
34

A Step Towards Unifying Schedule
and Storage Optimization

WILLIAM THIES

Massachusetts Institute of Technology

FRÉDÉRIC VIVIEN

INRIA

and

SAMAN AMARASINGHE

Massachusetts Institute of Technology

We present a unified mathematical framework for analyzing the tradeoffs between parallelism and

storage allocation within a parallelizing compiler. Using this framework, we show how to find a

good storage mapping for a given schedule, a good schedule for a given storage mapping, and a

good storage mapping that is valid for all legal (one-dimensional affine) schedules. We consider

storage mappings that collapse one dimension of a multidimensional array, and programs that are

in a single assignment form and accept a one-dimensional affine schedule. Our method combines

affine scheduling techniques with occupancy vector analysis and incorporates general affine de-

pendences across statements and loop nests. We formulate the constraints imposed by the data

dependences and storage mappings as a set of linear inequalities, and apply numerical program-

ming techniques to solve for the shortest occupancy vector. We consider our method to be a first step

towards automating a procedure that finds the optimal tradeoff between parallelism and storage

space.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilation;
optimization; memory management

General Terms: Languages

Additional Key Words and Phrases: Automatic parallelization, affine scheduling, storage optimiza-

tion, occupancy vectors, polyhedral model, affine recurrence equations

ACM Reference Format:
Thies, W., Vivien, F., and Amarasinghe, S. 2007. A step towards unifying schedule and storage

optimization. ACM Trans. Program. Lang. Syst. 29, 6, Article 34 (October 2007), 45 pages. DOI =
10.1145/1286821.1286825 http://doi.acm.org/10.1145/1286821.1286825

This work was partly supported by NSF grant CCR0073510, DARPA grant DBT63-96-C-0036, and

a graduate fellowship from Siebel Systems.

Authors’ address: W Thies; email: thies@alum.mit.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 0164-0925/2007/10-ART34 $5.00 DOI 10.1145/1286821.1286825 http://doi.acm.org/

10.1145/1286821.1286825

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:2 • W. Thies et al.

1. INTRODUCTION

It remains an important and relevant problem in computer science to auto-
matically find an efficient mapping of a sequential program onto a parallel
architecture. Though there are many heuristic algorithms in practical systems
and partial or suboptimal solutions in the literature, a theoretical framework
that can fully describe the entire problem and find the optimal solution is still
lacking. The difficulty stems from the fact that multiple interrelated costs and
constraints must be considered simultaneously to obtain an efficient executable.

While exploiting the parallelism of a program is an important step towards
achieving efficiency, gains in parallelism are often overwhelmed by other costs
relating to data locality, synchronization, and communication. In particular,
with the widening gap between clock speed and memory latency, and with
modern memory systems becoming increasingly hierarchical, the amount of
storage space required by a program can have a drastic effect on its perfor-
mance. Nonetheless, parallelizing compilers often employ varying degrees of
array expansion [Feautrier et al. 1998; Feautrier 1988; Barthou et al. 2000]
to eliminate element-level anti and output dependences, thereby adding large
amounts of storage that may or may not be justified by the resulting gains in
parallelism. Ideally, one would like to consider all possible storage mappings
and instruction schedules and to choose the combination that results in the opti-
mal execution time. However, doing so is too complex to be practical—there are
too many combinations to enumerate, and it is difficult to gauge the efficiency
of each one.

Here we arrive at a classical phase ordering problem in compilers. Since it
is too complicated to optimize storage and parallelism at the same time, there
must be some sequence of phases that optimizes each, in turn. However, if we
first optimize for storage space, we restrict the range of legal schedules that can
be considered by the parallelizer. Alternately, first optimizing for parallelism
will restrict the set of storage mappings that we can consider later. What is
needed is an efficient framework that can consider both storage optimization
and schedule optimization at the same time.

In this article, we introduce a unifying mathematical framework that in-
corporates both schedule constraints (restricting when statements can be
executed) and storage constraints (restricting where their results can be
stored). We consider storage mappings that collapse one dimension of a multi-
dimensional array, and programs that are in a single assignment form with a
one-dimensional affine schedule. Our technique incorporates general affine de-
pendences across statements and loop nests; it deals with both perfectly nested
and nonperfectly nested loops.

Using this technique, we present solutions to three important scheduling
problems. Namely, we show how to determine 1) a good storage mapping for a
given schedule, 2) a good schedule for a given storage mapping, and 3) a good
storage mapping that is valid for all legal (one-dimensional affine) schedules.
Our method is precise and practical in that it reduces to an integer linear
program (or, in the case of problem 2, a linear program) that can be solved
with standard techniques. We believe that these solutions represent a first step

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:3

towards automating a procedure that finds the optimal compromise between
parallelism and storage space.

The rest of this article is organized as follows. Section 2 gives an abstract for-
mulation of the problem, and Section 3 reviews the mathematical background
that forms the basis for our technique. Section 4 formulates our method ab-
stractly, and Section 5 illustrates our method with examples. Related work is
described in Section 6 and we conclude in Section 7.

2. ABSTRACT PROBLEM

We now consider an abstract description of the scheduling problems faced by
a parallelizing compiler. We start with a directed acyclic graph G = (V , E).
Each vertex v ∈ V represents a dynamic instance of an instruction; a value
will be produced as a result of executing v. Each edge (v1, v2) ∈ E represents
that v2 consumes the value produced by v1. Thus, each edge (v1, v2) imposes the
schedule constraint that v1 be executed before v2, and the storage constraint
that the value produced by v1 be stored until the execution time of v2.

Our task is to output (�, �), where � is a function mapping each operation
v ∈ V to its time of execution, and � is a function mapping each operation to a
storage location (where its result is stored). Parallelism is expressed implicitly
by assigning the same execution time to multiple operations. How, then, might
we go about choosing � and �?

2.1 Choosing a Store Given a Schedule

The first problem is to find the optimal storage mapping for a given schedule.
That is, we are given � and choose � such that 1) (�, �) respects the storage
constraints, and 2) � uses as few storage locations as possible (i.e., the size of
the set {�(v) | v ∈ V } is minimized).

This problem is orthogonal to the traditional loop parallelization problem.
After selecting the instruction schedule by any of the existing techniques, we
are interested in identifying the best storage allocation. That is, with schedule-
specific storage optimization we can build upon the performance gains of any
one of the many scheduling techniques available to the parallelizing compiler.

Note that if the schedule is sufficiently regular (i.e., affine), then one can
precisely estimate the minimum number of storage locations needed, even if the
program is parameterized, using Ehrhart polynomials [Clauss 1996; Kouache
2002, 19–20]. However, arbitrary storage mappings can be very expensive to
implement. In this paper, we restrict our attention to a regular class of storage
mappings (collapsing a single array dimension) that is efficient to implement
and easy to reason about.

2.2 Choosing a Schedule Given a Store

The second problem is to find an optimal schedule for a given storage mapping,
if any valid schedule exists. That is, we are given � and choose � such that 1)
(�, �) respects the schedule and storage constraints, and 2) � executes all of
the instructions in the minimal span of time. Note that if � is too restrictive

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:4 • W. Thies et al.

(storing many values in the same location), there might not exist a � that
respects the constraints.

This is a very relevant problem in practice because of the stepwise, nonlinear
effect of storage size on execution time. For example, when the storage required
cannot be accommodated within the register file or the cache, and has to resort
to the cache or the external DRAM, respectively, the cost of storage increases
dramatically. Further, since there are only a few discrete storage spaces in
the memory hierarchy, and their size is known for a given architecture, the
compiler can adopt the strategy of trying to restrict the store to successively
smaller spaces until no valid schedule exists. Once the storage is at the lowest
possible level, the schedule could then be shortened, having a more continuous
and linear effect on efficiency than the storage optimization. In the end, we end
up with a near-optimal storage allocation and instruction schedule.

2.3 Choosing a Store for All Schedules

The final problem is to find the optimal storage mapping that is valid for all
legal schedules. That is, we are given a (possibly infinite) set � = {�1, �2, . . .},
where each � in � respects the schedule constraints. We choose � such that 1)
∀� ∈ �, (�, �) respects the storage constraints, and 2) � uses as few storage
locations as possible.

A solution to this problem allows us to have the minimum storage require-
ments without sacrificing any flexibility of our scheduling. For instance, we
could first apply a storage mapping, and then arrange the schedule to optimize
for data locality, synchronization, or communication, without worrying about
violating the storage constraints.

We could also postpone the choice of a schedule until runtime, when the
system could incorporate dynamic information (e.g., the values of loop bounds
and the available processor resources) into the scheduling decision. The storage
mapping guarantees that any of the candidate schedules is valid.

Such flexibility also could be critical if, for example, we want to apply loop
tiling [Irigoin and Triolet 1988] in conjunction with storage optimization. If we
optimize storage too much, tiling could become illegal; however, we sacrifice ef-
ficiency if we don’t optimize storage at all. Thus, we optimize storage as much as
we can without invalidating a schedule that was valid originally. (Even though
our technique considers only one-dimensional affine schedules, we demonstrate
in Section 4.6.3 that it still applies to some forms of tiling.)

More generally, if our analysis indicates that certain schedules are undesir-
able by any measure, we could add edges to the dependence graph and solve
again for the most storage-efficient �. In this way, � provides the best storage
option that is legal across the entire set of schedules under consideration.

