
ELSEVlER Parallel Computing 23 (1997) 25 I-266

PARALLEL
COMPUTING

Plugging anti and output dependence removal
techniques into loop parallelization algorithm ’

Pierre-Yves Calland * ,*, Alain Darte, Yves Robert,
Fr6dh-k Vivien

Lahoruroire LIP. URA CNRS 1398. Ecole Normule Suplrieure de Lyon, 69364 Lyon Cedex 07. Frunce

Abstract

In this paper we shortly survey some loop transformation techniques which break anti or output
dependence& or artificial cycles involving such ‘false’ dependences. These false dependences are
removed through the introduction of temporary buffer arrays. Next we show how to plug these
techniques into loop parallelization algorithms (such as Allen and Kennedy’s algorithm). The goal
is to extract as many parallel loops as the intrinsic degree of parallelism of the nest authorizes,
while avoiding a full memory expansion. We try to reduce the number of temporary arrays that we
introduce, as well as their dimension.

Keywords: Anti dependence; Output dependence; Dependence removal; Loop parallelization algorithm

1. Introduction

Flow (or value-based) dependences are the only ‘true’ dependences of a program.
Anti dependences ’ and output dependences 4 are due to storage re-use and can be
eliminated at the price of more memory usage. Removing anti and output dependences

’ Corresponding author. E-mail: Pierre-yves.calland@lip.ens-lyon.fr.

’ Supported by the CNRS-ENS Lyon-INRIA Project ReMuP and by the Eureka project EuroTOPS.

’ Supported by a grant of Region RhBne-Alpes.

’ Anti dependence occurs when a variable is used in one statement and reassigned in a subsequently

executed statement [161.

’ Output dependence occurs when a variable is assigned in one statement and reassigned in a subsequently

executed statement 1161.

0167~8191/97/$17.00 Copyright 0 1997 Elsevier Science B.V. All rights reserved.

PI/ SOl67-8l9l(96)OOlO8-l

252 P.-Y. Coliurzcl er ul. / Purdlrl Compuring 23 (1997) 251-266

may prove very useful to break data dependence cycles and thereby enabling vectoriza-
tion and/or improving parallelization.

However, removing all memory-based or ‘false’ (i.e., anti and output) dependences
may have a prohibitive cost. A complete removal of false dependences is usually
achieved, if feasible, via conversion of the original loop nest program into single
assignment form. This turns out to be unnecessarily costly. Indeed, there are some
memory-based dependences whose removal will not improve the parallelization. Rather,
we should introduce as much memory overhead as needed to expose all the parallelism
of the original program. As much as, but no more than, needed.

The aim of this paper is to show how to plug false dependence removal techniques
into loop parallelization algorithms. The idea is to characterize those false dependences
that do decrease the amount of parallelism, and to remove only these dependences. This
will lead to memory savings without sacrificing performance.

The paper is organized as follows. Section 2 is devoted to a brief survey of
techniques aimed at removing anti and output dependences. In Section 3 we work out an
example to illustrate the key-ideas of our ‘integration’ sketch. We summarize the
general steps of our method in Section 4. Finally, we give some conclusions in Section

2. False dependence removal techniques

Many papers have been devoted to the problem of eliminating anti and output
dependences. Proposed methods include ‘array data flow analysis’ [10,13], ‘variable
expansion’ [4], ‘variable renaming’ [14] and ‘node splitting’ [14,6]. See the survey
papers of Banerjee et al. [3] and Bacon et al. 121, as well as the books of Wolfe [16] and
Zima and Chapman [17], for further references. Note that ‘array privatization’ [l 11 is yet
another technique that can be applied, but it comes later, when moving from virtual to
physical processors.

2.1, Renaming

Scalar renaming consists in giving a different name to occurrences of a scalar locally
used in a program. This allows the removal of anti and output dependences due to the
multiple use of the scalar. This technique can be directly extended to array renaming.
Consider the loop nest in Fig. l(a). The dependence graph 5 (Fig. I(c)) contains a cycle
with an anti dependence from statement S, to statement S,. Renaming the array ‘a’ in
S, (see the code in Fig. l(b)) breaks this dependence: the new graph (Fig. I(d)) is
acyclic. Loop statements can now be parallelized.

