
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 12, DECEMBER 1998 1319

Short Papers

Retiming DAG’s

P. Y. Calland, A. Mignotte, O. Peyran, Y. Robert, and F. Vivien

Abstract—This paper is devoted to a low-complexity algorithm for
retiming circuits without cycles, i.e., those whose network graph is a
direct acyclic graph (DAG). On one hand, DAG’s have a great practical
importance, as shown by the on-line arithmetic circuits used as a target
application in this paper. On the other hand, retiming is a costly design
optimization technique, in particular when applied to large circuits. Hence
the need to design a specialized retiming algorithm to handle DAG’s
more efficiently than general-purpose retiming algorithms. Our algorithm
dramatically improves on current solutions in the literature: we gain an
order of magnitude in the worst case complexity, and we show convincing
experimental results at the end of this paper.

I. INTRODUCTION

Retiming is a technique used to optimize synchronous very-
large-scale-integration (VLSI) circuits. The basic idea is to relocate
registers along the paths in the circuit so as to reduce combinational
rippling. The rule of the game is that the functional behavior of
the circuit as a whole is preserved. There are different cost criteria
to evaluate the efficiency of the retiming, but minimizing the clock
period (longest path without registers) and/or the state (total number
of registers) are the most frequently used. The survey paper of
Leiserson and Saxe [9] gives several polynomial-time algorithms to
compute the optimal retiming of a given circuit using the previous
two cost criteria. Pipelining VLSI circuits can be viewed as another
instance of the retiming problem. Given a circuit with combinational
elements, the problem is to determine the minimum number of
registers that should be added and to determine where to insert these
registers so as to achieve a fixed clock period (when operating in
pipelined mode, hence the namepipelining). The rule of the game is
still that the functional behavior of the circuit is preserved, but the
price to pay here is an increase in latency. Section III is devoted to a
review of known results concerning various instances of the retiming
problem.

Retiming is a powerful design optimization technique. However,
retiming algorithms have a large cost that limits their use: the
efficient retiming of large circuits remains computationally very
demanding, even though sophisticated optimization techniques have
been introduced [13], [10], [16].

The main contribution of this paper is a new algorithm for retiming
circuits without cycles, i.e., those whose network graph is a direct
acyclic graph (DAG). DAG’s are very commonly encountered in
VLSI design, hence the importance of deriving efficient specialized
algorithms for retiming such circuits. Section II emphasizes the
practical importance and usefulness of scheduling DAG circuits
by providing a target example: the design optimization of on-line
arithmetic operators. We point out that several other application
domains, such as real-time design, and more generally applications
where data are circulated in a serial way, lead to acyclic circuits.

Manuscript received October 25, 1995; revised May 18, 1998. This paper
was recommended by Associate Editor R. Camposano.

The authors are with CNRS, Laboratoire LIP, Ecole Normale Supérieure
de Lyon, Lyon Cedex 07, 69364 France.

Publisher Item Identifier S 0278-0070(98)09357-9.

Last, our result on DAG’s may help further the efficiency of retiming
general circuits.

Our new algorithm for retiming a DAG only requires two passes
over the network graph, as opposed tojV j passes in [9], where
jV j is the number of nodes in the network graph. The paper is
organized as follows. Section II is devoted to our target application.
As already stated, Section III is devoted to a review of existing
literature, together with a formal statement of the retiming problems.
Our algorithms are given in Section IV. Section V is devoted to
experimental results: we compare the execution time of our new
retiming algorithm against that of Leiserson and Saxe. We give some
final remarks and conclusions in Section VI.

II. M OTIVATING EXAMPLE

In on-line arithmetic, operands circulate through operators in a
digit-serial fashion, most significant digit first. On-line arithmetic was
introduced by Ercegovac and Triveli [6], who proposed algorithms for
on-line multiplication and division. The operands enter the design at
time t, and the first digit of the result is output at timet+�, where� is
the latency of the design. The main advantages of on-line arithmetics
are the low resulting clock period even for complex applications and
the simplified accuracy control. Each new digit of the result improves
the final result precision. The computation can stop as soon as the
required accuracy is reached.

This serialization is possible only if all the operands circulate the
most significant digit first. Unfortunately, the usual serial algorithms
for addition and multiplication work the least significant digit first.
A specific number system is then used, namely, the signed digit
redundant number system, orborrow-savesystem, whose redundancy
makes it possible to perform addition and multiplication with no
carry propagation. For instance, Fig. 1 shows a borrow-save adder
for redundant arithmetic. This borrow-save adder is made out of plus
plus minus (PPM) cells, as illustrated in Fig. 2.

