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Abstract

In this paper, we survey loop parallelization algorithms, analyzing the dependence representa-
tions they use, the loop transformations they generate, the code generation schemes they require,
and their ability to incorporate various optimizing criteria such as maximal parallelism detection,
permutable loop detection, minimization of synchronizations, easiness of code generation, etc. We
complete the discussion by presenting new results related to code generation and loop fusion for a
particular class of multidimensional schedules called shifted linear schedules. We demonstrate that
algorithms based on such schedules lead to simple codes. q 1998 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Loop transformations have been shown useful for extracting parallelism from regular
nested loops for a large class of machines, from vector machines and VLIW machines to
multiprocessor architectures. Several surveys have already presented in details the

Žtremendous list of possible loop transformations see, for example, the survey by Bacon
w x w x.et al. 1 or Wolfe’s book 2 , and their particular use. Two additional surveys have

presented the link between loop parallelization algorithms and dependence analysis: in
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w xRef. 3 , Yang et al. characterize for each loop transformation used to reveal parallelism,
w xthe minimal dependence abstraction needed to check its validity; in Ref. 4 , a comple-

mentary study is proposed that answers the dual question: for a given dependence
abstraction, what is the simplest algorithm that detects maximal parallelism?

Loop parallelization algorithms consist in finding a ‘good’ loop transformation that
reveals parallelism, but we must keep in mind that generating parallel loops is not
sufficient for generating efficient parallel executable programs. When designing parallel
loop detection algorithms, we must consider many other optimizations related to the
granularity of the parallel program, to the data distribution, to the communications, etc.
For that, the algorithm must be flexible enough to incorporate criteria that are more
accurate than the simple detection of parallel loops. Furthermore, the parallelizing
algorithm is only a step in the whole compilation scheme: it should thus generate an
intermediate abstract parallel code that is simple enough so that further optimizations
can still be performed. For example, an algorithm for parallel loop detection can be

Ž .integrated in a parallelization platform as schematized in Fig. 1 that transforms
Ž .automatically or semi-automatically sequential Fortran to parallel Fortran via a lan-

Ž . w xguage such as High Performance Fortran HPF 5 .
The aim of this paper is to survey loop parallelization algorithms with such a

compilation scheme in mind. Sections 2 and 3 are devoted to a brief state of the art: in
Section 2, we survey the different algorithms proposed in the literature, recalling the
dependence representations they use, the loop transformations they generate, and their
ability to incorporate optimizing criteria such as maximal parallelism detection, per-
mutable loops detection, minimization of synchronizations, etc. In Section 3, we present
the code generation techniques involved by these loop transformations. Sections 4 and 5
present in more details some new contributions dealing with two particular optimization

Ž .problems: how to generate codes that are as simple as possible Section 4 and how to
Ž .handle loop fusion for example to minimize synchronizations in loop parallelization

Ž .algorithms Section 5 . Finally, we give some conclusions in Section 6.
Before that, we take the example of the compilation of High Performance Fortran to

introduce some concepts and vocabulary, and to illustrate the kind of optimizations that
remain to be done once parallel loops have been detected.

Fig. 1. Parallelizing process.
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Fig. 2. Two abstract parallel codes.

Consider the codes of Fig. 2. Both have a single do loop, marked by the INDEPEN-
DENT directive of HPF that asserts to the compiler that the iterations may be executed
concurrently without changing the semantics of the program. There are no dependences
between the different iterations of the loop or, in other words, there are no dependences

Ž .carried by the loop. However, in the code b there is a loop-independent dependence,
from S to S for a given iteration of the loop.a b

Starting from the code in Fig. 2a, a HPF compiler may produce two types of code,
Žfollowing the owner-computes rule the processor that owns the left-hand side of the

.computation computes it . The first type is the simplest expression of the owner
computes rule on the entire iteration space. For each element of computation, the code
tests if this element of computation is owned by the executor. This gives a parallel code
like the one in Fig. 3a. To make this code more efficient, communications can be moved
outside of the loop if array accesses are known at compile-time, or if the data have been
already sent for a previous set of loops. Nevertheless, it remains inefficient since each

Žprocessor spans the entire iteration space. If the code to compile is simple enough as
.here and if the compiler is smart enough, a second approach is possible in which each

processor computes only the slice of the array it owns, as in the code of Fig. 3b. Note
that the distribution of the code in two loops is not needed if both slices are the same,
for example if both arrays are mapped the same way.

Now, consider the case where there is a loop-independent dependence as in the code
of Fig. 2b. A code such as the code in Fig. 3a could also be generated. However, the
communication of array A needed to compute array C cannot just be moved outside of
the loop as before since we must communicate something that is computed inside the
loop. A possibility is to distribute the loop to obtain the general scheme: a parallel loop,
a global synchronization, a parallel loop. Another choice is to select a good mapping

Fig. 3. Two types of parallel executable codes for the code of Fig. 2a.
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Fig. 4. Two types of parallel executable codes for the code of Fig. 2b.

w x w xsuch that A i and C iy1 are owned by the same processor, so that the loop-indepen-
dent dependence takes place inside a processor. In this case, we can even generate a
code such as in Fig. 4b.

If A and C are not mapped to the same processor, these is a last possibility. Indeed,
some compilers offer the ON HOME directive 4 modifying the owner-computes rule. In
the previous example, we can force the compiler to produce a code that computes

w x w xC iy1 at the same place as A i , by generating temporary arrays or by duplicating
Ž .some computations with the help of some overlap areas as ADAPTOR does . This kind

of code can be much more difficult to produce, because the compiler needs to have a
precise knowledge of array accesses in order to produce the communications. One could
argue that, in this case, a compiler should always compile a parallel loop with multiple
statements as a succession of parallel loops with a single statement, interleaved with

Žsome communicationsrsynchronizations. However, loop fusion opposed to loop distri-
. Ž .bution offers some other advantages see Section 2 and it may be desirable to produce

codes with large loop bodies.
This brief discussion shows that even with an INDEPENDENT directive, the actual

generation of the parallel code has a variable degree of difficulty. The way parallel loops
Ž .are exposed fused or not fused for example interferes with the different optimizations
Ž .that are done or that are not done! before or after the generation of parallel loops

Ž .choice of the data mapping, generation of communications, of synchronizations, etc. .
We will not describe these optimizations here. We refer to the survey in the same issue
for a description of data mapping techniques.