’ In all figures, flow, anti and output dependence edges are labeled with a ‘f”. ‘u’ and ‘0’ respectively.

P.-Y. Culland et ul./Purullel Col?I~‘u’inh’ 23 t/997125/-266 253

For i = 1 to N do For i = 1 to N do

S1: a(i) = sin(i) S1: renamed(i) = sin(i)

Sa: b(i + 1) = a(i) f c(i) Sz: b(i + 1) = renamed(i) + c(i)

S3: a(i) = cos(i) 273: a(i) = cos(i)

&: c(i + 1) = a(i) &: c(i + 1) = a(i)

EndFor EndFor

(a) original code (b) code after renaming

mnf

$3
mit

n mn

(c) original dependence

graph

q#=fm$~

“i mnf

tieffmmib8

(d) graph after renaming

Fig. I. Example of variable renaming.

For i = 1 to N do

S1: c(i) =3+a

572: a=i+l

SJ: b(i) = c(i) + a

EndFor

temp(0) = a

For i = 1 to N do

S1: c(i) = 3 + temp(i - 1)

S2: temp(i) = i + 1

S3: b(i) = c(i) + temp(i)

EndFor

(a) original code

If (N 2 1) then a = temp(N)

(b) code after expansion

mnsa mnS3

(cl original dependence (d) graph after expansion
graph

Fig. 2. Example of variable expansion

254 P.-Y. Collund cr uI./ Purdlel Compuhq 23 (1997) 251-266

2.2. Expansion

Consider a loop nest where a scalar variable is written at several iterations. This
implies an output dependence from and to the statement involved in the multiple
writings. Consider the example of Fig. 2(a). Since scalar a is written at each iteration,
there is a self output loop around statement S, (see the dependence graph in Fig. 2(c)).
To suppress this dependence, we expand a into a linear array, as shown in Fig. 2(b).
Again, the new graph (Fig. 2(d)) is acyclic.

This technique can be extended to multi-dimensional loop nests for expanding
scalars, or for expanding multi-dimensional arrays in the simple cases where the arrays
can be considered as scalars when some loop indices are fixed.

2.3. Node splitting

This technique consists in splitting a statement into two statements, in order to break
cycles in the dependence graph. Consider the example of Fig. 3(a). The dependence

For i = 1 to N do

&: a(i) = b(i) + c(i)

55: a(i + 1) = a(i) + 2 x d(i)

(a) original code

For i = 1 to N do

Si: temp(i) = b(i) + c(i)

S1: a(i) = temp(i)

Sz: a(i + 1) = temp(i) + 2 x d(i)

(b) code after node splitting

ea
mnf

(c) original graph

(d) graph after node splitting

Fig. 3. Example of node splitting.

P.-Y. Cullund er ul./ Parullel Compuriq 23 (1997) 2S1-266 255

For i = 1 to N do For i = 1 to N do

S: lhs(f(i)) = rhs(. .) 9: temp(f(i)) = rhs(. .)

. . . S: lhs(f(i)) = temp(f(i))

. . . = lhs(g(i)) . .

(a) original code . . = temp(di))
(b) code after- node splitting

Fig. 4. Transformation of statement S.

graph (Fig. 3(c)) contains a cycle involving a flow dependence from S, to S,, and an
output dependence from S, to S,. To break this cycle, rather than writing array ‘a’ in
statement S,, we store the evaluation of the right-hand side into a temporary array
‘temp’. This temporary array is read in S, instead of array ‘a’. The transformed code is
given in Fig. 3(b), and the new dependence graph is represented in Fig. 3(d).

The previous example is due to Padua and Wolfe [14]. We generalize [6] the
statement transformation as indicated in Fig. 4. The value computed at each iteration of
statement S is stored into a temporary array whose access function is the same as that of
‘lhs’, the left hand side of S. Obviously, if another statement instance depends upon a
value ‘lhs(g(i))’ computed by S, then the access to ‘lhs(g(i))’ must be replaced by
‘ temp(g(i))‘. This implies knowledge of the statement instances which depend upon a
value calculated in S (or in S after the transformation).

The impact of this transformation on the dependences going to and coming from a

statement S is summarized in Fig. 5. As shown in [6], if this transformation is applied to
all the statements of the original loop nest, then the new dependence graph contains only
flow dependence cycles and output dependence cycles. Furthermore, these cycles
correspond to cycles of the initial dependence graph.

