
Journal of Systems Architecture 52 (2006) 88–104

www.elsevier.com/locate/sysarc
Scheduling tasks sharing files on heterogeneous
master–slave platforms

Arnaud Giersch a,*, Yves Robert b, Frédéric Vivien b

a ICPS/LSIIT, UMR CNRS–ULP 7005, Parc d’Innovation, Bd Sébastien Brant, BP 10413,

67412 Illkirch Cedex, France
b LIP, UMR CNRS–ENS Lyon–INRIA–UCBL 5668, École normale supérieure de Lyon,

46 allée d’Italie, 69364 Lyon Cedex 07, France

Received 30 June 2004; accepted 20 October 2004
Available online 12 July 2005
Abstract

This paper is devoted to scheduling a large collection of independent tasks onto heterogeneous clusters. The tasks
depend upon (input) files which initially reside on a master processor. A given file may well be shared by several tasks.
The role of the master is to distribute the files to the processors, so that they can execute the tasks. The objective for the
master is to select which file to send to which slave, and in which order, so as to minimize the total execution time. The
contribution of this paper is twofold. On the theoretical side, we establish complexity results that assess the difficulty of
the problem. On the practical side, we design several new heuristics, which are shown to perform as efficiently as the
best heuristics in [H. Casanova, A. Legrand, D. Zagorodnov, F. Berman, Heuristics for scheduling parameter sweep
applications in Grid environments, in: Ninth Heterogeneous Computing Workshop, IEEE Computer Society Press, Sil-
ver Spring, MD, 2000, pp. 349–363; H. Casanova, A. Legrand, D. Zagorodnov, F. Berman, Using simulation to eval-
uate scheduling heuristics for a class of applications in Grid environments, Research Report RR-1999-46, LIP, ENS
Lyon, France, 1999] although their cost is an order of magnitude lower.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Scheduling; Heterogeneous clusters; Independent tasks; File-sharing; Heuristics
1383-7621/$ - see front matter � 2005 Elsevier B.V. All rights reserv
doi:10.1016/j.sysarc.2004.10.008

* Corresponding author. Tel.: +33 3 90 24 45 42; fax: +33 3
90 24 45 47.

E-mail addresses: arnaud.giersch@icps.u-strasbg.fr (A.
Giersch), yves.robert@ens-lyon.fr (Y. Robert), frederic.vivien@
ens-lyon.fr (F. Vivien).
1. Introduction

In this paper, we are interested in schedul-
ing independent tasks onto heterogeneous clus-
ters. These independent tasks depend upon files
(corresponding to input data, for example), and
ed.

mailto:arnaud.giersch@icps.u-strasbg.fr
mailto:yves.robert@ens-lyon.fr
mailto:frederic.vivien@ens-lyon.fr
mailto:frederic.vivien@ens-lyon.fr

A. Giersch et al. / Journal of Systems Architecture 52 (2006) 88–104 89
difficulty arises from the fact that some files may
well be shared by several tasks.

This paper is motivated by the work of Casa-
nova et al. [1,2], who target the scheduling of tasks
in APST, the AppLeS Parameter Sweep Template
[3]. APST is a grid-based environment whose aim
is to facilitate the mapping of applications to het-
erogeneous platforms. Typically, an APST appli-
cation consists of a large number of independent
tasks, with possible input data sharing (see [1,2]
for a detailed description of a real-world applica-
tion). By large we mean that the number of tasks
is usually at least one order of magnitude larger
than the number of available computing resources.
When deploying an APST application, the intui-
tive idea is to map those tasks that depend upon
the same files onto the same computational re-
source, so as to minimize communication require-
ments. Casanova et al. [1,2] have considered three
heuristics designed for completely independent
tasks (no input file sharing) that were proposed
in [4]. They have modified these three heuristics
(originally called Min–min, Max–min, and Suffer-

age in [4]) to adapt them to the additional con-
straint that input files are shared between tasks.
As was already pointed out, the number of tasks
to schedule is expected to be very large, and special
attention should be devoted to keeping the cost of
the scheduling heuristics reasonably low.

In this paper, we deal with the same scheduling
problem as Casanova et al. [1,2]: we assume the
existence of a master processor, which serves as
the repository for all files. The role of the master
is to distribute the files to the processors, so that
they can execute the tasks. The objective for the
master is to select which file to send to which slave,
and in which order, so as to minimize the total exe-
cution time. This master–slave paradigm has a
fundamental limitation: communications from
the master may well become the true bottleneck
of the overall scheduling scheme. Allowing for in-
ter-slave communications, and/or for distributed
file repositories, should certainly be the subject
of future work. However, we believe that concen-
trating on the simpler master–slave paradigm is
a first but mandatory step towards a full under-
standing of this challenging scheduling prob-
lem.
The contribution of this paper is twofold. On
the theoretical side, we establish two complexity
results that assess the difficulty of the problem:

• The first result shows the NP-completeness of
the scheduling problem with a single slave.

• The second result shows the NP-completeness
of the scheduling problem with two slaves, in
the special case where all tasks and files have
same size.

On the practical side, we design several new
heuristics, which are shown to perform as effi-
ciently as the best heuristics in [1,2] although their
cost is an order of magnitude lower.

The rest of the paper is organized as follows.
The next section (Section 2) is devoted to the pre-
cise and formal specification of our scheduling
problem, which we denote as TASKSSHARINGFILES.
Next, in Section 3, we state complexity results,
which include the two NP-completeness results al-
ready mentioned. Then, Section 4 deals with the
design of low-cost polynomial-time heuristics to
solve the TASKSSHARINGFILES problem. We report
some experimental data in Section 5. Finally, we
state some concluding remarks in Section 6.
2. Framework

In this section, we formally state the optimiza-
tion problem to be solved.

2.1. Tasks and files

The problem is to schedule a set of n tasks
T ¼ fT 1; T 2; . . . ; T ng. These tasks have different
sizes: the weight of task Tj is tj, 1 6 j 6 n. There
are no dependence constraints between the tasks,
so they can be viewed as independent.

However, the execution of each task depends
upon one or several files, and a given file may be
shared by several tasks. Altogether, there arem files
in the setF ¼ fF 1; F 2; . . . ; F mg. The size of file Fi is
fi, 1 6 i 6 m. We use a bipartite graph G ¼ ðV;EÞ
to represent the relations between files and tasks.
The set of nodes in the graph G is V ¼ F [T,
and each node is weighted by fi or tj, depending

Fig. 1. Bipartite graph gathering relations between files and tasks.

90 A. Giersch et al. / Journal of Systems Architecture 52 (2006) 88–104
upon its membership in F or T. There is an edge
ei, j: Fi ! Tj in E if and only if task Tj depends on
file Fi. Intuitively, files Fi such that ei;j 2 E corre-
spond to some data that is needed for the execution
of Tj to begin. The processor that will have to exe-
cute task Tj will need to receive all the files Fi such
that ei;j 2 E before it can start the execution of Tj.
See Fig. 1 for a small example, with m = 9 files
and n = 13 tasks. For instance, task T1 depends
upon files F1 and F2, and task T3 depends upon files
F2, F3, F4, and F7.

To summarize, the bipartite application graph

G ¼ ðV;EÞ, where each node in V ¼ F [T is
weighted by fi or tj, and where edges in E represent
the relations between the files and the tasks, gath-
ers all the information on the application.

