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Abstract

In this paper, we assess the impact of heterogeneity on scheduling independent tasks on master-slave platforms. We
assume a realistic one-port model where the master can communicate with a single slave at any time. We target both
on-line and off-line scheduling problems, and we focus on simpler instances where all tasks have the same size. While such
on-line problems can be solved in polynomial time on homogeneous platforms, we show that there does not exist any opti-
mal deterministic algorithm for heterogeneous platforms. Whether the source of heterogeneity comes from computation
speeds, or from communication bandwidths, or from both, we establish lower bounds on the competitive ratio of any
deterministic algorithm. We provide such bounds for the most important objective functions: the minimization of the
makespan (or total execution time), the minimization of the maximum response time (difference between completion time
and release time), and the minimization of the sum of all response times. Altogether, we obtain nine theorems which nicely
assess the impact of heterogeneity on on-line scheduling. For off-line scheduling, we prove several result for problems with
release dates, either optimality or NP-hardness.

These theoretical contributions are complemented on the practical side by the implementation of several heuristics on a
small but fully heterogeneous MPI platform. Our results show the superiority of those heuristics which fully take into
account the relative capacity of the communication links.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The main objective of this paper is to assess the impact of heterogeneity on scheduling independent tasks on
master-slave platforms. We make some important assumptions that render our following approach very sig-
nificant in practice. First we assume that the target platform is operated under the one-port model, where the
master can communicate with at most one single slave at any time. This model is much more realistic than the
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standard model from the literature, where the number of simultaneous messages involving a processor is not
bounded. Second we mainly consider on-line scheduling problems, i.e., problems where release times and sizes
of incoming tasks are not known in advance. Such dynamic scheduling problems are more difficult to deal with
than their static counterparts, the off-line problems (for which all task characteristics are available before the
execution begins) but they encompass a broader spectrum of applications. But we also study some off-line
scheduling problems to assess their difficulty and compare it with their dynamic counterparts. We endorse
the somewhat restrictive hypothesis that all tasks are identical, i.e., that all tasks are equally demanding in
terms of communications (volume of data sent by the master to the slave which the task is assigned to)
and of computations (number of flops required for the execution). We point out that many important sched-
uling problems involve large collections, or bags, of identical tasks [9,1]. Without the hypothesis of having
same-size tasks, the impact of heterogeneity cannot be studied. Indeed, scheduling different-size tasks on a
homogeneous platform reduced to a master and two identical slaves, without paying any cost for the commu-
nications from the master, and without any release time, is already an NP-hard problem [13]. In other words,
the simplest (off-line) version is NP-hard on the simplest (two-slave) platform.

On the contrary, scheduling same-size tasks is easy on fully homogeneous platforms. Consider a master-
slave platform with m slaves, all with the same communication and computation capacity; consider a set of
identical tasks, whose release times are not known in advance. We demonstrate in [26,25] that an optimal
approach to solve this on-line scheduling problem is simply to schedule the tasks in the order of their release
times, as soon as possible, and to send them to processors in a Round-Robin fashion. This simple strategy is
optimal for many classical objective functions, including the minimization of the makespan (or total execution
time), the minimization of the maximum response time (difference between completion time and release time),
and the minimization of the sum of the response times. Off-line and on-line scheduling of same-size tasks on
heterogeneous platforms is much more difficult. In this paper, we study the impact of heterogeneity from two
sources. First we consider a communication-homogeneous platform, i.e., where communication links are iden-
tical: the heterogeneity comes solely from the computations (we assume that the slaves have different speeds).
On such platforms, we show on one hand that there does not exist any optimal deterministic algorithm for on-
line scheduling. This holds true for the previous three objective functions (makespan, maximum response time,
sum of response times). We even establish lower bounds on the competitive ratio of any deterministic algo-
rithm. For example, we prove that there exist problem instances where the makespan of any deterministic
algorithm is at least 1.25 times larger than that of the optimal schedule. This means that the competitive ratio
of any deterministic algorithm is at least 1.25. We prove similar results for the other objective functions. On
the other hand, we design an optimal makespan minimization algorithm for the off-line problem with release
dates. This algorithm generalizes, and provides a new proof of, a result of Simons [32]. The second source of
heterogeneity is studied with computation-homogeneous platforms, i.e., where computation speeds are iden-
tical: the heterogeneity comes solely from the different-speed communication links. In this context, we prove
similar results for on-line scheduling, but with different competitive ratios. But for the off-line problem with
release dates, we failed to derive an optimal makespan minimization algorithm, but we provide an efficient
heuristic. Not surprisingly, when both sources of heterogeneity add up, the complexity goes beyond the worst
scenario with a single source. In other words, for on-line scheduling on fully heterogeneous platforms, we
derive competitive ratios that are higher than the maximum of the ratios with a single source of heterogeneity.
And we prove that the off-line problem is NP-hard in the strong sense. The main contributions of this paper
are mostly theoretical. However, on the practical side, we have implemented several heuristics on a small but
fully heterogeneous MPI platform. Our results show the superiority of those heuristics which fully take into
account the relative capacity of the communication links.

The rest of the paper is organized as follows. Section 2 is devoted to an overview of related work. In Section
3, we state some notations and the scheduling problems under consideration. Section 4 is devoted to the the-
oretical results for on-line problems. We start with a global overview of the approach and a summary of all
results. As three platform types and three objective functions lead to nine theorems, we state all our lower
bounds, but we only develop the proof of just one of the theorems. The interested reader will find all the
remaining proofs in our research report [24]. Section 5 is devoted to off-line problems and heuristics built
to solve those problems. We provide an experimental comparison of several scheduling heuristics in Section
6. Finally, we state some concluding remarks in Section 7.
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2. Related work

We classify several related papers along the following three main lines:

Models for heterogeneous platforms – In the literature, one-port models come in two variants. In the uni-
directional variant, a processor cannot be involved in more than one communication at a given time-step,
either a send or a receive. In the bidirectional model, a processor can send and receive in parallel, but at
most from a given neighbor in each direction. In both variants, if P u sends a message to P v, both P u and
P v are blocked throughout the communication.
The bidirectional one-port model is used by Bhat et al. [8] for fixed-size messages. They advocate its use because
‘‘current hardware and software do not easily enable multiple messages to be transmitted simultaneously”.
Even if non-blocking multi-threaded communication libraries allow for initiating multiple send and receive
operations, they claim that all these operations ‘‘are eventually serialized by the single hardware port to
the network”. Experimental evidence of this fact has recently been reported by Saif and Parashar [29], who
report that asynchronous MPI sends get serialized as soon as message sizes exceed a few megabytes. Their
results hold for two popular MPI implementations, MPICH on Linux clusters and IBM MPI on the SP2.
The one-port model fully accounts for the heterogeneity of the platform, as each link has a different bandwidth.
It generalizes a simpler model studied by Banikazemi et al. [2], Liu [20], and Khuller and Kim [16]. In this sim-
pler model, the communication time only depends on the sender, not on the receiver: in other words, the com-
munication speed from a processor to all its neighbors is the same.
Finally, we note that some papers [3,4] depart from the one-port model as they allow a sending processor to
initiate another communication while a previous one is still on-going on the network. However, such models
insist that there is an overhead time to pay before being engaged in another operation, so there are not allowing
for fully simultaneous communications.
Task graph scheduling – Task graph scheduling is usually studied using the so-called macro-dataflow model
[22,31,10,12], whose major flaw is that communication resources are not limited. In this model, a processor
can send (or receive) any number of messages in parallel, hence an unlimited number of communication
ports is assumed (this explains the name macro-dataflow for the model). Also, the number of messages that
can simultaneously circulate between processors is not bounded, hence an unlimited number of communi-
cations can simultaneously occur on a given link. In other words, the communication network is assumed
to be contention-free, which of course is not realistic as soon as the processor number exceeds a few units.
More recent papers [34,23,28,5,6,33] take communication resources into account.
Hollermann et al. [14] and Hsu et al. [15] introduce the following model for task graph scheduling: each pro-
cessor can either send or receive a message at a given time-step (bidirectional communication is not possible);
also, there is a fixed latency between the initiation of the communication by the sender and the beginning of
the reception by the receiver. Still, the model is rather close to the one-port model discussed in this paper.
On-line scheduling – A good survey of on-line scheduling can be found in [30,27]. Two papers focus on the
problem of on-line scheduling for master-slaves platforms. In [19], Leung and Zhao proposed several com-
petitive algorithms minimizing the total completion time on a master-slave platform, with or without pre-
and post-processing. In [18], the same authors studied the complexity of minimizing the makespan or the
total response time, and proposed some heuristics. However, none of these works take into consideration
communication costs. To the best of our knowledge, the only previously known results for on-line problems
with communication costs are those reported in our former work [26]; in the current paper, we have dra-
matically improved several of the competitive ratios given in [26] and we have added new ones.

3. Notations and problem formulation

Assume that the platform is composed of a master and m slaves P 1; P 2; . . . ; P m. Let cj be the time needed by
the master to send a task to P j, and let wj be the time needed by P j to execute a task. As for the tasks, we
simply number them 1; 2; . . . ; i; . . . ; n. We let ri be the release time of task i, i.e., the time at which task i

becomes available on the master. In on-line scheduling problems, n and the ri’s are not known in advance.
Finally, we let Ci denote the end of the execution of task i under the target schedule.
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To be consistent with the literature [17], we describe the scheduling problems using the notation ajbjc,
where each notation represents:

a: the machine environment – As in the standard, we use P for platforms with identical processors, and Q for
platforms with different-speed processors. We add MS to this field to indicate that we work with master-
slave platforms.
b: the job characteristics – We write ri when jobs have nonzero release dates, and we add on-line for on-line
problems, i.e., when the release dates are not known in advance. We write wj ¼ w for computation-homo-
geneous platforms (a job running time is independent on the machine executing it), and cj ¼ c for commu-
nication-homogeneous platforms.
c: the optimality criterion – We deal with three optimality criteria:

� the makespan (total execution time) Cmax ¼ max Ci;
� the maximum response time (or max-flow) max F i ¼ maxðCi � riÞ: indeed, Ci � ri is the time spent by

task i in the system;
� the sum of response times

P
F i ¼

P
ðCi � riÞ or sum-flow, which is equivalent, for complexity consid-

erations, to the sum of completion times
P

Ci.
In this paper, we will consider the on-line and off-line versions of problem Q;MSjri; wj; cjjc, where c will be
either Cmax, max F i, or

P
F i.

4. Theoretical results

To assess the performance of an on-line algorithm, one often considers the worst-case relative error
between the quality of the computed solution for an instance and the quality of the corresponding optimal
solution. An upper bound for the worst-case relative error is called a competitive ratio. Formally, let
f ðA; IÞ denote the objective value, according to the studied optimality criterion, of the schedule produced
by algorithm A on instance I. Then, algorithm A is q-competitive if f ðA;IÞ 6 qf ðOPT;IÞ for any instance
I, where OPT denote the optimal off-line scheduling algorithm for our objective function.

To prove, for a given objective function, a lower bound on the competitive ratio of any on-line algorithm,
we assume a scheduling algorithm and we run it against a scenario elaborated by an adversary. The adversary
analyzes the decisions taken by the algorithm, and reacts against them. In the end, we compute the relative
performance ratio. The minimum of the relative performance ratios over all execution scenarios is the desired
bound on the competitive ratio of the algorithm.

We first prove the bound for the competitive ratio of any algorithm when minimizing makespan on fully
heterogeneous platforms.

Theorem 1. For the problem Q;MSjon� line; ri;wj; cjjCmax, on at least three slaves, there is no scheduling

algorithm whose competitive ratio q is strictly lower than 1þ
ffiffi
3
p

2 .

Proof. Assume that there exists a deterministic on-line algorithm A whose competitive ratio is q ¼ 1þ
ffiffi
3
p

2
� �,

with � > 0. We will build a platform and an adversary to derive a contradiction. The platform is made of three
processors P 1, P 2 and P 3 such that w1 ¼ �, w2 ¼ w3 ¼ 1þ

ffiffiffi
3
p

, c1 ¼ 1þ
ffiffiffi
3
p

and c2 ¼ c3 ¼ 1.
Initially, the adversary sends a single task i at time 0. A executes the task i, either on P 1 with a makespan at

least equal to c1 þ w1 ¼ 1þ
ffiffiffi
3
p
þ �, or on P 2 or P 3, with a makespan at least equal to c2 þ w2 ¼ c3 þ w3 ¼

2þ
ffiffiffi
3
p

. At time-step 1, we check whether A made a decision concerning the scheduling of i, and which one:

(1) If A scheduled the task i on P 2 or P 3, the adversary does not send any other task. The best possible
makespan is then c2 þ w2 ¼ c3 þ w3 ¼ 2þ

ffiffiffi
3
p

. The optimal scheduling being of makespan
c1 þ w1 ¼ 1þ

ffiffiffi
3
p
þ �, we have a competitive ratio of:
q P
2þ

ffiffiffi
3
p

1þ
ffiffiffi
3
p
þ �

>
1þ

ffiffiffi
3
p

2
� �;
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because � > 0 by assumption. This contradicts the hypothesis on q. Thus the algorithm A cannot sche-
dule task i on P 2 or P 3.
(2) If A did not yet begun to send the task i, the adversary does not send any other task. The best makespan
that can be achieved is then equal to 1þ c1 þ w1 ¼ 2þ

ffiffiffi
3
p
þ �, which is even worse than the previous

case. Consequently, algorithm A does not have any other choice than to schedule task i on P 1.