However, applying the transformation to all statements is not a good approach. First,
it can be too costly. Moreover, it is useless to transform some statements. Consider for

mnb) mW

Fig. 5. A statement S with in-coming and out-going dependences (a) before and (b) after generalized Padua

and Wolfe’s transformation.

256 P.-Y. Callund et ul./ Pardlel Computing 23 (1997) 251-266

instance a statement S (a vertex of the dependence graph) with an incoming flow
dependence A, and an outgoing output dependence o,,,. We check on Fig. 5 that the

ft. "OU! fm f",, ~“1111
path . -+ S+. has been transformed into the path . + S’ + S-t . . Thus a cycle contain-
ing the original path is not broken by the transformation. In fact, the paths that are
broken when transforming statement S are those containing an anti or output depen-
dence incoming to S, followed by an anti or flow dependence going out of S. To
summarize, we break paths like

2.4. Conversion to single-assignment form

The only full transformation to single assignment form (SAF) has been proposed by
Feautrier in [lo]. The technique relies on an exact analysis of direct flow dependences
(through parametric integer linear programming) that permits the source of each array
reference to be found, i.e. the statement and the value of the surrounding loop counters
where the desired element of the array has been computed. Then, the algorithm is the
following:
- For each statement S surrounded by d, loops, define a new d,-dimensional array M,

and replace the left-hand side of S by M,(I) where I is the iteration vector
associated with S.

- Replace all references in the right-hand side using the corresponding source function:
if the source is defined at iteration flI> of statement S’, then reference M,,(f(l)),
and if the source is empty, then keep the original reference.
In other words, one temporary cell is introduced for each computation, and the

right-hand side is modified to reference either a temporary cell for a value modified in
the code, or the original scalar or array for a value kept unchanged. All new arrays have
as many dimensions as there are loops surrounding their definition.

This transformation has two main weaknesses: the resulting code is in general very
complicated, including many ‘if’ tests in the innermost loops; and it requires a very
large amount of memory (one cell per computation). Some attempts have been made to
remedy these two problems: more sophisticated rewriting techniques have been pro-
posed to move ‘if’ tests into the outermost loops if possible and to minimize the memory
usage (through memory folding, i.e. memory reuse) once parallelism has been detected
(see the work of Chamski [7]).

In other words, Chamski’s technique consists in three main steps:
1. transform the code into SAF, through full memory expansion,
2. parallelize the code,
3. reduce memory size by analyzing the life duration of each cell in the parallelized

code.
In this paper, we explore an opposite approach: first determine anti and output

dependences that are responsible for a loss of parallelism, remove them through memory
expansion and then parallelize. We believe that this approach is more flexible and

P.-Y. Callund er ul./ Porulld Compuring 23 (19971251-266 257

powerful to enable various parallelization strategies. We point out that a similar
approach is being currently developed in [12], but with a more restricted methodology
since the false dependence removal is done with respect to a given schedule.

3. Motivating example

We briefly review Allen and Kennedy’s algorithm (AK) in Section 3.1. Next we
present a simple example, upon which we apply three parallelization schemes. First. in
Section 3.2, we apply AK directly on the example. Then, in Section 3.3, we apply AK to
the single assignment form of the example. Finally, in Section 3.4, we integrate the false
dependences removal techniques into the parallelization process.

3.1. Allen and Kennedy’s parallelization algorithm

We summarize Allen and Kennedy’s algorithm (AK) because we use this paralleliza-
tion algorithm throughout the paper. More details on this algorithm can be found in
[1,5,171.

AK works on a structure called reduced leveled dependence graph (RLDG), i.e. a
description of the level of dependences. For a loop carried dependence, the level of

dependence is the rank of the first non null component of the distance vectors. This is
also the depth of the outermost loop which carries this dependence. For a loop

independent dependence, the level of dependence is said to be infinite and is denoted 5.
If e is an edge of the RLDG, l(e) denotes its level of dependence.

