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One has a large computational workload that is ‘‘divisible” (its constituent tasks’ granular-
ity can be adjusted arbitrarily) and one has access to p remote computers that can assist in
computing the workload. How can one best utilize the computers? Two features compli-
cate this question. First, the remote computers may differ from one another in speed. Sec-
ond, each remote computer is subject to interruptions of known likelihood that kill all work
in progress on it. One wishes to orchestrate sharing the workload with the remote comput-
ers in a way that maximizes the expected amount of work completed. We deal with three
versions of this problem. The simplest version ignores communication costs but allows
computers to differ in speed (a heterogeneous set of computers). The other two versions
account for communication costs, first with identical remote computers (a homogeneous
set of computers), and then with computers that may differ in speed. We provide exact
expressions for the optimal work expectation for all three versions of the problem – via
explicit closed-form expressions for the first two versions, and via a recurrence that com-
putes this optimal value for the last, most general version.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

This paper extends work on divisible-load theory [1] that focuses on computing platforms that employ a master–worker
scheduling paradigm. Our goal is to optimally distribute a given divisible computational workload (whose constituent tasks’
granularity can be adjusted arbitrarily) to p remote worker computers that may differ in speeds. The workers are connected
to the master computer via a bus or network. The master serially sends a fraction of the workload to each worker. The prob-
lem is to determine what fraction of the load should be sent to each remote computer, and in which order. This problem has
been considered many times in the recent past, and closed-form expressions have been derived to compute these load frac-
tions [2,3]. We revisit this problem in the context of workers that are subject to unrecoverable failures [4], and we strive to
maximize the expected amount of total work that the workers will complete. For intuition: An ‘‘unrecoverable failure” may
result from a hardware crash, an increasingly likely event with the advent of massively parallel grid platforms [5,6]; the ‘‘fail-
ure” may also result from the (unexpected) return of a remote computer’s user/owner in a cycle-stealing episode [7–9]. Con-
sider the following scenario: On Friday evening, a Ph.D. student has a large set of simulations to run. She has access to a set of
computers from the lab, but each computer can be reclaimed at any instant by its owner. In any case, everybody will be back
. All rights reserved.
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to work by 8am on Monday. What is the student’s best strategy: How much simulation data should she attempt to execute
on each accessible computer?.

We study the preceding scenario under the assumption that the risk of each worker computer’s being reclaimed is known
and that it grows with time. In detail: The probability that a worker computer will be interrupted increases linearly with the time
the computer has been available. Other failure probability distributions could be envisioned, but the linear distribution is nat-
ural in the absence of further information. Also, the linear risk function turns out to be tractable, in the sense that we have
succeeded in deriving optimality results for this distribution. Indeed, the major achievement of this paper is to expose a
strategy for distributing work optimally, i.e., in a way that maximizes the expected total amount of work completed by
the workers.

A roadmap. After describing the formal framework of our study in detail, in Section 2, we address three versions of our
optimization problem. Section 3 treats the first, and simplest, version of the problem, which does not assess a charge for
intercomputer communication; this models compute-intensive workloads wherein compute costs render communication
costs negligible. Within this version, the set of workers is heterogeneous, in that they may differ in speed. The other two
versions of our problems do assess costs for intercomputer communication: the version studied in Section 4 assumes that
all workers are identical; the version in Section 5 considers workers that may differ in speed, bandwidth, and/or failure
rate. For the versions of Sections 3 and 4, we provide explicit closed-form expressions for the optimal expected amount of
work completed by the optimal strategy; for the version of Section 5, which is the most general, we provide a recurrence
that computes the optimal work expectation in linear time as long as computers only differ by a single of their three
characteristics. We follow the analytical sections with a brief overview of related work in Section 6, particularly compar-
ing the current approach and results with those of our previous work [4]. We end in Section 7 with conclusions and
perspectives.
2. The technical framework

We (the master computer) have W units of divisible work to execute on p worker computers. We wish to determine how
much work to allocate to each worker and when to transmit this work, with the goal of having the workers complete as
much work as possible. Having made these determinations, we send each worker a single message containing the data that
it needs in order to execute its fraction of the workload. In the terminology of [2], this is the single-round distribution strat-
egy. Note that the load fractions received by the workers are rational quantities instead of integer quantities: this is the key
relaxation of divisible-load theory. Communications are done sequentially to each worker, which corresponds to a (some-
what pessimistic) one-port model [10], with single-threaded execution and blocking send/receive MPI primitives [11]. In or-
der to simplify analyses, we index workers in the order in which they receive work: P1; . . . ; Pp. Our study is devoted to
determining the sizes of work allocations and the order of transmitting them to workers that maximizes the aggregate
amount of work that the workers complete.

The preceding paragraph omits the crucial aspect of our problem that makes our study difficult and significant: Each
worker is vulnerable to unrecoverable interruptions that ‘‘kill” all work in progress (on that computer). Without somehow
constraining the problem, we could not prevent a ‘‘malicious adversary” from preventing our workers from completing any
work. The constraint that we posit is a rather mild one, which only slightly idealizes what one could achieve in practice. We
assume that we have exact knowledge of: each worker’s computing rate on the workload, its communication rate (with the
master), and the instantaneous probability of its being interrupted. We measure time from the beginning of the ‘‘episode”
during which we have access to the workers, and we assume that the probability of each worker’s being interrupted in-
creases with the amount of time that it has been available, whether working on our workload or not. (From another perspec-
tive, a worker’s probability of being interrupted increases with the amount of work it could have done.) Formally, each
computer is subject to a risk function PrðTÞ for worker Pi, which denotes the probability that Pi has been interrupted by
the end of the first T time-units.

The interruption model that we study is embodied in linear risk functions: Worker Pi’s risk of being interrupted by the end
of w time-units has the form PrðwÞ ¼ jiw for some constant ji. Linear risk is the most natural model in the absence of further
information. The probability density function for Pi is then dPr ¼ ji dt for t 2 ½0;1=ji� and 0 otherwise, so that
Please
tions,
PrðTÞ ¼min 1;
Z T

0
ji dt

� �
¼ minf1;jiTg:
Each worker Pi computes at the rate si work-units/time-unit; it is connected to the master by a link of bandwidth bwi. We
introduce two abbreviation that we use selectively to simplify quantification of the impact of interruption risks on work
completion.

� zi;j ¼ ji=bwj. (Under our indexing convention, we use this notation only for j 6 i.) This is the interruption rate for Pi per
unit-load communication from the master to Pj. It reflects the risk that Pi incurs as it waits for earlier workers to get their
work ðj < iÞ and as it gets its work ðj ¼ iÞ.
� xi ¼ ji=si. This is the interruption rate for Pi for each unit-load of computation that it does.
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We use these quantities as follows. Say that we send w1 units of work to P1 and then w2 units to P2. The expected amount
of work completed by P1 is, then,
Please
tions,
E1 ¼ w1 1� ðz1;1 þ x1Þw1ð Þ: ð1Þ
As explanation: Observe that P1 receives work during the first w1=bw1 time-units and computes during the next w1=s1 time-
units. Its risk of being interrupted increases linearly with elapsed time, whether it is communicating or computing. Next,
note that the expected amount of work completed by P2 is
E2 ¼ w2 1� ðz2;1w1 þ z2;2w2Þ � x2w2ð Þ:
To wit, before P2 starts computing, it waits for P1 to receive its work (which takes the first w1=bw1 time-units) and to receive
its own work (which takes the next w2=bw2 time-units). Only after these two communications does P2 start computing, for
the next w2=s2 time-units. P2’s risk of being interrupted increases linearly with elapsed time – whether it is waiting (as P1

receives work), communicating (as it receives work), or computing. If we had only these two workers (the case p ¼ 2), then
our goal would be to maximize E1 þ E2, the expected total amount of completed work.