2.4 Approach

Unfortunately, the domain of real programs does not lend itself to the simple
DAG representation as presented above. Primarily, loop bounds in programs are
often specified by symbolic expressions instead of constants, thereby yielding
a parameterized and infinite dependence graph. Furthermore, even when the

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:5

Fig. 1. Code for Example 1.

constants are known, the problem sizes are too large for schedule and storage
analysis on a DAG, and the generated code grows to an infeasible size if a static
instruction is generated for every node in the DAG. Finally, it is desirable to have
the output of the analysis (the transformed source code) be in a compact form
so that it can be further compiled and optimized using standard techniques.

Accordingly, we make two sets of simplifying assumptions to make our anal-
ysis tractable. The first concerns the nature of the dependence graph G and
the scheduling function �. Instead of allowing arbitrary edge relationships and
execution orderings, we restrict our attention to affine dependences and one-
dimensional affine schedules [Feautrier 1992a]. The second assumption con-
cerns our approach to the optimized storage mapping. Instead of allowing an
arbitrary mapping from operations to locations, we employ the occupancy vector
as a simple and efficient mechanism of storage reuse [Strout et al. 1998]. The
following section contains more background information on affine schedules
and occupancy vectors.

3. BACKGROUND

In this section, we present background material that is needed to understand
our technique. In Section 3.1 we give our notations for the polyhedral model,
in Section 3.2 we review Feautrier’s approach to the affine scheduling problem,
and in Section 3.3 we discuss the occupancy vector as a means of collapsing stor-
age requirements. Those who are already familiar with the polyhedral model,
affine scheduling, and occupancy vectors can skip most of this section, but might
want to review our notations in Sections 3.1 and 3.2.1.

3.1 The Polyhedral Model

A fundamental difficulty in constructing optimized schedules for real scientific
programs is that some of the program parameters are unknown at compile
time. For example, the code in Figure 1 has symbolic loop bounds m and n
which might be unknown to the compiler. Moreover, even if they were known,
they might be too large for the compiler to emit an explicit execution time for
each iteration of the loop. Consequently, it is imperative that the scheduler
consider programs not as a static list of individual instructions, but as a family
of programs that are structured by some parameters. In the case when there
is no bound on the structural parameters, the size of each program family
is infinite. The compiler needs a finite representation for this infinite set of
programs, as well as a tractable way to parameterize the schedule so that it is
valid for any possible input.

The polyhedral model offers exactly this kind of representation [Feautrier
1996; Darte 1998]. It represents an infinite family of programs as a set of

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:6 • W. Thies et al.

parameterized polyhedra, each of which can be finitely generated using the
following definition.

Definition 1. A polyhedron D is defined as the intersection of a finite set of
closed linear half-spaces. Its representation is specified by a system of inequal-
ities:

D = {�x ∈ Qn | A�x ≤ �b}, (1)

where n is the dimension of the space containing the polyhedron; A is a j × n
matrix, �b is a j -vector, and j is the number of inequalities.

In the polyhedral model, polyhedra are used to represent the domains of loop
iterations and data dependences. For a given statement, the iteration domain
(or just domain) consists of the set of values assumed by the enclosing loop
indices at runtime. If a statement uses values produced by previous statements,
then there are also data dependence domains specifying the values of the loop
indices where the dependences exist. The dependence domains are (nonstrict)
subsets of the iteration domain.

The translation of programs into the polyhedral model was pioneered by
Feautrier, who showed that programs with static control flow1 can be accurately
represented in the polyhedral model [Feautrier 1992a]. Throughout this article,
we will use the following notations to describe a program in the polyhedral
model:

—An iteration vector �i contains the values of surrounding loop indices at a given
point in the execution of the program. For example, the two-dimensional
iteration vector �i = (5, 10) could represent an iteration where i = 5 and
j = 10 in the program of Figure 1.

—The structural parameters �n, of domain N , represent loop bounds and other
parameters that are unknown at compile time, but that are fixed for any
given execution of the program. For example, in the case of Figure 1, we have
�n = (m, n).

—There are ns statements S1 . . . Sns in the program. Each statement S has
an associated polyhedral domain DS , such that ∀�i ∈ DS , there is a dynamic
instance S(�i) of statement S at iteration �i during the execution of the pro-
gram. For example, in Figure 1 there is one assignment statement S, and its
domain is the polyhedron DS = {(i, j) | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ n}. Note that
DS is parameterized by the structural parameters �n.

—There are np dependences P1 . . . Pnp in the program. Each dependence Pj is a

4-tuple (R j , Tj , �h j , P j) where R j and Tj are statements, �h j is a vector-valued

1A static control flow program is one in which: 1) all control flow is in the form of FOR loops and

if/then/else blocks (no function calls or GOTOs), 2) each statement is an assignment to a scalar or

array variable, with the right-hand side being an arbitrary expression of such variables, 3) each

array access has index expressions which are affine functions of the loop indices and symbolic

constants, 4) each upper (resp. lower) loop bound is also in this form, or is the MIN (resp. MAX)

of a finite set of such expressions, and 5) each conditional governing an if/then/else block depends

only on an affine inequality involving the surrounding loop indices or symbolic constants.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:7

affine2 function, and P j ⊆ DR j is a polyhedron such that:

∀�i ∈ P j , R j (�i) depends on Tj (�h j (�i, �n)). (2)

In the case of Example 1, there are three dependences, each corresponding
to an array access on the right hand side. The dependence domains are gov-
erned by the boundary conditions, since some instances of the assignment
statement S refer to values of the array that were assigned before the loop
(although we ignore the pre-loop assignments in this example for sake of
simplicity). The dependences are as follows:

P1 = (S, S, �h1, P1),

where �h1(i, j) = (i − 1, j − 2) and P1 = {(i, j) | 2 ≤ i ≤ m ∧ 3 ≤ j ≤ n}
P2 = (S, S, �h2, P2),

where �h2(i, j) = (i − 1, j) and P2 = {(i, j) | 2 ≤ i ≤ m ∧ 1 ≤ j ≤ n}
P3 = (S, S, �h3, P3),

where �h3(i, j) = (i − 1, j + 1) and P3 = {(i, j) | 2 ≤ i ≤ m ∧ 1 ≤ j ≤ n − 1}.
The representation of dependences is very compact; instead of enumerating

the instances of Tj that some instance of R j depends on, there is a single func-

tion �h j that spans across the entire dependence domain P j . The dependences
Pj are determined using an array dataflow analysis [Feautrier 1991, 2001a;
Maydan et al. 1993; Pugh 1992].

Note that there are cases in which our representation of dependences is not
exact. For static control flow programs, the exact dependences can be repre-
sented by a quasi-affine selection tree (or quast) which consists of a tree of
conditionals with dependence functions at the leaves [Feautrier 1991]. Each
conditional and dependence is expressed using a quasi-affine function—that
is, an affine function that may contain integer division, as well—on the loop
counters and structural parameters. We assume that the dependence functions
are affine rather than quasi-affine, thereby implying that each dependence do-
main is a polyhedron (rather than a Z-polyhedron, which is the intersection of
a polyhedron and an integral lattice) and each �h j is an affine function (rather
than a quasi-affine function). Note that we also represent the domain of struc-
tural parameters N and each iteration domain D as a polyhedron rather than
a Z-polyhedron; as detailed by Feautrier [1992a, 17], this is a conservative ap-
proximation that might (in rare cases) rule out some possible solutions but will
never yield invalid results.

These are all the notations we need to describe a program in the polyhedral
model. We now turn to our description of the schedule.

3.2 Affine Scheduling

3.2.1 Representing a Schedule. In Section 2 we considered a scheduling
function � that governs the execution of all the instructions in the program.

2A function �h(�x) is affine if it can be represented as �h(�x) = A�x + �b, where A and �b are constants

that do not vary with �x.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:8 • W. Thies et al.

We now consider a parameterized representation of the scheduling function, fol-
lowing the approach of Feautrier [1992a]. Rather than having the same function
for all statements in the program, let us define a scheduling function �S for each
statement S. �S maps the instance of S on iteration �i to a time of execution.
Sometimes we will refer to a statement-iteration pair S(�i) as an operation. We
assume that �S is an affine function of the iteration vector and the structural
parameters:

�S(�i, �n) = �aS · �i + �bS · �n + cS . (3)

The schedule for the entire program, then, is denoted by � ∈ E , where E is
the space of all the scheduling parameters (�aS1

, �aS2
, . . . , �aSnS

, �bS1
, �bS2

, . . . , �bSnS
,

�cS1
, �cS2

, . . . , �cSnS
).

This representation is referred to as a one-dimensional affine schedule; it
assigns a scalar execution time to each operation as an affine function of the
enclosing loop indices and symbolic constants. Given such a schedule, the exe-
cution model is simple: all the instructions that are scheduled for a given time
step are executed in parallel, with synchronization barriers between one time
step and the next. Thus, parallelism is implicit; two operations run in parallel
if they are assigned to the same time. The basic execution model assumes that
there are an unlimited number of processors, that all operations take unit time,
and that there is no communication cost between processors.

Unfortunately, not all programs can be executed according to a one-
dimensional affine schedule. Rather, some programs require multidimensional
schedules with vector-valued execution times that are executed in lexicographic
order. The reader can consult Feautrier [1992a, 1992b] and Darte et al. [2000]
for more details on multidimensional schedules; throughout the rest of this
paper, we restrict our attention to the one-dimensional case.

