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ABSTRACT
In this paper, we consider the problem of scheduling dis-
tributed biological sequence comparison applications. This
problem lies in the divisible load framework with negligi-
ble communication costs. Thus far, very few results have
been proposed in this model. We discuss and select relevant
metrics for this framework: namely max-stretch and sum-
stretch. We explain the relationship between our model and
the preemptive uni-processor case, and we show how to ex-
tend algorithms that have been proposed in the literature
for the uni-processor model to the divisible multi-processor
problem domain. We recall known results on closely related
problems, derive new lower bounds on the competitive ra-
tio of any on-line algorithm, present new competitiveness
results for existing algorithms, and develop several new on-
line heuristics. Then, we extensively study the performance
of these algorithms and heuristics in realistic scenarios. Our
study shows that all previously proposed guaranteed heuris-
tics for max-stretch for the uni-processor model prove to be
particularly inefficient in practice. In contrast, we show our
on-line algorithms based on linear programming to be near-
optimal solutions for max-stretch. Our study also clearly
suggests heuristics that are efficient for both metrics, al-
though a combined optimization is in theory not possible in
the general case.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and problem complex-
ity]: Nonnumerical Algorithms and Problems—Sequencing
and scheduling

General Terms
Algorithms, Theory

Keywords
Scheduling, stretch, flow time, divisible load, online algo-
rithm, competitive analysis, linear programming.
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1. INTRODUCTION
The problem of searching large-scale genomic and pro-

teomic sequence databanks is an increasingly important bio-
informatics problem. The results we present in this paper
concern the deployment of such applications in heteroge-
neous parallel computing environments. In fact, this ap-
plication model is a part of a larger class of applications,
in which each task in the application workload exhibits an
“affinity” for particular nodes of the targeted computational
platform. In the genomic sequence comparison scenario, the
presence of the required databank on a particular node is
the sole factor that constrains task placement decisions. In
this context, task affinities are determined by the location of
replicas of the sequence databanks in the distributed plat-
form.
Numerous efforts to parallelize biological sequence com-

parison applications have been realized. These efforts are
facilitated by the fact that such biological sequence com-
parison algorithms are typically computationally intensive,
embarrassingly parallel workloads. In the scheduling lit-
erature, this computational model is effectively a divisible
workload scheduling problem with negligible communication
overheads. The work presented in this paper concerns this
application model, particularly in the context of on-line
scheduling (i.e., in which the scheduler has no knowledge
of any job in the workload in advance of its release date).
Thus far, this specific problem has not been considered in
the scheduling literature.
Aside from divisibility, the main difference with classical

scheduling problems lies in the fact that the platforms we
target are shared by many users. Consequently, we need to
ensure a certain degree of fairness between the different users
and requests. Defining a fair objective that accounts for the
various job characteristics (release date, processing time) is
thus the first difficulty to overcome. After having presented
and justified our models in Section 2, we review various clas-
sical metrics in Section 3 and conclude that the stretch of a
job is an appropriate basis for evaluation. As a consequence,
we mainly focus on the max-stretch and sum-stretch met-
rics. In Section 4, we recall known results on closely related
problems, derive new lower bounds on the competitive ra-
tio of any on-line algorithm, present new competitiveness
results for existing algorithms, and develop several new on-
line heuristics. Then, we present in Section 5 an experimen-
tal evaluation of the aforementioned heuristics. Finally, we
conclude and summarize our contributions in Section 6. An
extended version of this article with fully elaborated proofs
and analyses is available as a companion research report [13].
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2. APPLICATIONS AND MODELING
The GriPPS [6, 8] protein comparison application serves

as the context for the scheduling results presented in this
paper. The GriPPS framework is based on large databases
of information about proteins; each protein is represented
by a string of characters denoting the sequence of amino
acids of which it is composed. Biologists need to search
such sequence databases for specific patterns that indicate
biologically significant structures. The GriPPS software en-
ables such queries in grid environments, where the data may
be replicated across a distributed heterogeneous computing
platform. To develop a suitable application model for the
GriPPS application scenario, we performed a series of ex-
periments to analyze the fundamental properties of the se-
quence comparison algorithms used in this code. From this
modeling perspective, the critical components of this appli-
cation are:

1. protein databanks: the reference databases of amino
acid sequences, located at fixed locations in a dis-
tributed heterogeneous computing platform.

2. motifs: compact representations of amino acid pat-
terns that are biologically important and serve as user
input to the application.

3. sequence comparison servers: computational pro-
cesses co-located with protein databanks that accept
as input sets of motifs and return as output all match-
ing entries in any subset of a particular databank.

The following sections describe the scheduling model we
use for this application domain, which we have validated in
our previous work [12].

2.1 Model properties: divisibility, preemption
and uniform computations

First, we note that a motif is a relatively compact repre-
sentation of an amino acid pattern, and thus the commu-
nication overhead is negligible compared to the processing
time of a comparison. Second, the processing time required
for sequence comparisons against a subset of a particular
databank is linearly proportional to the size of the subset
relative to the entire databank. This allows us to distribute
the processing of a request among many processors at the
same time without additional cost. The GriPPS protein
databank search application is therefore an example of a
linear divisible workload without communications.
In the classical scheduling literature, preemption is de-

fined as the ability to suspend a job at any time and to
resume it, possibly on another processor, at no cost. Our
application implicitly falls in this category. Indeed, we can
easily halt the processing of a request on a given processor
and continue the pattern matching for the unprocessed part
of the database on a different processor (as it only requires
a negligible data transfer operation to move the pattern to
the new location). Note that, from a theoretical perspec-
tive, divisible load without communications can be seen as
a generalization of the preemptive execution model that al-
lows for simultaneous execution of different parts of a same
job on different machines.
Last, a set of jobs is uniform over a set of processors if the

relative execution times of jobs over the set of processors
does not depend on the nature of the jobs. More formally,

for any job Jj , pi,j/pi′,j = ki,i′ , where pi,j is the time needed
to process job Jj on processor i. Essentially, ki,i′ describes
the relative power of processors i and i′, regardless of the size
or the nature of the job being considered. Our experiments
(see [12]) indicate a clear constant relationship between the
computation time observed for a particular motif on a given
machine, compared to the computation time measured on a
reference machine for that same motif. This trend supports
the hypothesis of uniformity. However, it may be the case
in practice that a given databank is not available on all se-
quence comparison servers. Our model essentially represents
a uniform machines with restricted availabilities scheduling
problem, which is a specific instance of the more general
unrelated machines scheduling problem.