Then, at time-step s ¼ 1, the adversary sends two tasks, j and k. We consider all the scheduling possibilities:

� j and k are scheduled on P 1. Then, the best achievable makespan is
maxfc1 þ 3w1;maxfc1; sg þ c1 þ w1 þmaxfc1;w1gg ¼ 3ð1þ
ffiffiffi
3
p
Þ þ �;

as we can assume that � < 1þ
ffiffi
3
p

2
. In other words, the makespan is equal to either:

� the time needed to send the first task to P 1 plus the execution time of the three tasks;
� the earliest date at which the second task can be sent, plus the time needed to send the last two tasks and
execute them; in turn, this time may be equal to twice the communication time plus once the execution
time or, contrarily, once the communication time plus twice the execution time.

(Note that all other expressions in this proof are derived along the same line of reasoning.)
� The first of the two jobs, j and k, to be scheduled is scheduled on P 2 (or P 3) and the other one on P 1. Then,

the best achievable makespan is
maxfc1 þ w1;maxfc1; sg þ c2 þ w2;maxfc1 þ 2w1;maxfc1; sg þ c2 þ c1 þ w1gg

¼ maxf1þ
ffiffiffi
3
p
þ �; 3þ 2

ffiffiffi
3
p

;maxf1þ
ffiffiffi
3
p
þ 2�; 3þ 2

ffiffiffi
3
p
þ �g ¼ 3þ 2

ffiffiffi
3
p
þ �:
� The first of the two jobs j and k to be scheduled is scheduled on P 1 and the other one on P 2 (or P 3). Then,
the best achievable makespan is
maxfc1 þ w1;maxfmaxfc1; sg þ c1 þ w1; c1 þ 2w1g;maxfc1; sg þ c1 þ c2 þ w2g

¼ maxf1þ
ffiffiffi
3
p
þ �;maxf2þ 2

ffiffiffi
3
p
þ �; 1þ

ffiffiffi
3
p
þ 2�g; 4þ 3

ffiffiffi
3
p
g ¼ 4þ 3

ffiffiffi
3
p

:

� One of the jobs j and k is scheduled on P 2 and the other one on P 3. Then, the best achievable makespan is
maxfc1 þ w1;maxfc1; sg þ c2 þ w2;maxfc1; sg þ c2 þ c3 þ w3g ¼ maxf1þ
ffiffiffi
3
p
þ �; 3þ 2

ffiffiffi
3
p

; 4þ 2
ffiffiffi
3
p
g

¼ 4þ 2
ffiffiffi
3
p

:

� The case where j and k are both executed on P 2, or both on P 3, leads to an even worse makespan than the
previous case. Therefore, we do not need to study it.

Therefore, the best achievable makespan for A is 3þ 2
ffiffiffi
3
p
þ � (as � < 1). However, we could have

scheduled i on P 2, j on P 3, and then k on P 1, thus achieving a makespan of:
maxfc2 þ w2;maxfc2; sg þ c3 þ w3;maxfc2; sg þ c3 þ c1 þ w1g

¼ maxf2þ
ffiffiffi
3
p

;maxf1; 1g þ 2þ
ffiffiffi
3
p

;maxf1; 1g þ 2þ
ffiffiffi
3
p
þ �; g ¼ 3þ

ffiffiffi
3
p
þ �:
Hence, we have a competitive ratio q P 3þ2
ffiffi
3
p
þ�

3þ
ffiffi
3
p
þ� >

1þ
ffiffi
3
p

2
� �, which contradicts the hypothesis on q. h

Because we have three platform types (communication-homogeneous, computation-homogeneous, fully
heterogeneous) and three objective functions (makespan, max-flow and sum-flow), we have nine bounds to
establish. Table 1 summarizes the results, and shows the influence of the platform type on the difficulty of
the problem. As expected, mixing both sources of heterogeneity (i.e., having both heterogeneous computations
and communications) renders the problem the most difficult.

All the results presented in Table 1 are obtained using the same techniques. It would thus be meaningless to
detail each of the nine proofs, which the interested reader can find in details in our research report [24]. Below,
we just list the characteristics of the platforms and jobs used to prove all the bounds of Table 1. (As in the



Table 1
Lower bounds on the competitive ratio of on-line algorithms, depending on the platform type and on the objective function

Platform type Objective function

Makespan Max-flow Sum-flow

Communication-homogeneous 5
4 ¼ 1:250 5�

ffiffi
7
p

2 � 1:177 2þ4
ffiffi
2
p

7 � 1:093

Computation-homogeneous 6
5 ¼ 1:200 5

4 ¼ 1:250 23
22 � 1:045

Heterogeneous 1þ
ffiffi
3
p

2 � 1:366
ffiffiffi
2
p
� 1:414

ffiffiffiffi
13
p
�1

2 � 1:302
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proof of Theorem 1, for a lower bound q on a competitive ratio, we assume that there exists an algorithm
whose competitive ration is q� � for a given positive value of �).

Communication-homogeneous platforms

Makespan: the platform consists of two processors of computation times p1 ¼ 3 and p2 ¼ 7, and of com-
munication time c ¼ 1. The job arrival times are: 0, 1 and 2.
Sum-flow: the platform consists of two processors of computation times p1 ¼ 2 and p2 ¼ 4

ffiffiffi
2
p
� 2, and of

communication time c ¼ 1. The job arrival times are: 0, 1 and 2.
it Max-flow: the platform consists of two processors of computation times p1 ¼ 2þ

ffiffi
7
p

3
and p2 ¼ 1þ2

ffiffi
7
p

3
, and of

communication time c ¼ 1; job arrival times: 0 and 4�
ffiffi
7
p

3
.

Computation homogeneous platforms

Makespan: the platform consists of two processors of computation time p ¼ maxf5; 12
25�
g, and communica-

tion times c1 ¼ 1 and c2 ¼ p
2
. The job arrival times are: 0, and three times p

2
.

Sum-flow: the platform consists of two processors of computation time p ¼ 3, and communication times
c1 ¼ 1 and c2 ¼ 2. The job arrival times are: 0, and three times 2.
Max-flow: the platform consists of two processors of computation time p ¼ 2� �, and communication
times c1 ¼ � and c2 ¼ 1. The job arrival times are: 0, and three times 1� �.

Fully heterogeneous platforms

Makespan: the platform consists of three processors of computation times p1 ¼ � and p2 ¼ p3 ¼ 1þ
ffiffiffi
3
p

,
and of communication times c1 ¼ 1þ

ffiffiffi
3
p

and c2 ¼ c3 ¼ 1. The job arrival times are: 0, and two times 1.
Sum-flow: the platform consists of three processors of computation times p1 ¼ �, and p2 ¼ p3 ¼ sþ c1 � 1,

and of communication times c1 (any positive value) and c2 ¼ c3 ¼ 1, where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52c2

1
þ12c1þ1

p
�ð6c1þ1Þ

4
. The job

arrival times are: 0, and two times s.
Max-flow: the platform consists of three processors of computation times p1 ¼ �, and p2 ¼ p3 ¼ 3þ 2

ffiffiffi
2
p

,
and of communication times c1 ¼ 2ð1þ

ffiffiffi
2
p
Þ and c2 ¼ c3 ¼ 1. The job arrival times are: 0, and two times 2.
5. Off-line algorithms

Now that we have established lower bounds for all the on-line problems considered, we will study their off-
line counterparts, that is the situations where we know beforehand all the problem characteristics such as the
release dates. This study enables us to compare the difficulty of the problems.