2. Loop parallelization algorithms

The structure of nested loops allows the programmer to describe parameterized sets
of computations as an enumeration, but in a particular order, called the sequential order.

4 This directive is an approved extension of HPF 2.0 and some compilers have already implemented it, like
w xADAPTOR 6 , an HPF compiler by Thomas Brandes.
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Table 1
A comparison of various loop parallelizing algorithms

Algorithms Dependence Loop Maximal degree Synchronization Code Tiling
abstraction transformation of parallelization through fusion generation

w xAllen and Kennedy 7 Dependence level; multiple statements; nonperfect Distribution Optimal Yes Very easy No
w xWolf and Lam 8 Direction vectors; one statement; perfect Unimodular Optimal No Easy Yes

w xDarte and Vivien 9 Polyhedra; multiple statements; nonperfect Affine Optimal No Complicated No
w x Ž .Feautrier 10 Affine exact ; multiple statements; nonperfect Affine Suboptimal No Complicated No

w x Ž .Lim and Lam 11 Affine exact ; multiple statements; nonperfect Affine Suboptimal ? ? Yes
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Many loop transformations have been proposed to change the enumeration order so as to
w xincrease the efficiency of the code, see for example the survey by Bacon et al. 1 .

However, most of these transformations are still applied in an ad-hoc fashion, through
heuristics, and only a few of them are generated fully automatically by loop paralleliza-
tion algorithms.

In this section, we give a quick summary of the loop transformations that are
Ž .captured by these loop parallelization algorithms Section 2.2 . Before, in Section 2.1,

we recall the dependence abstractions used to check the validity of the transformations.
Finally, in Section 2.3, we list the main loop parallelization algorithms that have been

Ž .proposed in the literature, with a survey of their main characteristics see Table 1 .
All these algorithms apply to a particular type of code: nested loops, possibly

nonperfectly nested, but in which the control can be statically defined, in other words
Žloops with no jumps and no conditionals except conditionals that can be captured

statically, for example, when control dependences can be converted to data dependences,
.or when the conditional statically restricts the range of the loop counters . Classically,

loop bounds are supposed to be affine functions of some parameters and of surrounding
loop counters, with unit steps, so that the computations associated to a given statement S

Ž . nScan be described by a subset actually the integral points of a polyhedron D of Z ,S

where n is the number of loops surrounding S. D is called the iteration domain of S,S S

and the integral vectors in D the iteration Õectors. The i-th component of an iterationS

vector is the value of the counter of the i-th loop surrounding S, counting from the
outermost to the innermost loop. To each IgD corresponds a particular execution of SS

Ž . Ž .denoted by S I . In the sequential order, all computations S I are executed following
the lexicographical order defined on the iteration vectors. If I and J are two vectors, we
write I$ J if I is lexicographically strictly smaller than J, and IA J if I$ Jlex lex lex

or IsJ.

2.1. Dependence abstractions

Data dependence relations between operations are defined by Bernstein’s conditions
w x12 . Two operations are dependent if both operations access the same memory location
and if at least one access is a write. The dependence is directed according to the

Ž . XŽ .sequential order, from the first executed operation to the last one. We write S I ™S J
if the statement SX at iteration J depends on the statement S at iteration I. Dependences
are captured through a directed acyclic graph, called the reduced dependence graph
Ž .RDG , or statement level dependence graph. Each vertex of the RDG is identified with
a statement of the loop nest, and there is an edge from S to SX if there exists at least one

Ž . Ž . XŽ . X
Xpair I, J gD =D such that S I ™S J . An edge between S and S is labeledS S

using various dependence abstractions or dependence approximations, depending on the
dependence analysis and on the input needed by the loop parallelization algorithm.

Ž . Ž . XŽ .Except for affine dependences see below , a dependence S I ™S J is represented
by an approximation of the distance Õector JyI. If S and SX do not have the same
domain, only the components of the vector JyI, that correspond to the n X loopsS,S

surrounding both statements, are defined. The four classical representations of distance
Ž .vectors by increasing precision are enumerated below.
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2.1.1. Dependence leÕel
w xThe dependence level was introduced by Allen and Kennedy in Refs. 13,7 . A

Ž . w x � 4Xdistance vector JyI is approximated by an element l the level in 1,n j ` ,S,S

defined as ` if JyIs0, or as the largest integer such that the ly1 first components
of the distance vector are zero. When ls`, the dependence is said to be loop-indepen-
dent and loop-carried, otherwise.

2.1.2. Direction Õector
w xThe direction vector was first described by Lamport in Ref. 14 , then by Wolfe in

w x X
XRef. 15 . A set of distance vectors between S and S is represented by a n -dimen-S,S

� 4 Žsional vector, called the direction Õector, whose components belong to Zj ) j Z=
� 4.q,y . Its i-th component is an approximation of the i-th component of the distance
vectors: zq means Gz, zy means Fz, and ) means any value.

2.1.3. Dependence polyhedron
w xThe dependence polyhedron was introduced by Irigoin and Triolet 16 . A set of

distance vectors between S and SX is approximated by a subset of ZnS,SX, defined as the
integral points of a polyhedron. This is an extension of the direction vector abstraction.

2.1.4. Affine dependences
w xThe affine dependences were used by Feautrier 17 to express dependence relations

Ž . XŽ .when exact dependence analysis is feasible. A set of dependences S I ™S J can be
Ž Ž ..represented by an affine function f that expresses I in terms of J Is f J or the

converse, subject to affine inequalities that restrict the range of validity of the depen-
dence.