2.2 Platform and application model
Formally, an instance of our problem is defined by n jobs,

J1, ..., Jn and m machines (or processors), M1, ..., Mm.
The job Jj arrives in the system at time rj (expressed in
seconds), which is its release date; we suppose that jobs are
numbered by increasing release dates. The time at which
job Jj is completed is denoted as Cj . Then, the flow time
of the job Jj , defined as Fj = Cj −rj , is essentially the time
the job spends in the system.
The value pi,j denotes the amount of time it would take

for machine Mi to process job Jj . Note that pi,j can be
infinite if the job Jj requires a databank that is not present
on the machineMi. As we have seen in Section 2.1, we could
replace the unrelated times pi,j by the expression Wj · pi,
where Wj denotes the size (in Mflop) of the job Jj and
pi denotes the computational capacity of machine Mi (in
second·Mflop−1). We denote by ∆ the ratio of the sizes
of the largest and shortest jobs submitted to the system:

∆ =
maxj Wj

minj Wj
.

To maintain correctness for the biological sequence com-
parison application, we separately maintain a list of data-
banks present at each machine and enforce the constraint
that a job Jj may only be executed on a machine that has
a copy of all data upon which job Jj depends. However,
since the theoretical results we present do not rely on these
restrictions, we retain the more general scheduling problem
formulation (i.e., unrelated machines). As a consequence, all
the values we consider in this article are nonnegative ratio-
nal numbers (except the previously mentioned case in which
pi,j is infinite if Jj cannot be processed on Mi).
Each job is assigned a weight or priority wj . In this arti-

cle, we focus on the particular case where wj = 1/Wj , but
we also point out a few conditions under which the general
case with arbitrary weights can be solved as well.
Due to the divisible load model, each job may be divided

into an arbitrary number of sub-jobs, of any size. Further-
more, each sub-job may be executed on any machine at
which the data dependences of the job are satisfied. Thus,
at a given moment, many different machines may be pro-
cessing the same job (with a master scheduler ensuring that
these machines are working on different parts of the job).
Therefore, if we denote by αi,j the fraction of job Jj pro-
cessed on Mi, we enforce the following property to ensure
each job is fully executed: ∀j,

P
i αi,j = 1.

An important characteristic of our problem is that we tar-
get a platform shared by many users. As a consequence, we
need to ensure a certain degree of fairness between the dif-
ferent requests. Given a set of requests, how should we share
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resources amongst the different requests? The next section
examines objective functions that are well-suited to achieve
this notion of fairness.

3. OBJECTIVE FUNCTIONS
Let us first note that many interesting results can be

found in the scheduling literature. Unfortunately, they only
hold for the preemptive computation model (denoted pmtn).
Thus, in this section, we explain how to extend these tech-
niques to our problem domain.
We first recall several common objective functions in the

scheduling literature and highlight those that are most rel-
evant for our problem. Then, we give a few structural re-
marks explaining how heuristics for the uni-processor case
can be reasonably extended to the general case in our frame-
work, and why the optimization of certain objectives may
be mutually exclusive.

3.1 Defining a fair objective function
The most common objective function in the parallel sched-

uling literature is the makespan: the maximum of the job
termination times, or maxj Cj . Makespan minimization is
conceptually a system-centric approach, seeking to ensure
efficient platform utilization. However, individual users are
typically more interested in job-centric metrics, such as job
flow time (also called response time): the time an individual
job spends in the system. Optimizing the average (or total)
flow time,

P
j Fj , suffers from the limitation that starvation

is possible, i.e., some jobs may be delayed to an unbounded
extent [3]. By contrast, minimization of the maximum flow
time, maxj Fj , does not suffer from this limitation, but it
tends to favor long jobs to the detriment of short ones. To
overcome this problem, one common approach [7] focuses
on the weighted flow time, using job weights to offset the
bias against short jobs. Sum weighted flow and maximum
weighted flow metrics can then be analogously defined. Note
however that the starvation problem identified for sum-flow
minimization is inherent to all sum-based objectives, so the
sum weighted flow suffers from the same weakness. The
stretch is a particular case of weighted flow, in which a job’s
weight is inversely proportional to its size: wj = 1/Wj . The
stretch of a job can be seen as the slowdown it experiences
when the system is loaded. This is thus a reasonably fair
measure of the level of service provided to an individual job
and is more relevant than the flow in a system with highly
variable job sizes. Consequently, this article focuses mainly
on the sum-stretch (

PSj) and the max-stretch (maxSj)
metrics.

3.2 A few structural remarks
We first prove that any schedule in the uniform machines

model with divisibility has a canonical corresponding sched-
ule in the uni-processor model with preemption.

Lemma 1. For any platform M1, ..., Mm composed of
uniform processors, i.e., such that for any job Jj , pi,j =
Wj ·pi, one can define a platform made of a single processorfM with ep = 1/Pi

1
pi

, such that:

For any divisible schedule of J1, ..., Jn on {M1, ..., Mm}
there exists a preemptive schedule of J1, ..., Jn on fM with
smaller or equal completion times.