Note that the formula (1) for E1 assumes that ðz1;1 þ x1Þw1 6 1. If this condition is not satisfied, then E1 ¼ 0. To avoid such
situations, we make a technical assumption that the total workload is small enough so that we distribute it entirely to the p
workers. Indeed, if the total load is too large, then, with probability 1, all workers will be interrupted before completing their
work. Henceforth, we assume that the p chunks allocated to the workers partition the original workload and that there is a
nonzero probability that the last worker can complete its allocated work. A sufficient condition for this situation is that
W 6 1=ðzmax þ xmaxÞ, where zmax ¼ jmax=min16i6pfbwig and xmax ¼ jmax=min16i6pfsig are calibrated to the the slowest link
and the slowest worker, respectively. To see this, note that the last computer, Pn, can always start computing after it and
all preceding computers have their work. Allowing idle periods in the communication cannot improve the solution, because
interruption risk grows with elapsed time. Thus, Pn needs Vn=sn time-steps to execute its size-Vn allocation, which it receives
not later than times-step ðW � VnÞ=min16i6pfbwig. We can now formally state our optimization problem.

Definition 1. DistribðpÞ denotes the problem of computing EoptðW ; pÞ, the optimal value of the expected total amount of
work done when partitioning and distributing the entire workload W 6 1=ðzmax þ xmaxÞ to the p worker computers.

We have defined ‘‘personalized” versions of the parameters that we use to characterize a collection of workers: s; j; bw,
and z. In fact, in only one section (Section 5.4) do we ‘‘personalize” all four parameters; generally, at least one parameter is
constant across the collection. We employ the just-indicated unsubscripted notation when a parameter’s value is shared by
all workers.

3. Heterogeneous computers with free communication

We first study the DISTRIB problem when our p workers: (a) may differ in speed; (b) do not incur any cost for communi-
cation (the case zi � z ¼ 0); (c) share the same risk of interruption (so all ji � j). This case models compute-intensive appli-
cations wherein computation costs render communication costs negligible. Our result for this case is expressed most
perspicuously using symmetric functions.

Definition 2. Given n P 1, for 0 6 i 6 n; rðnÞi denotes the ith symmetric function of x1; x2; . . . ; xn : rðnÞi ¼
P

16j1<j2<���<ji6nQi
k¼1xjk

. By convention rðnÞ0 ¼ 1.

For instance with n ¼ 3; rð3Þ1 ¼ x1 þ x2 þ x3; rð3Þ2 ¼ x1x2 þ x1x3 þ x2x3 and rð3Þ3 ¼ x1x2x3.

Theorem 1. When z ¼ 0 the optimal solution to DistribðpÞ is obtained by sending each worker Pi a chunk of sizeQ
k – ixk �W=rðpÞp�1 ¼ rðpÞ=ðxir

ðpÞ
p�1Þ. This leads to expected work production
EoptðW; pÞ ¼W � rðpÞp

rðpÞp�1

W2 ¼W � 1Pp
i¼1ð1=xiÞ

W2:
Proof. Let ai;p ¼
Q

k–ixk

� �
=rðpÞp�1 and fp ¼ rðpÞp =rðpÞp�1. We proceed by induction on p, noting that the theorem holds for p ¼ 1,

because a1;1 ¼ 1 and f1 ¼ x1.

To help the reader follow the derivation, we prove the result for p ¼ 2 before dealing with the general case. Assume that
the size of the chunk sent to P1 is Y. The size of the chunk sent to P2 is thus W – Y. Both chunks are sent in parallel, as no cost
is assessed for communications. The expected amount of work completed is
EðYÞ ¼ Yð1� x1YÞ þ ðW � YÞð1� x2ðW � YÞÞ ¼W � x2W2 � ðx1 þ x2ÞY2 þ 2x2WY:
The optimal value is Y ðoptÞ ¼ x2
x1þx2

W ¼ a1;2W as desired (and W � Y ðoptÞ ¼ x1
x1þx2

W ¼ a2;2W). Importing the value of Y ðoptÞ into
the expression of EðYÞ, we derive that
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Please
tions,
EoptðW;2Þ ¼ EðY ðoptÞÞ ¼W � f2W2;
where
f2 ¼ x2 �
x2

2

x1 þ x2
¼ x1x2

x1 þ x2
¼ rð2Þ2

rð2Þ1

:

This proves the claim for p ¼ 2.
Assume now that the result holds for any collection of m 6 n computers. Consider the case of nþ 1 computers, and

assume that the size of the chunk sent to Pnþ1 is W � Y. By induction, the optimal expected amount of work done by the first
n computers is EoptðY ;nÞ ¼ Yð1� fnYÞ, and this is achieved by sending a chunk of size ai;nY to Pi for 1 6 i 6 n. The expected
amount of work done by the nþ 1 computers is then
EðYÞ ¼ Yð1� fnYÞ þ ðW � YÞð1� xnþ1ðW � YÞÞ:
Proceeding as above, the optimal value is Y ðoptÞ ¼ xnþ1
fnþxnþ1

W , whence EoptðW ;nþ 1Þ ¼ EðY ðoptÞÞ ¼W � fnþ1W2, where
fnþ1 ¼ xnþ1 �

x2
nþ1

fnþxnþ1
.

We recognize that rðnÞn þ xnþ1r
ðnÞ
n�1 ¼ rðnþ1Þ

n so that fn þ xnþ1 ¼ rðnþ1Þ
n =rðnÞn�1 and
fnþ1 ¼ xnþ1 �
x2

nþ1r
ðnÞ
n�1

rðnþ1Þ
n

¼
xnþ1 rðnþ1Þ

n � xnþ1rðnÞn�1

� �
rðnþ1Þ

n

¼ xnþ1rðnÞn

rðnþ1Þ
n

¼
rðnþ1Þ

nþ1

rðnþ1Þ
n

;

as desired. Also, Y ðoptÞ ¼ xnþ1
fnþxnþ1

W ¼ xnþ1r
ðnÞ
n�1

rðnþ1Þ
n

W .

By induction, for 1 6 i 6 n, we get
ai;nþ1 ¼ ai;n
xnþ1rðnÞn�1

rðnþ1Þ
n

¼
xnþ1rðnÞn�1

Q
16k6n;k – i

xk

rðnÞn�1r
ðnþ1Þ
n

¼
xnþ1

Q
16k6n;k – i

xk

rðnþ1Þ
n

¼

Q
16k6nþ1;k – i

xk

rðnþ1Þ
n

;

as desired. It remains to check the value of
anþ1;nþ1 ¼ 1� xnþ1rðnÞn�1

rðnþ1Þ
n

¼ rðnþ1Þ
n � xnþ1rðnÞn�1

rðnþ1Þ
n

¼

Q
16k6n

xk

rðnþ1Þ
n

;

which concludes the proof. h

Thus, the optimal solution is symmetric: the contribution of each computer is a (somewhat complicated) symmetric func-
tion of all computer speeds.
4. Homogeneous computers with communication costs

For the remainder of the paper, we account for every communication, via the (possibly ‘‘personalized”) parameter z – 0.
We first study the case of homogeneous, identical workers (so si � s; bwi � bw, and xi � x), in preparation for the technically
more challenging case of heterogeneous workers.