Several algorithms and corresponding architectures have been
proposed to perform basic and complex operators such as addition,
multiplication, division, square root, and trigonometric functions [1],
most significant digit first. These operators are already temporized
so as to satisfy a specific behavior. They define a pipelined operator
library for on-line arithmetic. For instance, Fig. 2 corresponds to one
stage of the adder of Fig. 1. Registers are inserted to make sure that
c�
n�1; b

�

n�1 of the previous stage is used to computes+
n�1 ands�

n�2.
Thus, a given application using on-line arithmetic is pipelined by

construction. This determines a given latency� and a given clock
period corresponding to the critical path of the design (i.e., the longest
path in terms of cells with no register). Let us illustrate this on the
application of Fig. 3(a): the critical path of the application is six
PPM cells.

Nevertheless, the resulting clock period may not be satisfactory
to the designer. Therefore, one may have to transform the design
by grouping digits to increase the clock period or, at the opposite,
by inserting timing barriers (latches) between operators to reduce
the clock period. We will focus on the second transformation, as
the first one only deals with the pipelined operator library. Suppose
that the designer inserts a timing barrier (a latch on every path) as
shown in Fig. 3(b); the critical path is reduced to four PPM cells.
Unfortunately, in that case, the critical path is not optimized: it can

0278–0070/98$10.00 1998 IEEE

1320 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 12, DECEMBER 1998

Fig. 1. A borrow-save adder made of PPM cells. The digitsai; bi; and si, whose values are�1; 0; or 1, are represented by the bitsa+
i
; a
�

i
; b
+

i
;

b
�

i
such thatai = a

+

i
� a

�

i
; bi = b

+

i
� b

�

i
; � � � .

Fig. 2. A latency-two borrow-save serial adder, working the most significant
digit first. Square cells are registers.

be reduced to three PPM cells by moving some registers, as shown
in Fig. 3(c).

The problem of moving registers to optimize the clock period while
preserving the whole behavior is the well-knownretiming problem.
Moreover, on-line arithmetic has two main properties: the design is
only made up of two basic cells (PPM and half-adders) and it can
be described with a DAG. These two properties will be exploited
to reduce the algorithm complexity of retiming as described in the
next sections.

III. REVIEW OF RETIMING TECHNIQUES

A. A Graph-Theoretic Framework

Computational devices (VLSI circuits or VHDL programs) are
represented by a finite, connected, vertex-weighted, edge-weighted
directed multigraphG = (V;E; d; w). Vertices of the graph (or
nodes) model the computational elements. Each vertexv 2 V is
weighted with its nonnegative delayd(v). Vertex delaysd can be
rational numbers, but since the graph is finite, we can always change
the time unit to have integer delays. The directed edgesE of the
graph model interconnections between functional elements. Each
edgee 2 E is weighted with a “register” countw(e), which also
corresponds to the number of “wait until clock” statements in VHDL
programs. Edge delays are nonnegative integers.

We need a few definitions and notations, which we borrow from the
reference paper of Leiserson and Saxe [9]. For an edgee : u ! v,
we write u = t(e) the tail of e and v = h(e) the head of e. We
define asinput nodes(respectively,output nodes) the nodes whose in-
degree (respectively, out-degree) is zero. We add two special vertices
vfrom host and vto host, with zero delay, to model the interface of
the graph with the external world:d(vfrom host) = d(vto host) = 0.
We let V 0 = V [fvfrom host; vto hostg. Finally, we define a null-
weighted edge fromvfrom host to each input node and a null-weighted
edge from each output nodes tovto host. These edges are called,
respectively,input edgesand output edges. They form the set of
interface edgesthat we denote byI. We letE0 = E [I (see Fig. 4
for an illustration).

For any simple pathP = v0
e

! v1
e

! � � �
e

! vk, we
define thepath tail t(P) = v0 as the tail of its first edge, the
path headt(P) = vk as the head of its last edge, thepath delay
d(P) = k

i=0
d(vi) as the sum of the delay of the vertices ofP ,

and thepath weightw(P) = k�1

i=0
w(ei) as the sum of the weights

of the edges ofP . We denote byl(P) the length ofP , i.e., the
number of edges inP . If k = 0, we let l(P) = 0; d(P) = d(v0)
and w(P) = 0.

