
Scheduling and Data Redistribution Strategies on Star Platforms

Loris Marchal Veronika Rehn Yves Robert
Frédéric Vivien

Laboratoire de l’Informatique du Parallélisme
UMR CNRS-ENS Lyon-INRIA-UCBL 5668

Lyon, France
{Loris.Marchal, Veronika.Rehn, Yves.Robert, Frederic.Vivien}@ens-lyon.fr

Abstract

In this work we are interested in the problem of schedul-
ing and redistributing data on master-slave platforms. We
consider the case were the workers possess initial loads,
some of which having to be redistributed in order to bal-
ance their completion times.

We assume that the data consists of independent and
identical tasks. As the general case is NP-complete in the
strong sense, we propose three heuristics. Simulations con-
solidate the theoretical results.

1. Introduction

In this work we consider the problem of scheduling
and redistributing data on master-slave architectures in star
topologies. Because of variations in the resource perfor-
mance (CPU speed or communication bandwidth), or be-
cause of unbalanced amounts of current load on the work-
ers, data must be redistributed between the participating
processors, so that the updated load is better balanced in
terms that the overall processing finishes earlier.

We adopt the following abstract view of our problem.
There are m + 1 participating processors P0, P1, . . . , Pm,
where P0 is the master. Each processor Pk, 1 ≤ k ≤ m
initially holds Lk data items. During our scheduling pro-
cess we try to determine which processor Pi should send
some data to another worker Pj to equilibrate their finish-
ing times. The goal is to minimize the global makespan,
that is the time until each processor has finished to process
its data. Furthermore we suppose that each communica-
tion link is fully bidirectional, with the same bandwidth for
receptions and sendings. This assumption is quite realis-
tic in practice, and does not change the complexity of the
scheduling problem, which we prove NP-complete in the
strong sense.

We assume that data items consist in independent and
uniform (same-size) tasks. There are many practical appli-
cations who use fixed identical and independent tasks. A
famous example is BOINC [2], the Berkeley Open Infras-
tructure for Network Computing, an open-source software
platform for volunteer computing. It works as a central-
ized scheduler that distributes tasks for participating appli-
cations. These projects consists in the treatment of compu-
tation extensive and expensive scientific problems of mul-
tiple domains, such as biology, chemistry or mathematics.
SETI@home [14] for example uses the accumulated com-
putation power for the search of extraterrestrial intelligence.
In the astrophysical domain, Einstein@home [5] searches
for spinning neutron stars using data from the LIGO and
GEO gravitational wave detectors. To get an idea of the
task dimensions, in this project a task is about 12 MB and
requires between 5 and 24 hours of dedicated computation.
Also, from a theoretical viewpoint, the scheduling problem
is obviously NP complete when tasks have different sizes
(trivial reduction from 2-PARTITION [6], which provides
yet another reason to restrict to same-size tasks.

As already mentioned, we suppose that all data are ini-
tially situated on the workers, which leads us to a kind of
redistribution problem. Existing redistribution algorithms
have a different objective. Neither do they care how the
degree of imbalance is determined, nor do they inclu the
computation phase in their optimizations. They expect that
a load-balancing algorithm has already taken place. With
help of these results, a redistribution algorithm determines
the required communications and organizes them in mini-
mal time. We could use such an approach: redistribute the
data first, and then enter a purely computational phase. But
our problem is more complicated as we suppose that com-
munication and computation can overlap, i.e., every worker
can start computing its initial data while the redistribution
process takes place.

To summarize our problem: as the participating workers
are not equally charged and/or because of different resource

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:42 from IEEE Xplore. Restrictions apply.

performance, they might not finish their computation pro-
cess at the same time. So we are looking for mechanisms
on how to redistribute the loads in order to finish the global
computation process in minimal time under the hypothesis
that charged workers can compute at the same time as they
communicate.