2.2. Loop transformations

We only focus here on the transformations that are captured by the loop paralleliza-
tion algorithms presented in Section 2.3.

2.2.1. Statement reordering
The order of statements in a loop body is modified. Statement reordering is valid if

and only if loop-independent dependences are preserved.

2.2.2. Loop distribution
A loop, surrounding several statements, is split into several identical loops, each

surrounding a subset of the original statements. The validity of loop distribution is
Žrelated to the construction of the strongly connected components of the RDG without

.considering dependences carried by an outer loop .

2.2.3. Unimodular loop transformations
Ž nS.A unimodular loop transformation is a change of basis in Z applied on the

iteration domain D . The computations are described through a new iteration vectorS
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I X sUI where U is an integral matrix of determinant 1 or y1. Unimodular loop
transformations are combinations of loop interchange, loop reversal, and loop skewing.
A unimodular transformation U is valid if and only if Ud% 0 for each nonzerolex

distance vector d.

2.2.4. Affine transformations
A general affine transformation defines a new iteration vector I X for each statement S

by an affine function I X sM Iqr . M is a nonparameterized nonsingular squareS S S

integral matrix of size n , and r is a possibly parameterized vector. The linear partS S
Ž . XŽ .may be unimodular or not. Such a transformation is valid if and only if S I ™S J ´

M Iqr $ M X Jqr X .S S lex S S

2.2.5. Tiling
Tiling consists in rewriting a set of n loops into 2n loops by defining tiles of size

Ž . Ž .t , . . . ,t : the iteration vector Is i , . . . ,i is transformed into the new iteration1 n 1 n
X Ž .vector I s i % t , . . . ,i % t , i mod t , . . . ,i mod t . A sufficient condition for1 1 n n 1 1 n n

tiling is that the n original loops are fully permutable.

2.3. Parallelization algorithms

In the following, the optimality of an algorithm has to be understood with respect to
the dependence abstraction it uses. For example, the fact that Allen and Kennedy’s
algorithm is optimal for maximal parallelism detection means that a parallelization
algorithm which takes as input the same information as Allen and Kennedy’s algorithm,
namely a representation of dependences by dependence level, cannot find more paral-
lelism. However, it does not mean that more parallelism cannot be detected if more
information is exploited.

w xLamport’s algorithm 14 considers perfectly nested loops whose distance vectors are
Ž .supposed to be uniform constant except for some fixed components. It produces a set

of vectors, best known as ‘Lamport’s hyperplanes’, that form a unimodular matrix.
Lamport proposed an extension of this algorithm to handle statement reordering,
extension which can also schedule independently the left- and right-hand sides of

Ž w x.assignments. Lamport’s algorithm is related to linear schedules see Ref. 18 and to
multidimensional schedules.

w xAllen and Kennedy’s algorithm 7 is based on the decomposition of the reduced
dependence graph into strongly connected components. It uses dependences represented
by levels, and transforms codes by loop distribution and statement reordering. It is

Ž w x.optimal for maximal parallelism detection see Ref. 19 . The minimization of synchro-
Ž .nizations is considered through loop fusion see Section 5.1 . However, it is not really

Ž .adapted because of the inaccuracy of dependence levels to the detection of outer
parallelism and permutable loops.

w xWolf and Lam’s algorithm 8 is a reformulation of Lamport’s algorithm to the case
of direction vectors. It produces a unimodular transformation that reveals fully per-
mutable loops in a set of perfectly nested loops. As a set of d fully permutable loops can
be rewritten as one sequential loop and dy1 parallel loops, it can also detect parallel
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loops. The dependence abstraction it uses is sharper than the one in Allen and
Kennedy’s algorithm. However, the structure of the RDG is not considered. It is optimal

Žfor maximal parallelism detection if dependences are captured by direction vectors and
.no dependence graph structure .

w xFeautrier’s algorithm 20,10 produces a general affine transformation. It can handle
perfectly nested loops as well as nonperfectly nested loops as long as exact dependence
analysis is feasible. It relies on affine dependences. The affine transformation is built as

w xa solution of linear programs obtained by the affine form of Farkas’ lemma 21 applied
to dependence constraint equations. Although Feautrier’s algorithm is the most powerful
algorithm for detecting innermost parallelism in loops with affine dependences, it is not
optimal since it turns out that affine transformations are not sufficient. Moreover, it is
not adapted, currently, to the detection of outer parallelism and permutable loops.

w xDarte and Vivien’s algorithm 9 is a simplification of Feautrier’s algorithm to the
Žcase of dependences represented by dependence polyhedra an example being direction

.vectors . It also produces an affine transformation, but of a restricted form, called shifter
Ž .linear schedule see Section 4.1 . It is optimal for maximal parallelism detection if

dependences are approximated by dependence polyhedra. Since it is simpler than
Feautrier’s algorithm, more optimizing criteria can be handled: the detection of per-

Ž w x.mutable loops and outer parallelism see Ref. 22 , and the minimization of synchro-
Ž .nizations through loop fusion see Section 5.2 . Furthermore, the code generation is

Ž .simpler see Section 4 . However, it may find less parallelism than Feautrier’s algorithm
when exact dependence analysis is feasible because of its restricted choice of transfor-
mations.

w xLim and Lam’s algorithm 11 is an extension of Feautrier’s algorithm whose goal is
to detect fully permutable loops and outer parallel loops. As Feautrier’s algorithm, it
relies on a description of dependences as affine dependences. It uses the affine form of
Farkas’ lemma and the Fourier–Motzkin elimination. Lim and Lam’s algorithm has the
same qualities and weaknesses as Feautrier’s algorithm: it is, in theory, very powerful,
but no guarantee is given concerning the easiness of code generation. Indeed, many
solutions are equivalent relatively to the criteria they optimize: choosing the simplest
solution is not explained in Lim and Lam’s algorithm, and code generation is not
addressed.