Figure 1 illustrates the underlying idea (see [11] for de-
tails). The reverse transformation simply processes jobs se-

quentially, distributing each job’s work across all processors.
As a consequence, any complexity result for the preemp-
tive uni-processor model also holds for the uniform divisible
model. Thus, in Section 4, in addition to addressing the
multi-processor case, we will also closely examine the uni-
processor case. Unfortunately, this line of reasoning is no
longer valid when the computational platform exhibits re-
stricted availability, as defined in Section 2.
In the uni-processor case, a schedule can be seen as a pri-

ority list of the jobs (see [5] for example). For this reason,
the heuristics for the uniprocessor case presented in Sec-
tion 4 follow the same basic approach: maintain a priority
list of the jobs and at any moment, execute the one with the
highest priority. In the multi-processor case with restricted
availability, an additional scheduling dimension must be re-
solved: the spatial distribution of each job.
The example in Figure 2 explains the difficulty. In the uni-

form situation, it is always beneficial to fully distribute work
across all available resources: each job’s completion time in
situation B is strictly better than the corresponding job’s
completion time in situation A. However, introducing re-
stricted availability confounds this process. Consider a case
in which tasks may be limited in their ability to utilize some
subset of the platform’s resources (e.g., their requisite data
are not present throughout the platform). In situation C of
Figure 2, one task is subject to restricted availability: the
P2 computational resource is not able to service this task.
Deciding between various scheduling options in this scenario
is non-trivial in the general case, so we apply the following
simple rule to build a schedule for general platforms from
uni-processor heuristics:

1: while some processors are idle do
2: Select the job with the highest prior-

ity and distribute its processing on
all appropriate processors that are
available.

Finally, we note that simultaneously optimizing the objec-
tives we have defined earlier (sum-stretch and max-stretch)
may be impossible in certain situations.

Theorem 1. Consider any on-line algorithm that has a
competitive ratio of ρ(∆) for the sum-stretch. We assume
that this competitive ratio is not trivial, i.e., that ρ(∆) < ∆.
Then, there exists for this algorithm a sequence of jobs that
leads to starvation, and thus for which the obtained max-
stretch is arbitrarily greater than the optimal max-stretch.

We can also show that for an on-line algorithm that has a
competitive ratio of ρ(∆) for the sum-flow, there exists a se-
quence of jobs leading to starvation and where the obtained
max-flow is arbitrarily greater than the optimal one, under
the constraints that ρ(∆) < 1+∆

2
. (Remember that ∆ is the

ratio of the sizes of the largest and shortest jobs submitted
to the system.)
We must comment on our assumption about non-trivial

competitive ratios. This comes from the fact that ignoring
job sizes leads to a ∆-competitive on-line algorithm for both
objective functions:

Theorem 2. First come, first served is ∆-competitive for
the on-line minimization of sum-stretch and for the on-line
minimization of max-stretch.

We now prove Theorem 1.
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Figure 1: Geometrical transformation of a divisible uniform problem into a preemptive uni-processor problem.
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Figure 2: Illustrating the difference between the uniform model and the restricted availability model.

Proof. We first consider the case of an on-line algorithm
for the sum-stretch optimization problem that achieves a
competitive ratio of ρ(∆). At date 0 arrives a job J1 of size
∆. Let k be any integer. Then, at any time unit t ∈ N,
t � k − 1, starting from time 0, arrives a job J1+t of size 1.
A possible schedule would be to process each of the k jobs

of size 1 at its release date, and to wait for the completion
of the last of these jobs before processing job J1. The sum-
stretch is then

`
1 + k

∆

´
+ k and the max-stretch is 1 + k

∆
.

In fact, with our hypotheses, the on-line algorithm cannot
complete the execution of the job J1 as long as there are
jobs of size 1 arriving at each time unit. Otherwise, suppose
that at the date t1, job J1 was completed. Then, a certain
number k1 of unit-size jobs were completed before time t1.
The scenario that minimizes the sum-stretch is to schedule
the first k1 jobs at their release date, then to schedule J1,
and then the remaining k − k1 jobs. The sum-stretch of the
actual schedule can therefore not be smaller than the sum-
stretch of this schedule, which is equal to:

`
1 + k1

∆

´
+ k1 +

(k − k1)(1 + ∆). However, as, by hypothesis, we consider a
ρ(∆)-competitive algorithm, the obtained schedule must at
most be ρ(∆) times the optimal schedule. This implies that:`
1 + k1

∆

´
+ k1 + (k − k1)(1 + ∆) � ρ(∆)

`
1 + k

∆
+ k
´

⇔ (1− ρ(∆)) + k1

`
1
∆

−∆´ � k (1 + ∆)
“

ρ(∆)
∆

− 1
”

.

Once the approximation algorithm has completed the exe-
cution of the job J1, we can keep sending unit-size jobs for k
to become as large as we wish. Therefore, for the inequality

not to be violated, we must have ρ(∆)
∆

−1 � 0, i.e., ρ(∆) � ∆,
which contradicts our hypothesis on the competitive ratio.
Therefore, the only possible behavior for the approximation
algorithm is to delay the execution of job J1 until after the
end of the arrival of the unit-size jobs, whatever the number

of these jobs. This leads to starvation of job J1. Further-
more, the ratio of the obtained max-stretch to the optimal

one is
1+ k

∆
1+∆

= ∆+k
∆(∆+1)

, which may be arbitrarily large.

Intuitively, algorithms targeting max-based metrics en-
sure that no job is left behind. Such an algorithm is thus
extremely “fair” in the sense that everybody’s cost (in our
context the weighted flow or the stretch of each job) is made
as close to the other ones as possible. Sum-based metrics
tend to optimize instead the utilization of the platform. The
previous theorem establishes that these two objectives can
be in opposition on particular instances. As a consequence,
it should be noted that any algorithm optimizing a sum-
based metric has the particularly undesirable property of
potential starvation. This observation, coupled with the fact
that the stretch is more relevant than the flow in a system
with highly variable job sizes, motivates max-stretch as the
metric of choice in designing scheduling algorithms in this
setting.