The rest of this paper is organized as follows. The prob-
lem framework and corresponding complexity results are
detailed in Section 2. The presentation of three heuris-
tics for heterogeneous platforms is the subject in Section 3.
Simulation results are shown in Section 4. Section 5 briefly
presents some related work. Finally, we give some conclu-
sions in Section 6.

2. Framework

We consider a star network S = P0, P1, . . . , Pm shown
in Figure 1. The processor P0 is the master and the m re-
maining processors Pi, 1 ≤ i ≤ m, are workers. The ini-
tial data are distributed on the workers, so every worker Pi

possesses a number Li of initial tasks. All tasks are inde-
pendent and identical. As we assume a linear cost model,
each worker Pi has a (relative) computing power wi for the
computation of one task: it takes X.wi time units to execute
X tasks on the worker Pi. The master P0 can communicate
with each worker Pi via a communication link. A worker
Pi can send some tasks via the master to another worker Pj

to decrement its execution time. It takes X.ci time units to
send X units of load from Pi to P0 and X.cj time units to
send these X units from P0 to a worker Pj . Without loss of
generality we assume that the master is not computing, and
only communicating.

P1

P0

PiP2 Pm

w1 wm

cmc1

wi

cic2

w2

Figure 1. Example of a star network.

We use the bidirectional one-port model for communica-
tions. This means, that the master can only send data to, and
receive data from, a single worker at a given time-step. But
it can simultaneously receive a data and send one. A given
worker cannot start an execution before it has terminated
the reception of the message from the master; similarly, it
cannot start sending the results back to the master before
finishing the computation.

Comm. Comp. Difficulty

Hom. Hom. simple greedy algorithm
Hom. Het. complicated algorithm
Het. Hom. ?
Het. Het. NP-strong

Table 1. Impact.

The objective function is to minimize the makespan, that
is the time at which all loads have been processed. We look
for a schedule σ that minimizes this objective. However, as
shown in Table 1, the minimization problem is NP-complete
(in the strong sense) for fully heterogeneous platforms [10].
Therefore, we propose three heuristics, with various com-
plexities, and aim at assessing their performances.

3. Heuristics for heterogeneous platforms

3.1. Best Balance Algorithm - BBA

The first heuristic is a simple greedy algorithm BEST-
BALANCE ALGORITHM (BBA) (see Algorithm 1). On het-
erogeneous platforms, at each step BBA optimizes the local
makespan. The idea of BBA is the following: at each iter-
ation, we look if we could finish earlier if we redistribute a
task. If so, we schedule the task, if not, we stop redistribut-
ing. It turns out that this simple algorithm is optimal [10] for
fully homogeneous processors, i.e., platforms with identical
processors and communication link bandwidths.

Notations used in BBA: BBA schedules one task per it-
eration i. Let L

(i)
k denote the number of tasks of worker k

after iteration i, i.e., after i tasks were redistributed. The
date at which the master has finished receiving the i-th task
is denoted by m in(i). In the same way we call m out(i) the
date at which the master has finished sending the i-th task.
Let end

(i)
k be the date at which worker k would finish to

process the load it would hold if exactly i tasks are redis-
tributed. The worker k in iteration i with the biggest finish
time end(i)

k , who is chosen to send one task in the next iter-
ation, is called sender. We call receiver the worker k with
smallest finish time end(i)

k in iteration i who is chosen to
receive one task in the next iteration.

In iteration i = 0 we are in the initial configuration: All
workers own their initial tasks L

(0)
k = Lk and the makespan

of each worker k is the time it needs to compute all its tasks:
end(0)

k = L
(0)
k × w. m in(0) = m out(0) = 0.

Principle of BBA: In each iteration i, we compute the
time end(i−1)

k it would take worker k to process L
(i−1)
k

tasks. A worker with the biggest finish time end(i−1)
k is

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:42 from IEEE Xplore. Restrictions apply.

