Algorithmic Issues on Heterogeneous Computing Platforms
Pierre Boulet!, Jack Dongarra®?, Fabrice Rastello*, Yves Robert* and Frédéric Vivien®

LV LIFL, , Universit de Lille, 59655 Villeneuve d’Ascq Cedex, France
2 Department of Computer Science, University of Tennessee, Knoxville, TN 37996-1301, USA
3 Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
4 LIP, UMR CNRS-ENS Lyon-INRIA 8512, ENS Lyon, 69364 Lyon Cedex 07, France
5 ICPS, Universit de Strasbourg, Pole Api, 67400 Illkirch, France
e-mail: Firstname.Lastname@ens-lyon.fr, dongarra@cs.utk.edu

October 1998

Abstract

This paper discusses some algorithmic issues when computing with a heterogeneous network of work-
stations (the typical poor man’s parallel computer). Dealing with processors of different speeds requires
to use more involved strategies than block-cyclic data distributions. Dynamic data distribution is a
first possibility but may prove impractical and not scalable due to communication and control overhead.
Static data distributions tuned to balance execution times constitute another possibility but may prove
inefficient due to variations in the processor speeds (e.g. because of different workloads during the com-
putation). We introduce a static distribution strategy that can be refined on the fly, and we show that
it is well-suited to parallelizing scientific computing applications such as finite-difference stencils or LU
decomposition.

Key words: heterogeneous networks, distributed-memory, different-speed processors,
tiling, communication-computation overlap, mapping, LU decomposition.

1 Introduction

Heterogeneous networks of workstations are ubiquitous in university departments and companies. They
represent the typical poor man’s parallel computer: running a large PVM or MPI experiment (possibly all
night long) is a cheap alternative to buying supercomputer hours. The idea is to make use of all available
resources, namely slower machines in addition to more recent ones.

The major limitation to programming heterogeneous platforms arises from the additional difficulty of
balancing the load when using processors running at different speed. Distributing the computations (together
with the associated data) can be performed either dynamically or statically, or a mixture of both. At first
sight, we may think that dynamic strategies like a greedy algorithm are likely to perform better, because the
machine loads will be self-regulated, hence self-balanced, if processors pick up new tasks just as they terminate
their current computation. However, data dependences may lead to slow the whole process down to the pace
of the slowest processor, as our examples taken from standard linear algebra kernels will demonstrate. In fact,
the more constrained the problem (because of the data dependences), the more efficient a static distribution
of the work. A simple approach to statically distributing independent chunks of computations is to let the
number of chunks allocated to each processor be inversely proportional to its speed. Coupled with a refined
data allocation (block-cyclic distributions are not enough), this approach leads to satisfactory results, as
proven both theoretically and experimentally (through MPI experiments) in this paper.

The rest of the paper is organized as follows. In Section 2 we give pointers to the abundant literature
on dynamic allocation strategies, and we propose a static allocation strategy, based upon a simple dynamic-
programming algorithm, to evenly distribute independent chunks of computations to different-speed pro-
cessors. Section 3 is devoted to a first example where greedy algorithms fail because of data dependences,

while static allocation schemes provide good results. In Section 4 we move to a second, more involved,
example, i.e. partitioning a finite-difference stencil computation. In Section 5 we discuss how to implement
LU decomposition on a heterogeneous network of workstations. We give some final remarks and conclusions
in Section 6.

2 A strategy for static load balancing

The problem of making effective use of heterogeneous networks of workstations has received a considerable
attention in the recent years. We only give a few pointers to the existing literature in this section.

When targeting non-dedicated workstations with unpredictable workload and possible failures, dynamic
allocation strategies seem unavoidable. Dynamic strategies range from simple master-slave paradigms (where
each processor picks up a new computational chunk as soon as it returns from its current work) to more
sophisticated task allocation strategies, most of which “use the past predict the future”, i.e. use the currently
observed speed of computation of each machine to decide for the next distribution of work. See the survey
paper of Berman [3] and the more specialized references [1, 8, 9, 12, 13, 15] for further details. Performance
prediction models for heterogeneous networks are dealt with in [10, 18] (among others). Limitations of
dynamic strategies come from two main factors:

e Dependences may keep fast processors idle, as illustrated in Sections 3 and 4.

e A dynamic allocation of tasks may induce a large overhead due to the redistribution of data, as
illustrated in Section 5.

Static strategies are less general than dynamic ones but constitute an efficient alternative for heavily
constrained problems. The basis for such strategies is to distribute computations to processors so that the
workload is evenly balanced, and so that no processor is kept idle by data dependences. To illustrate the
static approach, consider the following simple problem: given M independent chunks of computations, each
of equal size (meaning each requiring the same amount of work), how can we assign these chunks to p
physical processors Py, P, ..., P, of respective execution times t1, 2, ..., tp, so that the workload is best
balanced? Here the execution time is understood as the number of time units needed to perform one chunk
of computation. A difficulty arises when stating the problem: how accurate are the estimated processor
speeds? won’t they change during program execution? We come back on estimating processor speeds later,
and we assume for a while that each processor P; will indeed execute each computation chunk within ¢; time
units. Then how to distribute chunks to processors? The intuition is that the load of P; should be inversely
proportional to t;: P; receives ¢; chunks so that

¢; X t; = Constant = K.