4. ON-LINE ALGORITHMS AND
HEURISTICS

In this section, we first recall the known results for flow
minimization. Then we move to sum- and, finally, max-
stretch minimization. All results for sum-flow, max-flow and
sum-stretch optimization focus on uni-processor platforms,
as we have seen in the previous section the equivalence of
the “uniform machines with divisibility” and “uni-processor
with preemption” models. Through this equivalence, we can
directly reuse these results in our framework.
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4.1 Minimizing max- and sum-flow
Flow minimization is generally a simple problem when

considering on-line preemptive scheduling on a single proces-
sor. Indeed, the first come, first served heuristic optimally
minimizes the max-flow [3]. Also, the shortest remaining
processing time first heuristic (SRPT) minimizes the sum-
flow [1].

4.2 Minimizing the sum-stretch
The complexity of the off-line sum-stretch minimization

is still an open problem. At the very least, this hints at the
difficulty of this problem.
Bender, Muthukrishnan, and Rajaraman presented in [5]

a Polynomial Time Approximation Scheme (PTAS) for min-
imizing the sum-stretch. In [7] Chekuri and Khanna pre-
sented an approximation scheme for the more general sum
weighted flow minimization problem. As these approxima-
tion schemes cannot be extended to work in an on-line set-
ting, we will not discuss them further.
In [15], Muthukrishnan, Rajaraman, Shaheen, and Gehrke

propose an optimal on-line algorithm when there are only
two job sizes. Their primary result shows that there is no
optimal on-line algorithm for the sum-stretch minimization
problem when there are three or more distinct job sizes. Fur-
thermore, they give a lower bound of 1.036 on the compet-
itive ratio of any on-line algorithm. The following theorem
improves this bound:

Theorem 3. No on-line algorithm minimizing the sum-
stretch has a competitive ratio less than or equal to 1.19484.

We have recalled that shortest remaining processing time
(SRPT) is optimal for minimizing the sum-flow. When
SRPT makes a scheduling decision, it only takes into ac-
count the remaining processing time of a job, and not its
original processing time. Therefore, from the point of view
of the sum-stretch minimization, this implies that SRPT
does not account for the weight of the jobs in the objec-
tive function. Nevertheless, Muthukrishnan, Rajaraman,
Shaheen, and Gehrke have shown [15] that SRPT is 2-
competitive for sum-stretch minimization.
Another well studied algorithm is Smith’s ratio rule [17]

also known as shortest weighted processing time (SWPT).
This is a preemptive list scheduling heuristic that orders
available jobs for execution by increasing value of the ratio
Wj

wj
. Whatever the weights, SWPT is 2-competitive [16] for

the minimization of the sum of weighted completion times
(
P

wjCj). Note that a ρ-competitive algorithm for the sum
weighted flow minimization (

P
wj(Cj−rj)) is ρ-competitive

for the sum weighted completion time (
P

wjCj). However,
the reverse is not true: a guarantee on the sum weighted
completion time (

P
wjCj) does not induce any guarantee on

the sum weighted flow (
P

wj(Cj−rj)). Therefore, the above
bound for the minimization of the sum of weighted comple-
tion times gives us no result on the efficiency of SWPT
for the minimization of the sum-stretch. Furthermore, we
can even prove that SWPT is not an approximation algo-
rithm for minimizing the sum-stretch. Indeed, first note that
SWPT schedules the available jobs by increasing values of
(Wj)

2 (since examining job stretch implies that wj =
1

Wj
)

and has thus exactly the same behavior as the shortest pro-
cessing time heuristic (SPT). Then the following theorem
states that SPT – and thus SWPT – is not an approxima-
tion algorithm for minimizing the sum-stretch.

Theorem 4. For any value ρ > 1, there is an instance
on which the sum-stretch realized by SPT is at least ρ times
the optimal. Furthermore, we can impose that in this in-
stance ∆, the ratio of the sizes of the largest and shortest
jobs submitted to the system, is equal to 2.

The weakness of the SWPT heuristic as an on-line sum-
stretch minimization strategy is not surprising, since it does
not take into account the work that has already been done
on jobs in the system. Due to this fact, it may preempt a
job just before the moment when it would finish, ignoring
the potentially large stretch penalty such a decision incurs.
To address the weaknesses of both SRPT and SWPT,

one might consider a heuristic that takes into account both
the original and the remaining processing time of the jobs.
This is what the shortest weighted remaining processing time
heuristic (SWRPT) does. At any time t, SWRPT sched-

ules the job Jj that minimizes
ρt(j)
Wj

, where ρt(j) is the re-

maining processing time of job Jj at time t. Therefore, in
the framework of sum-stretch minimization, at any time t,
SWRPT schedules the job Jj which minimizes pjρt(j). Nei-
ther of the proofs of competitiveness of SRPT or SWPT
can be extended to SWRPT. SWRPT has apparently been
studied by N. Megow in [14], but only in the scope of the
sum weighted completion time. So far, there exists no guar-
antee on the efficiency of SWRPT. Intuitively, we would
think that SWRPT is more efficient than SRPT for the
sum-stretch minimization. However, the following theorem
shows that the worst case for SWRPT for the sum-stretch
minimization is no better than that of SRPT.

Theorem 5. For any real ε > 0, there exists an instance
such that SWRPT is not (2 − ε)-competitive for the mini-
mization of the sum-stretch.