Algorithm 1: Best Balance Algorithm

i ← 0; m in(i) ← 0; m out(i) ← 0 ;
∀kL

(0)
k ← Lk;

end(0)
k ← L

(0)
k × wk;

while true do
sender ← maxk end(i)

k ;
m in(i+1) ← m in(i) + csender;
task arr worker =
max(m in(i+1), m out(i)) + csender;
foreach k do

ẽnd
(i+1)

k ←
max(end(i+1)

k , task arr worker) + wk

select receiver such that
ẽnd

(i+1)

receiver = mink ẽnd
(i+1)

k and if there are several

processors with the same minimum ẽnd
(i+1)

k ,

choose one with smallest end(i)
k ;

if end(i)
sender ≤ ẽnd

(k+1)

receiver then
break; /* we cannot improve the makespan */

else
/* we improve the makespan by sending the task to
the receiver */
m out(i+1) ← task arr worker;
end(i+1)

sender ← end(i)
sender − wsender;

L
(i+1)
sender ← L

(i)
sender − 1;

end(i+1)
receiver ← ẽnd

(i+1)

receiver ;

L
(i+1)
receiver ← L

(i)
receiver + 1;

foreach j �= receiver and j �= sender do
end(i+1)

j ← end(i)
j ; L

(i+1)
j ← L

(i)
j ;

i ← i + 1

arbitrarily chosen as sender, he is called sender. Then we

compute the temporary finish times ẽnd
(i)

k of each worker
if it would receive from sender the i-th task. A worker
with the smallest temporary finish time ẽnd

(i)

k will be the
receiver, called receiver. If there are multiple workers with

the same temporary finish time ẽnd
(i)

k , we take the worker

with the smallest finish time end(i−1)
k . If the finish time

of sender is strictly larger than the temporary finish time

ẽnd
(i)

sender of sender, sender sends one task to receiver and
iterate. Otherwise stop.

3.2. Moore Based Binary-Search Algorithm

Another heuristic is the utilization of a more complex
algorithm MOORE BASED BINARY-SEARCH ALGORITHM

(MBBSA). This algorithm is optimal [10] for platforms
with homogeneous communication links and heterogeneous

Algorithm 2: Algorithm to optimize the makespan.

/∗ idea: make a binary search of
M ∈ [min(fi), max(fi)] ∗/
input: wi = αi

βi
, αi, βi ∈ N × N

∗,
ci = γi

δi
, γi, δi ∈ N × N

∗;
λ ← lcm{βi, δi}, 1 ≤ i ≤ m
precision ← 1

λ ;
lo ← min(fi); hi ← max(fi);
procedure binary-Search(lo, hi):
gap ← |lo − hi| ;
while gap > precision do

M ← (lo + hi)/2;
found ← MBBSA (M);
if ¬found then

/* M is too small */
lo ← M ;

else
/* M is maybe too big */
hi ← M ;
σ ← found schedule;

gap ← |lo − hi|;
return σ;

platforms. As the name says, this heuristic is based on
MOORE’S ALGORITHM [3, 11], whose aim is to maximize
the number of tasks to be processed in-time, i.e., before
tasks exceed their deadlines. This algorithm gives a solu-
tion to the 1||∑Uj problem when the maximum number,
among n tasks, has to be processed in time on a single ma-
chine.

For a given makespan, we compute if there exists a pos-
sible schedule to finish all work in time. If there is one, we
optimize the makespan by a binary search (cf. Algorithm 2).

Framework and notations for MBBSA: We keep the
star network of Section 2. We suppose m heterogeneous
workers who own initially a number Li of identical inde-
pendent tasks.