3. Code generation

Once the program has been analyzed and some loop transformation has been found, it
remains to generate the code corresponding to the transformed program. In the current
section, we review the techniques that currently exist to handle this problem. We go
from the simplest transformations to the most complicated ones. We skip in the
discussion loop distribution and statement reordering for which code generation is
straightforward. The problem can be viewed as generating some iteration code for
polyhedra, affine images of polyhedra and unions of affine images of polyhedra. We
follow this hierarchy in our discussion.
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3.1. Unimodular transformations

Unimodular transformations apply to perfect loop nests whose iteration domains are
convex polyhedra. They are important for code generation because they guarantee that,
if the original iteration domain is a convex polyhedron, the iteration domain of the
transformed loop nest is also a convex polyhedron. It means that the code generation
problem simplifies to lexicographically scanning the integer points of a convex polyhe-
dron. The second part of the code generation is to express the array access functions
with respect to the new loop indices. Since a unimodular transformation is invertible
Ž .with integral inverse , this is easy.

We present now the two classical approaches for the polyhedron scanning problem:
the Fourier–Motzkin pairwise elimination and the simplex algorithm.

3.1.1. Fourier–Motzkin elimination
w xAncourt and Irigoin first proposed this technique in Ref. 23 and it has then been

w xused in several prototype compilers 24–26 . The idea is to use a projection algorithm to
find the loop bounds for each dimension. The polyhedron is represented as usually by a
system of inequalities. At each step of the elimination, some inequalities are added to
the system to build a ‘triangular’ system where each loop index depends only on the
previous loop indices and on parameters. As many inequalities can define a loop bound,
we have to take the maximum of the lower loop bounds and the minimum of the upper
loop bounds. Let us take an example: a square domain transformed by a combination of

iX i1 11 1 Ž .loop skewing and loop interchange s see Fig. 5 . The system describingX ž /ž / ž /i 1 0 i2 2

the transformed polyhedron and its transformation by the Fourier–Motzkin elimination
of iX are:2

2F iX F2n° 1X1F i Fn Fourier–Motzkin2 X~1F i Fn™X X 2X½1F i y i Fn elimination of i1 2 X X X2 ¢i ynF i F i y11 2 1

The main drawback of this algorithm is that it can generate redundant inequalities.
Their elimination requires a powerful test also based on the Fourier–Motzkin elimina-

Fig. 5. Unimodular example.
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w xtion or on the simplex algorithm 26 . If some redundant inequalities are not removed,
empty iterations may appear in the resulting loop nest, causing overhead. Although the
Fourier–Motzkin elimination has super-exponential complexity for big problems, it
remains fast for small problems, and works well in practice.

3.1.2. Simplex algorithm
The second approach to compute the loop bounds uses an extended version of the

simplex algorithm: indeed one has to be able to solve parametric integer linear problems
w xin rational numbers. This method has been proposed by Collard et al. in Ref. 27 and

w xhas been used in at least three experimental parallelizers 28,27,29 .
The basic idea is to build a polyhedra D for each loop index i in which outerk k

indices are considered as parameters and to search for the extrema of i in D so as tok k
w xfind the loop bounds. It has been shown in Ref. 27 that this resolution can be done

w xusing PIP 30 , a parametric dual simplex implementation, and that the result is
expressed as the ceiling of the maximum of affine expressions for the lower bound and
the floor of the minimum of affine expressions for the upper one. On the example of
Fig. 5, the result is the same.

This algorithm produces no empty iterations but may introduce floor and ceiling
operations. The complexity of the simplex algorithm is exponential in the worst case but

w xpolynomial on the average and so also works well in practice. Chamski 31 addresses
the problem of control overhead by replacing extreme operations by conditionals at the
expense of code duplication.

3.2. Non-unimodular linear transformations

w xWhen dealing with non-unimodular transformations, the classical approach 32 is to
w xdecompose the transformation matrix into its Hermite normal form 21 to get back to

the unimodular case. An algorithm based on column operations on an integral nonsingu-
Ž .lar matrix T transforms it into the product HU sT where U is unimodular and H is a

nonsingular, lower triangular, nonnegative matrix, in which each row has a unique
maximum entry, which is its diagonal entry. Once the transformation U has been
considered, it is easy to handle the matrix H: each diagonal element corresponds to a
multiplication of the loop counter and can be coded with steps in the loop indices, and
the other nonzero entries are shifts. Fig. 6 shows the example of the transformation of a

2 02-D loop nest by .ž /1 3

Fig. 6. Non-unimodular example.
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w xXue presented in Ref. 33 another method to deal with non-unimodular transforma-
tions. It is based on the Fourier–Motzkin elimination to compute the loop bounds and on
Hermite decomposition to compute the steps and shifting constants.

3.3. Extensions

3.3.1. Perfect loop nests with one-dimensional shifted linear schedules
w xIn Ref. 28 , Boulet and Dion explain how to deal with affine transformations which

share the same linear part and shift the first transformed loop index with constants, one
constant for each statement in the body of the original loop nest. Moreover, they handle
the case of rational schedules, transformations whose first dimension may have rational
entries.

3.3.2. Nonperfect loop nests with one-dimensional schedules
w xCollard presents in Ref. 34 a method to produce code when each statement of a

nonperfect loop nest has been assigned an affine one-dimensional schedule.

3.3.3. General affine case
w xKelly, Pugh and Rosser present in Ref. 35 a method to generate code for the general

affine case: a nonperfect loop nest transformed with a possibly different affine transfor-
mation for each statement. Their transformation is based on the Presburger arithmetic

w ximplemented in the Omega library 36 . The problem is to be able to scan an arbitrary
union of polyhedra. In Section 4, we present a simpler code generation scheme for the
case of shifted linear schedules.