We get cit1 = cata = ... = cptp = K where ci +c2 + ...+ ¢, = M. Hence:
P 1
szt—zM > Cz':ptiiLXM.
i=1 " i=1t;
This strategy leads to a perfect load balance when M is a multiple of C' = lem(t1,ts,... ,tp) > 0y ti
Consider first a toy example with 3 processors with t; = 3, t2 = 5 and t3 = 8. We have lem(t1, t2,... ,tp) =
120, Ele ti = 177%, hence C' = 79. We obtain the static allocation of Table 1.

Execution-time t1 =3 to =5 t3 =8
Chunks M =79 || ¢t =40 | co =24 | c3 =15

Table 1: Static allocation for 3 processors with ¢; = 3,t; =5 and t3 =8

Consider now a more concrete example, taken from a heterogeneous network at the University of Ten-
nessee: see Table 2. We get L = lem(ty,to,... ,tp) = 34,560,240 and C' = LZ7 L — 8 469,789. Needless

i=1 t;

Name nala bluegrass dancer donner vixen | rudolph zazu simba

Description Ultra 2 SS 20 SS 5 SS 5 SS 5 SS 10 SS1.4/60 | SS1 4/60

Execution time ¢; 11 26 33 33 38 40 528 530

Chunks M = 8,469, 789 3,141,840 | 1,329,240 | 1,047,280 | 1,047,280 | 909480 | 864,006 65,455 65,208

Table 2: Static allocation for 8 Sun workstations.

to say, such a large amount of chunks is not feasible in practice, so we should derive a method to allocate
smaller pieces of work.

Let B, a constant fixed by the user, denote the number of chunks to be allocated to the p processors. The
execution time, for an allocation C = (¢1,¢2,. .. ,¢p) such that % | ¢; = B, is maxi<i<p ¢;t; (the maximum
is taken over all processor execution times), so that the average cost to execute one chunk is

maxj <i<p Cit;
B
and we aim at finding the allocation C of minimal cost. A naive and sub-optimal solution would be to

1
approximate the rational expressions ¢; = =+ X B by rounding them, while enforcing the condition

i=11;

cost(C) =

> ¢ = B. Using the former toy example with 3 processors, t; = 3, to = 5, and t3 = 8, take B = 9:
¢1 = 4.56, ¢ = 2.73 and ¢3 = 1.71, so a possible approximation is C = (4, 3,2), whose cost is 1.78. Note that
the optimal solution is C = (5,3,1), whose cost is 1.67. A costly but optimal solution is obtained by solving
the integer linear programming problem

: 25)21 ¢ =B
miny st { cit; <7v,1<i<p

However, there is a nice dynamic programming approach that leads to the best allocation. It is best explained
using the former toy example again:

Number of chunks || ¢; | ¢2 | ¢35 | Cost || Selected processor
0 00 |0 1
1 110 0 |3 2
2 1 1 0 2.5 1
3 2 |1 |0 |2 3
4 2 1 1 2 1
5 3 1 1 1.8 2
6 312 |1 167 |1
7 4 2 1 1.71 1
8 5 12 |1 |1.87 || 2
9 5 3 |1 |167 || 3
10 5 3 2 1.6

Table 3: Running the dynamic programming algorithm with 3 processors: t; = 3, to = 5, and t3 = 8.

In Table 3, we report the allocations found by the algorithm up to B = 10. The entry “Selected processor”
denotes the rank of the processor chosen to build the next allocation. At each step, “Selected processor” is
computed so that the cost of the allocation is minimized. For instance at step 4, i.e. to allocate a fourth chunk,
we start from the solution for three chunks, i.e. (c1,c2,¢3) = (2,1,0). Which processor P; should receive the
fourth chunk, i.e. which ¢; should be incremented? There are three possibilities (¢; + 1,¢2,¢3) = (3,1,0),
(c1,¢2 +1,¢3) = (2,2,0) and (c1,¢2,¢3 + 1) = (2,1,1) of respective costs 2 (Py is the slowest), 12 (P is the
slowest), and & (P; is the slowest). Hence we select ¢ = 3 and we retain the solution (c1,cs,¢3) = (2,1,1).

Proposition 1 (see [{]) The dynamic programming algorithm returns the optimal allocation for any number
of chunks up to B.

Proof As already said, we build a function that, given a best allocation with a total number of chunks
equal to n — 1, computes a best allocation with a total number of chunks equal to n. Once we have this
function, we start with an initial value n = 0, and we compute a best allocation for each increasing value of
n up to n = B. First we characterize the best allocations for a given chunk size s:

Lemma 1 Let C = (c1, ... ,¢p) be an allocation, and let s =3, ., ci be the total number of chunks. Let
m = maxi<;<p C;it; denote the mazimum computation time over all processors. If C verifies

Vi, 1 <i<p, ticg <m < ti(c; + 1), (1)

then it is optimal for the total number of chunks s.