Let M denote the objective makespan for the searched
schedule σ and fi the time needed by worker i to process
its initial load. During the algorithm execution we divide all
workers in two subsets, where S is the set of senders (si ∈ S
if fi > M) and R the set of receivers (ri ∈ R if fi < M).
As our algorithm is based on Moore’s, we need a notation
for deadlines. Let d

(k)
ri be the deadline to receive the k-th

task on receiver ri. lsi denotes the number of tasks sender
i sends to the master and lri stores the number of tasks re-
ceiver i is able to receive from the master. With help of
these values we can determine the total amount of tasks that
must be sent as Lsend =

∑
si

lsi . The total amount of task
if all receivers receive the maximum amount of tasks they
are able to receive is Lrecv =

∑
ri

lri . Finally, let Lsched

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:42 from IEEE Xplore. Restrictions apply.

be the maximal amount of tasks that can be scheduled by
the algorithm.

Principle of MBBSA: Considering the given makespan
we determine overcharged workers, which can not finish all
their tasks within this makespan. These overcharged work-
ers will then send some tasks to undercharged workers, such
that all of them can finish processing within the makespan.
The algorithm solves the following two questions: Is there
a possible schedule such that all workers can finish in the
given makespan? In which order do we have to send and
receive to obtain such a schedule? The pseudo code of
MBBSA is described in Algorithm 3.

Phases of MBBSA:

Phase 1 decides which of the workers will be senders
and which receivers, depending of the given makespan.
Senders are workers which are not able to process all their
initial tasks in time, whereas receivers are workers which
could treat more tasks in the given makespan M than they
hold initially. So sender Pi has a finish time fi > M , i.e.,
the time needed to compute their initial tasks is larger than
the given makespan M . Conversely, Pi is a receiver if it has
a finish time fi < M .

Phase 2 fixes how many transfers have to be scheduled
from each sender such that the senders all finish their re-
maining tasks in time. Sender si will have to send an

amount of tasks lsi =
⌈

fsi
−T

wsi

⌉
.

Phase 3 computes for each receiver the deadline of each
of the tasks it can receive, i.e., a pair (d(i)

rj , rj) that denotes
the i-th deadline of receiver rj . Beginning at the makespan
M one measures when the last task has to arrive on the re-
ceiver such that it can be processed in time. So the latest
moment that a task can arrive so that it can still be com-
puted on receiver rj is T − wrj , and so on.

Phase 4 is the proper scheduling step: The master de-
cides which tasks have to be scheduled on which receivers
and in which order. Starting at time t = c (this is the time,
when the first task arrives at the master), the master can start
scheduling the tasks on the receivers. For this purpose the
deadlines (d, rj) are ordered by non-decreasing d-values.
In the same manner as in Moore’s algorithm, an optimal
schedule σ is computed by adding one by one tasks to the
schedule: considering the deadline (d, rj), we add a task to
processor rj . If the communication takes too long and the
deadline is not met, the last reception is suppressed from
σ and we continue. If the schedule is able to send at least
Lsend tasks the algorithm succeeds, otherwise it fails.

Algorithm 3: Moore Based Binary-Search Algorithm

initialize fi for all workers i, fi = Li × wi;
compute R and S, order S by non-decreasing values
ci such that cs1 ≤ cs2 ≤ . . . ;
foreach si ∈ S do

lsi ←
⌈

fsi
−T

wsi

⌉
;

if
⌊

T
csi

⌋
< lsi then

return (false, ∅); /* M too small */

total number of tasks to send: Lsend ← ∑
si

lsi ;
D ← ∅;
foreach ri ∈ R do

lri ← 0;
while fri ≤ M − (lri + 1) × wri do

lri ← lri + 1;

d
(lri

)
ri ← M − (lri × wri);

D ← D ∪ (d(lri
)

ri , ri);

of tasks that can be received: Lrecv ← ∑
ri

lri ;
senders send in non-decreasing order of values csi ;
order deadline-list D by non-decreasing values of
deadlines dri and rename the deadlines in this order
from 1 to Lrecv;
σ ← ∅; t ← cs1 ; Lsched = 0;
for i = 1 to Lrecv do