4. Code generation for shifted linear schedules

In most real codes, the loop transformations needed to exploit parallelism are quite
Ž .simple combinations of distribution and interchange for example . When they are

Ž .derived and applied with the help of the human i.e., by hand or semi-automatically ,
particular cases can be identified and complicated cases can be avoided when possible.
However, when the loop transformations are derived and applied by the parallelizing

Ž .compiler itself i.e., automatically , all cases of transformations have to be considered in
the code generation step, even if the complicated cases will never occur: the conse-

Žquence is that the resulting code may be unreadable which is a drawback if the user
.wants to check what the compiler is doing or just too complicated for further

optimizations. Therefore, we believe that it is important in a parallelizer:
ŽØ to generate simple transformations when possible optimization in the scheduling

.step .
Ø to develop simpler code generation schemes for particular types of transformations

Ž .optimization in the code generation step .



( )P. Boulet et al.rParallel Computing 24 1998 421–444 433

Ž .In this section, we address these two points the second point first by studying in
more details a particular class of loop transformations that we call multidimensional
shifted linear schedules. We will illustrate our results with the example below.

Example 1. Consider two statements S and SX with the same iteration domain
� 4 Ž . XŽ .1F i, j,kFN . Assume that S i, j,k and S i, j,k are mapped, using a multidimen-

Ž . Ž .sional schedule, respectively to iy j,iq j,iq jq2k and iy jq1,iq jq2,k . A
possibility is to generate the code of Fig. 7. The code is not really simple, involving

Ž .complex guards with modulo operations , non-unit loop steps, complicated loop bounds
and array access functions. Nevertheless, it is already a bit optimized: a more naive
approach would have kept both S and SX inside the same t loop and all conditionals in3

this innermost loop. Furthermore, some natural but redundant conditionals such as
t Fny1 for statement SX have been removed.1

Ž .Such complicated codes may occur when trying to scan i.e., describe by loops an
arbitrary union of polyhedra, either when scheduling simultaneously several statements

Ž .whose iteration domains are different nonperfectly nested loops or when scheduling
several statements with different multidimensional schedules. However, when restricting
to multidimensional shifted linear schedules, we can avoid this general scanning

Žproblem. We will show that, if all iteration domains are the same up to a translation a
.typical example is when the original code is perfectly nested , then the code generation

for such schedules is a lot simpler, and leads to cleaner and more readable codes.
Indeed, the code generation can be seen as a hierarchical combination of loop distribu-

Ž .tions, loop bumpings i.e., adding a constant to a loop counter , and matrix transforma-
Žtions, where each statement can be considered independently thus avoiding the compli-

.cated problem of overlapping different polyhedra . Furthermore, we will show that given

Fig. 7. A code with modulo operations.
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a shifted linear schedule s , it is always possible to build an equivalent shifted linear
X Žschedule s , equivalent in the sense that the nature of the loops sequential, parallel or
.permutable in the transformed code is preserved, and such that the matrix transforma-

tions involved for s
X are only unimodular transformations.

4.1. Shifted linear schedules

To make the discussion simpler, we consider that all iteration domains have the same
Ž .dimension n i.e., with the notations of Section 2, n sn for all statements S so that allS

iteration vectors and all matrices have the same size. As recalled in Section 2.2, a
multidimensional affine schedule s is defined for each statement S by an integral
square nonsingular matrix M of size n and an integral vector r of size n. We writeS S

Ž . Ž .ss M , r . The computation S I associated to the iteration vector I before transfor-S S

mation is associated to the iteration vector M Iqr after transformation. A multidi-S S
Ž .mensional function ss M , r is a valid schedule if and only if:S S

S I ™SX J ´M Iqr $ M X Jqr X 1Ž . Ž . Ž .S S lex S S

Ž . XŽ .We say that a dependence S I ™S J is satisfied by s at level k if:

w x w x w X X x w x w x w X X xM Iqr ky1 s M Jqr ky1 and M Iqr - M JqrS S S S S S S Sk k

w x w xw xwhere the notation M denotes the k-th row of a matrix M, and the notation M kk

denotes the matrix whose rows are the first k rows of M.
Ž .Eq. 1 guarantees that k is always well-defined: any dependence is satisfied at some

level k, and for a unique k. We denote by k X the maximal level at which someS,S

dependence between S and SX is satisfied, and by c X the maximal level c such thatS,S
w xw x w xw xXM c s M c .S S

Ž .Definition 1. A multidimensional affine schedule ss M , r is shifted linear if, forS S
X w xw x w xw xX X X X Xany statements S and S , M k s M k , i.e., if k Fc . In other words, aS S,S S S,S S,S S,S

multidimensional affine schedule is shifted linear if S and SX have the same linear part
for the outermost levels as long as there exists a dependence between S and SX not yet
satisfied.

Note that, as recalled in Section 2.3, looking for such schedules is not penalizing if
Ždependences are captured by a polyhedral approximation of distance vectors for

.example direction vectors and if the main objective is the detection of the maximal
degree of parallelism.

4.2. Code generation scheme

Remember the code generation scheme for a single statement S. If the matrix M isS

not unimodular, we use the Hermite form M sH U where U is unimodular, HS S S S S
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nonnegative, lower triangular, and each nondiagonal component of H is strictly smallerS

than the diagonal component of same row. Then, we transform the code first using U ,S

then using the loop skewing H . Here, we have multiple statements, different matricesS

M , and different constants r , therefore we must apply a different unimodularS S

transformation, a different loop skewing, and a different loop bumping for each
w xstatement. Fortunately, by construction of the Hermite form 21 , it can be shown that:

w x w x w X x w x w x w x w X x w x w x w x w X x w xM k s M k ´ H k s H k and U k s U kS S S S S S

Therefore, while all dependences between two statements S and SX are not satisfied, all
X Ž .loops that surround S and S are the same up to a constant : we just have to generate

the codes for S and SX separately, and to fuse the two codes into a single one until level
k X . Then, for the remaining dimensions, since there are no more dependences betweenS,S

S and SX, the two codes do not need to be perfectly matched: one can just write them one
above the other, and the resulting code remains correct. In other words, in this restricted
case, there is no need for a complicated algorithm for scanning an arbitrary union of
polyhedra.