5.1. Communication-homogeneous platform

In this section, all communications are homogeneous, i.e. cj ¼ c, but processors have different speeds. We
order the processors so that P 1 is the fastest processor (w1 is the smallest computing time wi), while P m is the
slowest processor.
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We aim at designing an optimal algorithm for the off-line version of the problem, with release dates. Our
objective is to minimize the makespan, i.e. max Ci. Intuitively, to minimize the completion date of the last task,
it is necessary to allocate this task on the fastest processor (which will finish it the most rapidly). However, the
other tasks should also be assigned so that this fastest processor will be available as soon as possible for the
last task. We define the greedy algorithm scheduling last job first (SLJF) as follows:

Initialization: take the last task which arrives in the system and allocate it to the fastest processor (Fig. 1a).
Scheduling backwards: among the not-yet-allocated tasks, select the one which arrived latest in the system.
Assign it, without taking its arrival date into account, to the processor which will begin its execution at the
latest, but without exceeding the completion date of the previously scheduled tasks (Fig. 1b).
Memorization: once all tasks are allocated, record the assignment of the tasks to the processors (Fig. 1c).
Assignment: the master sends the tasks as soon as possible according to their arrival dates, and to the pro-
cessors which they have been assigned to in the previous step (Fig. 1d).
Theorem 2. SLJF is an optimal algorithm for the makespan minimization on communication-homogeneous

master-slave platforms, that is for the problem Q;MSjrj;wj; cj ¼ cjCmax.

Proof. The first three phases of the SLJF algorithm are independent of the release dates, and only depend on
the number of tasks which will arrive in the system. The proof proceeds in three steps. First we study the prob-
lem without communication costs, nor release dates. Next, we take release dates into account. Finally, we
extend the result to the case with communications. The second step is the most difficult.

For the first step, we have to minimize the makespan when scheduling identical tasks on heterogeneous
processors and without release dates. Without communication costs, this is a well-known load balancing
problem, which can be solved by a greedy algorithm [7]. The ‘‘scheduling backwards” phase of SLJF follows
this greedy algorithm and thus solves this load balancing problem optimally.

Next we add the constraints of release dates. We denote by M the makespan achieved. Let P j be a processor
on which the last processed task is completed at the makespan. Let i be the last task executed on P j whose
processing started at its release date (in other words, we have Ci ¼ ri þ wj). Such a task exists as the processing
of the first task executed on P j began at its release date, the scheduling, in the assignment phase, being done
under the as-soon-as-possible policy. By definition of task i, processor P j is never idle between the release date
ri and the makespan M, and is thus used M � ri time units during that interval. Our original problem is more
Fig. 1. Different steps of the SLJF algorithm, with four tasks i, j, k and l.
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constrained than the problem of scheduling n� iþ 1 tasks whose release dates are all equal to ri. (n� iþ 1
corresponds to task i plus the tasks released after it.) Therefore our original problem has an optimal makespan
greater than or equal to the makespan of this later and simpler problem. The simpler problem is the well-
known load-balancing problem we were referring above, and we have seen that the first step of SLJF solves it
optimally. Furthermore, SLJF solves it in an incremental way: the optimal solution for k þ 1 tasks is built by
optimally adding a task to the optimal solution for k tasks. Therefore, SLJF optimally load-balanced the last
n� iþ 1 tasks in the first step. As in this step it uses processor P j during M � ri time units, the simpler
problem of scheduling n� iþ 1 tasks whose release dates are all equal to ri has an optimal makespan of M.
From what precedes, our original problem has thus an optimal makespan greater than or equal to M, which is
exactly the makespan achieved by SLJF, hence its optimality.

Taking communications into account is now easy. Under the one-port model, with a uniform
communication time for all tasks and processors, the optimal policy of the master consists in sending the
tasks as soon as possible, using a First Come First Serve policy. Now, we consider the date at which a task is
available on a slave as its release date for our previous problem with release dates and without
communications. As a task cannot arrives sooner on a slave than this available date, and as our policy is
optimal with release dates, SLJF is optimal for makespan minimization with release dates and homogeneous
communications. h

Remark 3. It should be stressed that, by posing c ¼ 0, our approach allows to provide a new proof for a result
of Simons [32].

Remark 4. As it only needs to know in advance the total number of tasks, but not their release dates, SLJF is
also optimal to minimize the makespan for on-line problems where the total number of tasks is known
beforehand.
5.2. Computation homogeneous platform

In this section, all the processors are homogeneous, i.e. wj ¼ w, but processor links have different capacities.
We order the processors so that P 1 is the fastest communicating processor (c1 is the smallest of the commu-
nication times).

In the easy case where the communication links are fast enough in comparison with the computation time,
i.e.,

Pm
i¼1ci 6 w, we can easily prove that the scheduling policy Round-Robin which sends by non-increasing

communication time and sends the last task on the fastest communication link, is optimal for makespan min-
imization with release dates. This proof is the same as the one of SLJF.

In the general case, as we assume a one-port model, not all slaves will be enrolled in the computation. Intu-
itively, the idea is to use the fastest m0 links, where m0 is computed so that the time w to execute a task lies
between the time necessary to send a task on each of the fastest m0 � 1 links and the time necessary to send
a task on each of the fastest m0 links. Formally,
Xm0�1

i¼1

ci < w 6
Xm0
i¼1

ci
With only m0 links selected in the platform, we aimed at deriving an algorithm similar to Round-Robin. But we
did not succeed in proving the optimality of our approach. Hence the algorithm below should rather be seen as
a heuristic.

The difficulty lies in deciding when to use the m0th processor. In addition to be the one having the slowest
communication link, its use can cause a moment of inactivity on another processor, if

Pm0�1
i¼1 ci þ cm0 > w. Our

greedy algorithm will simply compare the performance of two strategies, the one sending tasks only on the
m0 � 1 first processors, and the other one using the m0th processor ‘‘at the best possible moment”.

Let RRA be a Round-Robin algorithm, sending the tasks to the m0 � 1 fastest processors, starting with the
fastest processor, and scheduling the tasks in the reverse order of release times, from the last one to the first
one (Fig. 2). In other words, RRA sends the last task to the fastest processor, the previous task to the second



Fig. 2. Algorithms RRA and RRB with 9 tasks
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fastest processor, and so on. Let RRB be the algorithm sending the last task to processor P m0 , then following
the RRA policy. We see that RRA seeks to continuously use the processors, even though the communication
links may sometimes be idle and processor P m0 is always idle. On the other hand, RRB tries to reduce the idle
time of the communication links by using one more processor at the beginning.