Leiserson and Saxe [9] deal with network graphsG that do not
contain any zero-weight cycle: in any directed cycleC of G, there
is some edge with strictly positive weight, i.e.,w(C) > 0. This
condition ensures that the operation ofG is well defined (in the
case of VLSI circuits, we sayG is synchronous). Theclock period
of G is then well defined by�(G) = maxfd(P);w(P) = 0g.
Intuitively, the clock period is the maximum amount of propagation
delay through which any signal must ripple between clock ticks (as
delays are integer values, clock period is an integer value). The
state of G is defined as the sum of the registers over all edges:
S(G) =

e2E
w(e).

Retiming is an assignment of an integer lagr(v) to each vertex
v 2 V : r(v) registers are subtracted from (respectively, added to) the
weight of each edge leavingv (whose tail isv), while r(v) registers
are added to (respectively, subtracted from) the weight of each edge
enteringv (whose head isv). Formally, a retiming functionr is a
mapping fromV 0 to Z such thatr(vfrom host) = r(vto host) = 0.
It leads to a new edge-weighting functionwr defined for an edge
u

e
! v by wr(e) = w(e) + r(v)� r(u). A retiming is legal if the

new edge weightswr are all nonnegative. Obviously, a legal retiming
does not change the global behavior of the computational graphG,
but both the clock period�r(G) and the total number of registers
Sr(G) are altered.

Several problems can be formulated.

Problem 1) Given a graphG = (V;E; d; w) and a maximum
allowable clock periodc, find a legal retimingr such
that �r(G) � c.

Problem 2) Given a graphG = (V;E; d; w), find a legal retiming
r such that the clock period�r(G) of the retimed
circuit Gr = (V;E; d; wr) is as small as possible.

Problem 1) is the basic feasibility problem and can be solved in
O(jV jjEj) in the most general instance [9]. There are two variants to
the optimization problem. The first variant is theregister minimization
problem: given c, we ask to determine a legal retimingr such that
�r(G) � c andSr(G) is as small as possible. The complexity of
this variant is dominated by the solution of a minimum cost-flow
problem; see [9], [14], and the references therein for several bounds.

Problem 2) is the second variant, theclock minimization problem,
and can be solved inO(jV jjEj log jV j) in the most general formu-
lation [9]. In fact, it turns out that a way to solve Problem 2) is to

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 12, DECEMBER 1998 1321

Fig. 3. Adding and moving registers to decrease the period.

repeatedly solve several instances of Problem 1) using a binary search
for c. A particular case for Problem 2) supposes that the maximal
delay of a node,D = maxfd(v); v 2 V g, grows subpolynomially
with respect to the number of functional elements in the circuit, i.e.,
that there exists a polynomial functionP such thatD(G) � P (jV j).
In this case, the algorithm complexity becomesO(jV jjEj logD) (see
[12]).

Our main result is that the generic algorithms of [9] can be
specialized when applied to DAG’s. Section IV presents a solution
to Problem 1) that runs inO(jEj) and one to Problem 2) that runs
in O(jEj(log jV j + logD)).

B. Review of Related Problems

Retiming techniques have been applied to several related problems.
Retiming was first introduced by Leiserson and Saxe in [8] in order
to solve Problem 1) for systolic circuits (unit-delay circuits with at
least one register between two functional units). Their solution, using
the Bellman–Ford algorithm, requiresO(jEjjV j) time.

Wehn et al. linked high-level synthesis and retiming in [2], using
the correspondence between “wait until” statements and registers.
Using the conditions defined by Leiserson and Saxe, they stated dif-
ferent problems, like as-soon-as-possible scheduling or minimization
of registers, as linear programming problems. They expressed these
problems with various objective functions. However, they did not
provide any solution to these problems.

Some researchers proposed interesting results for simpler problems,
like Papaefthymiou [12], who proposed an algorithm that gives the
minimum clock period of a circuit with at mostl levels of registers,
wherel is a given value. The algorithm runs inO(jEj log jV j), but
the initial circuit has to be empty of registers. Therefore, it is only
interesting when one needs to pipeline a combinational circuit.

In the same idea of optimizing a combinational circuit, Munzer
and Hemme [11] proposed an algorithm inO(jEj � jV j2) to solve the
register minimization problem. From a register-empty circuit, they
apply as-soon-as-possible and as-late-as-possible register locations,
with the constraint of satisfying a given clock period. The two
locations determine the parts of the circuit where registers are likely
to be moved. Within these parts, they use a maximal flow algorithm
to find the minimal number of registers.