The code generation process is the following. We write M sH U and r sH qS S S S S S

qr where q and r are integral vectors where each component of r is nonnegativeS S S S
Žand strictly smaller than the corresponding diagonal element of H this decompositionS

.is unique . Then, we decompose the transformation s : I™M Iqr in four steps,S S S

s 1: I™U I, s 2: I™Iqq , s 3: I™H I, s 4: I™Iqr :s 1 is a unimodular trans-S S S S S S S S S
2 3 Žformation, s is a loop bumping, s is a loop skewing and each loop step is equal toS S

. 4the corresponding diagonal component of H , and s consists simply in writing theS S

code in the r -th position in the loop body. We point out that when H is diagonal, thereS S

is no need to really multiply the counter by the diagonal component: we can keep the
original counter and avoid loop steps and floor functions. We will use this remark in
Section 4.3.

Ž . ŽBack to Example 1. We find the two unimodular transformations U : i, j,k ™ iy j, j, jS
. Ž . Ž . Ž .Xqk and U : i, j,k ™ iy j, j,k , and the two skewing transformations H : i, j,k ™S S

Ž . Ž . Ž . Ž .X Xi,iq2 j,iq2k and H : i, j,k ™ i,iq2 j,k . Furthermore q sr s 0,0,0 , and qS S S S
Ž . Ž .Xs 1,0,0 , r s 0,1,0 . We first find the two intermediate codes of Fig. 8 by applyingS

the transformations U and U X , and the loop bumping by q and q X .S S S S

Fig. 8. Separate codes after unimodular transformation.
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Fig. 9. Separate codes after loop skewing.

Then, we apply the loop skewings H and H X , and the displacements by r and r X .S S S S

We get the two codes of Fig. 9. The displacements are visualized by non-operations.
Finally, merging the two codes, we get the code of Fig. 10. The ‘apparent holes’ due

Ž .to the non-unimodularity and that appear as modulo operations in the code of Fig. 7
have been clearly identified, thanks to the displacements r and r X: the code of Fig. 10S S

is now more efficient. Notice also that the two conditionals t Fny1 and t Gynq21 1

could be removed since they are redundant with the other constraints. We just kept them
to make the technique more understandable.

4.3. EquiÕalent schedules and unimodularity

In terms of parallelism extraction, multidimensional schedules may be used for
detecting either parallel and sequential loops, or permutable loops as a first step before
tiling. We say that two schedules s and s

X are equiÕalent if, in both transformed
Žcodes, the nature of the loops parallel or sequential in the first case, permutable in the

.second case is the same.

Fig. 10. Combination of the two codes.
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Let us analyze how dependences in the original code are transformed if we use the
Ž . XŽ .code generation process described in Section 4.2. If S I ™S J is satisfied at level k:

w x w x w X X x w x w x w x w X x w xU Iqq ky1 s U Jqq ky1 and r ky1 s r ky1S S S S S S

X Xw x w xU Iqq F U Jqq 2Ž .S S S Sk k

X X Xw x w x w x w xU Iqq s U Jqq ´ r - rS S S S S Sk k k k

ŽIn other words, a dependence satisfied at level k is either loop-carried at level k when
w x w xX XU Iqq - U Jqq , or loop-independent at level k, and in this latter caseS S k S S k

r -r X . A loop at level k is then parallel in the transformed code, if there is noS S

dependence carried at level k between any two statements surrounded by this loop. We
Ž .point out that the nature of a dependence loop-carried or loop-independent is not fully

Ž .specified by the schedule ss M , r itself, but depends on the way we write the code.S S

For example, handling the constants r differently may change the nature of aS
Ž .dependence but not the level at which it is satisfied which is fully specified by s .

Therefore, the equivalence of two schedules has to be understood with respect to the
code generation we use. We have the following result.

( )Theorem 1. For any shifted linear schedule ss M ,r , there exists a shifted linearS S
X ( X X )schedule s s M ,r , equiÕalent for parallel and sequential loops, and such thatS S

M X sH X U X where H X is nonnegatiÕe diagonal and U X unimodular.S S S S S

w x XProof. See the extended proof in Ref. 37 . We build s as follows. We write
H sK HX where HX is the diagonal matrix such that HX and H have the sameS S S S S S

X Ž y1 y1 . Ž X X .diagonal. Then s s K M ,K H q qr s H U ,H q qr is a shifted linearS S S S S S S S S S S

schedule equivalent for parallel and sequential loops. I

We now consider schedules used for detecting maximal blocks of permutable loops.
A maximal block of nested loops, from level i to level j, is permutable in the
transformed code if for all statements S and SX surrounded by these loops, for any

Ž . XŽ .dependence S I ™S J satisfied at a level between i and j, the dependence distance
is nonnegative, i.e.,

w x w x w X X x w xM Iqr iy1 s M Jqr iy1S S S S

w x w x w X X x w x´ M Iqr j F M Jqr j 3Ž .S S S S

Once again, since we address only shifted linear schedules, we consider only blocks,
surrounding statements S and SX, whose maximal level j is smaller than c X .S,S

( )Theorem 2. For any shifted linear schedule ss M ,r , there exists a shifted linearS S
X ( X X ) X X Xschedule s s M ,r , equiÕalent for permutable loops, and such that M sH US S S S S

where U X is unimodular and H X is positiÕe diagonal, with all entries equal to 1 exceptS S

possibly for each last leÕel of a block of permutable loops containing S.