2.2. Platform graph

The tasks are scheduled and executed on a mas-
ter–slave heterogeneous platform. We let P denote
the platform graph, which is a fork-graph (see Fig.
2) with a master-processor P0 and p slaves Pi,
1 6 i 6 p. Each slave Pq has a (relative) cycle time
wq: it takes tj Æ wq time-units to execute task Tj on
processor Pq. We point out that all the results
and heuristics of this paper can straightforwardly
Fig. 2. Heterogeneous fork-graph.
be extended to the more general case of inconsis-
tent execution times, with the terminology of [5]:
in that situation, each slave Pq has a different exe-
cution time wj, q for each task Tj, and these times
are not related; then, we would simply replace all
terms tj Æ wq by wj, q.

The master processor P0 initially holds all the m
files in F. The slaves are responsible for executing
the n tasks in T. Before it can execute a task Tj, a
slave must have received from the master all the
files that Tj depends upon. For communications,
we use the one-port model: the master can only
communicate with a single slave at a given time-
step. We let cq denote the inverse of the bandwidth
of the link between P0 and Pq, so that fi Æ cq time-
units are required to send file Fi from the master
to the slave Pq. We assume that communications
can overlap computations on the slaves: a slave
can process one task while receiving the files neces-
sary for the execution of another task.

Coming back to the example of Fig. 1, assume
that we have a two-slave schedule such that tasks
T1 to T6 are executed by slave P1, and tasks T7

to T13 are executed by slave P2. Overall, P1 will re-
ceive six files (F1 to F4, F6, and F7), and P2 will re-
ceive six files (F4 to F9). In this schedule, three files
(F4, F6, and F7) must be sent to both slaves.

To summarize, we assume a fully heterogeneous
master–slave paradigm: slaves have different
speeds and links have different capacities. Commu-
nications from the master are serial, and may well
become the major bottleneck.

2.3. Objective function

The objective is to minimize the total execution
time. The execution is terminated when the last
task has been completed. The schedule must decide

A. Giersch et al. / Journal of Systems Architecture 52 (2006) 88–104 91
which tasks will be executed by each slave. It must
also decide the ordering in which the master sends
the files to the slaves. We stress two important
points:

• Some files may well be sent several times, so
that several slaves can independently process
tasks that depend upon these files.

• A file sent to some processor remains available
for the rest of the schedule. If two tasks depend-
ing on the same file are scheduled on the same
processor, the file must only be sent once to that
processor.

To decrease the total execution time, we may
will try to limit the amount of replicated files. By
mapping on a same processor tasks depending
on a same file, the communication time will be re-
duced. But then there is the risk that all tasks are
mapped on a single processor. On the contrary,
if we try to balance the load between the proces-
sors, a lot of communications may be induced.
There is a trade-off to be found between these
two extreme solutions.

We let TasksSharingFilesðG;PÞ denote the
optimization problem to be solved.
3. Complexity

Most scheduling problems are known to be dif-
ficult [6,7]. However, some particular instances of
Fig. 3. Complexity results for the problem of scheduling tasks sharing
complete (this paper); (d) polynomial [9] (e) NP-complete (2-PARTITIO
the TASKSSHARINGFILES optimization problem
have a polynomial complexity, while the decision
problems associated to other instances are NP-
complete. We outline several results in this section,
which are all gathered in Fig. 3. In Fig. 3, the pic-
tographs read as follows: for each of the six case
studies, the leftmost diagram represents the appli-
cation graph, and the rightmost diagram repre-
sents the platform graph. We draw objects of
different sizes to symbolically represent their heter-
ogeneity. The application graph is made up of files
and tasks which all have the same sizes in situa-
tions (a)–(c), while this is not the case in situations
(d)–(f). Tasks depend upon a single (private) file in
situations (a), (b), (d) and (e), which is not the case
in situations (c) and (f). As for the platform graph,
there is a single slave in situations (d) and (f), and
several slaves otherwise. The platform is homoge-
neous in cases (a) and (e), and heterogeneous in
cases (b) and (c). The six situations are discussed
in the text below.

3.1. With a single slave

The instance of TASKSSHARINGFILES with a sin-
gle slave turns out to be more difficult than we
would think intuitively. In the very special case
where each task depends upon a single non-shared
file, i.e., n = m and E reduces to n edges ei,i:
Fi ! Ti, the problem can be solved in polynomial
time (this is situation (d) of Fig. 3). Indeed, it is
equivalent to the two-machine flow-shop problem,
files: (a) polynomial (round-robin); (b) polynomial [8]; (c) NP-
N) (f) NP-complete (this paper).

Fig. 4. The bipartite application graph used in the proof of
Theorem 1, with jVcj = 4.

92 A. Giersch et al. / Journal of Systems Architecture 52 (2006) 88–104
and the algorithm of Johnson [9] can be used to
compute the optimal execution time. According
to Johnson�s algorithm we first schedule the tasks
whose communication time (the time needed to
send the file) is smaller than (or equal to) the exe-
cution time in increasing order of the communica-
tion time. Then we schedule the remaining tasks in
decreasing order of their execution time.

The general instance with a single slave, where
files are shared between tasks, corresponds to situ-
ation (f) of Fig. 3. One major result of this paper is
to prove the NP-hardness of this instance. Interest-
ingly, this shows that (unless P = NP) there is no
polynomial algorithm to extend Johnson�s algo-
rithm for general graphs.

The decision problem associated to the general
instance of TASKSSHARINGFILES with a single slave
can formally be stated as follows:

Definition 1 (TSF1-DecðG;P; p ¼ 1;KÞ). Given
a bipartite application graph G, a platform P with
a single slave (p = 1) and a time bound K, is
it possible to schedule all tasks within K time-
steps?

Theorem 1. TSF1-DecðG;P; p ¼ 1;KÞ is NP-
complete.

Proof. Obviously, TSF1-DecðG;P; p ¼ 1;KÞ be-
longs to NP. To prove its completeness, we use a
reduction from MEWC, the Maximum Edge-
Weighted Clique problem, which is NP-complete
[10]. Consider an arbitrary instance I1 of MEWC:
given a complete edge-weighted graph Gc = (Vc,
Ec,w), where w : Ec ! N is the weight function,
a size bound B, where 3 6 B 6 jVcj, and a weight
bound W > 0, is there a subset S of B vertices such
that

P
e2ES

wðeÞ P W ? Here, ES denotes the set of
the B Æ (B�1)/2 edges connecting the vertices of
S. In other words, can we find B vertices inducing
a sub-graph of weight at least W? We point out
that the original formulation of MEWC in [10]
asks for a subset of at most B vertices rather than
of exactly B vertices, as we do here. However, it is
straightforward to see that our formulation
remains NP-complete (any polynomial algorithm
solving our formulation could be invoked at most
jVj times to solve the original formulation).
We construct the following instance I2 of
TSF1-DecðG;P; p ¼ 1;KÞ. We let F ¼ V c [fXg
and T ¼ Ec [fT xg (see Fig. 4), which defines
V ¼ F [T. There are m = jVcj + 1 files, and
n = jEcj + 1 = (m � 1) Æ (m � 2)/2 + 1 tasks (the
original graph Gc is complete, hence jEcj = jVcj Æ
(jVcj � 1)/2).