Affine schedules provide a very powerful and flexible means of reasoning
about the ordering of instructions in a program. For instance, multidimensional
affine scheduling techniques are a generalization of standard transformations
such as loop permutation, reversal, and skewing, as well as loop distribution
and loop fusion [Feautrier 1992b]. There are also techniques for generating
efficient code from affine schedules [Quilleré et al. 2000]. However, note that
affine scheduling captures only transformations that correspond to a multidi-
mensional affine schedule; that is, the outermost loops are sequential and the
innermost loops are parallel, where “parallel” means that 1) all iterations are
independent, and 2) all computations within the loop body are independent.
Affine schedules do not capture some codes with a more general definition of
parallelism [Darte et al. 1997].

As attractive as affine schedules are for their expressivity and succinctness,
the most convincing reason to use them as a representation is for the efficient
methods that can be used to find, analyze, and optimize them. Feautrier [1992a]
provides a direct solution method that supports various optimization metrics
within a linear programming framework. In the remainder of this section, we
present the foundations of the scheduling problem, and consider two alternative
methods for solving it—the Farkas method [Feautrier 1992a] and the vertex
method [Quinton 1987]. Our technique relies heavily on both of these methods.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:9

3.2.2 Finding a Schedule. A legal schedule is one that respects the depen-
dences in the original program. Among these schedules, our goal is to find the
“best” one by some optimization metric, such as the length of the schedule or
the delay between producers and consumers. As shown by Feautrier [1992a],
this can be done efficiently by formulating the set of legal schedules with a set
of linear (in)equalities, and then selecting one using a linear objective function.
For a schedule to be legal, it must satisfy the causality condition—that is, each
producer must be scheduled before the consumers that depend on it. We now
present this schedule constraint in terms of our notations above.

According to dependence Pj (Equation (2)), for any value of �i in P j , operation

R j (�i) depends on the execution of operation Tj (�h j (�i, �n)). Therefore, in order
to preserve the semantics of the original program, in any new order of the
computations, Tj (�h j (�i, �n)) must be scheduled at a time strictly earlier than

R j (�i), for all �i ∈ P j . We express this constraint in terms of the scheduling
function. We must have, for each dependence Pj , j ∈ [1, np]:

∀�n ∈ N , ∀�i ∈ P j , �R j (�i, �n) − �Tj (�h j (�i, �n), �n) − 1 ≥ 0. (4)

The trouble with this equation is that—as before—we are faced with a pa-
rameterized number of constraints. That is, the consumer R j must be scheduled

at least one step after the producer Tj for every point �i of the dependence do-
main P j and for every possible value of the structural parameters �n. In other

words, we are treating �i and �n as variables that can assume any value within
their domains. However, this renders the constraints nonlinear, as � contains
two terms that multiply �i and �n by the scheduling variables: �aS · �i and �bS · �n.

Thus, we need to “linearize” the schedule constraints before we can consider
the problem in a linear programming framework. There are two equivalent
methods of accomplishing this, each of which relies on a different representation
of the polyhedral domains over which the variables �i and �n are defined. As
described below, the Farkas method uses the polyhedron’s faces to perform the
reduction, while the vertex method relies on the vertices of the polyhedron.
Though both of these techniques are equally powerful in a theoretical sense,
we often choose one over the other to match the practical concerns of a given
situation.

3.2.3 Farkas Method. The Farkas method is founded on the following the-
orem from linear algebra [Schrijver 1986; Feautrier 1992a; Darte et al. 2000].

THEOREM 1 (AFFINE FORM OF FARKAS’ LEMMA). Let D be a nonempty polyhe-
dron defined by p affine inequalities

�aj · �x + bj ≥ 0, j ∈ [1, p],

in a vector space W. Then an affine form h is nonnegative everywhere in D if
and only if it is a nonnegative affine combination of the affine forms defining D:

∀�x ∈ W, h(�x) ≡ λ0 +
p∑

j=1

(λ j (�aj · �x + bj)), λ0 . . . λp ≥ 0.

The nonnegative constants λ j are referred to as Farkas multipliers.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:10 • W. Thies et al.

x

y

y - 4 ≥ 0

- y + x + 3 ≥ 0

- y - x + 11 ≥ 0

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-4

-4

-4

-4

-4

-4

-4

-4

-4

-4

-4

0

0

0

0

0

0

0

0

0

0

0

2

2

2

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

4

4

4

6

6

6

6

6

6

6

6

6

6

6

8

8

8

8

8

8

8

8

8

8

8

10

10

10

10

10

10

10

10

10

10

10

12

12

12

12

12

12

12

12

12

12

12

14

14

14

14

14

14

14

14

14

14

14

16

16

16

16

16

16

16

16

16

16

16

h(x, y) = 2 (x - 1)

Fig. 2. An illustration of Farkas’ lemma. The affine form h(x, y) = 2 · (x −1) is nonnegative within

the shaded polyhedron. Thus, it can be expressed as a nonnegative affine combination of the faces

of that polyhedron: h(x, y) = 2 · (− y + x + 3) + 2 · (y − 4).

On first glance, the notations for Farkas’ lemma can be somewhat overwhelm-
ing. However, the intuition is simple: if a certain function is never negative
anywhere inside a certain shape, then that function can be exactly represented
as a certain combination of the faces of that shape. Of course, the qualifiers
on the “certain” are very important—the function must be affine, the shape
must be a nonempty polyhedron, and the combination must be affine, non-
negative, and applied to the inequalities that define the polyhedron’s faces
(see Figure 2). Note that the use of the identity sign (≡) indicates an equiv-
alence between functions rather than an equality of values; as these func-
tions are affine, the coefficients of each of the function arguments are identical
pairwise.

The schedule constraints (4) can be solved using Farkas’ lemma, as shown
by Feautrier [Feautrier 1992a, 1992b; Darte et al. 2000]. The result can be ex-
pressed as a polyhedron R: the set of all the legal schedules � in the space of
scheduling parameters E . Note that Equation (4) does not always have a solu-
tion [Feautrier 1992a], in which case multidimensional schedules are needed.
However, in this paper, we assume that Equation (4) has a solution.

3.2.4 Vertex Method. This method uses Minkowski’s representation of
polyhedra.

Definition 2. (Minkowski’s representation of polyhedra). A polyhedron can
always be decomposed as the sum of a polytope (i.e., a bounded polyhedron) and
a polyhedral cone (see Schrijver [1986] for details). A polytope is defined by its
vertices, and any point of the polytope is a (nonnegative) convex combination of

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:11

the polytope vertices. A polyhedral cone is finitely generated and is defined by
its rays and lines. Any point of a polyhedral cone is the sum of a nonnegative
combination of its rays and any combination of its lines. Therefore, a polyhedron
D can be equivalently defined by a set of vertices, {�v1, . . . , �vω}, a set of rays,
{�r1, . . . , �rρ}, and a set of lines, {�l1, . . . , �lλ}. Then D is the set of all vectors �p such
that

�p =
ω∑

i=1

μi�vi +
ρ∑

i=1

κi�ri +
λ∑

i=1

ξi�li (5)

with μi ∈ Q+, κi ∈ Q+, ξi ∈ Q, and
∑ω

i=1 μi = 1.

The vertices, rays, and lines of a polyhedron can be computed even for parame-
terized polyhedra [Loechner and Wilde 1997]. The vertex method, introduced by
Quinton [1987] for uniform dependences and generalized to affine dependences
by Rajopadhye et al. [1986] and Quinton and Dongen [1989], uses Minkowski’s
representation to rewrite (in)equations which hold on a polyhedron.

THEOREM 2 (THE VERTEX METHOD). Let D be a nonempty polyhedron defined
by a set of vertices, {�v1, . . . , �vω}, a set of rays, {�r1, . . . , �rρ}, and a set of lines,
{�l1, . . . , �lλ}. Let
 be an affine form of linear part �a and constant part b (
(�x) =
�a · �x + b). Then the affine form
 is nonnegative over D if and only if 1)
 is
nonnegative on each of the vertices of D and 2) the linear part of
 is non-
negative (respectively null) on the rays (resp. lines) of D. This can be written:

∀�p ∈ D, �a · �p + b ≥ 0 ⇔
∀i ∈ [1, ω], �a · �vi + b ≥ 0, ∀i ∈ [1, ρ], �a · �ri ≥ 0, and ∀i ∈ [1, λ], �a · �li = 0.

The intuition for this theorem is straightforward: if an affine function is non-
negative at the vertices of a polyhedron, then it is non-negative within that
polyhedron, as well (see Figure 3). In theory, this technique is equally powerful
as Farkas’ lemma for eliminating variables and linearizing constraints such as
the schedule constraint posed above. However, it is not the case that the equa-
tions yielded by an application of the vertex method are exactly the same as
those introduced by the Farkas method [Feautrier 2001b]; the vertex method
adds an equation for each vertex, while the Farkas method adds a variable for
each face. In the realm of program analysis, it often turns out to be more effi-
cient to use Farkas’ lemma, as most of the polyhedra correspond to an n-level
loop nest that has 2n faces but 2n vertices. Balev et al. [1998] confirmed this
notion experimentally, showing that the Farkas method is significantly faster
than the vertex method for large problem sizes. However, the vertex method
is still useful, as there are cases in which there seem to be too few equations
to solve the problem with the Farkas method alone. For instance, in our anal-
ysis, we cannot linearize the equations further after an application of Farkas’
lemma. Instead, we employ the vertex method for the first set of linearizations,
and apply the Farkas method (if desired) for the last transformation only.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:12 • W. Thies et al.

i1

i2

v1 v2

v3 v4

h(i)

D
Fig. 3. An illustration of the vertex method. The affine form h(�i) will be non-negative everywhere

within D if and only if it is nonnegative at the vertices �v1 . . . �v4 of D.