(di, ri) ← i-th element (d(j)
rk , rk) of D;

σ ← σ ∪ {ri};
t ← t + cri ; Lsched ← Lsched + 1;
if t > di then

Find (dj , rj) in σ s.t. crj value is largest;
σ ← σ\{(dj , rj)};
t ← t − crj ; Lsched ← Lsched − 1;

return ((Lsched ≥ Lsend), σ);

3.3. Reversed Binary-Search Algorithm

We propose a third heuristic: the REVERSED BINARY-
SEARCH ALGORITHM (see Algorithm 4 for details). This
algorithm copies the idea of the introduction of deadlines.
Contrary to MBBSA this algorithm traverses the deadlines
in reversed order, wherefrom the name. Starting at a given
makespan, R-BSA schedules all tasks as late as possible un-
til no more task can be scheduled.

R-BSA can be divided into four phases:
Phase 1 is the same as in MBBSA. It decides which of

the workers will be senders and which receivers, depending
of the given makespan.

Phase 2 fixes how many transfers have to be sched-
uled from each sender such that the senders all finish their

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:42 from IEEE Xplore. Restrictions apply.

Algorithm 4: Reversed Binary-Search Algorithm

T ← M ; Lsched ← 0; σ ← ∅;
∀k L

(0)
k ← Lk;

initialize endi for all workers i: endi = Li × wi;
compute R and S, order S by non-decreasing values
ci: cs1 ≤ cs2 ≤ . . .
m in ← cs1 ;
foreach si ∈ S do

lsi ←
⌈

endsi
−T

wsi

⌉
;

if
⌊

T
csi

⌋
< lsi then

return (false, ∅); /* M too small */

total number of tasks to sent: Lsend ← ∑
si

lsi ;
∀ri ∈ R if endri ≤ T then beginri

← T ;
while true do

choose receiver such that
maxi (min(begini − wi, T)) − ci is maximal and
that the schedule is feasible: the task must fit in
the idle gap of the worker:
(beginreceiver − wreceiver ≥ endreceiver) and the task has
to be arrived at the master:
(beginreceiver − wreceiver − creceiver ≥ m in);
if no receiver′ found then

return ((Lsched ≤ Lsend), σ);
beginreceiver ← beginreceiver − wreceiver;
T ← beginreceiver − creceiver;
Lsched ← Lsched + 1;
σ ← σ ∪ {receiver};
i ← i + 1 ;

return ((Lsched ≥ Lsend), σ);

remaining tasks in time. This phase is also identical to
MBBSA.

Phase 3 computes for each receiver at which time it can
start with the computation of the additional tasks, this is in
general the given makespan.

Phase 4 again is the proper scheduling step: Beginning
at the makespan we fill backward the idle times of the re-
ceiving workers. So the master decides which tasks have to
be scheduled on which receivers and in which order. The
master chooses a worker that can start to receive the task as
late as possible and still finish it in time.

4. Simulations

In this section we present the results of our simulation
experiences of the presented algorithms and heuristics on
multiple platforms. We study the heuristics that we pre-
sented in Section 3.

4.1. Experimental plan

All simulations were made with SIMGRID [9, 16]. Sim-
Grid is a toolkit that provides several functionalities for the
simulation of distributed applications in heterogeneous dis-
tributed environments. The toolkit is distributed into several
layers and offers several programming environments, such
as XBT, the core toolbox of SimGrid or SMPI, a library
to run MPI applications on top of a virtual environment.
The access to the different components is ensured via Ap-
plication Programming Interfaces (API). We use the module
MSG to create our entities.