Theorem 2. If workers have identical speeds, then the optimal solution to DistribðpÞ allocates equal-size chunks (of size W/p) to all
workers. In expectation, this completes the following amount of work.
EoptðW; pÞ ¼W � ðpþ 1Þzþ 2x

2p
W2:
Proof. The proof is similar to that of Theorem 1. Let fp ¼ ðpþ1Þzþ2x

2p . We proceed by induction on p, noting that the theorem
holds when p ¼ 1, because f1 ¼ zþ x.

Assume that the result holds for m 6 n computers. Consider the case of nþ 1 workers and assume that the size of the
chunk sent to Pnþ1 is W – Y. By induction, the first n computers operating optimally produce EoptðY ;nÞ ¼ Yð1� fnYÞ units of
work, by sending a chunk of size Y=n to each Pi ð1 6 i 6 nÞ. Thus, the expected amount of work completed by our nþ 1
workers is
EðYÞ ¼ Yð1� fnYÞ þ ðW � YÞ 1� zW � xðW � YÞð Þ:
To understand this reckoning, note that Pnþ1 has to wait for the whole workload to be distributed (accounted for by the term
zW) before it can start computing its own chunk (accounted for by the term xðW � YÞ). We rewrite EðYÞ as
EðYÞ ¼W � ðzþ xÞW2 � ðfn þ xÞY2 þ ðzþ 2xÞWY :
cite this article in press as: A. Benoit et al., Static worksharing strategies for heterogeneous computers with unrecoverable interrup-
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The optimal value of Y is Y ðoptÞ ¼ zþ2x
2ðfnþxÞW , whence EoptðW;nþ 1Þ ¼ EðY ðoptÞÞ ¼W � fnþ1W2, where fnþ1 ¼ zþ x� ðzþ2xÞ2

4ðfnþxÞ.

By the induction hypothesis, we get fn þ x ¼ nþ1
2n ðzþ 2xÞ þ x ¼ nþ1

2n ðzþ 2xÞ, so that
Please
tions,
fnþ1 ¼ zþ x� nðzþ 2xÞ
2ðnþ 1Þ ¼

ðnþ 2Þzþ 2x

2ðnþ 1Þ ;
as expected. We find also that Y ðoptÞ ¼ n
nþ1 W , so that, for each i 6 n; Pi receives a chunk of size 1

n Y ðoptÞ ¼ 1
nþ1 W . We deduce that

Pnþ1 receives a chunk of that same size (or we can directly check that W � Y ðoptÞ ¼ 1
nþ1 W). This concludes the proof. h

Interestingly, the optimal solution mandates sending equal-size chunks to all computers, which contrasts with the clas-
sical divisible-load setting. In that setting, one minimizes the total time needed to execute a fixed workload by having all
computers finish computing simultaneously [2], so that the first computers served by the master receive larger chunks.

5. Heterogeneous computers with communication costs

5.1. Computers that differ only in computation speed

Workers have ‘‘personalized” speeds in this scenario (each Pi has speed si), but they share link bandwidth ðbwi � bwÞ and
interruption risk ðji � jÞ.

Definition 3. Define the sequence ~k as follows: k0 ¼ k1 ¼ 4, and for n P 2; kn ¼ kn�1 � 1
4 kn�2. For convenience, let k�1 ¼ 0.

Note that kn ¼ 4ð1þ nÞ=2n for all n P 0.
The sequence ~k is used to characterize the optimal solution to this version of DistribðpÞ.

Theorem 3. Say that the master serves workers in the order P1; P2; . . . ; Pp. In the current scenario, the optimal schedule for
DistribðpÞ allocates ai;pW units of work to Pi, for i 2 ½1; p�, where:

� for p P 1 : fp ¼
Pp

i¼0
kir
ðpÞ
p�i

ziPp�1

i¼0
kir
ðpÞ
p�i�1

zi
,

� a1;p ¼
Qp

j¼1Y ðoptÞ
j ; and, for i 2 ½2; p�; ai;p ¼ ð1� Y ðoptÞ

i Þ
Qp

j¼iþ1Y ðoptÞ
j ,

� Y ðoptÞ
1 ¼ 1; and, for i 2 ½2; p�; Y ðoptÞ

i ¼ zþ2xi
2ðfi�1þxiÞ

.

In expectation, this strategy completes
EoptðW; pÞ ¼W � fpW2:
The optimal solution does not depend on the order in which the master serves workers.
Proof. The proof is a more involved analogue of those of Theorems 1 and 2. Note that the theorem holds for p ¼ 1, because
f1 ¼ k0x1þk1z

k0
¼ zþ x1.

To supply intuition, particularly for why the order of serving workers is not important, consider the case of two workers,
P1 and P2, that are served in this order (first P1, then P2). If we send a chunk of size Y to P1 and one of size W – Y to P2, the
expected amount of work completed is
EðYÞ ¼ Yð1� f1YÞ þ ðW � YÞ 1� ðzW þ x2ðW � YÞÞð Þ:
Note that the term zW accounts for P2’s two waiting periods: for the first chunk to be sent to P1 and for the second chunk to
be sent to it. Finally, P2 computes its chunk, whence the term x2ðW � YÞ. We rewrite
EðYÞ ¼W � ðzþ x2ÞW2 � ðf1 þ x2ÞY2 þ ðzþ 2x2ÞWY:
The optimal value for Y is Y ðoptÞ ¼ zþ2x2
2ðf1þx2Þ

W ¼ a1;2W , and we derive that
EoptðW;2Þ ¼W � f2W2;
where
f2 ¼ zþ x2 �
ðzþ 2x2Þ2

4ðf1 þ x2Þ
¼ 4x1x2 þ 4ðx1 þ x2Þzþ 3z2

4ðx1 þ x2 þ zÞ ;
as desired. We note that the expression is symmetric in x1 and x2, meaning that the order of serving the workers has no
significance.

Assume now that the theorem holds for up to n workers, and consider the case of nþ 1 workers that are served in the
order P1; . . . ; Pnþ1. Say that we send a chunk of size W – Y to Pnþ1. We know by induction that the best way to distribute the
remaining Y units of work to the first n workers is independent of their ordering, and that the optimal expectation EoptðW ;nÞ
is given by EoptðW;nÞ ¼W � fnW2.
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The total expectation EðYÞ for the nþ 1 computers is obtained as previously:
Please
tions,
EðYÞ ¼W � ðzþ xnþ1ÞW2 � ðfn þ xnþ1ÞY2 þ ðzþ 2xnþ1ÞWY:
The optimal value for Y is Y ðoptÞ ¼ zþ2xnþ1
2ðfnþxnþ1Þ

W , and we derive that
fnþ1 ¼ zþ xnþ1 �
ðzþ 2xnþ1Þ2

4ðfn þ xnþ1Þ
:

We know by induction that fn ¼ an=bn, where an ¼
Pn

i¼0kirðnÞn�iz
i and bn ¼

Pn�1
i¼0 kirðnÞn�i�1z

i. We have fn þ xnþ1 ¼ anþxnþ1bn
bn

and
an þ xnþ1bn ¼
Xn�1

i¼0

ki rðnÞn�i þ xnþ1rðnÞn�i�1

� �
zi þ knz

n:
But we recognize that for 0 6 i 6 n� 1, we have
rðnÞn�i þ xnþ1rðnÞn�i�1 ¼ rðnþ1Þ
n�i : ð2Þ
We also have rðnÞ0 ¼ rðnþ1Þ
0 ¼ 1, so that
bnþ1 ¼ an þ xnþ1bn ¼
Xn

i¼0

kirðnþ1Þ
n�i zi:
Now we import this value into the expression for fnþ1, and we obtain fnþ1 ¼ anþ1=bnþ1, where
anþ1 ¼ bnþ1ðzþ xnþ1Þ �
1
4
ðzþ 2xnþ1Þ2bn ¼

Xn

i¼0

kirðnþ1Þ
n�i zi

 !
ðzþ xnþ1Þ �

z2

4
þ xnþ1zþ x2

nþ1

� 	 Xn�1

i¼0

kirðnÞn�i�1z
i

 !