Proof Take an allocation verifying the above condition 1. Suppose that it is not optimal. Then there
exists a better allocation C' = (c, ... ,¢,) with 37, ;. ¢; = s, such that

m' = max cit; < m.
1<i<p

By definition of m, there exists ¢y such that m = ¢;,t;,. We can then successively derive
Cigliuc, =M > m' > C;'ot’io
Cig > Cgo

- ! — — !
Fir, ¢, <y (because E ci=8= E ci)

1<i<p 1<i<p
e, +1<¢j
tiy (ciy +1) <ty C;-l
m <m' (by definition of m and m')

which contradicts the non-optimality of the original allocation. [|
There remains to build allocations satisfying Condition (1). The following algorithm suffices:

e For the chunk size s = 0, take the optimal allocation (0,0, ... ,0).

e To derive an allocation C’ verifying equation (1) with chunk size s from an allocation C verifying (1)
with chunk size s — 1, add 1 to a well-chosen c; one that verifies

tj (Cj + 1) = 1Iélii2pti(ci + 1) (2)

In other words, let ¢; = ¢; for 1 <4 < p,i # j, and ¢j = ¢; + 1.

Lemma 2 This algorithm is correct.

Proof We have to prove that allocation C’, given by the algorithm, verifies Equation (1).
Since allocation C verifies equation (1), we have t;¢; < m < t;(c;+1). By definition of j from Equation (2),
we have

! ! !
m = max t;c; = max | t;(c; +1 max t;c; | =tic..
1<i<p (’(3D g tie) = e

We then have t;c; < m' < t;(c; +1) and

Vi#j,1<i<gq,
tic; =tic; <m<m' <tjc; = min ti(c; +1) < ti(e; + 1) = ti(c; + 1),
1<i<p

so the resulting allocation does verify Equation (1). |
This completes the proof of the proposition. |

The complexity of the dynamic programming algorithm is O(pB), where p is the number of processors
and B, the upper bound on the number of chunks. Note that the cost of the allocations is not a decreasing
function of B. However, the algorithm “converges” to the perfectly balanced solution: for a number of
chunks equal to C = 79, we retrieve the optimal solution (c1,ca,c3) = (40,24, 15) whose cost is % = 1.52.
When processor speeds are accurately known and guaranteed not to change during program execution, the
dynamic programming approach provides the best possible load balancing of the processors. Let us discuss

the relevance of both hypotheses:

Estimating processor speed. There are too many parameters to accurately predict the actual speed of a
machine for a given program, even assuming that the machine load will remain the same throughout the
computation. Cycle-times must be understood as normalized cycle-times [9], i.e application-dependent
elemental computation times, which are to be computed via small-scale experiments (repeated several
times, with an averaging of the results).

Changes in the machine load. Even during the night, the load of a machine may suddenly and dramat-
ically change because a new job has just been started. The only possible strategy is to “use past to
predict future”: we can compute performance histograms during the current computation, these lead
to new estimates of the t;, which we use for the next allocation.

In a word, a possible approach is to slice the total work into phases. We use small-scale experiments to
compute a first estimation of the ¢;, and we allocate chunks according to these values for the first phase.
During the first phase we measure the actual performance of each machine. At the end of the phase we collect
the new values of the t;, and we use these values to allocate chunks during the second phase, and so on. Of
course a phase must be long enough, say a couple of seconds, so that the overhead due to the communication
at the end of each phase is negligible. Each phase corresponds to B chunks, where B is chosen by the user
as a trade-off: the larger B, the more even the predicted load, but the larger the inaccuracy of the speed
estimation.

3 Tiling

To understand how dependences may prevent dynamic strategies to reach a good efficiency, we use the simple
example of a tiled computation over a rectangular iteration space. Tiling has been studied by several authors
and in different contexts, and we refer the reader to the papers by Hogsted, Carter, and Ferrante [14] and
by Calland, Dongarra, and Robert [6], which provide a review of the existing literature. Briefly, the idea
is to partition the iteration space of a loop nest with uniform dependences into tiles whose shape and size
are optimized according to some criterion (such as the communication-to-computation ratio). Once the tile
shape and size are defined, the tiles must be distributed to physical processors and the final scheduling must
be computed. Tiling is a widely used technique to increase the granularity of computations and the locality
of data references. The larger the tiles, the more efficient are the computations performed using state-of-the-
art processors with pipelined arithmetic units and a multilevel memory hierarchy (this feature is illustrated
by recasting numerical linear algebra algorithms in terms of blocked Level 3 BLAS kernels [11, 7]). Another
advantage of tiling is the decrease in communication time (which is proportional to the surface of the tile)
relative to the computation time (which is proportional to the volume of the tile). These two features make
tiling a very useful technique for programming Networks of Workstations (NOWSs): as soon as the tiles are
large enough, communications can be fully overlapped by (independent) computations.

Consider the two-dimensional rectangular iteration space represented in Figure 1. Tiles are rectangular,
and their edges are parallel to the axes. All tiles have the same fixed size. Tiles are indexed as Tj;,
0 <1< Np, 0 <j < N,. Dependences between tiles are summarized by the vector pair

to)-(V)1

In other words, the computation of a tile cannot be started before both its left and lower neighbor tiles have
been executed. Given a tile T; ;, we call both tiles Ty ; and T; j4+1 its successors, whenever the indices
make sense.