Considering sequential circuits, Chenet al.showed the relationship
between retiming and loop folding [4]. They propose a solution to

Problem 2) using an as-soon-as-possible pipeline algorithm. However,
they did not formally explain the way registers are moved within the
circuit, which is the most important step in terms of complexity.

In a later paper [9], Leiserson and Saxe improved their technique
and proposed several algorithms to solve Problem 2) by capturing
it into a linear programming problem, the best one running in
O(jEjjV j log jV j). They also have a solution to the register mini-
mization problem in the case of sequential circuits. They express this
problem as a minimum cost flow problem, after having augmented the
graph representing the circuit with virtual vertices and edges, in order
to have a good cost function. The complexity isO(jV j3 log jV j).

Several recent developments are nicely surveyed by Shenoy [15].
In particular, retiming large circuits remains a practical problem
because of the long running time of the (polynomial but) costly
algorithms of Leiserson and Saxe. Efficient optimizations to reduce
the number of constraints are described by Sapatnekar and Deokar
[13] and by Maheshwari and Sapatnekar [10]. Szymanski [17]
proposes several algorithms to generate (and process) relevant linear
constraints only. See also Shenoy and Rudell [16] for heuristics
(based on retiming selected subgraphs) that dramatically reduce
the overall computation time. Last, several extensions of retiming
problems to incorporate multiplexing and time folding are discussed
by Fluiter et al. [5].

The high complexity of retiming algorithms motivates the need
for low-complexity solutions specialized to some classes of network
graphs. We present our low-cost algorithm to retime DAG’s in the
next section.

IV. CLOCK PERIOD MINIMIZATION FOR A

DAG WITH OPERATORS OFANY DELAY

Let G = (V;E; d; w) be a DAG. In this section, the function
d : V ! N can take any nonnegative value. However, we consider
that d(vto host) = d(vfrom host) = 0 in all cases.

A. Two-Pass Algorithm

The following algorithm operates through two passes overG to
determine a legal retimingr such that�r(G) � T . In the first pass,
all registers are moved as close as possible to the nodevfrom host,
with respect to retiming rules: when processing a node, we can add
(suppress) the same number of registers on each incoming (outgoing)
edge, provided that the weight on each edge remains nonnegative. In

1322 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 12, DECEMBER 1998

Fig. 4. Initial register distribution. Note that operators have different delays.

Fig. 5. Resulting distribution after the first pass of the algorithm.

the second pass, all registers are moved as far as possible from the
nodevfrom host, with respect to the same rules, and also with respect
to the target periodT .

Algorithm: Remember thatV is the set of vertices ofG with
nonzero in- and out-degrees and that the set of all vertices ofG is
V 0 = V [fvfrom host; vto hostg.

Consistency test
If T < maxv2V d(v) then ERROR endif

First pass
for (each vertexv 2 V in reverse topological order)

do
n = mine2Ejt(e)=v w(e)

8e 2 E j t(e) = v; w(e) w(e)� n

8e 2 E j h(e) = v; w(e) w(e) + n

enddo
Second pass

�(vfrom host) 0

for (each vertexv 2 V in topological order)
do

n mine2Ejh(e)=v w(e)

n� � computationstatement,
taken over all edges whose head isv and whose weight
is n �n
�(v) d(v) + maxf�(t(e)) : e 2 E; h(e) = v and
w(e) = ng

if (�(v) > T) then
n� Leave a registercase�n
if (n = 0) then ERROR endif
n n� 1

�(v) d(v)

endif

8e 2 E j h(e) = v; w(e) w(e)� n
8e 2 E j t(e) = v; w(e) w(e) + n

enddo.

Theorem 1: Let G = (V;E; d; w) be a DAG, and letTtest be an
integer. If there exists a register distributionwr on G whose clock
period is less than or equal toTtest, then the “two-pass algorithm”
called withT set toTtest succeeds to find such a register distribution.

Complexity: A detailed proof of the correctness of the two-pass
algorithm (Theorem 1) is available in the companion research report
[3]. The topological sort onG can be done inO(jEj+jV j) = O(jEj)
(recall thatG is connected). The first and second passes of the
algorithm process all nodes ofG once. For each node, all its input
and output edges are processed. The complexity of these passes is
thereforeO(jEj). The complexity of the two-pass algorithm alone
is thenO(jEj).

B. Period Minimization and Complexity

Algorithm: The algorithm below finds the minimum achievable
period for a DAG and a valid retiming for this period.