¼ znþ1 kn �
kn�1

4

� 	
þ
Xn

i¼1

ziðAi þ Bi � Ci � Di � EiÞ þ k0ðrðnþ1Þ
n xnþ1 � rðnÞn�1x

2
nþ1Þ:
In the last expression, we have
Ai ¼ kirðnþ1Þ
n�i xnþ1

Bi ¼ ki�1rðnþ1Þ
n�iþ1

Ci ¼
1
4

ki�2rðnÞn�iþ1

Di ¼ ki�1rðnÞn�ixnþ1

Ei ¼ kirðnÞn�i�1x
2
nþ1
Next we use Eq. (2) to derive Ai � Ei ¼ kirðnÞn�ixnþ1 and Bi � Di ¼ ki�1rðnÞn�iþ1, so that Bi � Di � Ci ¼ ðki�1 � ki�2
4 Þr

ðnÞ
n�iþ1 ¼ kirðnÞn�iþ1,

and finally Ai þ Bi � Ci � Di � Ei ¼ kirðnþ1Þ
n�iþ1. As for the first and last terms, we get kn � 1

4 kn�1 ¼ knþ1 ¼ knþ1rðnþ1Þ
0 , and

k0ðrðnþ1Þ
n xnþ1 � rðnÞn�1x

2
nþ1Þ ¼ k0rðnÞn xnþ1 ¼ k0rðnþ1Þ

nþ1 . In summation, we find that
anþ1 ¼
Xnþ1

i¼0

kirðnþ1Þ
nþ1�iz

i;
which establishes the inductive expression. Because the expression is symmetric, we verify that the order serving workers
has no impact. We thereby have the value of EoptðW; pÞ.

As for the sizes of the allocated chunks, we find that Y ðoptÞ ¼ zþ2xnþ1
2ðfnþxnþ1ÞW; hence with p computers,
ap;p ¼ 1� zþ 2xp

2ðfp�1 þ xpÞ
¼ 2fp�1 � z

2ðfp�1 þ xpÞ
;

as desired. We proceed by induction to determine the value of ai;p for i ¼ p� 1 down to i ¼ 2, and then i ¼ 1. With p ¼ 2, we
check that a2;2 ¼ zþ2x1

2ðzþx1þx2Þ
(remember that f1 ¼ zþ x1) and then a1;2 ¼ zþ2x2

2ðzþx1þx2Þ
. h

As a ‘‘reality check” on the values of fp and ai;p, we see that: when zi � z ¼ 0, we retrieve the values given in Theorem 1;
and, when xi � x, we retrieve the values given in Theorem 2.

Corollary 1. When communication costs are not assessed ðz ¼ 0Þ, the expression for fp reduces to fp ¼ rðpÞp =rðpÞp�1, and the chunk

sent to each Pj is of size
Q

k – j
xk

rðpÞp�1

W.
Proof. When z ¼ 0, we have ap ¼ rðpÞp and bp ¼ rðpÞp�1. Also, the chunk sent to Pp is of size W � Y ðoptÞ ¼ ðap�1=bpÞW . h
Corollary 2. When workers are identical ðxj � xÞ, the expression for fp reduces to fp ¼ 1
2p ð2xþ ðpþ 1ÞzÞ, and all allocated chunks

have size 1
p W.
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Proof. When xj � x, one computes fp via recurrence, starting with f1 ¼ xþ z and using the relation fnþ1 ¼ zþ xnþ1 � zþ2xnþ1
4ðfnþxnþ1Þ

.

Also, the chunk sent to Pp has size W � Y ðoptÞ ¼ 2fp�1�z

2ðfpþxÞ W ¼ 1
p W . h
5.2. Computers that differ only in communication bandwidth

We focus now on workers that are identical except for having different link bandwidths to the master. Such configura-
tions are encountered, for instance, when one borrows resources from clusters that are similar/identical in computing power
ðsi � sÞ and risk of interruption ðzi � zÞ but are geographically dispersed.

In contrast to the case where computers differ only in computing speed, we now find that the order of serving workers
impacts the expected work production.

Lemma 1. In an optimal schedule for DistribðpÞ, the master sends work to workers in non-increasing order of their bandwidths.
Proof. Consider any schedule for DistribðpÞ, and focus on two computers, Pi and Pj, that receive their work consecutively in
this solution: First, Pi receives a chunk of size Y, then Pj receives a chunk of size Z. Denote by X the cumulative amount of
work distributed to computers that receive their work before Pi, and let TX denote the time that was needed to distribute
that work. We can isolate within the expected amount of work completed by this schedule the portion of Pi’s and Pj’s con-
tributions that depends on the relative service orders of Pi and Pj:
Please
tions,
Ei;jðWÞ ¼ Y 1� TX þ
Y

bwi
þ Y

s

� 	
j

� 	
þ Z 1� TX þ

Y
bwi
þ Z

bwj
þ Z

s

� 	
j

� 	
:

Consider now the schedule that differs from the preceding one only in its reversing the order in which Pi and Pj receive their
work; i.e., all workers still receive the same amount of work and, except for Pi and Pj, they still are served in the same order.
Because this modification impacts only the contributions of Pi and Pj to the overall expectation, the new analogue of Ei;jðWÞ
is:
Ej;iðWÞ ¼ Z 1� TX þ
Z

bwj
þ Z

s

� 	
j

� 	
þ Y 1� TX þ

Z
bwj
þ Y

bwi
þ Y

s

� 	
j

� 	
:

The difference in expected work production is then
Ei;jðWÞ � Ej;iðWÞ ¼
ðbw1 � bw2Þ

bw1bw2
YZj: �
Let the workers be indexed in non-increasing order of bandwidth: bw1 P bw2 P � � �P bwn.
Theorem 4. In the current scenario, the optimal schedule for DistribðpÞ distributes work to computers in non-increasing order of
their bandwidth; for each i 2 ½1;n�, it allocates ai;pW units of work to Pi, where:

� a1;p ¼
Qp

j¼1Y ðoptÞ
j ; and, for i 2 ½2; p� : ai;p ¼ ð1� Y ðoptÞ

i Þ
Qp

j¼iþ1Y ðoptÞ
j .

� Y ðoptÞ
1 ¼ 1; and, for i 2 ½2; p� Y ðoptÞ

i ¼ ð2bw eqi�1ðbwiþsÞ�bwi �sÞbi�1
2ðai�1 �bw eqi�1 �bwi �sþbi�1 �ðbw eqi�1ðbwiþsÞ�bwi �sÞÞ

.