3.3 Occupancy Vectors

3.3.1 Definitions. To arrive at a simple model of storage reuse, we borrow
the notion of an occupancy vector from Strout et al. [1998]. Intuitively, the tech-
nique works by collapsing all array locations that are separated by an integer
multiple of the occupancy vector. For the transformation to be valid, no two
collapsed locations can be live at the same time during execution of the original
program.

Formally, we can describe an occupancy vector as defining equivalence classes
over the locations of an array. Following a storage transformation, all members
of a given equivalence class in the original array will be mapped to the same lo-
cation in the new array. Letting l1 and l2 denote array locations, the equivalence
relation is:

R�v = {(�l1, �l2) | ∃k ∈ Z s.t. �l1 = �l2 + k · �v}
and we refer to �v as the occupancy vector. Occupancy vectors have integral
components. We say that A′ is the result of transforming array A under the
occupancy vector �v if, for all pairs of locations (�l1, �l2) in A:

(�l1, �l2) ∈ R�v ⇐⇒ �l1 and �l2 are stored in same location in A′

We say that an occupancy vector �v is valid for an array A with respect to a given
schedule � if:

(1) transforming A under �v everywhere in the program does not change the
semantics when the program is executed according to �

(2) ∀�l ∈ A, �l is written to before �l + �v according to �

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:13

The first part of this definition simply states that, for an occupancy vector to be
valid, it must induce a semantics-preserving transformation. The second part
states that the occupancy vector must be aligned with the order of computations
in the schedule: the location at the tip of the vector must be written after
the location at the base. While this is is not fundamental to the concept of
an occupancy vector, it constrains the problem in a way that we can solve it.
As detailed in Section 4.4, without this proviso we are unable to formulate
constraints implied by the occupancy vector, because we do not know if the
value overwriting location �l will come from location �l + �v or from location �l − �v.
By fixing the order of computations, we resolve this ambiguity and make the
problem solvable at the cost of overconstraining the problem. Note that this
aspect of the definition also assumes that each array location is written at
most once; as explained in Section 4.4, this is a fundamental limitation of our
technique.

Occupancy vector transformations are useful for reducing storage require-
ments when many of the values stored in the array are temporary. Generally,
shorter occupancy vectors lead to smaller storage requirements because more
elements of the original array are coalesced into the same storage location.
However, if one dimension of an array is much larger than another, it might be
preferable to lengthen the occupancy vector if doing so allows one to collapse
storage along the larger dimension of the array. Because array dimensions are
often unknown at compile time, in this paper we refer to the “best” occupancy
vector as that which has the shortest length (using the Manhattan distance or
a related metric; see Section 4.6.1). We consider it to be a fruitful direction of
future research to minimize the overall size of the data space resulting from an
occupancy vector transformation.

3.3.2 Calculating a Storage Mapping. Given an occupancy vec-
tor, we implement the storage transformation using the technique of
Quilleré and Rajopadhye [2000], who describe the general case of n occupancy
vectors. Our presentation is somewhat simpler because we consider only a
single occupancy vector.

First consider the case in which the occupancy vector �v ∈ Zn is primitive,
that is, its components are relatively prime. In this case, the new storage cell
for location �l ∈ Zn is given by ��v �l , where ��v is any (n − 1) × n integral matrix
whose null space is spanned by �v. That is, ��v �l1 = ��v �l2 if and only if �l1−�l2 = q�v
for some rational number q. Note that this is a slightly different condition than
that required by the occupancy vector: two locations are collapsed under the
occupancy vector if and only if they are separated by an integral (not rational)
multiple of �v. However, for primitive occupancy vectors, these conditions are
equivalent, as no fraction p�v (for p /∈ Z) of a primitive occupancy vector can
also be integral.

There are many valid choices of ��v for a given occupancy vector �v. A practi-
cal choice for ��v is a matrix that admits a unimodular3 completion; that is, one
that can be augmented with additional rows to obtain a unimodular matrix.

3A matrix M is unimodular if M is square, integral and det M = ±1.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:14 • W. Thies et al.

Fig. 4. Original code for Example 1.

Fig. 5. Iteration space diagram for Example 1. The solid arrows represent dependences, while the

dotted lines indicate a schedule in which the columns of the array are written to in parallel. Given

this schedule, the shortest valid occupancy vector is (1, 0), depicted by the hollow arrow.

Unimodular transformations facilitate clean code generation, as the trans-
formed data space does not contain any “holes.” One procedure for building
such a ��v is as follows. Construct an n× n unimodular matrix U�v that contains
�v as the first column (see Darte [1991] for a detailed procedure). Then set ��v
to be rows 2 . . . n of U−1

�v . This ��v obviously admits a unimodular completion

because U−1
�v is also unimodular. Also, as U−1

�v U�v = I and the first column of U�v
is �v, it follows that:

U−1
�v �v =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦

and thus ��v�v = �0. That is, �v is in the null space of ��v.
For example, consider the code for Example 1 (duplicated in Figure 4, for easy

reference), which we borrow from Strout et al. [1998]. Consider the schedule
where all the columns of the array are written to in parallel (that is, iteration
(i, j) is executed at time i). The shortest valid occupancy vector for this schedule
is (1, 0), as depicted in Figure 5. (This calculation assumes that the underly-
ing architecture provides support so that an element can be read and then
written to during the same clock cycle; otherwise the shortest valid occupancy
vector would be (2, 0).) To generate code for the collapsed storage mapping, we

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:15

construct:

U�v =
[

1 0
0 1

]
U−1

�v =
[

1 0
0 1

]
��v = [

0 1
]
.

Each array reference (i, j) is mapped to ��v · (i, j) = (0, 1) · (i, j) = j . Replacing
(i, j) by j yields the transformed code shown in Figure 6.

The transformation is more complex for nonprimitive occupancy vectors, in
which the GCD of the components is greater than 1. Such occupancy vectors
intersect multiple integral points of the iteration domain (as many as the GCD).
Due to this fact, it is not sufficient to use only a projection matrix ��v whose
null space is spanned by �v. For example, consider the occupancy vector of (2, 0),
which is also valid for the schedule described previously. Using ��v = (0, 1)
collapses points in the correct direction and results in a transformed index of
j . However, this transformation is incorrect for the occupancy vector of (2, 0),
as it coalesces some elements that should actually be in different equivalence
classes—for example, the points (1, 0) and (2, 0).

The general storage mapping for primitive and nonprimitive occupancy
vectors contains a “modulation term” to distinguish points that are sepa-
rated by nonintegral multiples of �v. The mapping for location �l is given by
(��v0

�l , �y · �l mod GCD�v), where:

—GCD�v is the GCD of the components of �v.

— �v0 = (1/GCD�v)�v is the primitive occupancy vector that is parallel to �v.

— �y is any vector satisfying �y · �v0 = 1. A convenient choice for �y is the first row
of U−1

�v0
, which satisfies this property by construction.

The ��v0
component of the mapping collapses all cells in the direction of the

occupancy vector. Note that we use ��v0
instead of ��v because it is impossible to

construct ��v in the manner described previously: a vector must have relatively
prime components to admit a unimodular completion. The modulation term
counts the multiples of the primitive occupancy vector �v0 that a given location
has accumulated in the direction of �v. As �v intersects GCD�v integral points,
the modulo operation collapses all points separated by integral multiples of �v.
Note that this mapping works for both primitive and nonprimitive occupancy
vectors, as primitive vectors have GCD�v = 1 which causes the modulation term
to remain constant.

To illustrate the storage transformation for nonprimitive occupancy vectors,
consider the components of the mapping for �v = (2, 0):

GCD�v = 2 �v0 = (1, 0) U�v0
= U−1

�v =
[

1 0
0 1

]
��v0

= (0, 1) �y = (1, 0)

The storage mapping for location (i, j) is thus ((0, 1) · (i, j), (1, 0) · (i, j) mod 2) =
(j , i mod 2). The transformed code appears in Figure 7. Note that the expensive
modulo operations can be eliminated using the techniques in Sheldon et al.
[2001].

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:16 • W. Thies et al.

Fig. 6. Transformed code for Example 1 for an occupancy vector of (1, 0).

Fig. 7. Transformed code for Example 1 for an occupancy vector of (2, 0).

4. THE UNIFIED FRAMEWORK

In this section, we describe our technique for considering both schedule op-
timization and storage optimization within a single framework. While this
framework does not simultaneously optimize for scheduling and storage (the
optimizations must be done in sequence), it provides a single formulation of
the constraints along with techniques that use this formulation to solve for 1)
a schedule given a storage mapping, 2) a storage mapping given a schedule,
or 3) a storage mapping that is valid for a range of schedules. We consider
only one-dimensional affine schedules and storage mappings that are based on
occupancy vectors.

The section starts with a description of our program domain and additional
notations, and then describes our formulation of the schedule and storage con-
straints and their conversion into a set of linear inequalities. In order to consider
storage mappings that apply to a range of schedules, we introduce the notion of
an Affine Occupancy Vector and show how to solve for one efficiently. We also
discuss how to solve for a schedule that is valid for a range of occupancy vectors.
We conclude with a high-level summary of our technique.