Before summarizing the algorithm in its simpler form, we need to recall some simple
graph definitions:
- A strongly connected component of a directed graph G is a maximal subgraph of G

in which for any vertices p and q (p # q> there is a path from p to q;

* The acyclic condensation of a graph G is the acyclic graph whose nodes are the
strongly connected components V,, V, of G. There is an edge from Vi to V, if
there is an edge e = (xi, yj) in G such that xi E Vi and yj E Vj.

* Let G be a reduced leveled dependence graph. Let H be a subgraph of G. Then
l(H) (the level of Hl is the minimal level of an edge of H:l(H) = min(/(e)le E H}.

AK(H, 1)

- H’ = H\{ell(e) < l}

- Build H”, the acyclic condensation of H’, and number its vertices V,, . . . , V,. in a
topological sort order.

- For i = 1 to c do
1. If Vi is reduced to a single statement S, with no edge, then generate parallel ‘For’

loops (‘ForPar’) in all remaining dimensions (i.e. for levels 1 to n) and generate
code for S.

2. Otherwise, let k = l(V;). Generate parallel ‘For’ loops (‘ForPar’) for levels from I
to k - 1, and a sequential ‘For’ loop (‘ForSeq’l for level k. Call AK(V+ k + 1).

Finally, to apply AK to a reduced leveled dependence graph G. call AK(G, 1).

2.58 P.-Y. Cdlund er nl./Parullel Computing 23 (1997) 251-266

3.2. Direct parallelization scheme

The direct parallelization scheme consists in the application of AK on the following
loop nest (with two 3-dimensional arrays a and c and one scalar 6):

For i = 1 to N do

For j = 1 to N do

For /c = 1 to N do

&:a(i,j,k)=a(i,j,k+l)+c(i,j+l,k)+c(i,j-l,k)+b

&: b = a(i - 1, j, k) + a(i, j - 1, k)

$3: c(i, j, k) = c(i + l,j, k) + c(i, j, k + 1)

EndFor

EndFor

EndFor

Motivating example
The RLDG of the motivating example is drawn 6 on Fig. 6. This RLDG contains a

single strongly connected component which includes the three statements and depen-
dences at level 1. Thus, the outermost loop (loop i) is marked ‘sequential’ by AK. We
now remove all level 1 edges: there is still a unique strongly connected component
including at least one dependence at level 2. Thus, the second loop (loop j) is marked
‘sequential’. We now remove level 2 edges: there are two strongly connected compo-
nents, and each component includes dependences at level 3. Thus, the third loop (loop
k) is marked ‘sequential’ for both components, and thus for all statements. Thus, AK
finds no parallelism in this example when taking into account anti and output depen-
dences, hence the need of removing at least some of the memory based dependences, in
order to expose parallelism.

3.3. Parallelization of the single assignment form

Another approach could be first to transform the loop nest into single assignment
form (thereby removing all memory based dependences), and then to apply the
parallelization algorithm.

6 Dependences are those found by Tiny [151. Some do not actually exist. For instance the anti dependence

from S, to S2 (due to scalar h) only occurs at level T; the anti dependences at level 1, 2 or 3 arc covered.

P.-Y. Callund et al./Purallel Compuring 23 (19971251-266 259

mnf: I. 2

mnyy-pL o.1.2*3 m”.p”o.2.3 -&?$&

Inn.. 1. 3 mna: 3 mna: 3

44 mn(b) NC)

Fig. 6. RLDG of the motivating example: (a) whole RLDG; (b) RLDG wirhoul level 1 dependences; (c)
RLDC without level I and 2 dependences.

Motivating example in single assignmenr form
We first transform the code into a single assignment form, using the transformations

of Section 2.4 and we get (assuming N 2 1):

For i = 1 to N do

For j = 1 to N do

For k = 1 to N do

SI: atemp(i,j, k) = a(i,j, k + 1) + c(i,j + 1, k)

+ if j 2 2 then ctemp(i,j - 1, k) else c(i, 0, k)

+ if k 2 2 then btemp(i,j, k - 1)

else if j L 2 then btemp(i, j - 1, N)

else if i > 2 then btemp(i - 1, N, N)

else b

5%: btemp(i, j, k) = if i > 2 then atemp(i - 1, j, k) else a(0, j, k)

+ if j 2 2 then atemp(i, j - 1, k) else a(i, 0, k)

&: ctemp(i,j, k) = c(i + l,j, k) + c(i,j, k + 1)

EndFor

EndFor

EndFor

The new RLDG is drawn in Fig. 7.