General algorithm
tmin maxv2V d(v)
tmax �(G)
Repeat

t b t +t
2

c
if the “two-pass algorithm” succeeds withT = t

then tmax �(Gr)
else tmin t+ 1

tmax min(tmax;�(Gr))
endif

Until tmax = tmin.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 12, DECEMBER 1998 1323

Fig. 6. Resulting distribution after the second pass of the algorithm.

Fig. 7. Digital correlator. Adders have a delay equal to seven, while
�-operators have a delay equal to three.

This algorithm uses the “two-pass algorithm” as a kernel in a binary
search of the minimum clock period: if there exists a valid retiming
for the tested period valuec, then the two-pass algorithm succeeds
to find one, else it fails, and in both cases the set of possible period
values is refined.Gr is the resulting graph(Gr = (V;E; d; wr)).

We illustrate the execution of the algorithm on an example (see
[3] for a detailed proof). The original graph to be retimed is given in
Fig. 4. We assume that the optimal period�opt(G) = 18 is known,
and we apply the two passes. The graph obtained after the first pass
is shown in Fig. 5. Fig. 6 represents the graph obtained after the
second pass of our algorithm.

Complexity: The complexity of the two-pass algorithm isO(jEj).
Thus, the complexity of the general algorithm isO(jEj(log jV j +
logD)), where D = maxv2V d(v); indeed, �opt(G) is upper
bounded byjV jD.

Hence, we have proposed a solution to Problem 1) that runs in
O(jEj), and a solution to Problem 2) that runs inO(jEj(log jV j +
logD)).

V. APPLICATIONS

In this section, we present some practical applications of our two-
pass algorithm, and we compare its computation times with those of
the original retiming algorithms introduced by Leiserson and Saxe
[9].

A. The Digital Correlator

Consider the example of the digital correlator (see Fig. 7) that
Leiserson and Saxe have chosen to illustrate their retiming technique
[9]. The digital correlator is a DAG that takes a stream of bits
x0; x1; . . . as input and compares it with a fixed-length pattern
a0; a1; � � � ; ak�1. It produces as output the valueyi

yi =

k�1

j=0

�(xi�j ; aj):

Let Cork denote the correlator of lengthk (i.e., withk �-operators
andk� 1 adders). Leiserson and Saxe useCor4 as a target example

TABLE I
COMPUTATION TIMES (IN SECONDS) FOR DIFFERENTAPPLICATIONS

in [9]. We use correlators of sizek = 10; k = 50 andk = 100 in
our experiments.

B. The Three-Way Circuit

Retiming is widely used to introduce pipelining in large operators.
Fig. 8 shows the graph of an operator that performs the squaring
of big numbers: a numberA is decomposed into three parts,A0;

A1; andA2. The squaring ofA uses only the squaring of theAi, and
simple operations (additions, shifts, and a final division by three) [18].
Our aim here is to insert one level of pipeline. Therefore, we insert
one register on each input edge, and we run the retiming algorithms
to determine where to place these registers in order to obtain the
optimal clock period.

C. The SVD Circuit

Consider the circuit represented in Fig. 9, which is used to compute
the singular value decomposition (SVD) of a rectangular matrix (see
[7]). The SVD is a factorization technique used in many signal-
processing transformations. It aims at factorizing a matrixA as
A = U�V T , whereUTU = I, V TV = I, and� is a diagonal
matrix with nonnegative elements. The principle is to perform a
series of 2� 2 SVD along the main diagonal ofA, where each
2 � 2 SVD is realized by a two-sided rotation that diagonalizes the
submatrix (algorithm FHSVD). Fig. 9 is the graph corresponding to
the SVD scheme based on the on-line arithmetic implementation of
the FHSVD algorithm.

D. Results

All timing results are summarized in Table I, wheretimetwo is the
computation time needed to obtain the optimal clock period with our
two-pass algorithm, andtimeLS is the corresponding time with the
modified algorithm of Leiserson and Saxe. The correlator circuit was
used to create larger graphs, to show the efficiency of our method
when it comes to processing medium-size graphs.

Roughly speaking, the gain is 50% for small circuits, and becomes
more and more significant as the size of the circuit increases.

1324 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 12, DECEMBER 1998

Fig. 8. Introducing one level of pipeline into the three-way method.

Fig. 9. On-line scheme for algorithm FHSVD.