4.1 Program Domain

The basis for our program domain is that of static control flow programs (see
Section 3.1). Additionally, we make a very important and somewhat restrictive
assumption: we require a single-assignment form where the iteration space of
each statement exactly corresponds with the data space of the array written
by that statement. That is, for array references appearing on the left hand side
of a statement, the expression indexing the ith dimension of the array is the
index variable of the ith enclosing loop (this is formalized below). As explained
in Section 4.4, this assumption is central to our technique; our approach is
infeasible without this requirement.

Note that our single-assignment assumption implies that there is no over-
writing or anti-dependences in the program; we deal only with flow depen-
dences. While techniques such as array expansion [Feautrier 1988] can be used

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:17

to convert programs with affine dependences into this single-assignment form,
our analysis will be most useful in cases where an expanded form was obtained
for other reasons (e.g., to detect parallelism) and one now seeks to reduce stor-
age requirements.

We will refer to Example 1, shown previously in Figure 4. It clearly falls
within our input domain, as the array accesses are affine, and iteration
(i, j) assigns to A[i][j]. This example represents a computation where a one-
dimensional array A[j] is being updated over a time dimension i, and the in-
termediate results are being stored. We assume that only the values A[m][1..n]
are used outside the loop; the other values are only temporary.

4.2 Notations

In addition to the notations described in Section 3, we will use the following
definitions:

—There are na arrays A1 . . . Ana in the program, and A(S) denotes the array
assigned to by statement S. Our assumption that the data space corresponds
with the iteration space implies that for each statement S, S(�i) writes to
location �i of A(S), and S is the only statement writing to A. However, each
array A may still appear on the right hand side of any number of statements,
where its indices can be arbitrary affine expressions of �i and �n.

—With each array A we associate an occupancy vector �vA that specifies the
storage reuse within A. The locations �l1 and �l2 in the original data space of
A will be stored in the same location following our storage transform if and
only if �l1 = �l2 + k ∗ �vA, for some integer k. Given our assumption about the
data space, we can equivalently state that the values produced by iterations
�i1 and �i2 will be stored in the same location following our storage transform
if and only if �i1 = �i2 + k ∗ �vA, for some integer k.

4.3 Schedule Constraints

We will refer to the schedule constraints as those which restrict the execution
ordering due to data dependences in the original program. Section 3.2.2 for-
mulates the schedule constraints and reviews their solution via classical tech-
niques. For the sake of completeness, we duplicate the mathematical formula-
tion of the schedule constraints here. Due to our single-assignment assumption,
all dependences in the program are flow dependences from a producer (writing
a value) to a consumer (reading that value). Our technique cannot deal with
anti-dependences, hence our single-assignment assumption. We have that, for
each dependence Pj , j ∈ [1, np], the consumer R j must execute at least one
step after the producer Tj :

∀�n ∈ N , ∀�i ∈ P j , �R j (�i, �n) − �Tj (�h j (�i, �n), �n) − 1 ≥ 0 (6)

Following Feautrier [1992a], we can solve these constraints via application
of Farkas’ lemma to express the range of valid schedules as a polyhedron R in
the space of scheduling parameters E . The reader can refer to Section 5.1.1 for
an example of the schedule constraints.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:18 • W. Thies et al.

4.4 Storage Constraints

4.4.1 Overview. Before formalizing the storage constraints, we offer a
high-level view of what the storage constraints represent and why we need
to restrict our program domain in order to achieve a linear formulation. Con-
sider that, in the original program, statement T writes a value x to location �l
that is later read by statement R. An occupancy vector and schedule are valid so
long as �l holds x when R executes. The schedule constraints guarantee that T
executes before R. The storage constraints guarantee that no other statement
writes to location �l between the execution of T and R. Together, these con-
straints are enough to guarantee that a given occupancy vector and schedule
are valid.

The challenge in formulating the storage constraints is prohibiting certain
statements from executing between T and R. We would like to say: all state-
ments that write to location �l must either: (a) execute before T , or (b) ex-
ecute after R. However, such formulations directly lead to constraints that
are quadratic in the scheduling parameters, as the schedule itself determines
whether a statement should be subject to constraint (a) or constraint (b). As
we seek a system of constraints that is linear in the scheduling parameters, we
have chosen to restrict our attention to a class of programs in which the sched-
ule does not influence the set of statements that are subject to constraint (a) or
(b) above. That is, by placing restrictions on the program, we aim to enforce a
fixed order on all of the statements that write to a given location.

The restrictions described previously are all for the sake of achieving this
property. The assumption that the iteration space corresponds with the data
space is needed for two reasons. First, it disallows any overwriting in the orig-
inal program, as each location is written once; this implies that all overwriting
is caused by the occupancy vector. Second, it allows us to deduce the set of it-
erations that will overwrite the value produced on iteration �i: by the definition
of the occupancy vector, iterations �i + k�v for k ∈ Z will all write to the same
location.

Still, we need to impose an order on the operations that write to a given
location. This requires three assumptions: 1) all schedules are one-dimensional
and affine, 2) each array is written by a single statement, thereby ensuring
a single affine schedule for operations writing to a given array, and 3) the oc-
cupancy vector is defined such that �(�i) < �(�i + �v). In combination with the
assumption about the data space, these restrictions allow us to conclude that
the results of iteration �i will first be overwritten by iteration �i + �v, regardless of
the schedule. Using this information, we can formulate the storage constraint
that iteration �i + �v must not execute before any statement that depends on the
result of iteration �i.

We emphasize that all three restrictions in the previous paragraph are
needed to obtain our desired result. If a multidimensional schedule was al-
lowed, then the next iteration to overwrite �i might not be �i + �v; rather, it would
again depend on the schedule. If different portions of a given array were as-
signed by different statements, then different affine schedules would apply to
each piece and the ordering of assignments to a given collapsed location would

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:19

i

i1

i schedule constraint

storage constraint

occupancy vector

2

h(i)

v

h(i).+ v

Fig. 8. An illustration of the schedule and storage constraints. The schedule constraint requires

that the producer �h(�i) execute before the consumer �i. The storage constraint requires that the

consumer �i execute before operation �h(�i) + �v, which overwrites the value of the producer �h(�i)

according to the storage mapping imposed by the occupancy vector �v.

depend on the schedules. The same problem arises for piece-wise affine sched-
ules, as the direction of computations might vary across different portions of the
iteration space; we require a single one-dimensional affine schedule per state-
ment (and thus per array). Finally, the definition of the occupancy vector gives
us the direction of the writing operations. Without this definition, we would be
unable to tell if �i + �v or �i − �v is the next to overwrite the result of iteration �i.

4.4.2 Formulating the Constraints. We now undergo a formal treatment
of the storage constraints (illustrated in Figure 8) in the context of our re-
stricted program domain. We consider any array A. Thanks to the restrictions
detailed above, the value computed by iteration �i and stored in location �l is first
overwritten by iteration �i+�vA. For an occupancy vector �vA to be valid for a given
data object A, every operation depending on the value stored at location �l by
iteration �i must execute no later than iteration �i+�vA stores a new value at loca-
tion �l . Otherwise, following our storage transformation, a consumer expecting
to reference the contents of �l produced by iteration �i could reference the con-
tents of �l written by iteration �i + �vA instead, thereby changing the semantics
of the program. We assume that, at a given time step, all the reads precede the
writes, such that an operation consuming a value can be scheduled for the same
execution time as an operation overwriting this value. (This choice is arbitrary
and unimportant to the method; under the opposite assumption, we would in-
stead require that the consumer execute at least one step before its value is
overwritten.)

Let us consider a dependence P = (R, T, �h, P). Then operation T (�h(�i, �n))
produces a value that will later be read by R(�i). This value will be overwritten
by T (�h(�i, �n) + �vA(T)). The storage constraint imposes that T (�h(�i, �n) + �vA(T)) is
scheduled no earlier than R(�i). Therefore, any schedule � and any occupancy
vector �vA(T) respects the dependence P if:

∀�n ∈ N , ∀�i ∈ Z, �T
(�h(�i, �n) + �vA(T), �n) − �R(�i, �n) ≥ 0, (7)

where Z represents the domain over which the storage constraint applies. That
is, the storage constraint applies for all iterations �i where �i is in the domain
of the dependence, and where �h(�i, �n) + �vA(T) is in the domain of statement T .

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:20 • W. Thies et al.

Formally, Z = {�i | �i ∈ P ∧ �h(�i, �n) + �vA(T) ∈ DT }. This definition of Z is not
problematic, since the intersection of two polyhedra is defined simply by the
union of the affine inequalities describing each, which obviously is a polyhedron.
Note, however, that Z is parameterized by both �vA(T) and �n, and not simply by �n.

Note that the schedule (6) and storage (7) constraints might not yield a solu-
tion. This could correspond to a case in which the time between production and
final consumption of a value is not constant, but grows with the parameters of
the program, for example:

for i = 1 to N
A[i] = A[i] + A[N-i+1]

In this case, there is no storage reuse that can be captured by the occupancy
vector.

An example of the storage constraints can be found in Section 5.1.1.

4.5 Linearizing the Constraints

Equations (6) and (7) represent a possibly infinite set of constraints, because of
the parameters. Therefore, we need to rewrite them so as to obtain an equiva-
lent but finite set of affine equations and inequalities, which we can easily solve.
Meanwhile, we seek to express the schedule (6) and storage (7) constraints in
forms affine in the scheduling parameters �. This step is essential for con-
structing a linear program that minimizes the length of the occupancy vectors.

