and evaluated. 
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