The intuition underlying our algorithm is simple. We know that if we only had the m0 � 1 fastest processors,
then RRA would be optimal to minimize the makespan. However, the time necessary for sending a task on
each of the m0 � 1 fastest processors is lower than w. This means that sending the tasks takes less time than
their execution. This advance, which accumulates over tasks, can become sufficiently large to allow the sending
of a task on another m0th processor, for ‘‘free”, i.e., without delaying the treatment of the following tasks on
the other processors. Our algorithm can be decomposed into two steps:

� determine i and k, such that kðm0 � 1Þ þ i 6 n, i being the maximum number of tasks that can be sent on m0

whose communications can be overlapped by k tasks being sent on every m0 � 1 first processors according
to a RRA policy,
� determine the best policy among RRA and RRB to schedule the remaining n� ðk � ðm0 � 1Þ þ iÞ tasks.

We call the resulting greedy heuristic SLJFWC for (Scheduling the Last Job First With Communication).
Algorithm 1 presents its the pseudo-code version. This heuristic has complexity of Oðnþ m log mÞ.
Algorithm 1: Heuristic SLJFWC for problem Q;MSjri; wj ¼ w; cjjCmax

1: k  0; i 0;
2: while kðm0 � 1Þ þ i 6 n and k

Pm0�1
i¼1 ci

� �
þ icm0 þ w 6 M do

3: i iþ 1

4: k  icm0

w�
Pm0�1

i¼1
ci

& ’

5: end while
6: compare RRA and RRB with ðn� ðkðm0 � 1Þ þ iÞÞ tasks
7: send according to the best scheduling the first ðn� ðkðm0 � 1Þ þ iÞÞ tasks
8: send the following ððkðm0 � 1Þ þ iÞ � ðim0ÞÞ tasks to the m0 � 1 first processors from the slowest to the

fastest
9: send the last im0 tasks to the m0 processors from the slowest to the fastest
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5.3. Fully heterogeneous platform

On a fully heterogeneous platform, the problem becomes more difficult as expected. Whereas the problem
of minimizing the makespan without release dates can be solved in polynomial time (Section 5.3.1), the general
problem with release dates can be proved to be NP-hard (Section 5.3.2).

5.3.1. Without release dates

The problem without release dates can be solved in two ways. The first solution is due to Beaumont et al. [6]
who present an algorithm which, given a platform and n tasks, checks in polynomial time whether one can
process the tasks on the platform in a given time T. Using this algorithm, one can find the minimum makespan
by performing a binary search on T. As this binary search is over rational values, one could fear that it does
not always terminate. One can however show that not only does such a binary search always terminate, but
that it completes in a number of steps polynomial in the size of our problem (the proof is identical to the one
used for Theorem 6). This approach leads to a polynomial time algorithm but uses as a building block a com-
plicated algorithm of complexity Oðn2m2Þ.

To obtain a solution of lower complexity, we propose to reduce our problem to a problem with deadlines.
Given a makespan M, we will still check whether there exists a schedule which completes all the work in time.
Then, using this as a basic block, we will find the optimal makespan with a binary search. We will use Moore’s
algorithm [21] whose aim is to minimize the number of tardy tasks, i.e., which are not completed by their dead-
lines. This algorithm gives a solution to the 1k

P
Uj problem where the maximum number of tasks, among n

candidate tasks, has to be processed in time on a single machine. Each task k, 1 6 k 6 n, has a processing time
wk and a deadline dk before which it has to be processed.

Moore’s algorithm – Algorithm 2 –, is a classical algorithm in scheduling literature, and works as follows.
All tasks are ordered in non-decreasing order of their deadlines. Tasks are added to the solution one by one in
this order as long as their deadlines are satisfied. If a task k is out of time, the task j in the actual solution with
the largest processing time wj is deleted from the solution. Moore’s algorithm runs in Oðn log nÞ.
Algorithm 2: Moore’s algorithm

1: Input: a set of jobs with their deadlines and sizes: fðdi;wiÞg16i6n
2: Order the jobs by non-decreasing deadlines: d1 6 d2 6 � � � 6 dn
3: r ;; t 0
4: for i :¼ 1 to n do
5: r r [ fig
6: t t þ wi
7: if t > di, then
8: Find job j in r with largest wj value
9: r r n fjg

10: t t � wj
11: end if
12: end for
In order to use Moore’s algorithm, which is supposed to schedule tasks with deadlines on one machine, we
will need to create tasks with deadlines. Recall we assume a one-port model, and that we only need to schedule
the communications, i.e., the use of the communication link by the master (on each worker the assigned tasks
are scheduled as soon as possible). Therefore, the communication link corresponds to the machine in Moore’s
algorithm. For the targeted makespan M, the deadlines and the computation times of the tasks will be defined

as follows. We compute for each slave of our platform the deadline of each of the tasks it can receive: di
j

denotes the deadline of the ith last task for the slave P j. Beginning at the makespan M, one computes when
the last task has to arrive on the slave so that it can still be processed in time. The latest moment at which a

task can arrive so that it can still be computed on slave P j is M � wj. Then d1
j ¼ M � wj. The latest moment at

which the task before the last one can arrive so that it can still be computed in time on slave P j is M � 2� wj.

Then d2
j ¼ M � 2� wj, and so on. We denote by lj the maximum number of tasks that slave P j can receive:



Fig. 3. Computation of the deadlines dk
j for worker P j.
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lj ¼ M
wj

j k
. See Fig. 3 for an example. We denote by l the total number of tasks the slaves could receive:

l ¼
Pm

i¼1lj. Obviously l is an upper bound and can only be achieved if there are no communication contention,
which is unlikely to happen. In other words, with these deadlines we have defined a set of l virtual tasks. We
are going to effectively schedule as many of these virtual tasks as possible. If the number we succeed to sche-
dule is greater than or equal to the number of tasks we actually have to schedule, n, we will have found a sche-
dule whose makespan is no greater than M. Otherwise we will have failed.

In our model, the processing time of a task with a deadline dk
j is the communication time cj of P j. Then the

master has to decide which virtual tasks have to be sent on which slaves and in which order. To solve this
problem we use Moore’s algorithm. Starting at time t ¼ 0, the master can start scheduling the tasks on the
communication link. For this purpose the deadlines dk

j are ordered by non-decreasing values. In the same
manner than in Moore’s algorithm, an optimal schedule r is computed by adding one by one the tasks to
the schedule: if we consider the deadline dk

j , we add a task to processor P j. So if a deadline is not met, the
largest communication is suppressed from r and we continue. The adapted Moore’s algorithm is described
by Algorithm 3.