As discussed in Section 3.2.2, we could apply either the Farkas method or
the vertex method to linearize our constraints. However, the Farkas method
can be applied only once due to the nested quantifiers in our equations. Like
the vertex method, the Farkas method can yield an infinite set of constraints.
However, unlike the vertex method, these constraints might not be affine due to
the new variables (the Farkas multipliers) that are introduced. For this reason,
we employ the vertex method in this section, and present an application of the
Farkas method in Section 4.6.3. Despite its limited applicability, the Farkas
method is valuable because it is generally more efficient in practice [Balev
et al. 1998].

Section 5.2 contains an illustrative example of the constraint linearization.

4.5.1 Focusing on Polytopes. Although the domain of structural param-
eters N is an input of this analysis and may be unbounded, all the polyhe-
dra produced by the dependence analysis of programs are in fact polytopes, or
bounded polyhedra. We thus assume that all the polyhedra we manipulate are
polytopes, except when stated otherwise. This changes nothing in our method,
but simplifies the presentation. Then, according to Theorem 2 (presented in
Section 3.2.4), an affine function is nonnegative on a polyhedron if and only if
it is nonnegative on the vertices of this polyhedron. We successively use this
theorem to eliminate the iteration vector and the structural parameters from
Equation (7).

4.5.2 Eliminating the Iteration Vector. Let us consider any fixed values of
�n in N and � in R (the range of valid schedules, see Section 4.3). Then, for all

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:21

j ∈ [1, np], �vA(Tj) must satisfy:

∀�i ∈ Z j , �Tj

(�h j
(�i, �n) + �vA(Tj), �n) − �R j

(�i, �n) ≥ 0, (8)

which is an affine inequality in �i (as �h j , �Tj , and �R j are affine functions).
Thus, according to Theorem 2, it takes its extremal values on the vertices of the
polytope Z j , denoted by �z1, j , . . . , �znz , j . Note that Z j is parameterized by �n and
�vA(Tj). Thus, the vertices of Z j are also parameterized by �n and �vA(Tj), and the
number of vertices might change depending on the domain of values of �n and
�vA(Tj) [Loechner and Wilde 1997]. In this case we decompose the domains of �n
and �vA(Tj) into subdomains over which the number and definition of the vertices
do not change [Loechner and Wilde 1997], we solve our problem on each of these
domains, and we take the “best” solution.

Thus, we evaluate (8
)
at the extreme points of Z j , yielding the following:

∀k ∈ [1, nz], �Tj

(�h j
(�zk, j

(�vA(Tj), �n)
, �n) + �vA(Tj), �n)

− �R j

(�zk, j
(�vA(Tj), �n)

, �n) ≥ 0. (9)

According to Theorem 2, Equations (8
)
and (9

)
are equivalent. However, we have

replaced the iteration vector �i with the vectors �zk, j , each of which is an affine
form in �n and �vA(Tj).

4.5.3 Eliminating the Structural Parameters. SupposeN is also a bounded
polyhedron. We eliminate the structural parameters the same way we elimi-
nated the iteration vector: by only considering the vertices of their domain N .
For any fixed value of � in R, j in [1, np], and k in [1, nz] we must have:

∀�n ∈ N , �Tj (�h j
(�zk, j

(�vA(Tj), �n)
, �n) + �vA(Tj), �n)

−�R j

(�zk, j
(�vA(Tj), �n)

, �n) ≥ 0. (10)

Denoting the vertices of N by
(�w1, . . . , �wnw), the above equation is equivalent to:

∀l ∈ [1, nw], �Tj

(�h j
(�zk, j

(�vA(Tj), �wl
)
, �wl

) + �vA(Tj), �wl
)

− �R j

(�zk, j
(�vA(Tj), �wl

)
, �wl

) ≥ 0. (11)

Case of Unbounded Domain of Parameters. It might also be the case that
N is not a polytope but an unbounded polyhedron, perhaps corresponding to
a runtime parameter that can be arbitrarily large. In this case, we use the
general form of Theorem 2. Let �r1, . . . , �rnr and �l1, . . . , �lnl be the rays and lines,
respectively, defining the unbounded portion of N . We must ensure that the
linear part of Equation (11

)
is nonnegative on these rays and null on these

lines. For example, given a single structural parameter n1 ∈ [5, ∞), we have
the following constraint for the vertex n1 = 5:

�Tj

(�h j
(�zk, j

(�vA(Tj), 5
)
, 5

) + �vA(Tj), 5
)

− �R j

(�zk, j
(�vA(Tj), 5

)
, 5

) ≥ 0,

and the following constraint for the positive ray of value 1:

�Tj

(�h j
(�zk, j

(�vA(Tj), 1
)
, 1

) + �vA(Tj), 1
) − �R j

(�zk, j
(�vA(Tj), 1

)
, 1

)
− �Tj

(�h j
(�zk, j

(�vA(Tj), 0
)
, 0

) + �vA(Tj), 0
) + �R j

(�zk, j
(�vA(Tj), 0

)
, 0

) ≥ 0. (12)

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:22 • W. Thies et al.

Though this equation may look complicated, in practice it leads to simple for-
mulas since all the constant parts of Equation (10

)
are going away. We assume in

the rest of this paper that N is a polytope. This changes nothing in our method,
but greatly improves the readability of the upcoming systems of constraints!

4.6 Finding a Solution

After removing the structural parameters, we are left with the following set of
storage constraints:

∀ j ∈ [1, np], ∀k ∈ [1, nz], ∀l ∈ [1, nw],

�Tj

(�h j
(�zk, j

(�vA(Tj), �wl
)
, �wl

) + �vA(Tj), �wl
)

−�R j

(�zk, j
(�vA(Tj), �wl

)
, �wl

) ≥ 0, (13)

which is a set of affine inequalities in the coordinates of the schedule �, with the
occupancy vectors �vA(Tj) as unknowns. Note that the vertices �zk, j of the iteration

domain, the vertices �wl of the structural parameters, and the components �h j

of the affine functions, all have fixed and known values.
Similarly, we can linearize the schedule constraints to arrive at the following

equations:

∀ j ∈ [1, np], ∀k ∈ [1, ny], ∀l ∈ [1, nw],

�R j (�yk, j (�wl), �wl) − �Tj (�h j (�yk, j (�wl), �wl), �wl) − 1 ≥ 0, (14)

where �y1, j , . . . , �yny , j denote the vertices of P j .

4.6.1 Finding an Occupancy Vector Given a Schedule. At this point we
have all we need to address the first abstract problem (2.1): choosing a storage
mapping for a given schedule. To determine which occupancy vectors (if any)
are valid for a given schedule �, we simply substitute into the simplified stor-
age constraints (13) the value of the given schedule. Then we obtain a set of
affine inequalities where the only unknowns are the components of the occu-
pancy vector. This system of constraints fully and exactly defines the set of the
occupancy vectors valid for the given schedule. We can search this space for
solutions with any linear programming solver.

To find the shortest occupancy vectors, we can use as our objective function
the sum of the lengths4 of the components of the occupancy vector. This metric
minimizes the “Manhattan” length of each occupancy vector instead of mini-
mizing the Euclidean length. However, minimizing the Euclidean length would
require a nonlinear objective function.

We can improve our heuristic slightly by running a second linear program
that minimizes the difference between the lengths of the occupancy vector
components. That is, if we find by the above procedure that the minimum

4To minimize |x|, introduce a variable y with the inequalities y ≥ x, y ≥ −x (which are equivalent

to y ≥ |x|) and then minimize y .

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:23

Manhattan length is k, then we introduce the following constraint:

dim(�v)∑
i=1

|vi| = k

and we minimize the following objective function:

obj(�v) =
dim(�v)∑

i=1

dim(�v)∑
j=1

||vi| − |vj ||.

In the case where there are multiple valid occupancy vectors with the same
Manhattan length, this linear program will select the vector that has the most
“even” distribution across its components, thereby leading to a shorter Eu-
clidean distance. It has been our experience (on a handful of synthetic exam-
ples, analyzed using a Maple script) that this two-step procedure also finds the
occupancy vector of the shortest Euclidean distance.

In solving for the shortest occupancy vector, we do need to ensure that each
component of �v is integral. Strictly speaking, this requires an integer linear
program with each component constrained to be an integer. Though we have
constructed cases for which the optimal rational value of �v is nonintegral, we
have found that in most cases (including all examples in this article), the op-
timal value of �v is in fact integral. Thus, in our examples, one can obtain the
optimum by solving a linear program instead of an integer linear program.

Note that the minimal value of �v might be �0. This represents a case in which
none of the values of a given array are used by the program. The storage for such
an array (as well as the computations writing to the array) can be eliminated.

For an example of this solution procedure, refer to Section 5.1.2.

4.6.2 Finding a Schedule Given an Occupancy Vector. At this point, we
also have all we need to determine which schedules (if any) exist for a given set
of occupancy vectors (addressing the abstract problem of Section 2.2). Given an
occupancy vector �vA for each array A in the program, we substitute into the
linearized storage constraints (13) to obtain a set of inequalities where the only
unknowns are the scheduling parameters. These inequalities, in combination
with the linearized schedule constraints (14) completely define the space of
valid affine schedules compatible with the given occupancy vectors. Once again,
we can search this space for solutions with any linear programming solver,
selecting the “best” schedule as does Feautrier [1992a].