XXX [XXX [| XXX || XXX]||XXX
XXX [XXX [|[XXX || XXX]||XXX

XXX [XXX [| XXX || XXX]| XXX
XXX XXX [XXX || XXX]||XXX

XXX [| XXX T XXX || XXX
23

XK X || XXX Sl xxx || xxx

)(l(‘x. XXX | [xxx [xxx]|[xxx

XXXTTXXX || XXX || XXX || XXX)
N2

Figure 1: A tiled iteration space with horizontal and vertical dependences.

There are p available processors, numbered from 1 to p. Let ¢, the time needed by processor P, to
execute a tile, for 1 < ¢ < p. While we assume the computing resources are heterogeneous, we assume
the communication network is homogeneous: if two adjacent tiles T and T" are not assigned to the same
processor, we pay the same communication overhead Teo,, whatever the processors that execute T' and T".
This is a crude simplification because the network interfaces of heterogeneous systems are likely to exhibit
very different latency characteristics. However, because communications can be overlapped with independent
computations, they eventually have little impact on the performance, as soon as the granularity (the tile
size) is chosen large enough. This theoretical observation has been verified during our MPI experiments (see
below).

Tiles are assigned to processors by using a scheduling ¢ and an allocation function proc, both to be
determined. Tile T is allocated to processor proc(T'), and its execution begins at time-step o(7T'). Formally,
the constraints induced by the dependences are the following: for each tile 7' and each of its successors T",
we have

{ U(T) + tproc(T) < U(TI) if pI‘OC(T) = pI‘OC(T')
o(T) + toroc(r) + Teom < o(T') otherwise

To increase the granularity and to minimize the number of communications, columns of tiles (rather
than single tiles) are allocated to processors. So a computational chunk will be a tile column. Columnwise
allocations are asymptotically optimal [5]. When targeting a homogeneous NOW, a natural way to allocate
tile columns to physical processors is to use a pure cyclic allocation [16, 14, 2] (in HPF words, this is a
CYCLIC(1) distribution of tile columns to processors). For heterogeneous NOWs, we use a periodic allocation
based upon the ideas of Section 2.

3.1 Theoretical heuristic

Let L = lem(tq, t2,. .. ,tp,) and consider an iteration space with L columns: if we allocate t£ columns of tiles
to processor 4, as suggested in Section 2, all processors need the same number of time-steps to compute all
their tiles: the workload is perfectly balanced. Of course, we must schedule the different tiles allocated to a
same processor so that the processors do not remain idle, waiting for other processors because of dependence
constraints.

We introduce a heuristic that allocates the tiles to processors by blocks of columns whose size is computed
according to the above discussion. This heuristic produces an asymptotically optimal allocation: the ratio of
its makespan over the optimal execution time tends to 1 as the number of tiles (the domain size) increases.

In a columnwise allocation, all the tiles of a given column of the iteration space are allocated to the same
processor. When contiguous columns are allocated to the same processor, they form a block. When a
processor is assigned several blocks, the scheduling is the following;:

1. Blocks are computed one after the other, in the order defined by the dependences. The computation
of the current block must be completed before the next block is started.

2. Tiles inside each block are computed in a rowwise order: if, say, 3 consecutive columns are assigned to
a processor, it will execute the three tiles in the first row, then the three tiles in the second row, and
so on. Note that (given 1.) this strategy is the best to minimize the latency (for another processor to
start next block as soon as possible).

We prove in [4] that dependence constraints do not slow down the execution of two consecutive blocks

(of adequate size) by two different-speed processors. To state our heuristic, let Pi,... , P, be P processors
that respectively execute a tile in time ¢;,... ,t,. We allocate blocks of column to processors by panels of
size C =LxY b, tl_p where L = lem(t1,%2,... ,tp) columns. For the first panel, we assign the block By of

the first L/t; columns to P;, the block By of the next L/ts columns to P>, and so on until P, receives the
last L/t, columns of the panel. We repeat the same scheme with the second panel (columns C' + 1 to 2C)
first, and so on until all columns are allocated (note that the last panel may be incomplete). As already
said, processors will execute blocks one after the other, row by row within each block.

Proposition 2 (see [4]) Our heuristic is asymptotically optimal: letting T be its makespan, and Top be the
optimal execution time, we have

lim T

=1.
No—+o00 Topt

The two main advantages of our heuristic are (i) its regularity, which leads to an easy implementation;
and (ii) its guarantee: it is theoretically proved to be close to the optimal. However, we need to adapt it to
deal with practical cases, because the number C' =L x >°? | tl of columns in a panel may be too large, as
shown by the example of Table 2.

3.2 Practical heuristic

We choose the “best” block sizes while bounding the total number of columns B, using the dynamic program-
ming algorithm of Section 2. B should be chosen large enough to balance processor loads but not too large
compared to the total number of columns, to ensure that T is closed to T,y (see the proof of Proposition 2).
In other words, B is a trade-off between idle time and latency. Note that small values of B may lead to very
good performances (the cost is not a decreasing function of B). Finally, an accurate estimation of processor
speeds is not mandatory if we re-estimate these frequently.

3.2.1 MPI Experiments

We report several experiments on the network of workstations presented in Table 2. We study different
columnwise allocations. Qur simulation program is written in C using the MPI library for communication.
It is not a full tiling program, because we have not inserted the code required to deal with the boundaries
of the computation domain. The domain has 100 rows and a number of columns varying from 200 to 1000
by steps of 100. An array of doubles is communicated for each communication; its size is the square root of
the tile area.