� a1 ¼ sþ bw1; and, for i 2 ½2; p� : ai ¼ ai�1 � bw eq2
i�1ðbwi þ sÞ � 1

4 bi�1 � bwi � s.
� b1 ¼ s:bw1; and, for i 2 ½2; p� : bi ¼ bw eqi�1ðai�1 � bw eqi�1 � bwi � sþ bi�1ððbw eqi�1 � bwiÞsþ bw eqi�1 � bwiÞÞ.
� 1

bw eqi
¼
Pi

j¼1
aj;i

bwj
.

The resulting expected work production is EoptðW; pÞ ¼W � ap

bp
W2j.

Proof. Noting that the optimal ordering of serving workers is given by Lemma 1, we begin with a technical remark.
By definition and Lemma 1, bw eqi P bwi P bwiþ1 for all i 2 ½1;n�. Therefore, if ai > 0 and bi > 0, then we have biþ1 > 0. We

must then have aiþ1 > 0, because the expected work production cannot be greater than the amount of work distributed,
which is W. Therefore, because a1 > 0 and b1 > 0, we must have an > 0 and bn > 0.

On to the proof, which proceeds by induction on p. When p ¼ 1, if one sends W units of work to P1, then the expected
work production is
EðW;1Þ ¼W 1� W
bw1
þW

s

� 	
j

� 	
¼W � sþ bw1

s � bw1
W2j;
which satisfies the theorem.
Assume that the result holds for up to n computers, and consider the case of nþ 1 computers. Denote by W-Y the size of

the chunk sent to Pnþ1. By induction, the optimal expected amount of work done by the first n computers is E
opt
n ðY ;nÞ ¼
cite this article in press as: A. Benoit et al., Static worksharing strategies for heterogeneous computers with unrecoverable interrup-
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Y 1� an
bn

Yj
� �

, and this is achieved by giving a chunk of size ai;nY to each Pi, for i 2 ½1;n�. The expected amount of work

completed is then:
Please
tions,
Enþ1ðYÞ ¼ Y � an

bn
Y2jþ ðW � YÞ 1�

Xn

i¼1

ai;nY
bwi
þW � Y

bwnþ1
þW � Y

s

 !
j

 !
:

If we let 1
bw eqn

¼
Pn

i¼1
ai;n
bwi

, then the preceding expectation can be rewritten as:
Enþ1ðYÞ ¼W � an � bw eqn � bwnþ1 � sþ bnðbw eqnðbwnþ1 þ sÞ � bwnþ1 � sÞ
bn � bw eqn � bwnþ1 � s

Y2jþ 2bw eqnðsþ bwnþ1Þ � bwnþ1 � s
bw eqn � bwnþ1 � s

WYj

� bwnþ1 þ s

bwnþ1 � s
W2j:
Therefore, Enþ1ðYÞ is maximized when Y ¼ Y ðoptÞ
nþ1 W , where
Y ðoptÞ
nþ1 ¼

ð2bw eqnðbwnþ1 þ sÞ � bwnþ1 � sÞbn

2ðan � bw eqn � bwnþ1 � sþ bnðbw eqnðbwnþ1 þ sÞ � bwnþ1 � sÞÞ
:

Recalling our earlier inequalities involving bw eqn; bwn, and bwnþ1, the numerator and denominator of the expression for
Y ðoptÞ

nþ1 are both positive (whenever an and bn are both positive). Furthermore, the numerator of Y ðoptÞ
nþ1 is always strictly smaller

than its denominator. Consequently, Y ðoptÞ
nþ1 is always strictly smaller than W. Therefore, the optimal schedule employs the

following work fractions: anþ1;nþ1 ¼ 1� Y ðoptÞ
nþ1 and, for i 2 ½1;n�; ai;nþ1 ¼ ai;nY ðoptÞ

nþ1 . Therefore, we find, as claimed, that
a1;nþ1 ¼
Qnþ1

j¼1
Y ðoptÞ

j ;

and; for i 2 ½2;nþ 1�; ai;nþ1 ¼ ð1� Y ðoptÞ
i Þ

Qnþ1

j¼iþ1
Y ðoptÞ

j :

8>>>><
>>>>:
Finally we compute the optimal expected work production, EðY ðoptÞ
nþ1 Þ. We find that
Eopt
nþ1 ¼W � anþ1

bnþ1
W2j;
where anþ1 ¼ an � bw eq2
nðbwnþ1 þ sÞ � 1

4 � bn � bwnþ1 � s, and bnþ1 ¼ bw eqnðan:bw eqn � bwnþ1 � sþ bnððbw eqn � bwnþ1Þ � sþ bw eqn�
bwnþ1ÞÞ. h
5.3. Computers that differ only in risk of interruption

We now study the DistribðpÞ problem in the case of workers that are identical in computing speed ðsi � sÞ and link band-
width ðbwi � bwÞ, but that are subject to different linear risk functions (personalized risk parameters: ji for Pi). One might
encounter such a situation, for instance, when borrowing computers that are part of the same cluster but that have different
owners.

When workers differ only in computing speed, the order in which they receive their work allocations does not impact the
overall expected work production; when workers differ only in bandwidth, they must be served in the order of non-increas-
ing bandwidth. We see in this section that when workers differ only in interruption risk, there exists an optimal solution in
which workers are served in non-increasing order of interruption risk. In fact, the proof of the following lemma shows that
this ordering can be ignored only for workers that are not employed in the schedule – but Theorem 5 will state that all work-
ers participate in an optimal solution.

Lemma 2. There exists an optimal solution to DistribðpÞ in which the master sends work to the workers in non-increasing order of
their interruption risk.
Proof. Consider any schedule for DistribðpÞ, and focus on two computers, Pi and Pj, that are served consecutively – first Pi,
then Pj. Say that Pi receives Y units of work and that Pi and Pj jointly receive W units. Let V denote the cumulative share
of work distributed to computers that receive their work before Pi. We can isolate within the expected amount of work
completed by this schedule the portion of Pi’s and Pj’s contributions that depends on the relative service orders of Pi and
Pj:
Ei;jðWÞ ¼ Y 1� V
bw
þ Y

bw
þ Y

s

� 	
ji

� 	
þ ðW � YÞ 1� V

bw
þ Y

bw
þW � Y

bw
þW � Y

s

� 	
jj

� 	

¼ 1� V
bw

jj

� 	
W � bwðji þ jjÞ þ s � ji

s � bw
Y2 þ sþ 2bw

s � bw
WYjj þ

jj � ji

bw
VY � sþ bw

sþ bw
W2jj:
cite this article in press as: A. Benoit et al., Static worksharing strategies for heterogeneous computers with unrecoverable interrup-
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Consider now the same schedule modified only by exchanging the order in which Pi and Pj are served. Note that this reor-
dering impacts only the contributions of Pi and Pj to the overall expectation. The analogue of Ei;jðWÞ for this modified sche-
dule is:
Please
tions,
Ej;iðWÞ ¼ Y 1� V
bw
þ Y

bw
þ Y

s

� 	
jj

� 	
þ ðW � YÞ 1� V

bw
þ Y

bw
þW � Y

bw
þW � Y

s

� 	
ji

� 	

¼ 1� V
bw

ji

� 	
W � bwðji þ jjÞ þ s � jj

s � bw
Y2 þ sþ 2bw

s � bw
WYji þ

ji � jj

bw
VY � sþ bw

sþ bw
W2ji:
Fixing all aspects of the two schedules other than the order of serving the W units of work to Pi and Pj, we determine the
values of Y that maximize each expectation, Ei;jðWÞ and Ej;iðWÞ. For Ei;jðWÞ, this value of Y is:
Y ðoptÞ
i;j ¼ s � Vðjj � jiÞ þ ðsþ 2bwÞWjj

2ðbwðji þ jjÞ þ s � jiÞ
;

for Ej;iðWÞ, this value of Y is:
Y ðoptÞ
j;i ¼ s � Vðji � jjÞ þ ðsþ 2bwÞWji

2ðbwðji þ jjÞ þ s � jjÞ
:

Obviously, under each service order, the optimal value of Y is feasible only if it lies in the range ½0;W �; we insist, therefore,
that 0 6 Y ðoptÞ

i;j ;Y ðoptÞ
j;i 6W , which leaves us with three cases to consider.