4.3 Minimizing the max-stretch

4.3.1 The off-line case.
We have previously shown (in [12]) that the maximum

weighted flow – a generalization of the max-stretch – can be
minimized in polynomial time when the release dates and
jobs are known in advance (i.e., in the off-line framework).
This problem can in fact be solved for a set of unrelated
processors, and we briefly describe our solution in its full
generality below. For a more detailed presentation, readers
are referred to the above-mentioned publication.
It should be noted that, prior to our work, a solution to

compute the maximum weighted flow on a set of uniform
machines, using network flow maximization techniques, was
described. See [2] for an example of a pre-existing solution
to the max-stretch minimization problem. We do not know
how to extend these flow maximization techniques to han-
dle the uniform machines with restricted availabilities case,
much less the more general case of unrelated processors.
Let us assume that we are looking for a schedule S under

which the maximum weighted flow is less than or equal to
some objective value F . Then, for each job Jj , we define
a deadline d̄j(F) = rj + F/wj (to minimize the maximum
stretch, just let wj = 1/Wj). Then, the maximum weighted
flow is no greater than the objective F , if and only if the
execution of each job Jj is completed before its deadline.
Therefore, looking for a schedule that satisfies a given upper
bound on the maximum weighted flow is equivalent to an
instance of the deadline scheduling problem.
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Let us suppose that there exist two values F1 and F2,
F1 < F2, such that the relative order of the release dates
and deadlines, r1, . . . , rn, d̄1(F), . . . , d̄n(F), when ordered in
absolute time, is independent of the value of F ∈]F1;F2[.
Then, on the objective interval ]F1,F2[, we define an epochal
time as a time value at which one or more points in the set
{r1, . . . , rn, d̄1(F), . . . , d̄n(F)} occurs. Note that an epochal
time that corresponds to a deadline is not a constant but
an affine function in F . When ordered in absolute time,
adjacent epochal times define a set of time intervals, that we
denote by I1, . . . , Inint(F). The durations of time intervals
are then affine functions in F . Using these definitions and
notations, System (1) searches the objective interval [F1,F2]
for the minimal maximum weighted flow achievable (where

α
(t)
i,j denotes the fraction of job Jj processed on Mi during
time interval It).

Minimize F
under the constraints8>>>>><>>>>>:

F1 � F � F2

∀i,∀j,∀t, rj � sup It(F)⇒ α
(t)
i,j = 0

∀i,∀j,∀t, d̄j(F) � inf It(F)⇒ α
(t)
i,j = 0

∀t,∀i,
P

j α
(t)
i,j .pi,j � sup It(F)− inf It(F)

∀j,
P

t

P
i α

(t)
i,j = 1

(1)

The relative ordering of the release dates and deadlines only
changes for values of F where one deadline coincides with a
release date or with another deadline. We call such a value of
F a milestone.1 In our problem, there are at most n distinct
release dates and as many distinct deadlines. Thus, there

are at most n(n−1)
2

milestones at which a deadline function

coincides with a release date, and at most n(n−1)
2

milestones
at which two distinct deadline functions coincides. Let nq be
the number of distinct milestones. Then, 1 � nq � n2 − n.
Let F1,F2, ...,Fnq be the milestones ordered by increasing
values. To solve our problem we perform a binary search on
the set of milestones, each time checking whether System (1)
has a solution in the objective interval [Fi,Fi+1] (except for
i = nq, in which case we search for a solution in the range
[Fnq ,+∞[). This process can be performed in its entirety
in polynomial time, as the linear programs have rational
variables.

4.3.2 The on-line case.
The minimization of the max-stretch in an on-line setting

is a very difficult problem. First, first come, first served
(FCFS), which was optimal for minimizing max-flow, is only
∆-competitive for max-stretch (cf. Theorem 2). In con-
trast, consider the fact that the optimal algorithm for sum-
flow, SRPT, is 2-competitive for sum-stretch. The seem-
ingly poor performance of FCFS is better understood in
light of the following lower bound on the competitive ratio
of any on-line algorithm:

Theorem 6. Given a workload composed of jobs of three

distinct sizes, there is no 1
2
∆

√
2−1-competitive preemptive

on-line algorithm (for a uni-processor machine) for max-
stretch minimization.

This result is an improvement from the bound of 1
2
∆

1
3 es-

tablished by Bender, Chakrabarti, and Muthukrishnan [3].

1In [9], Labetoulle, Lawler, Lenstra, and Rinnooy Kan call
such a value a “critical trial value”.

As O(
√
∆)-competitive algorithms are known to exist, this

result has bridged roughly half of the gap between the previ-
ous lower bound and the best algorithms from the literature.
We first recall two existing on-line algorithms before in-

troducing a new one. In [4], Bender, Muthukrishnan, and

Rajaraman defined, for any job Jj , a pseudo-stretch bSj(t):

bSj(t) =

( t−rj√
∆

if 1 � Wj �
√
∆,

t−rj

∆
if
√
∆ < Wj � ∆.

Then, jobs were scheduled in order of decreasing pseudo-
stretches, potentially preempting running jobs each time a
new job arrives in the system. They demonstrated that this
method is a O(

√
∆)-competitive on-line algorithm.

Bender, Chakrabarti, and Muthukrishnan had already de-
scribed in [3] another O(

√
∆)-competitive on-line algorithm

for max-stretch. This algorithm works as follows: each time
a new job arrives, the currently running job is preempted.
Then, they compute the optimal (off-line) max-stretch S∗ of
all jobs having arrived up to the current time. Next, a dead-
line is computed for each job Jj : d̄j(F) = rj + λ × S∗/Wj ,
where λ is a constant termed the expansion factor. Finally,
a schedule is realized by executing jobs according to their
deadlines, using the Earliest Deadline First strategy. To
achieve the optimal competitive ratio, Bender et al. set
λ =

√
∆.

This last on-line algorithm has several weaknesses. The
first is that, when they designed their algorithm, Bender
et al. did not know how to compute the (off-line) optimal
maximum stretch. This is now overcome. Another weakness
in this approach is that it optimizes the stretch of only the
most constraining jobs. In other words, such an algorithm
may very easily schedule all jobs so that their stretch is
equal to the objective, even if most of them could have been
scheduled to achieve far lower stretches. This problem is far
from being merely theoretical, as we will see in Section 5.
This approach could be ameliorated by specifying that each
job should be scheduled in a manner that minimizes its own
stretch value, while maintaining the overall maximal stretch
value obtained. For example, one could theoretically try to
minimize the sum-stretch under the condition that the max-
stretch be optimal. However, as we have seen, minimizing
the sum-stretch is an open problem.
So, to derive a new on-line heuristic for multi-processor

platforms, we consider the heuristic approach expressed by
System (2).