Fig. 7. RLDG of the motivating example in single assignment form.

260 P.-Y. Colluml et ai./ Purullel Compurin~ 23 (1997) 251-266

Parallelization of the single assignment form

One can easily see that AK will mark the two outermost loops (loops i and j)

‘sequential’ for statements S, and S,. Ail other loops will be found ‘parallel’. This is
expressed in the paraiieiized form written below (strictly speaking, we should also copy
back atemp(i, j, k) into a(i, j, k), ctemp(i, j, k) into c(i, j, k), and btemp(N, N, N)
into b).

ForPar i = I to N do
ForPar j= 1 to N do

ForPar k = 1 to N do
S,: ctemp(i, j, k) = c(i + 1, j, k) + c(i, j, k + 1)

EndFor
EndFor

EndFor
ForSeq i = 1 to N do

ForSeq j= 1 to N do
ForPar k = 1 to N do

S,: btemp(i, j, k) = if i 2 2 then atemp(i - 1, j, k) else a(0, j, k)
+ if j2 2 then atemp(i, j- 1, k) else a(i, 0, k)

EndFor
ForPar k = 1 to N do

S,: atemp(i, j, k) = a(i, j, k + 1) + c(i, j+ 1, k)
+ if jr 2 then ctemp(i, j- 1, k) else c(i, 0, k)
+ if k 2 2 then btemp(i, j, k - 1)

else if jr 2 then btemp(i, j- l,N)
else if i 2 2 then btemp(i - 1, N, N)

else b
EndFor

EndFor
EndFor
The latency of this parallel program is O(N’), instead of 0(N3) for the direct

paralieiized version. Hence our motivating example does contain some parallelism!
However, to expose ail the parallelism, we have introduced three new arrays of size N’,
which is the size of the iteration domain. We show in the next section that a clever
integration of the false dependence removal techniques into the scheduling process
enables maximum parallelism to be found while introducing less memory overhead.

3.4. Plugging false dependence removal techniques into the parallelization

The dataflow graph (the RLDG where only flow dependence edges are kept, see Fig.
g(a)) tells us exactly what amount of parallelism can be found in the program. Our aim
is to find in the whole RLDG as much parallelism, while introducing as less memory
overhead as possible.

3.4.1. First loop
Consider the first loop: because of the flow dependences, the outermost loop (loop i)

must be sequential for statements S, and S,. However, this loop could be made parallel

P.-Y. Callund et al./ Porullel Compuring 23 (1997) 251-266 261

J mnf 2 In”&! 2 ‘\J mnt. 2 mn 2

\

mn& ? pnS3 Ill” L--l mnf: 2

m&s
mna: 1. 3

._’
mnf: m

Inna: 1, 3

da) mn(b) 44

Fig. 8. Motivating example: (a) Dataflow graph (b) RLDG where incompatible edges are dashed (cl RLDG

after program transformation.

for s,. In order to expose this parallelism, S, should not belong any longer to a strongly
connected component including some level 1 dependence. Therefore two false depen-
dence edges must be removed, we call them incompatible edges (see Fig. 8(b)):
. The anti dependence from S, to S,. Because of this edge and of the flow dependence

from S, to S,, S, is in the same strongly connected component than S, and S,,
which contains an edge at level 1.

* The self anti dependence on S, at level 1.
Note however that there is no need to remove the anti dependence of level 1 from S,

to s,.
The two incompatible dependences can be removed by splitting the node S, as

explained in Section 2.3. This only introduces a single new three dimensional array. The
new RLDG is depicted in Fig. 8(c). We can now apply the first step of Allen and
Kennedy’s algorithm and we get:
ForPar i = 1 to N do
ForParj=l to N do
ForPar k = 1 to N do

S;: ctemp(i, j, k) = c(i + 1, j, k) + c(i, j, k + 1)
EndFor

EndFor
EndFor
ForSeq i = 1 to N do
Forj=ltoNdo
Fork=ltoNdo
S,: a(i, j, k) = a(i, j, k + 1) + b -I- c(i, j + 1, k)

+ if j 2 2 then ctemp(i, j - 1, k) else c(i, 0, k)
S,: b=a(i- 1, j, k)+a(i, j- 1, k)

EndFor
EndFor

EndFor

262 P.-Y. Collund er al./ PurrrIle Computing 23 (1997) 251-266

mnt: 2. 3 ““l: 2.3 mno: 2. 3

Ma) mn(b)

Fig. 9. After firs1 level parallelization: (a) Dataflow graph (b) RLDG.