Case 1: ½Y ðoptÞ
i;j ¼ 0� or ½Y ðoptÞ

j;i ¼ 0�.

If YðoptÞ
i;j ¼ 0, then ji P jj and s � Vðji � jjÞP ðsþ 2bwÞWjj. In this case,
Y ðoptÞ
j;i P

ðsþ 2bwÞWðjj þ jiÞ
2ðbwðji þ jjÞ þ s � jjÞ

¼ 2bwðjj þ jiÞ þ sðjj þ jiÞ
2ðbwðji þ jjÞ þ s � jjÞ

W P W:
Therefore, if Pi is allocated no work under the Pi-then-Pj schedule, then the same is true under the Pj-then-Pi schedule. Sym-
metrically, if Pj is allocated no work under the Pj-then-Pi schedule, then the same is true under the Pi-then-Pj schedule. The
service order of Pi and Pj thus does not impact the expected work production in this case – thereby satisfying the lemma.

Case 2: ½Y ðoptÞ
i;j ¼W� or ½Y ðoptÞ

j;i ¼W�).

If ½Y ðoptÞ
i;j ¼W�, then jj P ji, and Pj receives no work under the Pi-then-Pj schedule. The expected work production due to

Pi and Pj is then
Ei;jðWÞ ¼W 1� V
bw
þ W

bw
þW

s

� 	
ji

� 	
:

Comparing the expected work production of the Pi-then-Pj schedule, with Y ¼W , to that of the Pj-then-Pi schedule, with
Y ¼ Y ðoptÞ

j;i , we find that
Ei;jðWÞ � Ej;iðY ðoptÞ
j;i Þ ¼ �

ððsþ 2bwÞWji þ ððji � jjÞ � V � sÞÞ2

4s � bwðbwðji þ jjÞ þ s � jjÞ
:

This difference is always non-positive, so that, in expectation, the Pj-then-Pi schedule always completes as much work as the
Pi-then-Pj schedule. This means that the Pj-then-Pi service order is the preferable one, in accordance with the lemma (be-
cause jj P ji).

Case 3: ½0 < Y ðoptÞ
i;j ;Y ðoptÞ

j;i < W�.

To show that one service order is always better than the other, we compare E
opt
i;j ¼ Ei;jðYðoptÞ

i;j Þ and E
opt
j;i ¼ Ej;iðYðoptÞ

j;i Þ. One
shows easily that
Eopt
i;j ¼ Ei;jðY ðoptÞ

i;j Þ ¼W � ai;jW
2 � bi;jWV þ ci;jV

2; where ai;j ¼
ðsþ bwÞ2ji � 1

4 s2jj

s � bwððsþ bwÞji þ bw � jjÞ
jj;

bi;j ¼
2ðð3ji � jjÞsþ 4bw � jiÞ

4bwðjiðsþ bwÞ þ ðbw � jjÞÞ
jj; ci;j ¼

sðji � jjÞ2

4bwðs � ji þ bwðji þ jjÞÞ
:

The corresponding expression for Eopt
j;i is symmetrical. We compare Eopt

i;j and Eopt
j;i by studying their difference:
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Please
tions,
Eopt
i;j � Eopt

j;i ¼ ðji � jjÞ
jijjbw2 � 1

4 ðj2
j � 3jijj þ j2

i Þs2 � 1
4 s � bwðj2

i � 6ji � jj þ j2
j Þ

bwðbwðji þ jjÞ þ s � jiÞðbwðji þ jjÞ þ s � jjÞ
W2

� ðji � jjÞ3sðsþ bwÞ
2bwðbwðji þ jjÞ þ s � jiÞðbwðji þ jjÞ þ s � jjÞ

VW � ðji � jjÞ3s2

4bwðbwðji þ jjÞ þ s � jiÞðbwðji þ jjÞ þ s � jjÞ
V2:
Assuming, with no loss of generality, that jj > ji, we want to determine the sign of E ¼ ðEopt
i;j � Eopt

j;i Þ=ðjj � jiÞ. We let
jj ¼ ð1þ hÞji and note that E’s numerator becomes a quadratic in h:
�1
4
ðWðW þ 2VÞbwþ ðW þ VÞ2sÞs � h2 þ ðsþ 2bwÞ2W2 � hþ ðsþ 2bwÞ2W2
� �

j2
i

Letting a ¼ �ðWðW þ 2VÞbwþ ðW þ VÞ2sÞs; b ¼ ðsþ 2bwÞ2W2 and c ¼ ðsþ 2bwÞ2W2, the two solutions for h are:
h� ¼
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
2a

and hþ ¼
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
2a

:

The first solution, h�, is negative (because a < 0 and c > 0); the second solution, hþ, is positive; and the polynomial is positive
when ðh� < h < hþÞ. We want to show that, under the hypotheses defining this case, h can never be as large as hþ. This means
that E’s numerator, hence, E itself, is always positive.

Because Y ðoptÞ
i;j 6W , we know that
s � Vðjj � jiÞ þ s �W � jj 6 2ðbwþ sÞWji:
Replacing jj by ð1þ hÞji, this leads to:
2ðbwþ sÞW � hðV þWÞs P 0:
We therefore study the sign of this expression when h ¼ hþ. From solving the quadratic, we know that this latter expression
has the same sign as
ð2bwþ sÞð�2aÞW � ðbþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

q
ÞðV þWÞs;
which is equal to the positive term sð2bwþ sÞW times the expression:
ðs �W2 þ ð2bwþ 3sÞWV þ 2s � V2Þ � ðW þ VÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð2ðsþ bwÞWÞ þ ð2s � VÞÞ2 þ s2W2

q
:

It follows that both expressions have the same sign. Because an expression r � s
ffiffi
t
p

with r; s; t all positive has the same sign as
r2 � s2t, the preceding expression has the same sign as
�4 ðsþ bwÞ ðsþ bwÞW4 þ ð2bwþ 3sÞVW3 þ 3s � V2W2
� �

þ s2WV3
� �

;

which is obviously negative. Therefore, we cannot have Y ðoptÞ
i;j 6W when h ¼ hþ, so that, in this case, we always have h < hþ. It

follows that Eopt
i;j � Eopt

j;i has the same sign as ji � jj, and is nonzero whenever ji – jj. We conclude finally that Pj must be
served before Pi whenever jj > ji. h

Let the workers be indexed by non-increasing risk of interruption: j1 P j2 P � � �P jn,

Theorem 5. In the current scenario, the optimal schedule for DistribðpÞ distributes work to computers in non-increasing order of
their interruption risks; it allocates ai;pW units of work to each Pi, for i 2 ½1; p�, where

� a1;p ¼
Qp

j¼1Y ðoptÞ
j ; for i 2 ½2; p� : ai;p ¼ ð1� Y ðoptÞ

i Þ
Qp

j¼iþ1Y ðoptÞ
j ,

� Y ðoptÞ
1 ¼ 1; for i 2 ½2; p� : Y ðoptÞ

i ¼ ð2bwþsÞbi�1
2bwðai�1 �s�ji�1þbi�1 �jiÞ

ji,

� a1 ¼ sþ bw; for i 2 ½2; p� : ai ¼ ai�1 � bwðsþ bwÞji�1 � 1
4 bi�1 � s � ji,

� b1 ¼ s � bw; for i 2 ½2; p� : bi ¼ ðai�1 � s � ji�1 þ bi�1 � jiÞbw2.