The size of file X is 1, and the size of each file
corresponding to a node in Vc is f =W Æ (2B � 1).
The weight of task Tx is x = W Æ (B2 + 2B � 2).
Note that x P 0 because B P 3. The weight of the
task corresponding to an edge e 2 Ec is 2W + w(e).

The relations between tasks and files are defined
as follows. First, there is an edge from file X to
each task in T. Second, there is an edge from a
node (file) v 2 V c � F to a node (task)
e 2 Ec � T if and only if v was one of the two
end-points of edge e in Gc. As a consequence, each
edge-task (in T n fT xg) exactly depends upon
three files (X, and both end-points of the edge).
The computing platform is quite simple: a single
slave, with unit communication and computation
time: c1 = w1 = 1. Finally, we define the scheduling
bound:

K ¼ 1þ xþ
X
e2Ec

wðeÞ þ 2W � jEcj

Clearly, the instance I2 can be constructed in
time polynomial in the size of I1. Now we have
to show that I2 admits a solution if and only if
I1 has one.

Assume first that I1 has a solution, i.e., that Gc

possesses B vertices inducing a sub-graph whose
edge-weight is at least W. Let C ¼ fv1; v2; . . . ; vBg

A. Giersch et al. / Journal of Systems Architecture 52 (2006) 88–104 93
denote these B vertices. The intuitive idea to
construct the schedule is as follows: after sending
file X, the master sends the B files corresponding to
the B nodes in C. Because these files induce a large
amount of work, the slave processor will have
enough work to process while receiving the other
files. The idea is to keep the slave processor active
all the time as soon as it has received file X. The
bound K is defined accordingly: the first time-unit
is spent receiving X, and the rest amounts to the
sum of all task weights.

The schedule is defined as follows:

(1) At time-step t = 0, file X is sent to the slave.
(2) The master sends the files (corresponding to

the nodes) of Vc as soon as possible, i.e., at
time t = 1 + (j � 1) Æ f for the jth file,
1 6 j 6 jVcj (recall that f is the size of each
file in Vc). The first B files sent are cho-
sen to be those in C, in any order. The
remaining jVcj � B files are then sent in any
order.

(3) The slave has an execution queue, which it
processes greedily, and in FIFO order. At
time-step t = 1, Tx is available in the queue,
and the slave starts its execution. Upon
reception of the first file of Vc, no new task
is ready. But upon reception of the jth file
of Vc, with j P 2, there are j � 1 new tasks
ready for execution: they correspond to all
the edges in Gc whose first end-point is the
jth file, and whose other end-point is one of
the j � 1 files of Vc previously received.
These j � 1 tasks are inserted at the end of
the execution queue, in any order.

We have derived a schedule for instance I2, but
does it match the execution bound K? As already
mentioned, this is only possible if the slave is never
idle after receiving file X. Let RC(j) denotes the
receive capacity of the slave upon reception of the
jth file from Vc:RC(j) denotes the amount of work
that remains to be executed for the current task
and those ready in the queue. It corresponds to the
time the processor can spend, waiting for a new
file, without becoming inactive. Similarly, RC(0)
denotes the receive capacity of the slave upon
reception of file X i.e., the time to execute task Tx.
Obviously, we would like RC(j) P f for all j P 0:
this would allow the slave to receive a new file
without becoming idle.

Initially, owing to task Tx, we have RC(0) = x.
Let Ej denote the set of the tasks from Ec that only
depend on the first j files from Vc sent to the slave.
We have RC(1) = x � f (the first file does not grant
any work), and

RCðjÞ ¼ xþ
X
e2Ej

wðeÞ þ 2W � jEjj � f � j

for all j P 2. Indeed, this quantity is the sum of the
execution times of the tasks in Ej [{Tx}, minus
the time spent to send the first j files. We want to
show that RC(j) P f for all j, 0 6 j 6 jVcj. We have
RC(0) � f = x � f P x � 2f = RC(1) � f. Further-
more, x � 2f = W Æ (B2 � 2B)P 0, since B P 3.
So RC(0) P f and RC(1) P f. For jP 2, jEjj = j Æ
(j�1)/2, and RCðjÞ � f ¼

P
e2Ej

wðeÞ � W þ hðjÞ,
where h(j) = W Æ (j � B)2. The minimum of h(j) is
zero, and is obtained for j = B. But due to the
choice of the first B files sent to the slave,P

e2EB
wðeÞ P W , hence RC(B) � f P 0. For j5 B,

h(j) P h(B � 1) = h(B + 1) = W and RC(j) � f P
h(j) �W P 0. Altogether, this concludes the proof
that the total execution of the schedule is equal toK,
hence a solution to I2.

Assume now that I2 has a solution. We have
a schedule with executes within K ¼ 1þ xþP

e2Ec
wðeÞ þ 2W � jEcj time-units. But K is equal

to one plus the sum of the task weights. Because
the slave processor is idle until file X has been sent,
necessarily the first file sent is X, and this emission
lasts one time-unit. After the first time-step, the
slave processor must be kept busy all the time.
Letting Ej be the set of the tasks from Ec that only
depend of the first j files of Vc sent to the slave, we
must have as previously, RC(j) P f for all 1 6

j 6 jVcj. For jP 2, we know that RCðjÞ 6 xþP
e2Ej

wðeÞ þ 2W � jEjj � f � j. We had an equality
before, but maybe the schedule did not send the
files as soon as possible, hence the inequality here.
Taking j = B we derive just as before that
RCðBÞ � f 6

P
e2EB

wðeÞ � W . Because the slave
is never idle after receiving the B-th file, we have
RC(B) � f P 0, and we derive that

P
e2EB

wðeÞ P
W . The first B files sent to the slave provide a
solution to I1. h

94 A. Giersch et al. / Journal of Systems Architecture 52 (2006) 88–104
3.2. With two slaves

With several slaves, some problem instances
have polynomial complexity. First of all, a greedy
round-robin algorithm is optimal in situation (a)
of Fig. 3: each task depends upon a single non-
shared file, all tasks and files have the same size,
and the fork platform is homogeneous. If we keep
the same hypotheses for the application graph but
move to heterogeneous slaves (situation (b) of Fig.
3), the problem remains polynomial, but the opti-
mal algorithm becomes complicated: see [8] for a
description and proof.

The decision problem associated to the general
instance of TASKSSHARINGFILES with two slaves,
writes as follows:

Definition 2 (TSF2-DecðG;P; p ¼ 2;KÞ). Given a
bipartite application graph G, a heterogeneous
platform P with two slaves (p = 2), and a time
bound K, is it possible to schedule all tasks within
K time-steps?

Clearly, TSF2-DEC is NP-complete, even if
there are no files at all: in that case, TSF2-DEC re-
duces to the scheduling of independent tasks on
a two-processor machine, which itself reduces to
the 2-PARTITION problem [11] as the tasks have
different sizes. This corresponds to situation (e)
in Fig. 3, where we do not even need the private
files. However, this NP-completeness result does
not hold in the strong sense: in a word, the size
of the tasks plays a key role in the proof, and
there are pseudo-polynomial algorithms to solve
TSF2-DEC in the simple case when there are
no files (see the pseudo-polynomial algorithm for
2-PARTITION in [11]).
Fig. 5. The bipartite application graph
The following theorem states an interesting re-
sult: in the case where all files and tasks have unit
size (i.e., fi = tj = 1), the TSF2-DEC remains NP-
complete. Note that in that case, the heterogeneity
only comes from the computing platform. This
corresponds to situation (c) in Fig. 3.