We are reporting experiments for a single tile size, because results are not sensitive to this parameter
(as soon as the tile is large enough so that communications can be overlapped). This is confirmed by the
correlated curves represented in Figure 2, where the execution times of three of our modified heuristics are
measured for different tile sizes.

The actual communication network is an Ethernet network. It can be considered as a bus, not as a point-
to-point connection ring; hence our model for communication is not fully correct. However, this configuration
has little impact on the results, which correspond well to the theoretical predictions. The workstations were
not dedicated to us, but the experiments were run at hours when we expected to be the only users. Still, the

70

60 -

50

40

seconds

30

20

10

0]]]]]]]]

40 50 60 70 80 90 100 110 120 130
tile size

Figure 2: Our modified heuristics with different tile sizes. C, denotes the best allocation algorithm for a
panel size upper bound equal to wu.

load did vary from time to time: timings reported in the figures are the average of several measures, from
which aberrant data have been suppressed. In Figures 3 and 5, we show for reference the sequential time as
measured on the fastest machine, “nala”.

Cyclic Allocations. We have experimented with cyclic allocations on the 6 fastest machines, on the 7
fastest machines, and on all 8 machines. Because cyclic allocation is optimal when all processors have the
same speed, this will be a reference for other simulations. We have also tested a block cyclic allocation with
block size equal to 10, in order to see whether the reduced amount of communication helps. Figure 3 presents
the results® for these 6 allocations (3 purely cyclic allocations using 6, 7, and 8 machines, and 3 block-cyclic
allocations).

We comment on the results of Figure 3 as follows:

e With the same number of machines, a block size of 10 is better than a block size of 1 (pure cyclic).

e With the same block size, adding a single slow machine is disastrous, and adding the second one only
slightly improves the disastrous performances.

e QOverall, only the block cyclic allocation with block size 10 and using the 6 fastest machines gives some
speedup over the sequential execution.

We conclude that cyclic allocations are not efficient when the computing speeds of the available machines
are very different. For the sake of completeness, we show in Figure 4 the execution times obtained for the
same domain (100 rows and 1000 columns) and the 6 fastest machines, for block cyclic allocations with
different block sizes. We see that the block-size has a small impact on the performances.

We point out that cyclic allocations would be the outcome of a greedy master-slave strategy. Indeed,
processors will be allocated the first P columns in any order. Re-number processors according to this initial

1Some results are not available for 200 columns because the panel size is too large.

900 F T T T T —F =

800 cychc 1,6;
cyclic(1,7
cyclic(1,8

700 = cyclic 10,6§
cychc 10,7

600 cyclic(10 8)

sequential

500

seconds

400 —

300

200

100 i~

0 200 400 600 800 1000

columns

Figure 3: Experimenting with cyclic and block-cyclic allocations: cyclic(b,m) corresponds to a block cyclic
allocation with block size b, using the m fastest machines of Table 2

assignment. Then throughout the computation, P; will return after P;_; and just before P;y; (take indices
modulo p) , because of the dependences. Hence computations would only progress at the speed of the slowest
processor, with a cost 22fe

Using our heuristics. Consider now our heuristics. In Table 4, we show the block sizes computed by the
algorithm described in Section 3.2 for different upper bounds of the panel size. The best allocation computed
with bound u is denoted as C,,. The time needed to compute these allocations is completely negligible with
respect to the computation times (a few milliseconds versus several seconds).

nala | bluegrass | dancer | donner | vixen | rudolph | zazu | simba || cost || panel
Cas 7 3 2 2 2 2 0 0 4.44 18
Cso 15 6 5 5 4 4 0 0 4.23 39
C1o0 33 14 11 11 9 9 0 0 4.18 87
Cis0 52 22 17 17 15 14 1 1 4.12 139

Table 4: Block sizes for different panel size bounds.

Figure 5 presents the results for these allocations. Here are some comments:
e Each of the allocations computed by our heuristic is superior to the best block-cyclic allocation.

e For 1000 columns and allocation Cy59, we obtain a speedup of 2.2 (and 2.1 for allocation Csg), which is
very satisfying (see below).

The optimal cost for our workstation network is cost,pr = % = % = 4.08. Note that the cost

of Ci50, cost(Ci50) = 4.12, is very close to the optimal cost. The peak theoretical speedup is equal to

c"g;‘—étl = 2.7. For 1000 columns we obtain a speedup equal to 2.2 for Ci59. This is satisfying considering
opt

120 T T T T T

100 i~ -

80 -

60 -

seconds

40 -

20 - -

0]]]]]

0 10 20 30 40 50 60
block sizes in columns

Figure 4: Cyclic allocations with different block sizes.

that we have here only 7 panels, so that side effects still play an important role. Note also that the peak
theoretical speedup has been computed by neglecting all the dependences in the computation and all the
communications overhead.

3.2.2 Load-balancing on the fly

Our allocation algorithm can be used to dynamically balance the load of the computation. Indeed, one has
just to measure the elapsed time for some current computations, recompute a new allocation based on these
computation times (which only costs a few milliseconds) and redistribute the data accordingly.