One only needs to add a binary search to finalize our algorithm, which is described by Algorithm 4. We
bound the search of the minimal makespan with two values. As at least one machine will have to compute
no less than n

m tasks, the lower bound is the minimum time needed by one machine to compute n
m tasks sequen-

tially. Depending on the communication to computation ratio, this time equals to either the time needed to
make one communication with the slave and n

m computations, or the time needed to make n
m communications

and one computation. We will call this value fmin, and we have:
Algor

1:

2:
3:
4:
5:
6:

7:
8:
9:

10:
11:
12:
13:
fmin ¼ min
j

n
m

maxfcj;wjg þminfcj;wjg
n o

:

ithm 3: Adapted Moore’s algorithm

input: fðdj; cijÞgj

Order the jobs by non-decreasing deadlines: ðd1; ci1Þ; . . . ; ðdl; cilÞ
r ;; t 0
for j :¼ 1 to l do

r r [ fjg
t t þ cij

if t > dj then
Find job k in r with largest cik value
r r n fkg
t t � cik

end if
end for
return r
The upper bound, fmax, is the minimum time needed by one machine to compute all the tasks. We have:
fmax ¼ min
j
fn maxfcj;wjg þminfcj;wjgg:
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The output of Algorithm 4 is a set r of couples of deadlines and communication times. From such a set one
straightforwardly defines a schedule: the virtual tasks described by r are sent by the master as soon as possible
and by non decreasing deadlines, a virtual task ðdj; cijÞ being sent to the processor P ij . This schedule has a
makespan no greater than M by construction of the deadlines and by the optimality of Moore’s algorithm.

Theorem 5. Algorithm 4 builds an optimal schedule r for the scheduling problem Q;MSjwj; cjjCmax.

Proof. Algorithm 4 is nothing but a binary search other the makespan M, the core of the algorithm being a
call to Algorithm 3 (adapted Moore’s algorithm) on a set of virtual tasks. Therefore, to prove the optimality of
Algorithm 4 we only have to show that Algorithm 3, when called on a virtual set of tasks built for the objective
makespan M, outputs a set r containing at least n tasks if, and only if, M P M, where M is the optimal
makespan.

Let us take any value M P M. From what precedes, if Algorithm 4 returns a set r containing at least n

elements, there exists a schedule whose makespan is less than, or equal to, M. Conversely, by definition of the
optimal makespan M, there exists a schedule r� of n tasks with a makespan less than, or equal to, M. We will
prove that in this case Algorithm 3 returns a set r containing at least n elements. h
Algorithm 4: Algorithm for problem Q;MSjwj; cjjCmax

input: wi ¼ ai
bi
; ai; bi 2 N�N�, ci ¼ ci

di
; ci; di 2 N�N�

k lcm16i6mfbi; dig
precision 1

k
lo minj

n
m maxfcj;wjg þminfcj;wjg
� �

hi minjfn maxfcj;wjg þminfcj;wjgg
M  hi
repeat

for i :¼ 1 to m do

li  M
wi

j k
for k :¼ 1 to minfli; ng do

S  S [ fðM � k � wi; ciÞg
end for

end for
if
P

li < n then

/* M is too small */
lo M

else

r Adapted Moore’s algorithmðSÞ
if jrj < n then

/* M is too small */
lo M

/else

/* M is maybe too big */
hi M
r ropt

end if

end if

gap jlo� hij
M  ðloþ hiÞ=2

until gap < precision
return ropt
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Let Nj denote the number of tasks received by P j under r�. So we have n ¼
P

jNj. Let us denote by D the
set of virtual tasks computed by our algorithm for the scheduling problem for makespan M:
D ¼
[

i

[
16j6li¼ M

wi

� �fðM � j� wi; ciÞg:
We also define the set of virtual tasks corresponding to the N j latest deadlines in D for each slave P j:
D� ¼
[

i

[
16j6Ni

fðM � j� wi; ciÞg:
Obviously D� � D. The set of tasks in r� is exactly a set of tasks that respects the deadlines in D�. The appli-
cation of Moore’s algorithm on the same problem returns a maximal solution. With D� � D, we already know
that there exists a solution with n ¼ jD�j scheduled tasks. So Moore’s algorithm will return a solution with
jrjP jD�jP n tasks (as there may be more than n possible deadlines in D), as we wanted.

Theorem 6. Scheduling problem Q;MSjwj; cjjCmax is solvable in polynomial time by Algorithm 4. h

Proof. Thanks to Theorem 5, we only have to show that Algorithm 4 runs in polynomial time.
We perform a binary search for a solution in the interval ½fmin; fmax	. As we are in heterogeneous

computation conditions, we have heterogeneous wi-values: for each i 2 ½1; m	, wi 2 Q. The communications
are also heterogeneous, so we have ci 2 Q for each i 2 ½1; m	. For each i 2 ½1; m	, let the representation of the
values be of the following form:
wi ¼
ai

bi
; ai; bi 2 N�N�; and ci ¼

ci

di
; ci; di 2 N�N�;
where ai and bi are relatively prime, and also ci and di are relatively prime.
Let k be the least common multiple of the denominators bi and di, i.e., k ¼ 1 cm16i6mfbi; dig. As a

consequence, for any i in ½1; . . . ;m	, k� wi 2 N and k� ci 2 N. Now we have to choose the precision which
allows us to stop our binary search. For this, we take a look at the possible finish times of the workers: all of
them are linear combinations of the different ci and wi-values. Some optimal algorithms may have some idle
times, but without any lost of generality, we only look at the algorithms which send tasks and compute them as
soon as possible. So if we multiply all values with k we get integers for all values and the smallest gap between
two finish times is at least 1. So the precision p, i.e., the minimal gap between two feasible finish times, is p ¼ 1

k.
The maximal number of different values M we have to try can be computed as follows: we examine our

algorithm in the interval ½fmin; fmax	. The possible values have an increment of 1
k. So there are
nm� n
m

�min
j
fmaxfcj;wjgg

	 

� k
possible values for M. Hence, the total number of steps of the binary search is
O
nm� n

m
min

j
fmaxfcj;wjgg

	 

� k

	 

:

Now we have to prove that this is polynomial in the size of our problem input.
Our platform parameters ci and wi are given under the form wi ¼ ai

bi
and ci ¼ ci

di
. So it takes logðaiÞ þ logðbiÞ

to store a wi and logðciÞ þ logðdiÞ to store a ci. So our entry E can be bounded as follows:
E P
X

i

logðaiÞ þ
X

i

logðbiÞ þ
X

i

logðciÞ þ
X

i

logðdiÞ:
We can do the following estimation:
E P
X

i

logðbiÞ þ
X

i

logðdiÞ ¼ log
Y

i

bi �
Y

i

di

 !
P logðkÞ:
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So we already know that our complexity is bounded by
1 We
tasks.
size of
O jEj þ log
nm� n

m
min

j
fmaxfcj;wjgg

	 
	 

:

We can simplify this expression:
O jEj þ log n min
j
fmaxfcj;wjgg �

n
m

min
j
fmaxfcj;wjgg

	 
	 

6 O jEj þ log n min

j
fmaxfcj;wjgg

	 
	 

:

It remains to upper bound:
log n min
j
fmaxfcj;wjgg

	 

¼ logðnÞ þ log min

j
fmaxfcj;wjgg

	 

:

n is a part of the input and hence its size can be upper bounded by the size of the input E. In the same manner
we can upper bound logðminjfmaxfcj;wjggÞ by minjfmaxflogðajÞ þ logðbjÞ; logðcjÞ þ logðdjÞgg 6 E.