The simulations were made on automatically created
random platforms of four types: We analyze the behavior on
fully homogeneous and fully heterogeneous platforms and
the mixture of both, i.e., platforms with homogeneous com-
munication links and heterogeneous workers and the con-
verse. For every platform type 1000 instances were created
with the following characteristics: In absolute random plat-
forms, the random values for ci and wi vary between 1 and
100, whereas the number of tasks is at least 50. In another
test series we make some constraints on the communica-
tion and computation powers. In the first one, we decide
the communication power to be inferior to the computa-
tion power. In this case the values for the communication
power vary between 20 and 50 and the computation powers
can take values between 50 and 80. In the opposite case,
where communication power is supposed to be superior to
the computation power, these rates are conversed.

4.2. Distance from the best

We made a series of distance tests to get some informa-
tion on the mean qualitiy of our algorithms. For this test
series we ran all algorithms on 1000 different random plat-
forms of the each type, i.e., homogeneous and heteroge-
neous, as well as homogeneous communication links with
heterogeneous workers and the converse. We normalized
the measured schedule makespans over the best result for
a given instance. In the following figures we plot the ac-
cumulated number of platforms that have a normalized dis-
tance less than the indicated distance. This means, we count
on how many platforms a certain algorithm achieves results
that do not differ more than X% from the best schedule. For
exemple in Figure 2(b): The third point of the R-BSA-line
significates that about 93% of the schedules of R-BSA dif-
fer less than 3% from the best schedule. The figures for
platforms with homogeneous communication links and het-
erogeneous computation powers as well as for platforms
with heterogeneous communication links and homogeneous
computation powers can be found in [10].

Our results on homogeneous platforms can be seen in
Figures 2. As expected from the theoretical results, BBA

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:42 from IEEE Xplore. Restrictions apply.

and MBBSA achieve the same results and behave equally
well on all platforms. R-BSA in contrast shows a sensi-
bility on the platform characteristics. When the communi-
cation power is less than the computation power, i.e., the
ci-values are bigger, R-BSA behaves as good as MBBSA
and BBA. But in the case of small ci-values or on homo-
geneous platforms without constraints on the power rates,
R-BSA achieves worse results.

The simulation results on platforms with homogeneous
communication links and heterogeneous computation pow-
ers consolidate the theoretical predictions: Independently
of the platform parameters, MBBSA always obtains opti-
mal results, BBA differs slightly when high precision is de-
manded. The behavior of R-BSA strongly depends on the
platform parameters: when communications are slower than
computations, it achieves good results.

On platforms with heterogeneous communication links
and homogeneous workers, BBA has by far the poorest re-
sults, whereas R-BSA shows a good behavior. In general
it outperforms MBBSA, but when the communication links
are fast, MBBSA is the best.

The results on heterogeneous platforms are equivalent
to these on platforms with heterogeneous communication
links and homogeneous workers, as can be seen in Figure 3.
R-BSA seems to be a good candidate, whereas BBA is to
avoid as the gap is up to more than 40%.

4.3. Mean distance and standard deviation

We also computed for every algorithm the mean distance
from the best on each platform type. These calculations are
based on the simulation results on the 1000 random plat-
forms of Section 4.2. As you can see in Table 2 in general
MBBSA achieves the best results. On homogeneous plat-
forms BBA behaves just as well as MBBSA and on plat-
forms with homogeneous communication links it also per-
forms as well. When communication links are heteroge-
neous and there is no knowledge about platform parameters,
R-BSA outperforms the other algorithms and BBA is by far
the worse choice.

The standard deviations of all algorithms over the 1000
platforms are shown in the right part of Table 2. These
values mirror exactly the same conclusions as the listing
of the mean distances in the left part, so we do not com-
ment on them particularly. We only want to point out that
the standard deviation of MBBSA always keeps small val-
ues, whereas in case of heterogeneous communication links
BBA-heuristic is not recommendable.

5. Related work

To the best of our knowledge, there are no papers dealing
with the same type of data redistribution algorithms which

 85

 90

 95

 100

 105

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - homogeneous platform

BBA
MBBSA
R-BSA

(a) Homogeneous platform (general case).