Definition 3 (TSF2-Equal-DecðG;P; p ¼ 2; fi ¼
tj ¼ 1;KÞ). Given a bipartite application graph G
such that fi = tj = 1 for all tasks and files, a
heterogeneous platform P with two slaves (p = 2),
and a time bound K, is it possible to schedule all
tasks within K time-steps?

Theorem 2. TSF2-Equal-DecðG;P;p¼ 2;fi ¼ tj ¼
1;KÞ is NP-complete.

Proof. Obviously, TSF2-Equal-DecðG;P; p ¼ 2;
fi ¼ tj ¼ 1;KÞ belongs to NP. To prove its com-
pleteness, we use a reduction from CLIQUE, which
is NP-complete [11]. Consider an arbitrary
instance I1 of CLIQUE: given a graph Gc = (Vc,Ec),
and a bound B, is there a clique in Gc (i.e., a fully
connected sub-graph) of size B? Without loss of
generality, we assume that jVcj P 9 and 6 6 B Æ
(B � 1) < jEcj.

We construct the following instance I2 of
TSF2-Equal-DecðG;P; p ¼ 2; fi ¼ tj ¼ 1;KÞ. We
let F ¼ V c [X and T ¼ Ec [fT yg (see Fig. 5),
which defines V ¼ F [T. Here, X is a collection
of x = jXj additional files, so there is a total of
jVcj + x files, one per node in the original graph Gc

and one per new file in X. As for tasks, there are as
many tasks as edges in the original graph Gc, plus
an additional task Ty.

The relations between tasks and files are defined
as follows. First, there is an edge from each file in
used in the proof of Theorem 2.

Fig. 6. The original graph Gc used to build the bipartite graph
of Fig. 5.

A. Giersch et al. / Journal of Systems Architecture 52 (2006) 88–104 95
F to task Ty; as a consequence, the slave processor
that will execute Ty will need to have received all
the files in F from the master before it can begin
the execution of Ty. Second, there is an edge from
a node (file) v 2 V c � F to a node (task)
e 2 Ec � T if and only if v was one of the two
end-points of edge e in Gc. In the rightmost part of
Fig. 5, the bipartite graph has been obtained from
the original graph Gc shown in Fig. 6. The files are
the nodes in Gc, and the tasks are the edges in Gc.
This explains why each task (edge) exactly
depends upon two files (the end-points of the
edge). We see that Gc has a clique of size B = 4
(nodes 6–9).

As specified in the problem, all files and tasks
have unit size. To complete the description of the
application, we let s = B Æ (B � 1)/2, r = jEcj � s
(note that s < r by hypothesis), and we define
x = (3r � 1) Æ jVcj � 2B + 2. We check that x P 1:
indeed, r P 4 and jVcjP B; we derive x P 9B + 2.

There remains to describe the computing plat-
form. The characteristics of the two slave proces-
sors are: w1 = 3 Æ jVcj, w2 = (3 Æ (r + 1) Æ jVcj � 4)/s,
c1 = 1, and c2 = 2. Note that w2 > w1, because
w2 � w1 = 3 Æ (r/s � 1) Æ jVcj + (3 Æ jVcj � 4)/s > 0.
Thus, w2 > 2. Finally, we define the scheduling
bound:

K ¼ 2þ 3 � ðr þ 1Þ � jV cj ¼ 6þ s � w2.

Clearly, the instance I2 can be constructed in time
polynomial in the size ofI1. Now we have to show
that I2 admits a solution if and only if I1 has
one.

Assume first that I1 has a solution, i.e.,
that Gc possesses a clique of size B. Let
C ¼ fv1; v2; . . . ; vBg denote the B vertices in the
clique of Gc. The intuitive idea is the following:
after sending to slave P2 the B files corresponding
to the B nodes in C, P2 will be able to process the
s tasks that correspond to the edges connecting
the nodes of C without receiving any extra file
from the master. The schedule is defined as
follows:

• First, at time-steps t = 0 and t = 1, two files are
sent by the master to P1. These two files are
chosen so that they correspond to any two
nodes va and vb of Vc that are connected in
Gc (i.e., the edge (va,vb) belongs to Ec) and that
do not both belong to the clique C. Note that
such an edge exists, as the number of edges
with their two end-points in C if B Æ (B � 1)/
2 < jEcj (by hypothesis). At time-step t = 2,
P1 is able to start the execution of the task
that corresponds to the edge (va,vb). P1 termi-
nates this task at time-step 2 + w1 =
2 + 3 Æ jVcj.

• Next, the B files that correspond to the clique C
are sent to P2. As soon as it has received two
files, P2 can start executing one task (the two
files correspond to two connected nodes, there-
fore the task that represents the edge between
them is ready for execution). P2 has received
the B files at time-step 2c1 + B Æ c2 = 2 + 2B,
i.e., before it completes the execution of the first
task, at time-step 2c1 + 2c2 + w2 = 6 + w2 > 6 +
w1 = 6 + 3 Æ jVcjP 6 + 3B, because B 6 jVcj.
Therefore, P2 can process the s tasks corre-
sponding to edges in the clique C without inter-
ruption (i.e., without waiting to receive more
files), until time-step 2c1 + 2c2 + s Æ w2 = 6 +
s Æ w2 = K.

• Finally, after sending the B files to P2, all files
but two are sent to P1: we do not re-send the
first two files, but we send all the others, i.e.,
jVcj � 2 + x files. We send the jVcj � 2 files cor-
responding to nodes in Vc before the x files cor-
responding to nodes in X. When P1 terminates
its first task, at time-step 2 + 3 Æ jVcj, it has
already received the first jVcj � 2 files (the last
one is received at time-step 2c1 + B Æ c2 +
(jVcj � 2) Æ c1 = jVcj + 2B). P1 can process the
r tasks corresponding to edges in Gc that do
not belong to the clique C without interruption,
until time-step 2c1 + r Æ w1 = K � w1. At that
time-step, P1 has just received the x last files,

96 A. Giersch et al. / Journal of Systems Architecture 52 (2006) 88–104
because (jVcj + x) Æ c1 + B Æ c2 = K � w1. P1 pro-
cesses then the last task Ty, and the scheduling
terminates within K times-steps.

We have derived a valid solution to our
scheduling instance I2.

Assume now that I2 has a solution. We
proceed in several steps:

(1) Necessarily, P1 executes task Ty. Otherwise,
P2 would execute it, but Ty requires jVcj + x

files, and the time needed by P2 would be at
least (jVcj + x) Æ c2 + w2 = 2 Æ (K � w1�2B) +
w2 > 2 Æ (K � 5 Æ jVcj) > K (because K P 15 Æ
jVcj), a contradiction.

(2) P1 cannot execute more than (K � 2c1)/
w1 = r + 1 tasks, because it must have
received two files before it can start to pro-
cess its first task.