Assembling all these upper bounds, we get
OðjEj þ logðn min
j
fmaxfcj;wjggÞÞ 6 Oð3jEjÞ
and hence our proposed algorithm needs OðjEjÞ steps to perform the binary search. Furthermore, the set S
contains at most mn elements and the complexity of each call to the Adapted Moore’s algorithm is thus
Oðmn logðmnÞÞ, which is polynomial in the size of our problem input.1 The total complexity finally is
OðjEj � nm log nmÞ which is polynomial in the input size. h

We can see here a new line between NP-hard problems and easier problems, because the scheduling prob-
lem becomes NP-hard when the platform is a heterogeneous tree instead of a star [11].

5.3.2. With release dates

We will prove that the problem Q;MSjri; wj; cjjCmax is NP-hard in the strong sense. For that purpose, we
will study the following decision problem:

Definition 7. MS-hetero: Given a fully heterogeneous master-slave platform, n tasks with release dates, and a
deadline D, is it possible to schedule those tasks onto this platform such are all tasks are completed before the
deadline D?

Those two problems are equivalent. If MS-hetero can be solved in polynomial time, then our problem could
also be solved in polynomial time using a binary search on D on the interval ½minjfn

m�
maxfcj;wjg þminfcj;wjgg; rn þminjfn�maxfcj;wjg þminfcj;wjgg	. Reciprocally, if we can solve our prob-
lem and find the minimum makespan Dopt, then for all D P Dopt, MS-hetero has a schedule, elsewhere it does
not.

We practice here a reduction from the work of Dutot [11].

Definition 8. (MS-Dutot) We suppose a one-port model. Let T ¼ ðV ;EÞ be a tree. Let P�1 in V be a special
vertex called ‘‘Master node”. For each other vertex, let wi be the computation cost. For all edges ei in E, let ci

be the communication cost. Finally let n be a number of tasks and D be a deadline.
The decision problem is: ‘‘Is it possible to schedule the n tasks before the deadline D”?

Theorem 9. ([11]) MS-Dutot is NP-complete in the strong-sense.

Theorem 10. MS-hetero is NP-complete in the strong-sense.
make the usual assumption that our scheduling problem takes the tasks 1,2, . . . ,n as input, and not merely the number of identical
This is a natural assumption which guarantees that basic certificates, such as sets of task starting times, are of size polynomial in the
the input, and thus that scheduling problems are in NP.



Fig. 4. The platforms used in the reduction of MS-Dutot to MS-hetero.
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Proof. First, MS-hetero is in NP. If we have a schedule for n tasks and a given master-slave platform, we can
check in polynomial time that this schedule respects the deadline D.

Let S be an instance of MS-Dutot. S is made of a tree T and of n tasks J 1; . . . ; Jn. We suppose that T is a
two-level tree as illustrated on Fig. 4, with one master node P�1, one distribution node P 0, and m slaves, P 1,
. . ., P m. P�1 is only connected to P 0, and P 0 is connected to all other vertices. (As the platform topology is a
tree these are the only edges it contains.) It takes a time w for P 0 to compute a task, and wi for processor P i,
1 6 i 6 m. It takes a time c for a task to be sent other the edge ðP�1; P 0Þ and, for i 2 ½1;m	, it takes a time ci on
the edge ðP 0; P iÞ.

We can assume without any lost of generality that any instance S has this shape as Dutot exactly used this
kind of tree to build his proof of NP-completeness.

From instance S of MS-Dutot, we build an instance S0 of MS-Hetero, composed of a tree T 0 and n tasks,
J 01; . . . ; J 0n, with their respective release dates, r01; . . . ; r0n.

T 0 is a fork tree, composed of one master P 0�1 and mþ 1 leaves P 00; P
0
1; . . . ; P 0m. The communication cost of

the edge ðP 0�1; P
0
0Þ is 0 and, for each i 2 ½1;m	, the cost of the edge ðP 0�1; P

0
iÞ is ci. The computation cost of P 00 is

w and, for each i 2 ½1;m	, the computation cost of P 0i is wi. Finally, the release dates of the tasks are uniformly
separated: 8 1 6 i 6 n; ri ¼ ic. This reduction is obviously of polynomial in the size of the original instance.

We now prove the equivalence between problems S and S0:

� We first suppose that problem MS-hetero on S0 has a solution, i.e., that there exists a schedule r0 which exe-
cute the n tasks on the 1þ m processors, according to their release dates, and in an overall time less than or
equal to D. From r0, we create a new schedule r for S. Under r, the master node P�1 sends all the tasks as
soon as possible, the ith task J i being sent during the time interval ½ði� 1Þc; ic½. Therefore, under r a task J i

arrives on P 0 exactly at the release date of its corresponding task J 0i.For any i 2 ½1; n	, J i is executed on P j

under r if and only if J 0i is executed on P 0j under r0. Furthermore, J i is sent to P j under r at the date J 0i is
sent to P 0j under r0, and the two corresponding tasks are executed at the same time. In particular, if J 0i
was executed on P 00, P 0 executes itself J i without forwarding it to one of its slaves.As r0 successfully schedules
the n tasks with release dates J 01, . . ., J 0n on T 0 before the deadline D, r schedules the n J 1, . . ., J n tasks on T

before D.
� We now suppose that instance S of MS-Dutot has a solution, i.e., that there exists a schedule r which exe-

cutes the n tasks J 1; . . . ; J n on T before the deadline D. As the time needed by the master P�1 to send tasks
to the distribution node P 0 is c, task i will arrive on the distribution node at a time ti greater than, or equal
to, ri.Then, symmetrically to what we have done in the previous case, we define r0 from r as follows: for any
i 2 ½1; n	, J 0i is executed on P 0j under r0 if and only if J i is executed on P j under r, J i is sent to P j under r at
the date J 0i is sent to P 0j under r0, and the two corresponding tasks are executed at the same time.We have
noticed that, for any i 2 ½1; n	, ti P ri, therefore schedule r0 respects the release dates. As it has the same
makespan than r, we can conclude.

In conclusion, MS-hetero is NP-complete in the strong sense. h
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6. MPI experiments

To complement the previous theoretical results, we looked at some efficient on-line algorithms, and we
compared them experimentally on different kind of platforms. In particular, we include in the comparison
our last two new heuristics, which were specifically designed to work well on communication-homogeneous
and on computation-homogeneous platforms, respectively.
6.1. Algorithms

We describe here the different algorithms used in the practical tests:

(1) SRPT: Shortest Remaining Processing Time is a well known algorithm on a platform where preemption
is allowed, or with task of different size. But in our case, with identical tasks and no preemption, its
behavior is the following: it sends a task to the fastest free slave; if no slave is currently free, it waits
for the first slave to finish its task, and then sends it a new one.