VI. CONCLUSION

We have dealt with various instances of the retiming problem.
Our initial motivation was dictated by our target application: on-line
computer arithmetic circuits are naturally pipelined circuits without
cycles, hence the search for more efficient retiming algorithms
applicable to DAG’s.

We have succeeded in improving the known complexity of clock
minimization problems for DAG’s, and we have given experimental
evidence of the superiority of our new retiming algorithms. Further
work could be aimed at improving the complexity of the register
minimization problem. It is not clear that a more efficient solution can
be found for DAG’s than for arbitrary graphs with cycles. However,
computer arithmetic circuits usually involve regular computational
elements, and this characteristic may prove helpful. For instance, the
borrow-save adder of Fig. 1 only involves identical devices of input
degree three and output degree two. Thus, in this case, our two-pass
algorithm also minimizes the total register number, as registers are
pushed, in the second pass, from inputs to outputs.

There remain many interesting open problems in the area. For
instance, computational devices are usually selected from a cell
library, and we can have the freedom to select, say, among several
adders with different delays and input/output degrees. For example,
if a borrow-save adder has a very interesting delay, this is due to the
redundant number representation used, which means twice as many
registers to memorize a number. This could be yet another parameter
of the fundamental design optimization problem to be solved: match
a clock period constraint while minimizing the total register number.

ACKNOWLEDGMENT

The authors would like to thank A. Darte for his careful reading of
this paper. They are indebted to the reviewers for their comments and
suggestions and for pointing out several bibliographical references.

REFERENCES

[1] J. C. Bajard, S. Kla, and J. M. Muller, “BKM: A new hardware algorithm
for complex elementary functions,”IEEE Trans. Comput., vol. 24, pp.
598–601, 1994.

[2] J. Biesenack, T. Langmaier, M. M̈unch, and N. Wehn, “Scheduling of
behavioral VHDL by retiming techniques,” inProc. Euro-DAC’94, Sept.
1994, pp. 546–551.

[3] P. Y. Calland, A. Mignotte, O. Peyran, Y. Robert, and F. Vivien, “Retim-
ing dags,” LIP, Ecole Normale Supérieure de Lyon, Tech. Rep. 95-18,
Sept. 1995. Available WWW: www.ens-lyon.fr/LIP/publis.us.html.

[4] W.-J. Chen, W.-K. Cheng, T.-F. Lee, A. C.-H. Wu, and Y.-L. Lin, “On
the relationship between sequential logic retiming and loop folding,” in
Proc. SASIMI’93, Nara, Japan, Oct. 1993, pp. 384–393.

[5] B. de Fluiter, E. H. L. Aarts, J. H. M. Korst, W. F. J. Verhaeh, and A.
van der Werf, “The complexity of generalized retiming problems,”IEEE
Trans. Computer-Aided Design, vol. 15, no. 11, pp. 1340–1353, 1996.

[6] M. D. Ercegovac and K. S. Trivedi, “On line algorithms for division
and multiplication,”IEEE Trans. Comput., vol. C-7, pp. 681–687, 1977.

[7] M. D. Ercegovac and P. K.-G. Tu, “Application of on-line arithmetic
algorithms to the SVD computation: Preliminary results,” inProc. 10th
Symp. Computer Arithmetic, P. Kornerup and D. W. Matula, Eds., 1991,
pp. 246–255.

[8] C. E. Leiserson and J. B. Saxe, “Optimizing synchronous systems,”J.
VLSI Comput. Syst., vol. 1, pp. 41–67, 1983.

[9] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, vol. 6, pp. 5–35, 1991.

[10] N. Maheshwari and S. Sapatnekar, “Efficient retiming of large circuits,”
IEEE Trans. VLSI Syst., vol. 6, no. 1, pp. 74–83, 1998.

[11] A. Münzner and G. Hemme, “Converting combinational circuits into
pipelined data paths,” inProc. ICCAD’91, Nov. 1991, pp. 368–371.

[12] M. C. C. Papaefthymiou, “A timing analysis and optimization system
for level-clocked circuitry,” Ph.D. dissertation, Massachusetts Institute
of Technology, Cambridge, Sept. 1993.

[13] S. Sapatnekar and R. B. Deokar, “Utilizing the retiming-skew equiva-
lence in a practical algorithm for retiming large circuits,”IEEE Trans.
Computer-Aided Design, vol. 15, no. 10, pp. 1237–1248, 1996.

[14] J. B. Saxe, “Decomposable searching problems and circuit optimization
by retiming: Two studies in general transformations of computational