(3) All files sent by the master after time-step
K � w1 are useless, because the tasks that
they might free for execution will not be ter-
minated at time-step K, neither by P1 nor by
P2 (remember that w2 > w1). Because P1 exe-
cutes Ty, it receives jVcj + x files. But
K � w1 = (jVcj + x) Æ c1 + B Æ c2, so that P2

cannot receive more than B tasks from the
master.

(4) P2 cannot execute more than s tasks,
because (K � 2c2)/w2 = (K � 6)/w2 + 2/w2 =
s + 2/w2 < s + 1.

Overall, a total of r + s + 1 tasks are executed.
Since P1 cannot execute more than r + 1 tasks, and
P2 more than s tasks, they do execute r + 1 and s

tasks respectively. But P2 executes s tasks and
receives no more than B files: these files define a
clique of size B in Gc, thereby providing a solution
to I1. h

Finally, we have shown that the decision prob-
lem associated with TASKSSHARINGFILES is NP-
complete, even in the simple cases where:

(1) there is a single slave, but tasks and files have
heterogeneous sizes;

(2) tasks and files have unitary size, but the plat-
form is composed of two heterogeneous pro-
cessors connected with links of different
bandwidths.

At the time of this writing, we do not know the
complexity of the problem instance where the plat-
form is homogeneous and tasks and files have uni-
tary size. We do not even know the complexity
when there is a single slave (and homogeneous
tasks and sizes).

In the general version of the problem, every-
thing is heterogeneous: the sizes of the tasks and
of the files are different, the slave processors have
different speeds and are connected to the master
with links of different bandwidths. Therefore, in
the following, we design polynomial heuristics to
solve the TASKSSHARINGFILES problem, and we
assess their performance trough extensive simu-
lations.
4. Heuristics

In this section, we first recall the three heuristics
used by Casanova et al. [1,2]. Next we introduce
several new heuristics, whose main characteristic
is a lower computational complexity.
4.1. Reference heuristics

Because our work was originally motivated by
the paper of Casanova et al. [1,2], we have to com-
pare our new heuristics to those presented by these
authors, which we call reference heuristics. We
start with a description of these reference
heuristics.
4.1.1. Structure of the heuristics
All the reference heuristics are built on the

model presented by Algorithm 1: while there re-
main tasks to be scheduled, an objective function
is evaluated for all pairs of a task (which remains
to be scheduled) and a processor. The task that
will actually be scheduled, as well as the target pro-
cessor, are chosen according to the values of this
objective function.

A. Giersch et al. / Journal of Systems Architecture 52 (2006) 88–104 97
4.1.2. Objective function
For all the heuristics, the objective function is
the same. OBJECTIVE(Tj,Pi) is indeed the minimum
completion time (MCT) of task Tj if mapped on
processor Pi. Of course, the computation of this
completion time takes into account:

(1) the files required by Tj that are already avail-
able on Pi (we assume that any file that once
was sent to processor Pi is still available and
do not need to be resent);

(2) the time needed by the master to send the
other files to Pi, knowing what communica-
tions are already scheduled;

(3) the tasks already scheduled on Pi.

4.1.3. Chosen task
The heuristics only differ by the definition of the

‘‘best’’ couple (Tj,Pi). More precisely, they only
differ by the definition of the ‘‘best’’ task. Indeed,
the ‘‘best’’ task Tj is always mapped on its most
favorable processor (denoted P(Tj)), i.e., on the
processor which minimizes the objective function:

ObjectiveðT j; P ðT jÞÞ ¼ min
16q6p

ObjectiveðT j; PqÞ

Here is the criterion used for each reference
heuristic:

Min–min. The ‘‘best’’ task Tj is the one minimiz-
ing the objective function when mapped on its
most favorable processor; shortest tasks are sched-
uled first to avoid gaps at the beginning of the
schedule:
ObjectiveðT j;PðT jÞÞ ¼ min
T k2S

min
16l6p

ObjectiveðT k;PlÞ

Max–min. The ‘‘best’’ task is the one whose
objective function, on its most favorable proces-
sor, is the largest; the idea is that a long task sched-
uled at the end would delay the end of the whole
execution:

ObjectiveðT j;PðT jÞÞ¼max
T k2S

min
16l6p

ObjectiveðT k;P lÞ

Sufferage. The ‘‘best’’ task is the one which will
be the most penalized if not mapped on its most
favorable processor but on its second most favor-
able processor, i.e., the ‘‘best’’ task is the one
maximizing:

min
Pq 6¼PðT jÞ

ObjectiveðT j; PqÞ �ObjectiveðT j; PðT jÞÞ

with

ObjectiveðT j; P ðT jÞÞ ¼ min
16l6p

ObjectiveðT j; P lÞ

Sufferage II and Sufferage X. these are refined
version of the Sufferage heuristic. The penalty of
a task is no more computed using the second most

98 A. Giersch et al. / Journal of Systems Architecture 52 (2006) 88–104
favorable processor but by considering the first
processor inducing a significant increase in the
completion time. See [1,2] for details.

4.1.4. Computational complexity
The loop on Step 3 of the reference heuristics

computes the objective function for any pair of
processor and task. For each processor, this com-
putation has a worst case complexity of OðjSjþ
jEjÞ, where E is the set of the edges representing
the relations between files and tasks (see Section
2.1). Hence, the overall complexity of the heuri-
stics is: Oðp � n � ðnþ jEjÞÞ. The complexity is even
worse for Sufferage II and Sufferage X, as the
processors must be sorted for each task, leading
to a complexity of Oðp � n � ðn � log p þ jEjÞÞ.

4.2. Structure of the new heuristics

When designing new heuristics, we took special
care to decreasing the computational complexity.
The reference heuristics are very expensive for
large problems. We aimed at designing heuristics
which are an order of magnitude faster, while
trying to preserve the quality of the schedules
produced.
In order to avoid the loop on all the pairs of
processors and tasks of Step 3 of the reference heu-
ristics, we need to be able to pick (more or less) in
constant time the next task to be scheduled. Thus
we decided to sort the tasks a priori according to
an objective function. However, since our platform
is heterogeneous, the task characteristics may vary
from one processor to the other. For example,
Johnson�s [9] criterion which splits the tasks into
two sets (communication time smaller than, or
greater than, computation time) depends on the
processors characteristics. Therefore, we compute
one sorted list of tasks for each processor. Note
that this sorted list is computed a priori and
is not modified during the execution of the
heuristic.

Once the sorted lists are computed, we still have
to map the tasks to the processors and to schedule
them. The tasks are scheduled one-at-a-time.
When we want to schedule a new task, on each
processor Pi we evaluate the completion time of
the first task (according to the sorted list) which
has not yet been scheduled. Then we pick the pair
task/processor with the lowest completion time.
This way, we obtain the structure of heuristics pre-
sented by Algorithm 2.

stems Architecture 52 (2006) 88–104 99
We still have to define the objective functions

used to sort the tasks. This is the object of the next
section.

4.3. The objective functions

The intuition behind the following six objective
functions is quite obvious:

Duration. We just consider the overall execution
time of the task as if it was the only task to be
scheduled on the platform:

ObjectiveðT j; P iÞ ¼ tj � wi þ
X
ek;j2E

fk � ci.

The tasks are sorted by increasing objectives,
which mimics the Min–min heuristic.