Minimize
nX

j=1

X
t

 
mX

i=1

α
(t)
i,j

!
sup It(S∗) + inf It(S∗)

2

under the constraints8>>><>>>:
∀i,∀j,∀t, rj � sup It(S∗)⇒ α

(t)
i,j = 0

∀i,∀j,∀t, d̄j(S∗) � inf It(S∗)⇒ α
(t)
i,j = 0

∀t,∀i,
P

j α
(t)
i,j .pi,j � sup It(S∗)− inf It(S∗)

∀j,
P

t

P
i α

(t)
i,j = 1

(2)
This system ensures that each job is completed no later than
the deadline defined by the optimal (off-line) max-stretch,
S∗. Then, under this constraint, this system attempts to
minimize an objective that resembles a rational relaxation
of the sum-stretch: it computes an approximation of the
sum of the average execution time of the each job. As we
do not know the precise time within an interval when a part
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of a job will be scheduled, we approximate it by the mean
time of the interval. Consequently, this heuristic offers no
guarantee on the sum-stretch achieved. Conceptually, the
on-line refinement of our approach follows this basic heuris-
tic:

• Each time a new job arrives:
1. Preempt the running jobs (if any).

2. Compute the best achievable max-stretch S∗, con-
sidering the amount of each job’s work already
completed.

3. With the deadlines and intervals defined by the
max-stretch S∗, solve System (2).

At this point, we define three variants to produce the sched-
ule. The first, which we call Online, assigns work simply
using the values found by the linear program for the α vari-
ables:

4. For a given processor Pi, and a given interval It(S∗),
all jobs Jj that are scheduled to complete during that

same interval (i.e., all jobs Jj such that
P

t′>t α
(t′)
i,j =

0) are scheduled under the SWRPT policy in that
interval. We call these jobs terminal jobs (for Pi and
It(S∗)). The non-terminal jobs scheduled on Pi during
interval It(S∗) are only executed in It(S∗) after all
terminal jobs have finished.

The second variant we consider, Online-EDF, attempts to
make changes to the schedule at the processor level to im-
prove the overall max- and sum-stretch attained:

4. Consider a processor Pi. The fractions αi,j of the jobs
that must be partially executed on Pi are processed
on Pi using a list scheduling approach where jobs are
ordered according to the interval in which their share
is completed (according to the solution of linear pro-
gram), with ties being broken by the SWRPT policy.

Finally, we propose a third variant, Online-EGDF, that
creates a global priority list:

4. The (active) jobs are processed under a list schedul-
ing policy, using the strategy outlined in Section 3 to
deal with restricted availabilities. Here, the jobs are
totally ordered by the interval in which their total work
is completed, with ties being broken by the SWRPT
policy.

The validity of these heuristic approaches will be assessed
through simulations in the next section. Note that in Step 2,
we look for the best achievable max-stretch accounting for
the dynamic status of jobs, i.e., knowing for each job how
much work remains at the instant the scheduling decision is
made. By contrast, Bender et al. considered only the opti-
mal max-stretch of the whole instance, ignoring the amount
of work already completed.

5. SIMULATION RESULTS
In order to evaluate the efficacy of various scheduling

strategies when optimizing stretch-based metrics, we imple-
mented a simulator using the SimGrid toolkit [10], based
on the biological sequence comparison scenario. The appli-
cation and platform models used in the resulting simulator

are derived from our initial observations of the GriPPS sys-
tem, described in Section 2. Our primary goal is to evaluate
the proposed heuristics in realistic conditions that include
partial replication of target sequence databases across the
available computing resources. The remainder of this sec-
tion outlines the experimental variables we considered and
presents results describing the behavior of the heuristics in
question under various parameterizations of the platform
and application models.

5.1 Simulation Settings
The platform and application models that we address in

this work are quite flexible, resulting in innumerable vari-
ations in the range of potentially interesting combinations.
To facilitate our studies, we concretely define certain fea-
tures of the system that we believe to be useful in describing
realistic execution scenarios. We consider in particular six
such features.

Platform size: Typically, a given biological database
such as those considered in this work, would be replicated
at various sites, at which comparisons against this database
may be performed. Generally, the number of sites in a sim-
ulated system provides a basic measure of the aggregate
power of the platform. This parameter specifies the exact
number of sites in the simulated platform. Without loss
of generality, we arbitrarily define each site to contain 10
processors.

Processor power: Our model assumes that all the pro-
cessors at any given site are equivalent, and each processor
is assumed to have access to all databases located there.
Thus for each site, a single processor value represents the
processing power at that site. We choose processor power
values using benchmark results from our previous work.

Number of databases: Applications such as GriPPS
can accommodate multiple reference databases. Our model
allows for any number of distinct databases to exist through-
out the system.

Database size: Our previous work demonstrated that
the processing time needed to service a user request target-
ing a particular database varies linearly according to the
number of sequences found in the database in question.
We choose such values from a continuous range of realistic
database sizes, with the job size for jobs targeting a partic-
ular database scaled accordingly.

Database availability: A particular database may be
replicated at multiple sites, and a single site may host copies
of multiple databases. We account for these two eventuali-
ties by associating with each database a probability of ex-
istence at each site. The same database availability applies
to all databases in the system. We further ensure that each
database exists at at least one site, and each site hosts at
least one database.