Proof. The technique is to define, for each statement S, a well-chosen loop skewing GS
Ž w x. X X X Ž ? @.see the construction in Ref. 37 such that G M sH U . Then s s G M , G rS S S S S S S S

is a shifted linear schedule equivalent for permutable loops. I
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When generating code for revealing permutable loops, we may want that permutable
loops are perfectly nested. This is not the case with the code generation scheme
proposed in Section 4.2 because of the constants r . Each time two statements haveS

different values of r for the same loop, the resulting code is nonperfectly nestedS
Ž .except of course at the innermost level . Therefore, for general affine schedules, we
may need to enforce loops to be perfectly nested by not decomposing the constants rS

into q and r . However, the resulting code would be much more complicated. This isS S

the reason why we impose in Theorem 2 that the components of HX are equal to 1,S

except for the last level of a block of permutable loops. Then, the code is easy to
generate.

Back to Example 1. We assume that the first two dimensions correspond to a block of
permutable loops. Applying our ‘unimodularization’ technique to the initial schedule—
Ž . Ž . Xiy j,iq j,iq jq2k for S and iy jq1,iq jq2,k for S —we find the two loop

Ž . Ž . Ž . Ž .Xskewing transformations G : i, j,k ™ i,iq j,y iqk and G : i, j,k ™ i,iq j,kS S
Ž . Ž . Xwhich lead to the schedule iy j,2 i,2 jq2k for S and iy jq1,2 iq3,k for S . By

construction, this schedule is equivalent for permutable loops. Actually, it is also
equivalent for parallel and sequential loops. We get the final equivalent code of Fig. 11:

Žit is simpler and moreover, it reveals exactly the same amount of parallelism in terms of
.loops .

As noticed in Section 4.2, all loop steps are unit steps, and there is no use of floor or
ceiling functions, even if the transformation is non-unimodular. This is because the loop

Ž .skewings the Hermite forms of the schedule are diagonal: there is no need to really
multiply the loop counter by the diagonal component.

This study demonstrates that shifted linear schedules have nice properties: we can
Žderive schedules that are guaranteed to be simple thanks to the ‘unimodularization’

.process described above and we can generate simple codes for them. We point out that
this ‘unimodularization’ property is not true for arbitrary multidimensional schedules.

Fig. 11. Equivalent code for Example 1.
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5. Fusion of parallel loops

The advantages of loop fusion are well-known. First, synchronization is a costly
operation. Therefore, minimizing the number of synchronizations is important. Fusing
parallel loops is part of the answer as one synchronization is required after each parallel
loop. Second, even if loop fusion increases the size of the loop, which can have a
negative impact on cache and register performances, it can improve data reuse by
moving references closer in time, making them more likely to still reside in cache or

w xregisters 2,38 . Reuse provided by fusion can even be made explicit by using scalar
replacement to place array references in a register. Furthermore, fusion decreases loop
overhead, increasing the granularity of parallelism, and allowing easier scalar optimiza-
tions, such as subexpression elimination.

In this section, we recall how the fusion of parallel loops is handled in Allen and
Ž w x.Kennedy’s algorithm so as to reduce the number of synchronizations see Ref. 39 . We

show that the problem becomes much more difficult if loop bumping and loop fusion are
combined. We show the NP-completeness of the problem, even in the simple case of
uniform dependences, and we propose an integer linear programming method to solve it.

5.1. Fusion of parallel loops in Allen and Kennedy’s algorithm

Consider a piece of code only composed of parallel loops. Consider the dependences
Žthat take place inside the code in other words, if the code is surrounded by some loops,

.do not consider dependences carried by these loops , and in particular dependences
Ž .between different loops interdependences . The fusion of two parallel loops is valid and

gives one parallel loop if there is no interdependence between these two loops, or if all
interdependences become loop-independent after fusion. Otherwise, the semantics of the
code is not preserved or the loop produced is sequential. An interdependence that is not
loop-independent after fusion is called fusion preÕenting.

The technique to minimize the number of parallel loops after fusion is the following.
Ž .The goal is to assign to each statement S a nonnegative integer p S that indicates

which parallel loop contains S after fusion. Let e be a dependence from statement S to
statement SX. Then, after fusion, the loop containing S must appear, in the new loop

X Ž . Ž X.nest, before the loop containing S :p S Fp S . Furthermore, if this dependence is
X Ž . Ž X.fusion preventing, S and S cannot be in the same loop after fusion: p S q1Fp S .

To minimize the total number of parallel loops after fusion, we just have to minimize the
Ž .label of the last loop, max p S . To obtain the desired loop nest, we place in the sameS

parallel loop all statements with the same value p , and parallel loops are ordered by
increasing p . The formulation is thus:

°max p S s.t. p S G0 andŽ . Ž .S
e X X

;S™S s.t. e is not fusion–preventing, p S Fp SŽ . Ž .~
e X X

;S™S s.t. e is fusion–preventing, p S q1Fp SŽ . Ž .¢
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Ž .The reader can recognize a classical scheduling problem: p S is the maximal weight of
a dependence path ending in S, where the weight of an edge is defined as 1 if the edge is
fusion preventing, and 0 otherwise. Therefore, a greedy algorithm is optimal and
polynomial.

w xAn extension of this technique has been proposed in Ref. 38 to handle both the
fusion of parallel loops and the fusion of sequential loops. It consists in two steps. First
the fusion of parallel loops is performed as above, except that additional fusion
preventing edges are added each time there is a dependence path between two
statements that goes through a sequential loop. Then, the similar technique is used for
sequential loops. As noticed by McKinley and Kennedy, the total number of loops may
not be minimal, but the number of parallel loops is and, therefore, the number of
synchronizations.