Payoff. When mapping a task, the time spent by
the master to send the required files is payed by all
the (waiting) processors as the master can only
send files to a single slave at a time, but the whole
system gains the completion of the task. Hence,
the following objective function encodes the payoff
of scheduling the task Tj on the processor Pi:

ObjectiveðT j; P iÞ ¼
tjP

ek;j2Efk
.

The tasks are sorted by decreasing payoffs. Note
that the actual objective function to compute the
payoff of scheduling task Tj on processor Pi would

be: ObjectiveðT j; P iÞ ¼ tj � wi=
P

ek;j2Efk � ci
� �

; as

the factors wi and ci do not change the relative order
of the tasks on a given processor, we just dropped
these factors. Furthermore, the order of the tasks
does not depend on the processor, so only one
sorted list is required with this objective function.

Advance. To keep a processor busy, we need to
send it all the files required by the next task that it
will process, before it ends the execution of the
current task. Hence the execution of the current
task must be larger than the time required to send
the files. We tried to encode this requirement by
considering the difference of the computation-
and communication-time of a task, i.e., the ad-
vance earned due to the execution of this task.
Hence the objective function:

ObjectiveðT j; P iÞ ¼ tj � wi �
X
ek;j2E

fk � ci.

A. Giersch et al. / Journal of Sy
The tasks are sorted by decreasing objectives.
Johnson. We sort the tasks on each processor as

Johnson does for a two-machine flow shop (see
Section 3.1).

Communication. As the communications may be
a bottleneck we consider the overall time needed to
send the files a task depends upon as if it was the
only task to be scheduled on the platform:

ObjectiveðT j; P iÞ ¼
X
ek;j2E

fk.

The tasks are sorted by increasing objectives, like
for Duration. As for Payoff, the sorted list is pro-
cessor independent, and only one sorted list is re-
quired with this objective function. This simple
objective function is inspired by the work in [8]
on the scheduling of homogeneous tasks on an het-
erogeneous platform.

Computation. Symmetrically, we consider the
execution time of a task as if it was not depending
on any file:

ObjectiveðT j; P iÞ ¼ tj.

The tasks are sorted by increasing objectives. Once
again, the sorted list is processor independent.

4.4. Additional policies

In the definition of the previous objective func-
tions, we did not take into account the fact that the
files are potentially shared between the tasks.
Some of them will probably be already available
on the processor where the task is to be scheduled,
at the time-step we would try to schedule it. There-
fore, on top of the previous objective functions, we
add the following additional policies. The goal is
(to try) to take file sharing into account.

Shared. When a file is sent to a processor, it is
beneficial to all tasks depending upon it. We try
to express this idea by using, in the objective func-
tions, weighted sizes for the files. The weighted size
of a file is obtained by dividing its size by the num-
ber of tasks that are dependent upon the file. For
example, the objective function for Dura-

tion + shared is

tj � wi þ
X
ek;j2E

fk
jfT ljek;l 2 Egj � ci.

100 A. Giersch et al. / Journal of Systems Architecture 52 (2006) 88–104
Readiness. For a given processor Pi, and at a
given time, the ‘‘ready’’ tasks are the ones whose
files are already all on Pi. Under the Readiness pol-
icy, if there is any ready task on processor Pi at
Step 9 of the heuristics, we pick one ready task
instead of the first unscheduled task in the sorted
list L(Pi).

Locality. In order to try to decrease the amount
of file replication, we (try to) avoid mapping a task
Tj on a processor Pi if some of the files that Tj de-
pends upon are already present on another proces-
sor. To implement this policy, we modify Step 9 of
the heuristics. Indeed, we no longer consider the
first unscheduled task in L(Pi), but the next
unscheduled task which does not depend on files
present on another processor. If we have scanned
the whole list, and if there remains some unsched-
uled tasks, we restart from the beginning of the list
with the original task selection scheme (first
unscheduled task in L(Pi)).

Finally, we obtain as many as 44 variants, since
any combination of the three additional policies
may be used for the six base objective functions,
except for Shared which does not impact
Computation.
4.5. Computational complexity

Overall, there are jEj dependence relations be-
tween tasks and files. Thus, computing the value
of an objective function for all tasks on all proces-
sors has a cost of Oðp � ðnþ jEjÞÞ, except for heu-
ristic Computation for which the cost is O(p Æ n),
as the relations between tasks and files are not con-
sidered. So the construction of all the sorted lists
has a cost of Oðp � n � log nþ p � jEjÞ for heuristics
Duration, Advance, and Johnson (p lists), of
Oðn � log nþ jEjÞ for heuristics Payoff and Commu-

nication (a single list), and of Oðn � log nÞ for heu-
ristic Computation (a single list). If we denote by
DT, one plus the maximum number of files that
a task depends upon, the execution of the loop
at Step 7 of the heuristics (see Algorithm 2) has
an overall cost of O(p Æ n Æ DT). Note that
n � DT P jEj. Hence the overall execution time of
the heuristics is:

Oðp � n � ðlog nþ DT ÞÞ
for heuristics using several lists (Duration, Ad-

vance, and Johnson), and

Oðn � log nþ p � n � DT Þ
for the others (Payoff, Communication, and Com-

putation). We have replaced the term nþ jEj in
the complexity of the reference heuristics by the
term logn + DT. The experimental results will as-
sert the gain in complexity.

Note that all the additional policies can be
implemented without increasing the complexity
of the base cases. It is obvious for Shared. Readi-
ness can be implemented without overhead if we
maintain, for all tasks on all processors, a counter
of the number of files that are missing for the task
on the processor. Each time a file is sent, this coun-
ter is updated. When a counter comes to zero, the
corresponding task is moved into the set of tasks
that are ready for the processor. For Locality,
one just have to remember, for each task, where
the files it depends upon have already been sent:
on a single processor (we keep its number), or al-
ready spread over several processors. When a file
is sent to some slave, this flag is updated for all
tasks depending upon the file. In each case, for
all tasks on a given processor, there are at most
jEj updates. The additional cost of the Readiness

and Shared policies is thus of Oðp � jEjÞ, which is
completely absorbed by the overall complexity of
the heuristics.
5. Experimental results

In order to compare our heuristics and the
reference heuristics, we have simulated their execu-
tions on randomly built platforms and graphs.
We have conducted a very large number of
experiments, which we summarize in this sect-
ion.

5.1. Experimental platforms

Processors. We have recorded the cycle time of
the different computers used in our laboratories (in
Lyon and Strasbourg). From this set of values, we
randomly pick values whose difference with the
mean value was less than the standard deviation.

A. Giersch et al. / Journal of Systems Architecture 52 (2006) 88–104 101
This way we define a realistic and heterogeneous
set of 20 processors.

Communication links. The 20 communication

links between the master and the slave are built
along the same principles as the set of processors.

Communication to computation cost ratio. The
absolute values of the communication link band-
widths or of the processors speeds have no mean-
ing (in real life they are application dependent and
must be pondered by application characteristics).
We are only interested by the relative values of
the processors speeds, and of the communication
links bandwidths. Therefore, we normalize proces-
sor and communication average characteristics.
Also, we arbitrarily impose the communication-
to-computation cost ratio, so as to model three
main types of problems: computation intensive
(ratio = 0.1), communication intensive (ratio =
10), and intermediate (ratio = 1).

5.2. Application graphs

We run the heuristics on the following four
types of application graphs. In each case, the sizes
of the files and tasks are randomly and uniformly
taken between 0.5 and 5.