Workload density: For a particular database, we define
the workload density of a system to be the ratio, on aver-
age, of the aggregate job size of user requests against that
database to the aggregate computational power available to
handle such requests. Workload density expresses a notion
of the “load” of the system. This parameter, along with the
size of the database, define the frequency of job arrivals in
the system.
We define a simulation configuration as a set of specific

values for each of these six properties. Once defined, con-
crete simulation instances are constructed by realizing ran-
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dom series for any random variables in the system. In par-
ticular, two models are created for each instance: a platform
model and a workload model. The former is specified first
by defining the appropriate number of 10-node sites and as-
signing corresponding processor power values. Next, a size
is assigned to each database, and it is replicated according
to the simulation’s database availability parameter. Finally,
the workload model is realized by first generating a series of
jobs for each database, using a Poisson process for job inter-
arrival times, with a mean that is computed to attain the
desired workload density. The database-specific workloads
are then merged and sorted to obtain the final workload.
Jobs may arrive between the time at which the simulation
starts and 15 minutes thereafter.
In this simulation study, we use empirical values observed

in the GriPPS system logs to define a realistic range of
database sizes and to generate appropriate values for pro-
cessor speeds. The remaining four parameters – platform
size, number of distinct databases, database availability, and
workload density – are the experimental values that vary in
our study. We discuss further the specifics of the experi-
mental design and our simulation results in Section 5.3.

5.2 Optimization of the on-line heuristic
We conduct a preliminary series of experiments to eval-

uate the variants of our on-line heuristic from the previous
section. These comparisons are based on a non-optimized
version of the on-line heuristic that stops after Step 2 of
the strategy presented. For a range of simulation configura-
tions, we record the max- and sum-stretch of jobs in the
workload achieved with both methods. The max-stretch
of each is measured relative to the optimal algorithm, but
since the optimal sum-stretch is not known, we observe the
sum-stretch of the optimized on-line heuristic relative to the
non-optimized version. Figure 3(a) presents the max-stretch
degradation of both versions relative to the optimal, and
Figure 3(b) depicts the gain for the sum-stretch metric for
the optimized heuristic, relative to the non-optimized ver-
sion. These results strongly motivate the use of the opti-
mizations encoded by the linear program depicted in Sys-
tem (2).

5.3 Simulation Results and Analysis
We have implemented in our simulator a number of sched-

uling heuristics that we plan to compare. First, we have
implemented Offline, corresponding to the algorithm de-
scribed in Section 4.3.1 that solves the optimal max-stretch
problem. The three versions of the on-line heuristic are
also implemented, designated asOnline, Online-EDF, and
Online-EGDF. Next, we consider the SWRPT, SRPT,
and SPT heuristics discussed in Section 4. We also include
two greedy strategies. First, MCT (“minimum completion
time”) simply schedules each job as it arrives on the pro-
cessor that would offer the best job completion time. The
FCFS-Div heuristic extends this approach to take advan-
tage of the fact that jobs are divisible, by employing all
resources that are able to execute the job (using the strat-
egy laid out in Section 3.2). Note that neither MCT nor
FCFS-Div makes any changes to work that has already
been scheduled. Finally, we consider the two on-line heuris-
tics proposed by Bender et al. that were briefly described
in Section 4.3.2. All the uni-processor heuristics (SWRPT,
SRPT, SPT and Bender et al.’s) are extended to the multi-

processor case using the strategy previously described in
Section 3.2.
As mentioned earlier, two of the six parameters of our

model reflect empirical values determined in our previous
work with the GriPPS system [12]. Processor speeds are
chosen randomly from one of the six reference platforms we
studied, and we let database sizes vary continuously over a
range of 10 megabytes to 1 gigabyte, corresponding roughly
to GriPPS database sizes. Thus, our experimental results
examine the behaviors of the above-mentioned heuristics as
we vary our four experimental parameters:

platforms of 3, 10, and 20 clusters (sites) with 10 pro-
cessors each;

applications with 3, 10, and 20 distinct databases;
database availabilities of 30%, 60%, and 90% for each

database; and
workload density factors of 0.75, 1.0, 1.25, 1.5, 2.0,

and 3.0.
The resulting experimental framework has 162 configura-

tions. For each configuration, 200 platforms and applica-
tion instances are randomly generated and the simulation
results for each of the studied heuristics is recorded. Ta-
ble 1 presents the aggregate results from these simulations;
finer-grained results based on various partitionings of the
data may be found in [11].
Above all, we note that the MCT heuristic – effectively

the policy in the current GriPPS system – is unquestion-
ably inappropriate for max-stretch optimization: MCT was
over 27 times worse on average than the best heuristic. Its
deficiency might arguably be tolerable on small platforms,
but in fact, MCT yielded max-stretch performance over ten
times worse than the best heuristic in all simulation config-
urations. Even after addressing the primary limitation that
the divisibility property is not utilized, the results are still
disappointing: FCFS-Div is on average 6.3 times worse in
terms of max-stretch than the best approach we found. One
of the principal failings of the MCT and FCFS-Div heuris-
tics is that they are non-preemptive. By forcing a small
task that arrives in a heavily loaded system to wait, non-
preemptive schedulers cause such a task to be inordinately
stretched relative to large tasks that are already running.
Experimentally, we find that two of the three on-line heur-

istics we propose are consistently near-optimal (within 0.3�
on average) for max-stretch optimization. The third heuris-
tic, Online-EGDF actually achieves consistently good sum-
stretch, but at the expense of its performance for the max-
stretch metric. This is not entirely surprising, as the heuris-
tic ignores a significant portion of the fine-tuned schedule
generated by the linear program designed to optimize the
max-stretch.
We also observe that SWRPT, SRPT, and SPT are all

quite effective at sum-stretch optimization. Each is on av-
erage within 4� of optimal for all configurations. In par-
ticular, SWRPT produces a sum-stretch that is on average
0.02% within the best observed sum-stretch, and attaining
a sum-stretch within 5% of the best sum-stretch in all of the
roughly 32,000 instances. However, it should be noted that
these heuristicsmay lead to starvation. Jobs may be delayed
for an arbitrarily long time, particularly when a long series
of small jobs is submitted sequentially (the (n+1)th job be-
ing released right after the termination of the nth job). Our

2Bender98 results are limited to 3-cluster platforms, due
to prohibitive overhead costs (discussed in Section 5.3).
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Figure 3: Comparison of the optimized and non-optimized versions of the on-line heuristic.