ForPar i=l toNdo
ForParj=l to N do
ForPar k= 1 to N do
S,: c(i, j, k) = ctemp(i, j, k)

EndFor
EndFor

EndFor

3.4.2. Second loop

We now consider the second step of AK for the loops surrounding S, and S, (since
the rest of the code is already fully parallelized). The remaining RLDG at level 2 is
depicted in Fig. 9.

Because of the flow dependences at level 2 (see Fig. 91, the second loop (loop j)
must be sequential for statements S, and S,. Removing the anti dependence at level 2
from S, to S, will not permit to detect more parallelism with AK. The second loop is
marked sequential.

3.4.3. Third loop

Considering the dataflow graph of Fig. 10(a), we see that the innermost loop could be
marked parallel because there is no cycle at level 3. In order to expose this parallelism,
S, and S, should not belong any longer to a strongly connected component including
some level 3 dependences. Therefore three false dependence edges must be removed
(see Fig. 10(b)):
* the self output dependence on S,.
- the anti dependence from S, to S,.
- the self anti dependence on S,.

mnf: 3 mnf: 3 mno: 3 Inn‘: 3

da) mn(b) mm
Fig. IO. After second level parallelization: (a) Dataflow graph (b) RLDG where incompatible edges are dashed
(c) RLDC after program transformation.

P.-Y. Cullund et al./ Puralld Compuring 23 (1997) 2.51-266 263

Ihe first two dependences can be removed by expanding the scalar b as explained in
Section 2.2. The third dependence can be removed by splitting the node S, as explained
in Section 2.3. However, instead of introducing two 3-dimensional arrays to suppress
these dependences, we introduce only two 1 -dimensional arrays ‘atemp’ and ‘btemp’:
this is because the outermost two loops are already sequential. Indeed, we only need to
remove incompatible dependences for each irerufion of fhe ouferrm~t ~OOJX. This is
done as if the outermost two loops indexes were fixed. We first get the code:

ForSeq i = 1 to N do
ForSeq j = 1 to N do

btemp(0) = b
Fork=1 toNdo

S;: atemp(k) = a(i, j, k + 1) + btemp(k - 1) + c(i, j+ 1, k)
+ if j> 2 then ctemp(i, j - 1, k) else di, 0, k)

S,: a(i, j, k)= atemp(k)
S,: btemp(k) = a(i - 1, j, k) + a(i, j- 1, k)

EndFor
b = btemp(N)

EndFor
EndFor

whose RLDG at level 3 is depicted in Fig. lo(c). Finally, applying the last step of AK
leads to:

ForSeq i = 1 to N do
ForSeq j = 1 to N do

btemp(0) = b
ForPar k = 1 to N do

S,: btemp(k) = a(i - 1, j, k) + a(i, j- 1, k)
EndFor
ForPar k = 1 to N do

S’,: atemp(k) = a(i, j, k + 1) + btemp(k - 1) + c(i, j + 1, k)
+ if j 2 2 then ctemp(i, j - 1, k) else c(i, 0, k)

EndFor
ForPar k = 1 to N do

S,: a(i, j, k)= atemp(k)
EndFor
b = btemp(N)

EndFor
EndFor

4. Plugging false dependence removal techniques into parallelization algorithms

In Section 3, we have shown that integrating the false dependence removal tech-
niques into the parallelization scheme makes it possible to find all the parallelism while
introducing less memory overhead. In our example, one 3D array and two 1D arrays
have been introduced instead of three 3D arrays as needed by the parallelization of the

264 P.-Y. Callund t-r ul./Purullrl Compuring 23 (19971251-266

single assignment form. Note that if external constraints had dictated that introducing a
3D array were too costly, we would have been able to cope with these constraints. We
would have exposed less parallelism, but that is the price to pay!

We now summarize our methodology.

4.1. Integration scheme

Instead of removing all possible false dependences first and then applying a paral-
lelization algorithm, we propose to combine both techniques.