The main problem while doing this is to determine the frequency at which this reallocation should
take place. Indeed, a redistribution could be costly (though, in general, it could be limited to neighbor-to-
neighbor communications). On the other hand, the highest the frequency of the reallocation , the highest the
reactiveness to load changes. As a conclusion, selecting the frequency of reallocations is highly application-
and network-dependent.

4 Finite-difference stencil computation

4.1 Framework

In this section, we briefly sketch how to tile a one-dimensional relaxation problem on a heterogeneous
NOW. Figure 6 illustrates the Fermi-Pasta-Ulam model for one-dimensional crystals [17]. Let z¢ denote the
coordinate of the i** molecule at time t. According to the model, we have
dt)?
N R)
= gty e, e

The main kernel of a program that computes the Fermi-Pasta-Ulam model for a one dimensional string of [
molecules and during T time-steps is the following (we assume a special processing on the boundaries):

dot=1,T
doi=1,1
Blt,i| = g(B[t — 1,i — 1], B[t — 1,4], B[t — 1,7 + 1], B[t — 2, 1], A[t, {])

10

100 e -
/'/
C25 - s
Cso —+-- _,"o
80 Ci00 - e -
Ci50 H— L
sequential -©—- e
< 60 -
<
o
g
40 -
20 -
0 | | | | |
0 200 400 600 800 1000

columns

Figure 5: Experimenting with our modified heuristics.

1 T2 Zy

Q\ Spring
Molecule

ma = Eﬁ
mit; = k(@ip1 — i) + K(@ig1 — 26)P + k(zi—1 — @) + K(zi1 — 7;)P

Figure 6: The Fermi-Pasta-Ulam model of a one dimensional crystal.

In this kernel, B[t,i] stores the current position of molecule i at step ¢, while A[t,i] represents some
purely local data. The dependence vectors in this loop can be summarized by the set

)G (5)-(6))

Because of the conflicting dependence vectors (1,1)! and (1,—1)!, the iteration space must be rotated
(skewed) before tiling techniques can be applied. The new loop nest is the following:

dot=1,T
dod' =t,l+t—-1
Blt,i' —t+1]=g(B[t —1,i' —t], B[t — 1,i' —t + 1],
Blt—1,i' —t+2],B[t—2,i' —t+ 1], A[t,i' =t + 1])

The new dependence vectors are

Because all the components of the new dependence vectors are nonnegative, the two loops are now per-
mutable, and we can tile the loop nest to increase the granularity: in the tiled iteration space of Figure 7,
each circle represents a tile instead of a single computation node.

J
A
®
) ®
®)
® ®
\Afulltile
e ® ®
®
54': \A partial tile
o/
L ———

Figure 7: The tiled iteration space.

Dependence vectors between tiles are outlined in Figure 7, they correspond to the set

GGy

In other words, the computation of a tile cannot be started before its left, lower and lower-left neighbor tiles
have been executed: the diagonal dependence vector (1,1)! turns out to be redundant. Still, the diagonal
communication must be routed, either horizontally and then vertically, or the other way round, and it may
even be combined with any of the other two messages (induced by dependence vectors (0,1)¢ and (1,0)%).

To summarize, we end up with a tiled iteration space whose shape is a parallelogram and whose depen-
dence vectors are the pair (0,1)* and (1,0)!. This turns out to be a very general situation when solving
finite-difference problems.

4.2 Solution for a parallelogram-shaped iteration space

Our solution is similar to that for the rectangular-shaped problem: columns of tiles are distributed to the
processors. More precisely, the panel size B is chosen such that the load is best balanced and that some
idle time is not created by too large blocks of columns. However, because the domain has been skewed,
dependences further constrain the problem, and there is a technical condition (C) to enforce so that no
processor is kept idle. To characterize a parallelogram-shaped iteration space, we use the notations of [14]:

o There are N columns of M tiles.

e The rise parameter r relates the slope (in reference to the horizontal axis) of the top and bottom
boundaries of the iteration space. For example in Figure 7, the rise is r = % (tiles are of size 7 x 5).

Let t; denote the time needed by processor P; to execute a single tile?. Reorder processors so that
cit1 < ot < ... < cptp). We need to ensure that P, never gets idle, i.e. that the startup latency is smaller
than the time for P, to compute a block of columns. This condition can be safely over-estimated by the
following inequality (where ¢p41 = ¢1):

2Hence the time needed by P; to execute a tile column is Mt;, which is not coherent with the notations of Section 3. This
is motivated by the (technical) need to track elementary paths in the skewed domain (see the proof of Proposition 3).

12

Condition (C)

p
¢i(e; —1)
Mtpcp >]; <(c]- + r% + e (Cj+1 — 1)) tj + tcgmm)

This formula is explained in Figure 8. Note that condition (C) will always hold for large domains.

P
M X c3 X t3 /

P P

-

(24 Tr)t

(4 + 14r)t,
(03 + r%g_l) + res(er — 1)) ts = (3 + 157)t3

Figure 8: The last processor never remains idle (except at the beginning and at the end of the whole
computation) if the time to compute the dark-shadowed part (over estimation of the start-up latency)
is smaller than the time to compute the light-shadowed part. In that particular example, (t1,ts,t3) =
(3,5, 5)tcaic, the total number of chunks is taken to be B = 9, so (c1,¢2,¢3) = (4,3,2). The condition is
then 15Mteaic > 3teomm + (37 + 1527)tcqic. So if r = 1 and teomm = teaie, the condition becomes M > 12.8,
which in practice will always be true.