The resulting expected work production is EoptðW; pÞ ¼W � ap

bp
W2jp.

Proof. The order of serving workers is given in Lemma 2. We proceed by induction on p. If W units of work are allocated to
P1, then the expected work production is:
EðW;1Þ ¼W 1� W
bw
þW

s

� 	
j1

� 	
¼W � sþ bw

s � bw
W2j1:
Thus the theorem holds for the base case p ¼ 1.
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Assume, for induction, that the result holds for up to n workers, and consider the case of nþ 1 workers. Let us study this
case in the presence of three hypotheses that do not appear in the theorem: (1) an > 0; (2) bn > 0; (3) 2bw � an > bn. These
properties obviously hold when p ¼ 1; we shall verify that they hold for arbitrary p.

Let us allocate W-Y units of work to worker Pnþ1. By induction, the optimal expected work production by the first n
workers is:
Please
tions,
Eopt
n ðY ;nÞ ¼ Y 1� an

bn
Yjn

� 	
;

and this is achieved by allocating ai;nY units of work to worker Pi, for i 2 ½1;n�. The expected work production with our addi-
tional worker, Pnþ1, is:
Enþ1ðYÞ ¼ Y � an

bn
Y2jn þ ðW � YÞ 1� Y

bw
þW � Y

bw
þW � Y

s

� 	
jnþ1

� 	

¼W � an � s � jn þ bn � jnþ1

bn � s
Y 2 þ 2bwþ s

bw � s WYjnþ1 �
bwþ s

bw � s W2jnþ1:
This quantity is maximized when
Y ¼ Y ðoptÞ
nþ1 ¼

ð2bwþ sÞbn

2bwðan � s � jn þ bn � jnþ1Þ
jnþ1:
Hypotheses (1) and (2) assert that both an and bn are positive, which implies that Y ðoptÞ
nþ1 also is positive; hypothesis (3) asserts

that bn < 2bw � an. Therefore, because jnþ1 6 jn, we have:
if ð2bwþ sÞbn < 2bwðan � sþ bnÞ;
then ð2bwþ sÞbnjnþ1 < 2bwðan � sþ bnÞjnþ1 6 2bwðan � s � jn þ bnjnþ1Þ:
Because an and bn are positive, the last inequality implies that Y ðoptÞ
nþ1 < 1; consequently, we see that 0 < Y ðoptÞ

nþ1 < 1. Therefore,
the optimal schedule allocates the following work fractions:
anþ1;nþ1 ¼ 1� Y ðoptÞ
nþ1 ; for i 2 ½1;n�; ai;nþ1 ¼ ai;nY ðoptÞ

nþ1 :
We thus find, as claimed:
a1;nþ1 ¼
Qnþ1

j¼1
Y ðoptÞ

j ;

and; for i 2 ½2;nþ 1�; ai;nþ1 ¼ 1� Y ðoptÞ
i

� � Qnþ1

j¼iþ1
Y ðoptÞ

j :

8>>>><
>>>>:
Finally we compute the optimal expected work production, EðY ðoptÞ
nþ1 Þ. We find that
Eopt
nþ1 ¼W � anþ1

bnþ1
W2jnþ1;
where
anþ1 ¼ an � bwðsþ bwÞjn �
1
4

bn � s � jnþ1;

bnþ1 ¼ ðan � s � jn þ bn � jnþ1Þbw2:
We can now finally verify our three ‘‘additional” hypotheses for nþ 1 workers. By hypotheses (1) and (2) for n workers, we
have bnþ1 > 0; by hypothesis (3) for n workers, we have anþ1 > 0, because jnþ1 6 jn; finally, we note that
2bw � anþ1 � bnþ1 ¼ an � bw2ðsþ 2bwÞjn � bn � bw
1
2

sþ bw

� 	
� jnþ1 ¼ ðsþ 2bwÞ � bw an � bw � jn �

1
2

bn � jnþ1

� 	
> 0;
because jnþ1 6 jn, and because of hypothesis (3) for n workers. The three hypothesis are verified for nþ 1 workers. h
5.4. The general case: total heterogeneity

We now consider the general case, where computers have different computation speeds, different communication band-
widths, and different failure rates. To show the intrinsic difficulty of the general case, we focus on the system with only two
computers, P1 and P2. If we decide for the ordering P1 then P2, sending first a chunk of size Y to P1 and then one of size W – Y
to P2, we derive that the expectation of the amount of work done is
cite this article in press as: A. Benoit et al., Static worksharing strategies for heterogeneous computers with unrecoverable interrup-
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Please
tions,
EðYÞ ¼ Y 1� Y
bw1
þ Y

s1

� 	
j1

� 	
þ ðW � YÞ 1� Y

bw1
þW � Y

bw2
þW � Y

s2

� 	
j2

� 	
:

We rewrite EðYÞ as follows:
EðYÞ ¼W � aY2 þ bWY � cW2 where
a ¼ ðs1 þ bw1Þs2 � bw2 � j1 þ ðs2 þ bw2Þ � s1 � bw1 � j2 � bw2 � s1 � s2 � j2

bw1 � bw2 � s1 � s2
;

b ¼ 2bw1ðs2 þ bw2Þ � bw2 � s2

bw1 � bw2 � s2
j2 and c ¼ s2 þ bw2

s2 � bw2
j2:
The maximum of EðYÞ depends on whether a and/or b are null:

Case a ¼ b ¼ 0. In this case we have:
bw1 ¼
bw2 � s2

2ðs2 þ bw2Þ
and j1 ¼

s1ðs2 þ bw2Þ
s2 � bw2 þ 2s1ðs2 þ bw2Þ

j2;
and the expectation does not depend on the way the load is distributed among P1 and P2. Indeed, we then have EðYÞ ¼
W � s2þbw2

s2 �bw2
W2j2, which is the expectation when all the work is given to P2.

Case a ¼ 0 and b – 0. In this case we have:
j1 ¼
s1ðs2 � bw2 � bw1ðs2 þ bw2ÞÞ

s2 � bw2ðs1 þ bw1Þ
j2:
This can be achieved whatever the parameters of P2 as soon as bw1 is small enough (for the numerator to be positive). We
then have two sub-cases to consider, depending on the sign of b:
Case b > 0. This is equivalent to: bw1 >
bw2 �s2

2ðs2þbw2Þ
. Then the expectation is increasing with Y, the optimal solution is

Y ¼W , and is achieved by giving all the work to P1.
Case b < 0. This is equivalent to: bw1 <

bw2 �s2
2ðs2þbw2Þ

: Then the expectation is decreasing with Y, the optimal solution is

Y ¼ 0, and is achieved by giving all the work to P2.
Case a > 0 and b 6 0. The expectation is then a decreasing function of Y, the optimal solution is Y ¼ 0, and is achieved by
giving all the work to P2.
Case a > 0 and b P 0. The expectation is then an increasing function of Y and then a decreasing one, reaching its max-
imum over the real line for Y ¼ b

2a W . Once again, we have two sub-cases to consider:
Case b P 2a. This case is equivalent to s1 � j2 P 2ðbw1 þ s1Þj1. Then, the expectation reaches its maximum for Y ¼W ,
that is, by giving all the work to P1. (For instance, the three conditions defining this case are met when bw1 ¼ 3bw2 �s2

4ðs2þbw2Þ
and j2 ¼ 2 ðbw1þs1Þj1

s1
.)