Suppose that we use a parallelization algorithm that has the following properties:
- Each statement S surrounded by TZ~ loops in the original code is surrounded by n,

loops in the parallelized code.
. The choice of the loops surrounding S is made from the outermost to the innermost.

Note that all known parallelization algorithms have these properties: Allen and
Kennedy’s algorithm, Wolf and Lam’s algorithm, Darte and Vivien’s algorithm,
Feautrier’s algorithm.

We propose to plug false dependence removal techniques into loop parallelization
algorithms as follows (where G is a given dependence graph):

Parallelization (G)
- Determine false dependences that could be removed by standard dependence

removal techniques, as presented in Section 2. Let F be the dependence graph obtained
if these dependences were removed. F is the dependence graph that exhibits as much
parallelism as can be exposed.

- Apply the parallelization algorithm on F. Let PP be the parallelized program
obtained. Each statement .S is surrounded in PP by a sequence of n, loops, marked
either sequential or parallel.

- For d= 1 to max(n,) do
(i) Mark as incompatible all dependences in G but not in F (i.e., false dependences

that can be removed) which, if not removed at depth d, will induce a loss of parallelism
if PP is taken as reference. In other words, incompatible dependences are those that
prohibit the generation of the same number of parallel loops as in PP within the
n, - d + 1 remaining loops surrounding S.

(ii) Remove all the incompatible dependences by introducing temporary arrays of
dimension as small as possible.

(iii) Generate the loop.

4.2. Comments

We do not go on more formally: the integration scheme above is simply the sketch of
our methodology. Many problems remain to be solved: how to characterize incompatible
edges for an arbitrary parallelization algorithm, how to minimize the number of
incompatible dependences that should be removed, how to minimize the dimension of
the temporary arrays that have to be introduced,. . . However, we have given several
examples in Section 3 which should make these problems clearer.

P.-Y. Callund er ul./Purullel Conpurrng 23 (1997) 251-266 265

4.2.1. On the dimension of temporary arrays
In theory, we can hope to introduce temporary arrays with as many dimensions as

nested loops minus the number of sequential loops already generated. See for example
how node splitting has been performed in Fig. 10: we introduced only a 1D array and
not a 3D array for splitting S,. This adds a new output dependence with level 1 and 2
for S; but it has no effect in terms of parallelization since the two outermost loops are
already sequential.

In practice however, the dimension of the temporary arrays may be different. On one
hand, we may need extra memory if the false dependence removal technique is not
powerful enough to enable code generation: this is the case, for example, if the access
functions are too complicated. On the other hand, memory overhead can be reduced by
the use of scalar/array privatization, instead of expansion, along the parallel dimen-
sions. This is illustrated in the example of Fig. 3: the 1D temporary array temp could be
transformed into a privatized scalar.

4.2.2. Incompatible edges
Plugging dependence removal techniques into Allen and Kennedy’s algorithm is

straightforward, because it uses only loop distribution/fusion, which corresponds in
terms of graph to the detection of strongly connected components in the RLDG. We
have seen in Section 3 that this permits the identification of incompatible edges. They
are precisely defined as follows:

For a RLDG H, we denote by H, the subgraph of H obtained by deleting all edges
with level < 1. Then, incompatible edges at level 1 are the edges which belong to (at
least) one cycle C such that:
1. C contains an edge of level 1,
2. C contains a vertex that only belongs in F, to cycles of level strictly greater than 1.

The characterization of incompatible edges for Darte and Vivien’s algorithm is much
more complicated. We refer to [8,9] for a complete description of the algorithm. We just
give here the flavor of this algorithm.

Darte and Vivien’s algorithm takes as input a reduced dependence graph G whose
edges are labeled by dependence polyhedra. First, the reduced dependence graph G is
uniformized into a graph G,, which contains the nodes of G and some new nodes, called
virtual nodes. Then G, is processed by the parallelization algorithm as the reduced
dependence graph of a system of uniform recurrence equations, except that one has to
take into account the fact that some nodes are virtual. Then, the algorithm is recursive
and it relies on the construction of a particular subgraph of G,, the subgraph of null
weight multi-cycles, denoted as G’. Incompatible edges are the edges that change the
structure of G’, more precisely that change the structure of the vector space generated by
the weight of the cycles of G’ (or of one of the G’ that will be recursively defined). We
have not studied yet the complexity of this complete characterization.