 85

 90

 95

 100

 105

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - homogeneous platform -comms smaller than comps

BBA
MBBSA
R-BSA

(b) Homogeneous platform, faster communicating.

 85

 90

 95

 100

 105

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - homogeneous platform -comms bigger than comps

BBA
MBBSA
R-BSA

(c) Homogeneous platform, faster computing.

Figure 2. Frequency of the distance to the
best on homogeneous platforms.

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:42 from IEEE Xplore. Restrictions apply.

Platform type Mean distance Standard deviation
Comm. Comp. BBA MBBSA R-BSA BBA MBBSA R-BSA
Hom Hom 1 1 1.0014 0 0 0.0107
Hom Hom c ≤ w 1 1 1.0061 0 0 0.0234
Hom Hom c ≥ w 1 1 1 0 0 0
Hom Het 1.0000 1 1.0068 0.0006 0 0.0181
Hom Het c ≤ w 1.0003 1 1.0186 0.0010 0 0.0395
Hom Het c ≥ w 1 1 1.0017 0 0 0.0040
Het Hom 1.1894 1.0074 1.0058 0.4007 0.0208 0.0173
Het Hom c ≤ w 1.0318 1.0049 1.0145 0.0483 0.0131 0.0369
Het Hom c ≥ w 1.0291 1.0025 1.0024 0.0415 0.0097 0.0095
Het Het 1.2100 1.0127 1.0099 0.3516 0.0327 0.0284
Het Het c ≤ w 1.0296 1.0055 1.0189 0.0450 0.0127 0.0407
Het Het c ≥ w 1.0261 1.0045 1.0046 0.0384 0.0118 0.0121

Table 2. Mean distance from the best and standard deviation of the different algorithms on each
platform type.

can be overlapped by computations (provided that enough
data is available locally).

However, REDISTRIBUTION ALGORITHMS have been
well studied in the literature. Unfortunately already sim-
ple redistribution problems are NP complete [8]. For this
reason, optimal algorithms can be designed only for par-
ticular cases, as it is done in [13]. In their research, the
authors restrict the platform architecture to ring topologies,
both uni-directional and bidirectional. In the homogeneous
case, they were able to prove optimality, but the heteroge-
nous case is still an open problem. In spite of this, other ef-
ficient algorithms have been proposed. For topologies like
trees or hypercubes some results are presented in [17].

The LOAD BALANCING PROBLEM is not directly dealt
with in this paper. Anyway we want to quote some key ref-
erences to this subject, as the results of these algorithms are
the starting point for the redistribution process. Generally
load balancing techniques can be classified into two cate-
gories. Dynamic load balancing strategies and static load
balancing. Dynamic techniques might use the past for the
prediction of the future as it is the case in [4] or they sup-
pose that the load varies permanently [7]. That is why for
our problem static algorithms are more interesting: we are
only treating star-platforms and as the amount of load to be
treated is known a priory we do not need prediction. For
homogeneous platforms, the papers in [15] survey exist-
ing results. Heterogeneous solutions are presented in [12]
or [1]. This last paper is about a dynamic load balancing
method for data parallel applications, called the WORKING-
MANAGER METHOD: the manager is supposed to use its
idle time to process data itself. So the heuristic is simple:
when the manager does not perform any control task it has
to work, otherwise it schedules.

6. Conclusion

We have dealt with the problem of scheduling and re-
distributing independent and identical tasks on heteroge-
neous master-slave platforms. Because this problem is NP-
complete in the strong sense for completely heterogeneous
platforms, we have presented and assessed three heuristics.

The simulations consolidate the theoretical results of op-
timality [10]. On homogeneous platforms, BBA is to priv-
ilege over MBBSA, as the complexity is remarkably lower.
The tests on heterogeneous platforms show that BBA per-
forms rather poorly in comparison to MBBSA and R-BSA.
MBBSA in general achieves the best results, it might be
outperformed by R-BSA when platform parameters have a
certain constellation, i.e., when workers compute faster than
they are communicating.