The graphs are schematically represented in
Fig. 7.

Forks. Each graph contains 100 fork graphs,
where each fork graph is made up of 20 tasks
depending on a single and same file (Fig. 7(a)).

Two-one. Each task depends on exactly two
files: one file which is shared with some other
tasks, and one unshared file (Fig. 7(b)).

Partitioned. The graph is divided into 20 chunks
of 100 tasks, and in each chunk each task ran-
Fig. 7. The four type of application graphs used in the simulati
domly depends on 1 up to 10 files. The whole
graph contains at least 20 different connected com-
ponents (Fig. 7(c)).

Random. Each task randomly depends on 1 up
to 50 files (Fig. 7(d)).

Our objective is to use graphs representative of a
large application class. The fork graphs represent
embarrassingly parallel applications. The two-one
graphs come from the original papers by Casanova
et al. [2,1]. The partitioned graphs deal with appli-
cations encompassing some regularity. The ran-
dom graphs are for totally irregular applications.
Each of our graphs contains 2000 tasks and 2500
files, except for the fork graphs which also contain
2000 tasks but only 100 files.

In order to avoid any interference between the
graph characteristics and the communication-to-
computation cost ratio, we normalize the sets of
tasks and files so that the sum of the file sizes
equals the sum of the task sizes times the commu-
nication-to-computation cost ratio.

5.3. Results

Table 1 summarizes all the experiments. In this
table, we report the performance of the best ten
heuristics, together with their cost (i.e., their
CPU time). This is a summary of 12,000 random
tests (1000 tests over all four graph types and three
communication-to-computation cost ratios). Each
test involves 49 heuristics (5 reference heuristics
and 44 combinations for our new heuristics). For
each test, we compute the ratio of the performance
of all heuristics over the best heuristic, which gives
us a relative performance. The best heuristic differs
from test to test, which explains why no heuristic
ons: (a) forks (b) two-one (c) partitioned and (d) random.

Table 1
Relative performance and cost of the best 10 heuristics

Heuristic Relative performance Standard deviation Relative cost Standard deviation

Sufferage 1.110 0.1641 376.7 153.4
Min–min 1.130 0.1981 419.2 191.7
Computation + readiness 1.133 0.1097 1.569 0.4249
Duration + locality + readiness 1.133 0.1295 1.499 0.4543
Duration + readiness 1.133 0.1299 1.446 0.3672
Payoff + shared + readiness 1.138 0.1260 1.496 0.6052
Payoff + readiness 1.139 0.1266 1.246 0.2494
Payoff + shared + locality + readiness 1.145 0.1265 1.567 0.5765
Payoff + locality + readiness 1.145 0.1270 1.318 0.2329
Computation + locality + readiness 1.147 0.1234 1.618 0.4749

102 A. Giersch et al. / Journal of Systems Architecture 52 (2006) 88–104
in Table 1 can achieve an average relative perfor-
mance exactly equal to 1. In other words, the best
heuristic is not always the best of each test, but it is
closest to the best of each test on average. The
optimal relative performance of 1 would be
achieved by picking, for any of the 12,000 tests,
the best heuristic for this particular case. (For each
test, the relative cost is computed along the same
guidelines, using the fastest heuristic.) Note that
we report extensive simulation results in [12].

We see that Sufferage gives the best results: on
average, it is within 11% of the relative optimal of
1. The next nine heuristics closely follow: they are
within 13–14.7% of the relative optimal. Out of
these nine heuristics, only Min–min is a reference
heuristic. Max–min is almost the worst heuristic.
This can be explained as follows: in the beginning,
this heuristic advantages tasks that have no files
on any slave, generating lots of communications,
and thereby delaying the execution of the following
tasks. Despite the additional time spent to compute
the schedule, Sufferage II and Sufferage X do not
achieve as good performance as Sufferage. The vari-
ants of Sufferage base their scheduling choices on a
prediction of what would happen if these choices
were not selected. This prediction does not take into
account the possible file transfers due to the sched-
uling of other tasks. Thus it is not surprising that
Sufferage II and Sufferage X, which try tomake pre-
dictions in a longer term, make bigger mistakes,
and finally achieve worst results.

Concerning our new heuristics, we can see that
the performance of those appearing in Table 1 clo-
sely follows the performance of Min–min. Further-
more, the standard deviations are lower for our
heuristics, which reflects a greater stability of the
results.

On the average, Duration, Computation, and
Payoff (along with Readiness) achieve the best
performances. Communication lags well behind.
However, the results for Computation and Commu-

nication must be nuanced. The performance of
Computation degrades as the communication-
to-computation cost ratio increases, while it is the
inverse for Communication. This is not surprising,
when looking at the definition of these heuristics.
Computation only uses the computation time of
the tasks, hence is more adapted to problems that
are computation intensive. A similar explanation
holds for Communication. Duration, which com-
bines both approaches, is more stable across the dif-
ferent communication-to computation cost ratios.

Advance, Payoff, and Johnson are all based on
the same observation: one should try to maximize
the overlap of the communications by the compu-
tations. They, however, achieve performances that
are very different. In any case, Advance and its
variants perform badly in comparison with the
other heuristics. Among those three heuristics,
Payoff is the one with the best performance. It
seems that Advance tends to favor tasks with large
communication times. This observation is verified
by the fact that it is improved by the Shared policy,
which reduces the importance of communication
times. On the contrary, Payoff may also favor a
task with a large communication time, but only
if the advance brought by its computation is really
important (much more than what is required by
Advance to schedule this task). Regarding Johnson,
it achieves intermediate performance between Pay-

A. Giersch et al. / Journal of Systems Architecture 52 (2006) 88–104 103
off and Advance. Its best variant (Readiness)
achieves an average relative performance of
1.172. Johnson�s algorithm [9], which is optimal
without file sharing, does not adapt well to the
general case, where tasks may share files.

A close observation of the results shows us that
the differences between the heuristics are more sig-
nificant when the communication-to-computation
cost ratio is low. In the opposite case, it is likely
that the communications from the master become
the true bottleneck of all scheduling strategies.

As for the additional policies, Readiness brings
a real gain. In comparison with the base heuristics,
this policy enhances the performances by more
than 8% on average, except for Communication

for which the gain is negligible. Readiness, whose
objective is to reduce the number of replicated
files, reveals itself as specially effective. We can ob-
serve that, with Communication, tasks roughly
depending on a same set of files tend to be put to-
gether in the task lists. So, when such a task is
scheduled on some slave, it induces the transfer
of the concerned files, and the other tasks which
follow wind up at the beginning of the list. Readi-
ness has thus little influence. This phenomenon is
perfectly illustrated for the graphs of type Forks.
For those graphs of type Forks, the difference be-
tween Communication and Computation is the most
evident. Both heuristics perform badly in their
basic versions, but Computation + readiness out-
performs by 20% all the other heuristics, including
the reference heuristics. It is because of these re-
sults for the Fork graphs that Computation + read-

iness ended up in Table 1, whereasCommunication +
readiness did not.