5. Conclusion

We have presented a framework to plug false dependence removal techniques into
loop parallelization algorithms. Our approach has two main advantages. First, we
remove only false dependence edges that are responsible for a lesser degree of

266 P.-Y. Cullund et ul./ Purullel Computing 23 (19971251-266

parallelism, i.e. responsible for the sequentialization of an extra loop. Second, for each
dependence removal - hence for each new temporary array - we use our knowledge
on the already generated loops to (try to) minimize the number of dimensions of this
temporary array.

Furthermore, our algorithmic sketch can be controlled by external parameters. For
instance, we can require that each statement is surrounded by the same number of
sequential loops. More important, we can straightforwardly cope with external con-
straints on the total memory overhead which is allowed. For instance if only 2D-arrays
may be introduced, we will generate only 1D or 2D temporaries, at the price of some
loss in parallelism.

Further work should be devoted to a better characterization of ‘incompatible’ edges,
and to a precise estimation of the extra memory that is needed to expose all the potential
parallelism.

References

[I] J.R. Allen and K. Kennedy, Automatic translation of Fortran programs to vector form, ACM TOPIUS 9

(1987) 491-452.

[2] D.F. Bacon, S.L. Graham and O.J. Sharp, Compiler transformations for high-performance computing,

ADM Comput. Surv. 26(4) (1994).

[3] U. Banerjee, R. Eigenmann, A. Nicolau and D.A. Padua, Automatic program parallelization, Proc. /EEE

81(2) (1993) 211-243.

[4] T. Brandes, The importance of direct dependences for automatic parallelization, in: Inr. Conf. of

Supercomputing (1988) 407-417.

151 D. Callahan, A Global Approach to Detection of Parallelism, Ph.D. thesis, Dept. of Computer Science,

Rice University, Houston, TX, 1987.

161 P.-Y. Calland, A. Dark Y. Robert and F. Vivien, On the removal of anti and output dependence& in: J.

Fortes, C. Mongenet, K. Parhi and V. Taylor, eds., Applicution Specific Systems, Architectures und

Processors (IEEE Computer Society Press, 1996) 353-364.

[7] 2. Chamski, Environnement logiciel de programmation d’un accelerateur de calcul parallele, Ph.D. thesis,

Univenit de Rennes, Rennes, France, 1993, No. 957.

[8] A. Darte and F. Vivien, A classification of nested loops parallelization algorithms, in; INRIA-IEEE Symp.

on Emerging Technologies wul Factory Automution (IEEE Computer Society Press, 1995) 217-224.

[9] A. Darte and F. Vivien, Optimal tine and medium grain parallelism detection in polyhedral reduced

dependence graphs, Technical Report 96-06, LIP, ENS-Lyon, France, April 1996.

[IO] P. Feautrier, Dataflow analysis of array and scalar references, Int. J. Purullel Progrum. 20(I) (199 1)

23-51.

[1 I] J. Gu, Z. Li and G. Lee, Symbolic array dataflow analysis for atray privatization and program

parallelization. in: Supercomputing 95 (1995).

[121 V. Lefebvre and P. Feautrier, Gestion de la mCmoire dans les programmes paralltles, in: R. Castanet and

J. Roman, eds., RenPar’d (LaBRII, Universitt de Bordeaux, France, May 19%) 149- 152 (in French).

[131 D.E. Maydan. S.P. Amarasinghe and M. Lam, Array dataflow analysis and its use in array privatization,

in: Principles of Progmmming Longuuges (I 993).

[14] D.A. Padua and M.J. Wolfe, Advanced compiler optimizations for supercomputers, Commun. ACM

2% 12) (December 1986) I l84- 1201.

[1.5] M. Wolfe, The Tiny loop testructuring research tool, in: H.D. Schwetman, ed., Int. Conj1 on Purdel

Processing, Vol. II (CRC Press, 1991) 46-53.

[161 M. Wolfe, High Performance Compilers For Purullel Computing (Addison-Wesley Publishing Com-

pany, 19%).

[171 H. Zima and B. Chapman, Supercompilers for Purullel und Vector Computers (ACM Press, 1990).