Proposition 3 (see [/]) Our heuristic is asymptotically optimal when condition (C) holds.

Again, a greedy strategy would lead to a cyclic allocation, so that computation would progress only at
the pace of the slowest processor.

5 LU decomposition

The last algorithm that we deal with in this paper is the (blocked) LU decomposition taken from the
ScaLAPACK library [7].

5.1 Algorithm

The LU decomposition algorithm works as follows: at each step, the pivot processor processes the pivot
panel (a block of r columns) and broadcasts it to all the processors, which update their remaining columns.
For next step, the next r columns become the pivot panel, and the computation progresses. The preferred
distribution for a homogeneous NOW is a CY CLIC(r) distribution of columns, where r is typically chosen
as r = 32 or r = 64. We want to use our modified heuristic to distribute B chunks of data to processors,
where a chunk is a block of r consecutive columns (see Figure 9).

Because the largest fraction of the work takes place in the update, we load-balance the work so that the
update is best balanced. Given the fact that the size of the matrix shrinks as the computation goes on, we
use the dynamic programming for s = 0 to s = B in a reverse order, as illustrated below. Consider the toy

13

i=

done

Figure 9: Allocating slices of B chunks.

Chunk number 11234567 |8]9]10
Processornumber |1 |2 |1 |3 |1 |2 |1|1|2] 3

Table 5: Static allocation for B = 10 chunks.

example in Table 1 with 3 processors of relative speed t; = 3, t = 5 and t3 = 8. The dynamic programming
algorithm allocates chunks to processors as shown in Table 5. The allocation of chunks to processors is
obtained by reading the second line of Table 5 from right to left: (3,2,1,1,2,1,3,1,2,1) (see Figure 10 for
the detailed allocation within a slice). As illustrated in Figure 9, at a given step there are several slices of
at most B chunks, and the number of chunks in the first slice decreases as the computation progresses (the
leftmost chunk in a slice is computed first and then there only remains B — 1 chunks in the slice, and so on).
In the example, the reversed allocation best balances the update in the first slice at each step: when there
are the initial 10 chunks, next when only 9 chunks remain, ..., finally when only the last chunk remain.
The update of the other slices remain well-balanced by construction, since their size does not change, and
we keep the best allocation for B = 10. See Figure 10 for the detailed allocation within a slice, together
with the cost of the update.

average time average time
I L
2 4’___'_’—’_,7 2f
1r 1k
LU-decomposition LU-decomposition
Py
2
Py
2
Static allocation Cyclic distribution

Figure 10: Comparison of two different distributions for the LU-decomposition algorithm on a heterogeneous
platform made of 3 processors of relative speed 3, 5 and 8. The first distribution is the one given by our
algorithm, the second one is the cyclic distribution. The total number of chunks is B = 10.

14

Name farot arquebuse | smirnoff loop cornas | xeres
Description Ultra 1 | Sparc 20 | Sparc 5 | Sparc 5 | Sparc 5 | ELC
Execution time ¢; 210 361 646 573 660 555

Table 6: The 6 Sun workstations used for LU decomposition. Processor speeds have been measured by
computing the same LU decomposition on each machine separately.

5.2 PVM Experiments

In this section, we report several experiments on the network of workstations presented in Table 6. More
precisely, we compare the ScaLAPACK implementation of the cyclic(6) allocation to a PVM implementation
of our column distribution. Column blocks are of size 32 x n, where n (the matrix size) varies from 288 to
3168 by step of 288. Results are reported in Figures 11 and 12. We start with the following comments:

e Asymptotically, the computation time for LU-decomposition with cyclic distribution is imposed by
the slowest processor. In the example, cyclic distribution will lead to the same execution time as if
computed with 6 identical processors of duration 660.

e Asymptotically, the best distribution should be equivalent to the computation on 6 identical processors

f — & =4243.

of speed . 3

In our PVM experiments, B is taken to be 9: hence farot has 3 processes, arquebuse has 2 processes,

cornas, smirnoff, xeres and loop have 1 process each. Such a distribution is asymptotically equivalent to
having 6 identical processors of speed DaX(8x210,2x361,646,573,660,555) g — 481 33.

9
Computation time with our distribution
Computation time with a cyclic distribution’

Hence, if we define the speedup as the ratio the best the-

oretical speedup would be % = 1.37. However, with our choice of B, we cannot expect a speedup greater
than 58% = 1.56.

In practice, we do obtain a speedup closed to the theoretical speedup for large matrices (see Figures 11
and 12). We point out that this was obtained with a very small programming effort, because we did not
modify anything in the ScaLAPACK routines, but only declared several PVM processes per machine. We
did pay a high overhead and memory increase for managing these processes, so that a refined implementation
would lead to better results.