Locality does practically not change the perfor-
mances of the heuristics. It seems that this policy,
whose goal was to improve the locality with re-
spect to the use of the files, is not aggressive en-
ough. Shared, our last variant, does only affect
significantly Advance, Duration, and Johnson: the
former is improved (but does not become of good
quality), while the last ones are degraded. With
Duration and Johnson, it is likely that Shared

advantages tasks with large communication times,
instead of those depending on highly shared files,
as we wanted to. Another approach to better take
file sharing into account, would be to reevaluate
the ordering of the tasks on the processors, as files
are being transferred.

In Table 1, we also report the computational
costs of the heuristics (CPU time needed by each
heuristic). The theoretical analysis is confirmed:
our new heuristics are at least an order of magni-
tude faster than the reference heuristics.

As a conclusion, given their good performance
compared to Sufferage, we believe that the eight
new variants listed in Table 1 provide a very good
alternative to the costly reference heuristics. The
Readiness policy brings a large gain. As for the
base heuristics, the simplest idea (among those
that we evaluated) seems to work best: heuristics
that only use an estimation of the execution time
of the tasks on the processors. Depending upon
the application graph, Computation + readiness

and Duration + readiness are the recommended
heuristics. The former performs better on Fork
graphs, but the latter gives more stable results
for all types of graphs.
6. Conclusion

In this paper, we have dealt with the problem of
scheduling a large collection of independent tasks,
that may share input files, onto heterogeneous
clusters. On the theoretical side, we have shown
new complexity results. On the practical side, we
have improved upon the heuristics proposed by
Casanova et al. [1,2]. We have succeeded in design-
ing a collection of new heuristics which have sim-
ilar performances but whose computational costs
are an order of magnitude lower.

This work, as the one of Casanova et al., was
limited to the master–slave paradigm. It is in-
tended as a first step towards addressing the chal-
lenging situation where

• input files are distributed among several file
servers (several masters) rather than being
located on a single master,

• communication can take place between compu-
tational resources (slaves) in addition to the
messages sent by the master(s): some slave
may well propagate files to another slave while
computing.

104 A. Giersch et al. / Journal of Systems Architecture 52 (2006) 88–104
We hope that the ideas introduced when design-
ing our heuristics will prove useful for this difficult
scheduling problem. As shown by the preliminary
results reported in [13], much work remains to be
done to design efficient mapping and scheduling
strategies in a fully decentralized environment.
References

[1] H. Casanova, A. Legrand, D. Zagorodnov, F. Berman,
Heuristics for scheduling parameter sweep applications in
Grid environments, in: Ninth Heterogeneous Computing
Workshop, IEEE Computer Society Press, Silver Spring,
MD, 2000, pp. 349–363.

[2] H. Casanova, A. Legrand, D. Zagorodnov, F. Berman,
Using simulation to evaluate scheduling heuristics for a
class of applications in grid environments, Research
Report RR-1999-46, LIP, ENS Lyon, France, 1999.

[3] F. Berman, High-performance schedulers, in: I. Foster, C.
Kesselman (Eds.), The Grid: Blueprint for a New Com-
puting Infrastructure, Morgan-Kaufmann, Los Altos, CA,
1999, pp. 279–309.

[4] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, R.F.
Freund, Dynamic matching and scheduling of a class of
independent tasks onto heterogeneous computing systems,
in: Proceedings of the Eight Heterogeneous Computing
Workshop, IEEE Computer Society Press, Silver Spring,
MD, 1999, pp. 30–44.

[5] T.D. Braun, H.J. Siegel, N. Beck, L.L. Bölöni, M.
Maheswaran, A.I. Reuther, J.P. Robertson, M.D. Theys,
B. Yao, D. Hensgen, R.F. Freund, A comparison of
eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems,
Journal of Parallel and Distributed Computing 61 (6)
(2001) 810–837.

[6] B.A. Shirazi, A.R. Hurson, K.M. Kavi (Eds.), Scheduling
and Load Balancing in Parallel and Distributed Systems,
IEEE Computer Society Press, Silver Spring, MD, 1995.

[7] Ph. Chrétienne, E.G. CoffmanJr., J.K. Lenstra, Z. Liu
(Eds.), Scheduling Theory and its Applications, John Wiley
and Sons, New York, 1995.

[8] O. Beaumont, A. Legrand, Y. Robert, A polynomial-time
algorithm for allocating independent tasks on heteroge-
neous fork-graphs, in: ISCIS XVII, Seventeenth Interna-
tional Symposium on Computer and Information Sciences,
CRC Press, Boca Raton, 2002, pp. 115–119.

[9] S.M. Johnson, Optimal two- and three-stage production
schedules with setup times included, Naval Research
Logistics Quarterly 1 (1954) 61–68.

[10] E.M. Macambira, C.C. de Souza, The edge-weighted
clique problem: valid inequalities, facets and polyhedral
computations, European Journal of Operational Research
123 (2) (2000) 346–371.
[11] M.R. Garey, D.S. Johnson, Computers and Intractability,
a Guide to the Theory of NP-Completeness, W.H. Free-
man and Company, New York, 1979.

[12] A. Giersch, Y. Robert, F. Vivien, Scheduling tasks sharing
files on heterogeneous clusters, Research Report RR-2003-
28, LIP, ENS Lyon, France, also available as INRIA
Research Report 4819, 2003.

[13] A. Giersch, Y. Robert, F. Vivien, Scheduling tasks sharing
files from distributed repositories, in: Euro-Par�04: Parallel
ProcessingLecture Notes in Computer Science, Springer
Verlag, Berlin, 2004, pp. 148–159.

Arnaud Giersch was born in 1977 in
Colmar, France. He obtained a PhD
thesis from Louis Pasteur University of
Strasbourg in December 2004. He is
currently a postdoctoral researcher in
the Computer Science Laboratory
ICPS/LSIIT at Louis Pasteur Univer-
sity of Strasbourg. His main research
interests are scheduling and load bal-
ancing techniques for heterogeneous
platforms.
Yves Robert was born in 1958 in Lyon,
France. He obtained a PhD thesis from
Institut National Polytechnique de
Grenoble in January 1986. He is cur-
rently a full professor in the Computer
Science Laboratory LIP at ENS Lyon.
He is the author of four books, 90
papers published in international
journals, and 115 papers published in
international conferences. His main
research interests are scheduling tech-

niques and parallel algorithms for clusters and grids. He is a

senior member of IEEE, and serves as an associate editor of
IEEE TPDS.

Frédéric Vivien was born in 1971 in
Saint-Brieuc, France. He obtained a
PhD thesis from École normale
supérieure de Lyon in 1997. From 1998
to 2002, he had been an associate
professor at Louis Pasteur University
of Strasbourg. He spent the year 2000
working in the Computer Architecture
Group of the MIT Laboratory for
Computer Science. He is currently a
full reseacher at INRIA. His main

research interests are scheduling techniques, parallel algorithms

for clusters and grids, and automatic compilation/paralleliza-
tion techniques.

	Scheduling tasks sharing files on heterogeneous master - slave platforms
	Introduction
	Framework
	Tasks and files
	Platform graph
	Objective function

	Complexity
	With a single slave
	With two slaves

	Heuristics
	Reference heuristics
	Structure of the heuristics
	Objective function
	Chosen task
	Computational complexity

	Structure of the new heuristics
	The objective functions
	Additional policies
	Computational complexity

	Experimental results
	Experimental platforms
	Application graphs
	Results

	Conclusion
	References