Case b < 2a. In that case, the expectation achieves its maximum for Y ¼ b
2a and both computers receive a non-empty

share of the work. The expectation is then:

EoptðW;2Þ ¼W � c� b2

4a

 !
W2:

Case a < 0 and b P 0. The expectation is then an increasing function of Y, the optimal solution is Y ¼W , and is achieved
by giving all the work to P1.
Case a < 0 and b 6 0. The expectation is then a decreasing function of Y and then an increasing one, reaching its mini-
mum over the real line for Y ¼ b

2a W . Once again, we have two sub-cases to consider:
Case b P 2a. Then the expectation is decreasing on the interval of valid values for Y. The optimal solution is Y ¼ 0, and
is achieved by giving all the work to P2.
Case b < 2a. Then the global minimum of the expectation is reached in the interval and the maximum is reached for
one of the two bounds Y ¼ 0 and Y ¼W . Then the optimal solution is achieved by giving all the work to P1 if
s1þbw1
s1 �bw1

j1 P s2þbw2
s2 �bw2

j2, and by giving it to P2 otherwise.

In summary, finding the optimal work distribution among two computers whose ordering is given, is quite an involved
case study. The next question is: what would be the optimal computer ordering? To attempt to answer this question, we
consider that, under both orderings, we are in the non-trivial case that assigns a non-empty share of work to both computers.
(To convince one-self that this case indeed exists, remember that we encountered it in Sections 5.1–5.3.) We re-use the
above notations while adding to them the subscripts 12 and 21 to denote the computer ordering. Then, under the hypothesis
0 6 b12 < 2a12 and 0 6 b21 < 2a21, we can form the difference between the optimum expectations of both cases:
Eopt
12 ðWÞ � Eopt

21 ðWÞ ¼ s1 � s2ðbw1 � j1 � bw2 � j2Þ
core

4bw1 � bw2 � denominator
W2;
where
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Please
tions,
core ¼ �ðbw2j2 þ bw1j1Þðs1s2ðbw1j2 þ bw2j1Þ þ bw1bw2ðj1s2 þ j2s1ÞÞ þ 5bw1bw2j1j2s1s2 þ 4bw1bw2j1j2ðbw1s2

þ bw2s1 þ bw1bw2Þ;
and where denominator is the product of the numerators of a12, and a21, both being positive by hypothesis. The difference
suggests the importance of the product bwi:ji for the computer ordering. This is obviously consistent with the results of Sec-
tion 5.2 ðj1 ¼ j2Þ and Section 5.3 ðbw1 ¼ bw2Þ. We thus propose the following conjecture:

Conjecture 1. In an optimal solution to DistribðpÞ, the master sends work to the computers in non-increasing order of their
products bwi:ji.

On one side, a numerical search for a counter-example for the two computer case was fruitless. On the other side, we
were unable to prove this conjecture even in the simple two computer case. This can be partially explained by the complex-
ity of the proof of Lemma 2, lemma that this conjecture subsumes.

6. Related work

The divisible-load model is a reasonable abstraction of an application made up of a large number of identical, fine-grained
parallel computations. Such applications are found in many scientific areas, and we refer the reader to the survey paper [1]
and the journal special issue [12] for detailed examples. Also, the divisible-load approach has been applied successfully to a
variety of computing platforms, such as bus-shaped, star-shaped, and even tree-shaped platforms. Despite the extensive lit-
erature on the divisible-load model, to the best of our knowledge, the current study is the first to consider the divisible-load
problem on master–worker platforms whose computers are subject to unrecoverable failures/interruptions.

Our earlier work [4], and its predecessors [7–9], also consider computers with unrecoverable failures/interruptions, but
with major differences in the models. In this paper, we allow for heterogeneous computers, and we take communication costs
into account, while [4] focuses only on identical computers without communication costs. To ‘‘compensate” for the addi-
tional complexity in the model we study here, we have restricted ourselves in this paper to scenarios where the entire work-
load is distributed to the worker computers, a strategy that is often suboptimal, even when scheduling a single worker
computer [4]. Furthermore, we have not considered here the possible benefits of replicating the execution of some work-
units on several worker computers, a key tool for enhancing expected work production in [4]. Obviously, it would be highly
desirable to combine the sophisticated platforms of the current study with the sophisticated algorithmics of [4].

We hope to do so in future work, in order to deal with the most general master–worker problem instances – instances
that allow heterogeneous computing resources and communication costs, that do not insist that all work be distributed,
and that give the scheduler the option of replicating work on multiple worker computers. However, the complexity of the
proofs derived in Sections 5.1–5.3, and the fact that we were unable to tackle the general case (Section 5.4), all suggest that
we should content ourselves with efficient heuristics rather than searching for optimal solutions.

7. Conclusion

In this paper we have revisited the well-known master–worker paradigm for divisible-load applications, adding the
hypothesis that the computers are subject to unrecoverable failures/interruptions. In this novel context, the natural objective
of a schedule is to maximize the expected amount of work that gets completed. We have succeeded in providing either
closed-form formulas or linear recurrences to characterize optimal solutions for all platforms subject to a single source of
heterogeneity: either heterogeneous communications, heterogeneous computing speeds, or heterogeneous failure rates. This
provides a nice counterpart to existing results in the classical context of makespan minimization.

In particular, we establish the optimal processor orderings for any platform subject to a single source of heterogeneity:

� any processor ordering for platforms where the only heterogeneity comes from computing speeds,
� non-increasing bandwidths for platforms where the only heterogeneity comes from communication bandwidths,
� non-increasing failure rates for platforms where the only heterogeneity comes from failure rates.

These are very interesting (and somewhat unexpected for computing speeds) results, as they show that the scheduling
problem has polynomial complexity: there is no need to explore the combinatorial space of all possible orderings. We con-
jecture that in the general case, where all three sources of heterogeneity are simultaneously present, processors should be
order by non-increasing product of the bandwidths and failure rates.

As discussed in Section 6, we have adopted certain simplifications to the general problem we ultimately aspire to. We
have insisted on distributing the entire workload to the worker computers, without replication of work. Our not allowing
work replication is particularly unfortunate when contemplating environments that have access to abundant computing re-
sources. This, then, is the first projected avenue for extending the current work. Several other extensions of this work would
be desirable also, for instance: (i) including a start-up overhead-cost each time a computer executes a piece of work (e.g., to
account for the cost of initiating a communication or a checkpointing); (ii) studying computers that obey not only linear, but
also different risk functions (e.g., when several user categories have different probabilities of returning to reclaim their
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computers); (iii) studying risk functions that are no longer linear (e.g., standard exponential or, importantly, heavy-tailed
distributions); and (iv) analyzing multi-round strategies, wherein each worker computer receives its share of work in several
rounds. Altogether, there are many challenging algorithmic problems to address!.
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