5.2. Fusion of parallel loops and shifted linear schedules

We now consider the particular case of the generation of parallel loops with shifted
Ž .linear schedules see Section 4.1 . We suppose that k loops have already been

generated, and that all the dependences are satisfied by these loops, except some
dependences that form an acyclic graph G . The code generation technique proposed ina

Section 4.2 would generate the nyk remaining loops, by placing each statement in a
separate set of nested parallel loops so that the dependences of the acyclic graph are
satisfied, at level k, as loop-independent. Here, we want to do better. We want to
generate as few parallel loops as possible and no sequential loops, in order to have, once
again, the maximal parallelism while minimizing synchronizations.

Ž .We consider the case where one loop remains to be built ksny1 : the general
case is similar if we decide that two statements share all or none of their surrounding
parallel loops. Once again, we try to place in the same parallel loop only statements for

Ž .which the schedule is defined by the same linear part shifted linear schedule .
Practically, we are given a vector X that will be used to generate the last loop, and we
try to generate constants r so as to fully define the schedule. If S and SX are to beS

placed in the same parallel loop, we must find two constants r and r X such that, forS S
Ž . XŽ . Ž . Xeach dependence e:S I ™S J , X JyI qr yr s0, i.e., so that the dependenceS S

becomes loop-independent. To make the link with Section 5.1, here we try to fuse more
parallel loops using in addition loop bumping. This gives more freedom, but makes the
optimal solution more difficult to find.

Ž .We assume that the dependences in G are uniform. We denote by w e the quantitya
Ž .X JyI associated with the edge e. Remark that when G is acyclic, if considered asa

an undirected graph, one can always choose the constants r so that all statements canS
Ž .be placed in the same parallel loop. On the other hand, if G has an undirected cycle,a

this may not be possible. Indeed, consider an undirected cycle in G , CsÝ d ea eg C e
� 4 Ž .where d g y1,1 , i.e., a cycle that can use an edge backwards d sy1 or forwardse e

Ž . Ž . Ž .d s1 . Define the weight of C as w C sÝ d w e . If all dependences of C aree eg C e
Ž . Ž .transformed into loop-independent dependences, then w C s0. Conversely, if w C /

Ž X . X0, then for at least one edge es S ,S of the cycle, S has to be placed in a parallele e e
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loop after the parallel loop that surrounds S . This remark leads to the following integere

linear program

°max p S s.t. p S G0 andŽ . Ž .S
X X

;es S ,S , p S Fp SŽ . Ž . Ž .e e e e~
Xw C /0´ p S G1q p SŽ . Ž . Ž .Ý Ýe e

egC egC¢for each undirected elementary cycle C.

Ž .that solves the problem: p S is the label of the parallel loop in which S should be
X Ž X .placed. Indeed, by construction, the subgraph G of G formed by the edges es S ,Sa a e e

Ž . Ž X . Ž .for which p S sp S only contains undirected cycles C such that w C s0.e e

Therefore, one can build the desired constants r such that for all edge egGX ,S a
Ž . Xw e qr yr s0.S Se e

We point out that solving the linear program above is exponential for two reasons:
first, the number of undirected elementary cycles can be exponential, and second, we use
integer linear programming. Nevertheless, in practice, G is usually very small, thus thea

program is solvable in reasonable time. However, in theory, the problem is NP-com-
plete, as stated by the following theorem.

Theorem 3. Let G be an acyclic directed graph where each edge e has a weighta
( ) ( )w e gZ . GiÕen an integer r for each Õertex S, we define the quantity w e for eachS r

( X ) ( ) ( ) ( )Xedge es S ,S by w e s0 if w e qr yr s0, and w e s1 otherwise. Thee e r S S re e

( )weight of a path is defined as the sum of the weights w e of its edges. Then, findingr

Õalues for r which minimize the maximal weight w of a path in G is NP-complete.S r a

Proof. The proof is by reduction of the fusion problem from the UET–UCT scheduling
Ž . w xproblem unitary execution time–unitary communication time , see details in Ref. 37 .

I

We illustrate the methods described in Sections 5.1 and 5.2 with the program of Fig.
12. Because of the nonzero dependences the simple fusion builds three different parallel

Ž .loops see Fig. 13 when the fusion with loop bumping only builds two parallel loops.

Fig. 12. Original code and its dependence graph.
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Fig. 13. One optimal solution for simple fusion, and two for fusion with loop bumping.

Ž .We show on this example third code on Fig. 13 that, using loop peeling, one can
remove the ‘if’ tests introduced by loop fusion. In fact this is always possible and easy
as the tests we introduced are always simple functions of the loop bounds. The removal
of ‘if’ tests is especially useful when the iteration domains are large.

6. Conclusion

We have proposed a comparative study of loop parallelization algorithms, insisting
on the program transformations they produce, on the code generation scheme they need,
and on their capabilities to incorporate various optimization criteria such as the detection
of parallel loops, the detection of permutable loops, the minimization of synchroniza-
tions through loop fusion, and the easiness of code generation.

Ž .The simplest algorithm Allen and Kennedy’s algorithm is of course not able to
Ždetect as much parallelism as the most complex algorithm Feautrier’s algorithm and its

.variants or extensions . However, the code generation it involves is straightforward and
sharp optimizations such as the maximal fusion of parallel loops can be taken into
account. For more complex algorithms, the loop transformations are obtained as
solutions of linear programs, minimizing one criterion: no guarantee is given concerning
the simplicity of the solution, or its quality with respect to a second optimization
criterion. In other words, for complex algorithms, it remains to demonstrate that
generating a ‘clean’ solution is feasible. We gave some hints in this direction. We
showed that, for algorithms based on shifted linear schedules, code generation is

Žguaranteed to be simple, and that loop fusion can be handled even if it can be expensive
.in theory .

A fundamental problem remains to be solved in the future: the link between
parallelism detection and data mapping. Indeed, a parallel loop can be efficiently
executed only if an adequate data mapping is proposed. This question is related to
complex problems such as automatic alignment and distribution, scalar and array
privatization, duplication of computations, etc.
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