For instance, Figure 9 illustrates the range of valid schedules for Example
1, given the occupancy vector of (2, 0). Section 5.1.3 contains a more detailed
solution for this example.

4.6.3 Finding a Store for a Range of Schedules. Finally, we might inquire
as to the shortest occupancy vector that is valid for all legal affine schedules
(corresponding to the abstract problem of Section 2.3). Recall that an affine
schedule is one where each dynamic instance of a statement is executed at a
time that is an affine expression of the loop indices, loop bounds, and compile-
time constants. To address the problem, then, we need the notion of an Affine

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:24 • W. Thies et al.

Fig. 9. Iteration space diagram for Example 1. Given an occupancy vector of (2, 0), our method

identifies the range of valid schedules. An affine schedule sweeps across the space, executing a line

of iterations at once. If this line falls within the gray region (as on the left), then the schedule is

valid for the occupancy vector of (2, 0). If this line falls within the striped region (as on the right)

then the schedule is valid for some occupancy vector other than (2, 0). The schedule at right is

invalid because the operation at the tip of the occupancy vector (2, 0) overwrites a value before the

operation at (1, 2) can consume it.

Occupancy Vector:

Definition 3. An occupancy vector �v for array A is an Affine Occupancy
Vector (AOV) if it is valid with respect to every affine schedule � that respects
the schedule constraints of the original program.

Note that, in contrast to the Universal Occupancy Vector of Strout et al. [1998],
an AOV need not be valid for all schedules; rather, it only must be valid for
affine ones. In this paper, we further relax the definition of an AOV to those
occupancy vectors which are valid for all one-dimensional affine schedules.

Returning to our example, we find using our method that (2, 1) is a valid AOV
(see Figure 10), yielding the transformed storage mapping shown in Figure 11.
The code in Figure 11 (and subsequent examples in this article) adopts a one-
dimensional affine schedule, as our technique only guarantees that the AOV
transformation is valid when executed under such schedules. However, note
that the schedule in Figure 11 is only an example; any one-dimensional affine
schedule that respects the dependences in the original program will give the
same result when executed with the transformed storage.

Applications of AOVs. A primary application of AOVs is tiling. Even though
tiling utilizes a multidimensional affine schedule and AOVs are only guaran-
teed to be valid across one-dimensional affine schedules, in certain cases tiling
is also legal following storage optimization with an AOV. To extend to a tiled
schedule, the AOV needs to be calculated using a strict storage constraint in
which operations cannot read a value at the same instant that another opera-
tion is overwriting the value (that is, the right-hand side of Equation (7) changes
from 0 to 1). If the iteration space has d dimensions, then a one-dimensional
affine schedule will still contain d − 1 degrees of parallelism, executing sev-
eral operations at each time step. However, under the strict storage constraint

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:25

Fig. 10. Iteration space diagram for Example 1. Here the hollow arrow denotes an Affine Occu-

pancy Vector that is valid for all legal one-dimensional affine schedules. The gray region indicates

the slopes at which a legal one-dimensional affine schedule can sweep across the iteration domain.

Fig. 11. Transformed storage mapping for Example 1, in which the AOV is (2, 1). The loops illus-

trate an example one-dimensional affine schedule of �(i, j) = i.

above, the parallel operations can always be serialized without violating the
constraints. This follows from the fact that no operation could be overwriting
a value needed by another operation occurring in parallel; otherwise the strict
constraint would be violated.

Thus, in each valid one-dimensional affine schedule, one can serialize the re-
maining parallelism into any arbitrary order. In particular, one can arrange the
parallel operations in the order specified by a different valid one-dimensional
schedule (independent from the first). If there is still any parallelism remain-
ing, yet another one-dimensional schedule can be used to order the parallel
operations. The result of this process is a multidimensional affine schedule,
each component of which represents a valid one-dimensional schedule. The
multidimensional affine schedule formed in this way is valid; that is, it re-
spects the schedule constraints and the strict storage constraints described
previously.

It is easy to show that any multidimensional affine schedule formed in this
way can be tiled. A multidimensional affine schedule can be viewed as a series
of nested loops, with one loop for each dimension of the schedule. A series of
nested loops can be tiled if the loops are fully permutable—that is, they can be
freely interchanged while respecting the program constraints. In our construc-
tion of the multidimensional schedule, we can add the one-dimensional compo-
nents in any order. Thus, all orderings are valid with respect to the schedule
and storage constraints, which implies that the corresponding loops are fully
permutable and thus tilable. Note that if there is parallelism remaining in the
innermost loop (i.e., we chose to leave some parallelism in the multidimensional

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:26 • W. Thies et al.

schedule), then additional inner loops may be built from any independent affine
expressions; these additional loops may not be tilable, but they do not affect the
tiling of the outer loops. The final result is as follows: we can interchange,
and thus tile, outer loops built from independent, valid, one-dimensional
affine schedules, even if the innermost loops are built from arbitrary affine
expressions.

A second potential application of AOVs across one-dimensional affine sched-
ules is in dynamic optimization. Loop bounds and array dimensions are often
unknown at compile time, thereby obscuring the metric for the “best” schedule.
For instance, consider the range of valid one-dimensional schedules for Exam-
ple 1 (see Figure 10). A schedule of �1(i, j) = i can utilize up to n (i.e., jmax)
parallel units and will complete in m (i.e., imax) execution steps. Meanwhile, a
schedule of �2(i, j) = 2i + j demands only n/2 parallel units and will com-
plete in no more than 2(m + n) execution steps. It could be beneficial to choose
one of these schedules (or something in between) at runtime based on the dy-
namic loop bounds and the available hardware resources. This calls for an AOV
storage mapping, as the AOV offers the flexibility to choose between several
scheduling alternatives. Though it might also be possible to choose between
alternate data layouts at runtime, AOV-mapped storage would be important
for global data structures that persist across many independently optimized
subroutines.

The reader can verify that the choice of schedules can make an even larger
difference in other cases; for example, consider the schedules �1(i, j) = i vs.
�2(i, j) = j under a uniform data dependence �h(i, j) = (i − 1, j − 1). While the
occupancy vectors (1, 0) and (0, 1) are each valid for exactly one of the sched-
ules, the AOV of (1, 1) provides flexibility to choose either schedule at runtime
depending on the relative size of imax and jmax .

Finding the AOVs. Solving for the AOVs is somewhat involved (follow Sec-
tion 5.1.4 for an example.) To find a set of AOVs, we need to satisfy the storage
constraints (13) for any value of the schedule � within the polyhedronR defined
by the schedule constraints (see Section 4.3). To do this, we could use either the
Farkas method (Section 3.2.3) or the vertex method (Section 3.2.4). We choose
the Farkas method because it is likely to be more efficient in practice [Balev
et al. 1998].

To apply Farkas’ lemma, we note that the storage constraints are affine
inequalities in � which are nonnegative over the polyhedron R. Thus, we can
express each storage constraint as a nonnegative affine combination of the
schedule constraints defining R.

To simplify our notations, let STORAGE be the set of expressions that are
constrained to be nonnegative by the linearized storage constraints (13). That
is, STORAGE contains the left-hand side of each inequality in (13). Naively,
|STORAGE| = np ∗ nz ∗ (nw + nr); however, several of these expressions might
be equivalent, thereby reducing the size of STORAGE in practice.

Similarly, let SCHEDULE be the set of expressions that are constrained
to be nonnegative by the linearized schedule constraints (14). The size of
SCHEDULE is at most np ∗ ny ∗ (nw + nr).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:27

Then, the application of Farkas’ lemma yields these identities across the
vector space E of scheduling parameters in which � lives:

STORAGEi(�x) = λi,0 +
|SCHEDULE|∑

j=1

(λi, j · SCHEDULE j (�x))

λi, j ≥ 0, ∀�x ∈ E , ∀i ∈ [1, |STORAGE|].
These equations are valid over the whole vector space E . Therefore, we can
collect the terms for each of the components of �x, as well as the constant terms,
setting equal the respective coefficients of these terms from opposite sides of a
given equation (see Feautrier [1992a]; Darte et al. [2000] for full details). We
are left with |STORAGE| ∗ (3 ∗ ns + 1) linear equations (recall that ns denotes
the number of statements in the program) where the only variables are the λs
and the occupancy vectors �vA.

The set of valid AOVs is completely and exactly determined by this set of
equations and inequalities. To find the shortest AOV, we proceed as in Sec-
tion 4.6.1.

4.6.4 Finding a Schedule for a Range of Stores. We note as a theoretical
extension that our framework also allows one to solve a problem that is in some
sense dual to that of the AOVs: what is a good schedule that is valid for a given
range of occupancy vectors? This could also apply to dynamic optimization, as
the savings associated with a given occupancy vector are a function of the array
dimensions, which often are unknown until runtime. If one dimension turns
out to be much larger than another, it would be preferable to collapse storage
along the larger dimension (even if the occupancy vector is not the smallest of
the alternatives). By choosing a schedule compatible with a range of storage
mappings, the dynamic optimizer has the freedom to adjust the mapping at
runtime.

This question is also relevant to the phase ordering problem, as one might
wish to restrict one’s attention to a given set of storage mappings before select-
ing a schedule �. Then, one can choose any storage mapping within the range
and be guaranteed that it will be valid for �.