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0003 1.0167 1.6729 0.3825 4.4468
Online 1.0025 0.0127 2.0388 1.0806 0.0724 2.0343

Online-EDF 1.0024 0.0127 2.0581 1.0775 0.0708 2.0392
Online-EGDF 1.0781 0.1174 2.4053 1.0021 0.0040 1.0707

Bender98 2 1.0798 0.1315 2.0978 1.0024 0.0044 1.0530
SWRPT 1.0845 0.1235 2.5307 1.0002 0.0012 1.0458

SRPT 1.0939 0.1299 2.3741 1.0044 0.0055 1.0907
SPT 1.1147 0.1603 2.8295 1.0027 0.0054 1.1195

Bender02 3.4603 3.0260 28.4016 1.2053 0.2417 5.2022
FCFS-Div 6.3385 7.4375 73.4019 1.3732 0.5628 11.0440

MCT 27.0124 20.1083 129.6119 50.9840 36.9797 157.8909

Table 1: Aggregate statistics over all 162 platform/application configurations.

analysis of the GriPPS application logs has revealed that
such situations occur fairly often due to automated processes
that submit jobs at regular intervals. By optimizing max-
stretch in lieu of sum-stretch, the possibility of starvation is
eliminated.
Next, we find that the Bender98 and Bender02 heuris-

tics are not practically useful in our scheduling context. The
results shown in Table 1 for the Bender98 heuristic com-
prise only 3-cluster platforms; simulations on larger plat-
forms were practically infeasible, due to the algorithm’s pro-
hibitive overhead costs. Effectively, for an n-task workload,
the Bender98 heuristic solves n optimal max-stretch prob-
lems, many of which are computationally equivalent to the
full n-task optimal solution. In several cases the desired
workload density required thousands of tasks, rendering the
Bender98 algorithm intractable. To roughly compare the
overhead costs of the various heuristics, we ran a small series
of simulations using only 3-cluster platforms. The results of
these tests indicate that the scheduling time for a 15-minute
workload was on average under 0.28 s for any of our on-
line heuristics, and 0.54 s for the off-line optimal algorithm
(with 0.35 s spent in the resolution of the linear program and
0.19 s spent in the on-line phases of the scheduler); by con-
trast, the average time spent in the Bender98 scheduler was

19.76 s. The scheduling overhead of Bender02 is far less
costly (on average 0.23 s of scheduling time in our overhead
experiments), but in realistic scenarios for our application
domain, the competitive ratios it guarantees are ineffective
compared with our on-line heuristics for max-stretch opti-
mization.
Finally, we note the anomalous result that the optimal

algorithm is occasionally beaten (in all cases by a variant of
the on-line heuristic); clearly this indicates an error in the
solution of the optimal max-stretch problem. Our prelimi-
nary analysis suggests that this is a floating-point precision
problem that arises when very fine variations in values of F
result in different orderings of the epochal times. We are
considering potential solutions to the problem, such as scal-
ing the linear program variables such that precision errors
between epochal times may be avoided.

6. CONCLUSION
Our principal contributions to this problem are the fol-

lowing:

• We present a synthesis of existing theoretical work on
the closely related uni-processor model with preemp-
tion and explain how to extend most results for this
model to our particular setting.
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• Although this idea was underlying in previous work
(e.g., in [3]), we prove the impossibility of simultane-
ously approximating both max-based and sum-based
metrics.

• We improve the existing lower bounds on the compet-
itive ratio of any on-line algorithm for our two metrics
of interest: sum-stretch and max-stretch.

• We note that the natural heuristic for sum-stretch op-
timization, SWRPT, is not well-studied. Although
this simple heuristic seems to optimize the sum-stretch
in practice, its performance is not guaranteed. We
even prove that it cannot be guaranteed with a factor
better than 2.

• Despite the fact that FCFS-Div is the only algorithm
that exhibits guaranteed performance (∆-competitive)
for both criteria, we observe that the experimental
performance of FCFS-Div is substantially worse than
that of other algorithms that take full advantage of
preemption.

• We propose an on-line strategy for max-stretch opti-
mization in this problem domain, and we demonstrate
its efficacy using a wide range of realistic simulation
scenarios. All previously proposed guaranteed heuris-
tics for max-stretch (Bender98 and Bender02) for
the uni-processor model prove to be particularly inef-
ficient in practice.

• On average, our various on-line algorithms based on
linear programs prove to be near-optimal solutions for
max-stretch. SRPT and SWRPT, which were origi-
nally designed to optimize the sum-stretch metric, sur-
prisingly yield fairly good results for the max-stretch
metric. However, due to the potential for starvation
with sum-based metrics, we assert that the max-stretch
optimization heuristics we develop are preferable for
job- and user-centric systems.
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de Lyon, Oct. 2005.

[12] A. Legrand, A. Su, and F. Vivien. Off-line scheduling
of divisible requests on an heterogeneous collection of
databanks. In Proceedings of the 14th Heterogeneous
Computing Workshop, Denver, Colorado, USA, Apr.
2005. IEEE Computer Society Press.

[13] A. Legrand, A. Su, and F. Vivien. Minimizing the
stretch when scheduling flows of divisible requests.
Research Report RR2006-19, LIP, École Normale
Supérieure de Lyon, June 2006.

[14] N. Megow. Performance analysis of on-line algorithms
in machine scheduling. Diplomarbeit, Technische
Universität Berlin, Apr. 2002.

[15] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and
J. Gehrke. Online scheduling to minimize average
stretch. In IEEE Symposium on Foundations of
Computer Science, pages 433–442, 1999.

[16] A. S. Schulz and M. Skutella. The power of α-points
in preemptive single machine scheduling. Journal of
Scheduling, 5(2):121–133, 2002. DOI:10.1002/jos.093.

[17] W. E. Smith. Various optimizers for single-stage
production. Naval Research Logistics Quarterly,
3:59–66, 1956.

112