A natural extension of this work would be to derive ap-
proximation algorithms, i.e., heuristics whose worst-case is
guaranteed within a certain factor to the optimal, for the
fully heterogeneous case. However, it is often the case in
scheduling problems for heterogeneous platforms that ap-
proximation ratios contain the quotient of the largest plat-
form parameter by the smallest one, thereby leading to very
pessimistic results in practical situations.

More generally, much work remains to be done along
the same lines of load-balancing and redistributing while
computation goes on. We can envision dynamic master-
slave platforms whose characteristics vary over time, or
even where new resources are enrolled temporarily in the
execution. We can also deal with more complex intercon-
nection networks, allowing slaves to circumvent the master
and exchange data directly.

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:42 from IEEE Xplore. Restrictions apply.

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - heterogeneous platform

BBA
MBBSA
R-BSA

(a) Heterogeneous platform (general case).

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - heterogeneous platform -comms smaller than comps

BBA
MBBSA
R-BSA

(b) Heterogeneous platform, faster communicating.

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - heterogeneous platform -comms bigger than comps

BBA
MBBSA
R-BSA

(c) Heterogeneous platform, faster computing.

Figure 3. Frequency of the distance to the
best on heterogeneous platforms.

References

[1] A. Bevilacqua. A dynamic load balancing method on a het-
erogeneous cluster of workstations. Informatica, 23(1):49–
56, 1999.

[2] BOINC: Berkeley Open Infrastructure for Network Comput-
ing. http://boinc.berkeley.edu.

[3] P. Brucker. Scheduling Algorithms. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2004.

[4] M. Cierniak, M. Zaki, and W. Li. Customized dynamic load
balancing for a network of workstations. Journal of Parallel
and Distributed Computing, 43:156–162, 1997.

[5] Einstein@Home. http://einstein.phys.usm.
edu.

[6] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity, a Guide to the Theory of NP-Completeness. W.H. Free-
man and Company, 1979.

[7] M. Hamdi and C. Lee. Dynamic load balancing of data par-
allel applications on a distributed network. In ICS’95, pages
170–179. ACM Press, 1995.

[8] U. Kremer. NP-Completeness of dynamic remapping. In
Proceedings of the Fourth Workshop on Compilers for Par-
allel Computers, Delft, The Netherlands, 1993.

[9] A. Legrand, L.Marchal, and H. Casanova. Scheduling Dis-
tributed Applications: The SIMGRID Simulation Frame-
work. In CCGrid’03, pages 138–145, May 2003.

[10] L. Marchal, V. Rehn, Y. Robert, and F. Vivien. Scheduling
and data redistribution strategies on star platforms. Research
Report 2006-23, LIP, ENS Lyon, France, June 2006.

[11] J. Moore. An n job, one machine sequencing algorithm for
minimizing the number of late jobs. Management Science,
15(1), Sept. 1968.

[12] M. Nibhanupudi and B. Szymanski. Bsp-based adaptive par-
allel processing. In R. Buyya, editor, High Performance
Cluster Computing. Volume 1: Architecture and Systems,
pages 702–721. Prentice-Hall, 1999.

[13] H. Renard, Y. Robert, and F. Vivien. Data redistribution
algorithms for heterogeneous processor rings. Research Re-
port RR-2004-28, LIP, ENS Lyon, France, May 2004.

[14] SETI. URL: http://setiathome.ssl.berkeley.
edu.

[15] B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and
load balancing in parallel and distributed systems. IEEE
Computer Science Press, 1995.

[16] SimGrid. URL: http://simgrid.gforge.inria.
fr.

[17] M.-Y. Wu. On runtime parallel scheduling for processor load
balancing. IEEE Trans. Parallel and Distributed Systems,
8(2):173–186, 1997.

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:42 from IEEE Xplore. Restrictions apply.