(2) LS: List Scheduling can be viewed as the static version of SRPT. It uses its knowledge of the system and
sends a task as soon as possible to the slave that would finish it first, according to the current load esti-
mation (the number of tasks already waiting for execution on the slave).

(3) RR: Round Robin is the simplest algorithm. It simply sends a task to each slave one by one, according to
a prescribed ordering. This ordering first chooses the slave with the smallest wi þ ci, then the slave with
the second smallest value, etc.

(4) RRC has the same behavior than RR, but uses a different ordering: it sends the tasks starting from the
slave with the smallest ci up to the slave with the largest one.

(5) RRP has the same behavior than RR, but uses yet another ordering: it sends the tasks starting from the
slave with the smallest wi up to the slave with the largest one.

(6) SLJF is described in a previous section. It is optimal for makespan minimization on communication-
homogeneous platform as soon as it knows the total number of tasks.

(7) SLJFWC is our heuristic meant to be used on computation-homogeneous platform.

SLJF and SLJFWC were initially built to work with off-line models, because they need to know the total
number of tasks to perform at their best. So we transform them for on-line execution as follows: at the begin-
ning, we start to compute the assignment of a certain number of tasks (the greater this number, the better the
final assignment), and start to send the first tasks to their assigned processors. Once the last assignment is
done, we continue to send the remaining tasks, each task being sent to the processor that would finish it
the earliest. In other words, the last tasks are assigned using a list scheduling policy.
6.2. Experimental platform

We build a small heterogeneous master-slave platform with five different laptops running the Linux oper-
ating system and connected to each other by a fast Ethernet switch (100 Mbit/s). The five machines are all
different, both in terms of the amount of available memory and in terms of CPU speed (four have a CPU speed
between 1.2 and 1.6 GHz, the last and oldest one has a processor Mobile Pentium MMX 233 MHz). The het-
erogeneity of the communication links is mainly due to the differences between the network cards (the oldest
and slowest machine has a 10 Mbit/s network card, the four others have 100 Mbit/s ones). Each task will be a
matrix, and each slave will have to calculate the determinant of the matrices that it will receive. Whenever
needed, we play with matrix sizes so as to achieve more heterogeneity or on the contrary some homogeneity
in the CPU speeds or communication bandwidths. We proceed as follows: in a first step, we send one single
matrix to each slave one after the other, and we calculate the time needed to send this matrix and to calculate
its determinant on each slave. Thus, we obtain an estimation of ci and wi, according to the matrix size. Then
we determine the number of times this matrix should be sent (nci ) and the number of times its determinant
should be calculated (nwi ) on each slave in order to modify the platform characteristics so as to reach the



Fig. 5. Comparison of the seven algorithms on different platforms.
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desired level of heterogeneity. Then, a task (matrix) assigned on P i will actually be sent nci times to P i (so that
ci  nci :ci), and its determinant will actually be calculated nwi times by P i (so that wi  nwi :wi).

The experiments are as follows: for each diagram, we create ten random platforms, possibly with one pre-
scribed property (such as homogeneous links or processors) and we execute the different algorithms on it. Our
platforms are composed with five machines P i with ci between 0.01 s and 1 s, and wi between 0.1 s and 8 s.
Once the platform is created, we send one thousand tasks on it, and we calculate the makespan, sum-flow,
and max-flow obtained by each algorithm. After having executed all algorithms on the ten platforms, we cal-
culate the average makespan, sum-flow, and max-flow.

6.3. Results

In the following figures, we compare the seven algorithms: SRPT, List Scheduling, the three Round-Robin

variants, SLJF, and SLJFWC. For each algorithm we plot, from left to right, its normalized makespan (in
light grey), sum-flow (in black), and max-flow (in dark grey). We normalize everything to the performance
of SRPT, whose makespan, max-flow, and sum-flow are therefore set equal to 1.

First of all, we consider fully homogeneous platforms. Fig. 5a shows that all static algorithms perform
equally well on such platforms, and exhibit better performance than the dynamic heuristic SRPT (heuristic
1). On communication-homogeneous platforms (Fig. 5b), we see that RRC (heuristic 4), which does not take
processor heterogeneity into account, performs significantly worse than the others; we also observe that SLJF
(heuristic 6) is the best approach for makespan minimization. On computation-homogeneous platforms
(Fig. 5c), we see that RRP (heuristic 5) and SLJF (heuristic 6), which do not take communication heteroge-
neity into account, perform significantly worse than the others; we also observe that SLJFWC is the best
approach for makespan minimization. Finally, on fully heterogeneous platforms (Fig. 5d), the best algorithms
are LS (heuristic 2) and SLJFWC (heuristic 8). Moreover, we see that algorithms taking communication
delays into account actually perform better. We underline here that taking into account the communication
heterogeneity is more important than the computation heterogeneity for a scheduler. This could be explained
mainly because of the one-port model.



Fig. 6. Assessing algorithm robustness: ratios of performance with varying task sizes compared to performance with identical task sizes.
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In another experiment, we try to test the robustness of the algorithms. We randomly change the size of the
matrix sent by the master at each round, by a factor of up to 10%. Fig. 6 represents the average makespan
(respectively sum-flow and max-flow) compared to the one obtained on the same platform, but with identical
size tasks. Thus, we see that our algorithms are quite robust for makespan minimization problems, but not as
much for sum-flow or max-flow problems.

7. Conclusion

In this paper, we have dealt with the problem of scheduling independent, same-size tasks on master-slave
platforms. We enforce the one-port model, and we study the impact of heterogeneity on the performance of
on-line and off-line scheduling algorithms as well as the impact of the communications on the design and anal-
ysis of the proposed algorithms. The major contribution of this paper lies on the theoretical side, and is well
summarized by Table 1 for on-line scheduling. We have provided a comprehensive set of lower bounds for the
competitive ratio of any deterministic on-line scheduling algorithm, for each source of heterogeneity and for
each target objective function. An important direction for future work would be to see which of these bounds
can be met, if any, and to design the corresponding approximation algorithms. We also have derived several
new results for off-line scheduling with release dates, as an optimal makespan-minimization algorithm for
communication-homogeneous platform, and a NP-hard proof of the scheduling problem on fully heteroge-
neous platform. Another important direction for future work would be to derive an optimal algorithm or
to prove the NP-hardness for off-line scheduling with release dates on computation-homogeneous platforms.

On the practical side, we have to widen the scope of the MPI experiments. An extensive comparison of all
the heuristics that we have implemented needs to be conducted on significantly larger platforms (with several
tens of slaves). Such a comparison would, we believe, further demonstrate the superiority of those heuristics
which fully take into account the relative capacity of the communication links.
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