Iu decomposition
900 T T

800 --x-- Scalapack Cyclic(6) implementation x 4

700+ -0~ Our algorithm ; 4

600 - / q

time unit
@
3
3
T

a

3

S
T

300

200

100

L L L L L
0 500 1000 1500 2000 2500 3000 3500
n

Figure 11: Experimental results for LU-decomposition using 6 heterogeneous workstations.

15

16(best theorical speedup

14 theorical asymtotical speedup

N

Pys

speedup of our algo against cyclic(6)

06 experimental speedup

L L L L L L
500 1000 1500 2000 2500 3000 3500
matrix size

Figure 12: Speedup of the experiments of Figure 11: we report the ratio of the computation time with our
new distribution (with B = 9 blocks of 32 columns) over the computation time with a regular cyclic(32)
distribution (used in ScaLAPACK).

6 Conclusion

In this paper, we have discussed algorithmic techniques to deal with heterogeneous computing platforms.
Such platforms are likely to play an important role in the future. We have introduced static allocation
strategies that are asymptotically optimal. We have modified these strategies to allocate column chunks of
reasonable size, and we have reported successful experiments on two heterogeneous networks of workstations.
The practical significance of the modified heuristics should be emphasized: even when processor speeds are
inaccurately known, allocating small but well-balanced chunks turns out to be quite successful, while dynamic
greedy strategies fail.

References

[1] Stergios Anastasiadis and Kenneth C. Sevcik. Parallel application scheduling on networsk of worksta-
tions. Journal of Parallel and Distributed Computing, 43:109-124, 1997.

[2] Rumen Andonov and Sanjay Rajopadhye. Optimal orthogonal tiling of two-dimensional iterations.
Journal of Parallel and Distributed Computing, 45(2):159-165, 1997.

[3] F. Berman. High-performance schedulers. In I. Foster and C. Kesselman, editors, The Grid: Blueprint
for a New Computing Infrastructure, pages 279-309. Morgan-Kaufmann, 1998.

[4] P. Boulet, J. Dongarra, Frédéric Rastello, Yves Robert, and Frédéric Vivien. Algorithmic issues for
heterogeneous computing platforms. Technical Report RR-98-49, LIP, ENS Lyon, 1998. Available at
www.ens-1lyon.fr/LIP/lip/publis/publis.us.html.

[5] P.Boulet, J. Dongarra, Yves Robert, and Frédéric Vivien. Tiling for heterogeneous computing platforms.
Technical Report UT-CS-97-373, University of Tennessee, Knoxville, 1997.

[6] P.Y. Calland, J. Dongarra, and Y. Robert. Tiling with limited resources. In L. Thiele, J. Fortes,
K. Vissers, V. Taylor, T. Noll, and J. Teich, editors, Application Specific Systems, Achitectures, and
Processors, ASAP’97, pages 229-238. IEEE Computer Society Press, 1997. Extended version available
on the WEB at http://www.ens-lyon.fr/~yrobert.

[7] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker, and
R. C. Whaley. ScaLAPACK: A portable linear algebra library for distributed memory computers -

16

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

design issues and performance. Computer Physics Communications, 97:1-15, 1996. (also LAPACK
Working Note #95).

Michal Cierniak, Mohammed J. Zaki, and Wei Li. Customized dynamic load balancing for a network
of workstations. Journal of Parallel and Distributed Computing, 43:156-162, 1997.

Michal Cierniak, Mohammed J. Zaki, and Wei Li. Scheduling algorithms for heterogeneous network of
workstations. The Computer Journal, 40(6):356-372, 1997.

Val Donaldson, Francine Berman, and Ramamohan Pandri. Program speedup in a heterogeneous
computing network. Journal of Parallel and Distributed Computing, 21:316-322, 1994.

J.J.Dongarraand D. W. Walker. Software libraries for linear algebra computations on high performance
computers. STAM Review, 37(2):151-180, 1995.

Xing Du and Xiadong Zhang. Coordinating parallel processes on networks of workstations. Journal of
Parallel and Distributed Computing, 46:125-135, 1997.

Andrew S. Grimshaw, Jon B. Weissman, Emily A. West, and Ed. C. Loyot Jr. Metasystems: an

approach combining parallel processing and heterogeneous distributed computing systems. Journal of
Parallel and Distributed Computing, 21:257-270, 1994.

K. Hogstedt, L. Carter, and J. Ferrante. Determining the idle time of a tiling. In Principles of Pro-
gramming Languages, pages 160-173. ACM Press, 1997. Extended version available as Technical Report
UCSD-CS96-489, and on the WEB at http://www.cse.ucsd.edu/~carter.

Maher Kaddoura and Sanjay Ranka. Run-time support fo parallelization of data-parallel applications on
adaptive and nonuniform computational environments. Journal of Parallel and Distributed Computing,
43:163-168, 1997.

H. Ohta, Y. Saito, M. Kainaga, and H. Ono. Optimal tile size adjustment in compiling general
DOACROSS loop nests. In 1995 International Conference on Supercomputing, pages 270-279. ACM
Press, 1995.

M. Remoissenet. Waves called solitons. Springer Verlag, 1994.

Yong Yan, Xiadong Zhang, and Yongsheng Song. An effective and practical performance model for
parallel computing on nondedicated heterogeneous now. Journal of Parallel and Distributed Computing,
38:63-80, 1996.

17