Let us denote a vector of occupancy vectors by �V ∈ Y, where Y is the space of
all vectors of the occupancy vectors (�vA1

, �vA2
. . . �vAnA

). Our technique allows one
to specify a range of storage mappings as a polyhedron of candidate vectors of
occupancy vectors. Let us denote this polyhedron by Q, which (by Definition 1)
can be defined by q inequalities:

Q = { �V | ∀ j ∈ [1, q], �r j · �V + sj ≥ 0}
It is now the case that the storage constraints (13) must hold for all �V ∈ Q.
Also, we must satisfy the schedule constraints (14). This set of constraints is
nonlinear in its current form, because the storage constraints contain a product
of the scheduling parameters � (which are the variables we are seeking) and
the set of occupancy vectors �V (which varies over Q).

To linearize these constraints, we can apply either the Farkas method or the
vertex method. We choose the Farkas method for efficiency reasons and proceed

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:28 • W. Thies et al.

as in Section 4.6.3. Note that the storage constraints are affine inequalities in �V
which are nonnegative over the polyhedron Q. Thus, we can express each stor-
age constraint as a nonnegative affine combination of the constraints defining
Q. Using the same notations as above for the storage constraints, we have:

STORAGEi(�x) = λi,0 +
q∑

j=1

(λi, j · (�r j · �x + sj))

λi, j ≥ 0, ∀�x ∈ Y, ∀i ∈ [1, |STORAGE|].
These equations are valid over the entire vector space Y. Thus, we can equate
like terms on the components of �x as we did in Section 4.6.3 (see Feautrier
[1992a]; Darte et al. [2000] for details). We are left with a set of linear equations
where the only variables are the λs and the scheduling parameters �. This
set of equations must be considered in combination with the original schedule
constraints to define the space of legal schedules. To find a desirable schedule
from within this space, we can proceed as in Feautrier [1992a].

Though our framework provides an exact solution to this problem, we are
skeptical as to its practical applications in its current form. In part, this is
because we believe that a range of candidate occupancy vectors is not best
described by a convex polyhedron. For instance, one might be interested in con-
sidering all occupancy vectors that are larger than a given length; however,
this is not given by a convex shape. Moreover, in relation to the phase ordering
problem, it would seem desirable to find a schedule that is valid for some oc-
cupancy vector of a given length, rather than all occupancy vectors in a range.
However, this kind of quantification does not integrate with our technique.

It is for these reasons that we omit from our examples and summary state-
ments the problem of finding a schedule for a range of occupancy vectors.
Though our solution for this problem is interesting from a theoretical standpoint
and could represent a new prospect for dynamic optimization, its usefulness is
limited in its current form.

4.7 Summary

A high-level view of our method appears in Figure 12. Starting with an input
program, we perform some dependence analysis to obtain an affine descrip-
tion of the program dependences. If the input is a static control flow program,
this analysis will be accurate. Then, we formulate the schedule and storage
constraints, which are nonlinear in their original form due to a product of the
scheduling parameters with the iteration vector �i and the structural parame-
ters �n. To solve this problem, we can apply the vertex method to eliminate �i and
�n from the constraints. The Farkas method can be substituted for the vertex
method at any time, but it can be used only once: no further linearization is
possible after the Farkas method has been applied. Once �i and �n have been
eliminated, we have a linearized set of constraints that can be used to solve
the first two problems we considered: finding a good schedule for a given store,
and finding a good store for a given schedule. We can continue by eliminating
the scheduling parameters �, thereby obtaining an integer linear program that
yields the shortest AOV—that is, an occupancy vector that is valid for any legal

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:29

Given Θ , find v

Given v, find Θ

Find a Θ valid
for range of v

Constraints
without Θ

Find an AOV,
valid for all Θ

Constr nts
with

ai
out v

ConstraintsConstraints
without v

Constraints
without i

De
Affine

pendences

Input Program

Schedule &
Storage

Constraints

Dependence
Analysis

Farkas Method Vertex Method

Vertex Method

Linear Program Linear Program

Integer Linear Program Integer Linear Program Integer
Linear Program

Linear Program

Farkas Method or Vertex Method

 nwithout v n

Fig. 12. A block diagram of our solution technique.

one-dimensional affine schedule. Similarly, if we are given a range of candidate
occupancy vectors, we can eliminate �v and find a schedule that is valid for all
occupancy vectors in the range. The key contribution of our technique is the
flexibility that is gained via a single framework, and in particular the ability
to solve for a storage mapping that is valid across a range of schedules.

5. EXAMPLES

We present four examples to illustrate the method described in the preceding
section. The first example contains only a single statement, while the second
contains two interdependent statements. The third example is an algorithmic
kernel that requires precise dependence domains, and the final example il-
lustrates nonuniform5 dependences and imperfectly nested loops. Though we
derive each equation by hand and use the shortcuts available in each case for
the sake of readability, our method is systematic and could be fully automated
in a parallelizing compiler.

5.1 Example 1: Simple Stencil

First we derive the solutions presented earlier for the 3-point stencil in Example
1 (see Figure 4).

5.1.1 Constraints. This example contains a single statement S. Its iter-
ation domain is DS , which represents the set of runtime values for the loop
indices that surround S:

DS = {(i, j) | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ n}.

5A dependence �h(�i) = A�i + �b is uniform if all entries of A are equal to 1.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:30 • W. Thies et al.

There are three data dependences, each from statement S unto itself.

P1 = (S, S, �h1, P1),

where �h1(i, j) = (i − 1, j − 2) and P1 = {(i, j) | 2 ≤ i ≤ m ∧ 3 ≤ j ≤ n}
P2 = (S, S, �h2, P2),

where �h2(i, j) = (i − 1, j) and P2 = {(i, j) | 2 ≤ i ≤ m ∧ 1 ≤ j ≤ n}
P3 = (S, S, �h3, P3),

where �h3(i, j) = (i − 1, j + 1) and P3 = {(i, j) | 2 ≤ i ≤ m ∧ 1 ≤ j ≤ n − 1}.
Let us review our notations for the dependence P1 above. P1 indicates that
iteration (i, j) of statements S depends on iteration �h1(i, j) = (i − 1, j − 2) of
statement S. The dependence exists for all (i, j) in the dependence domain P1,
which is the entire iteration domain DS except for where �h1(i, j) /∈ DS . The
other dependences are analogous.

Let �S denote the scheduling function for statement S. Following Sec-
tion 3.2.1, �S can be written as follows:

�S(i, j , n, m) = a ∗ i + b ∗ j + c ∗ m + d ∗ n + e.

Replacing �S by its definition in dependence P1, we have the following schedule
constraint:

∀(m, n) ∈ N , ∀(i, j) ∈ P1, (a ∗ i + b ∗ j + c ∗ m + d ∗ n + e)

− (a ∗ (i − 1) + b ∗ (j − 2) + c ∗ m + d ∗ n + e) − 1 ≥ 0.

This can be rewritten as:

∀(m, n) ∈ N , ∀(i, j) ∈ P1, a + 2 ∗ b − 1 ≥ 0.

We can now observe that in this constraint, the domain quantifiers are mean-
ingless, as both N and P1 are nonempty6 but no component of �n or �i appears in
the equation. Thus, we can eliminate the quantifiers and write the constraint
as follows:

a + 2 ∗ b − 1 ≥ 0.

The variables i and j were eliminated from the equation because the depen-
dence P1 is uniform—that is, it does not vary with the loop iteration. Since the
other dependences are also uniform, we can follow the same procedure to obtain
the following set of inequalities:

a + 2 ∗ b − 1 ≥ 0
a − 1 ≥ 0
a − b − 1 ≥ 0.

These are the linearized schedule constraints. Note that since the dependences
are uniform, we obtained the linearized schedule constraints without appealing
to the vertex method or the Farkas method.

6If N was empty, the program would be meaningless as a loop bound is drawn from N . P1 could be

empty in the trivial case where m ≤ 1 or n ≤ 2, in which case we disregard the constraint.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:31

Now let �vA = (vi, vj) denote the occupancy vector that we are seeking for
array A. Using Z1, Z2, and Z3 to denote the storage constraint domains, the
storage constraints are as follows:

∀(m, n) ∈ N , ∀(i, j) ∈ Z1, �S(i − 1 + vi, j − 2 + vj , m, n) − �S(i, j , m, n) ≥ 0
∀(m, n) ∈ N , ∀(i, j) ∈ Z2, �S(i − 1 + vi, j + vj , m, n) − �S(i, j , m, n) ≥ 0
∀(m, n) ∈ N , ∀(i, j) ∈ Z3, �S(i − 1 + vi, j + 1 + vj , m, n) − �S(i, j , m, n) ≥ 0.

The domain Z of a storage constraint contains iterations (i, j) where there is
a schedule constraint (that is, (i, j) ∈ P) and where the operation at the tip of
the occupancy vector is in the domain of the statement (that is, �h(i, j) + (vi, vj)

∈ DS). Substituting the value of DS , as well as �h and P (for each dependence P
above) gives the storage constraint domains:

Z1 = {(i, j) | 2 ≤ i ≤ m ∧ 3 ≤ j ≤ n

∧ 1 ≤ i − 1 + vi ≤ m ∧ 1 ≤ j − 2 + vj ≤ n}
Z2 = {(i, j) | 2 ≤ i ≤ m ∧ 1 ≤ j ≤ n

∧ 1 ≤ i − 1 + vi ≤ m ∧ 1 ≤ j + vj ≤ n}
Z3 = {(i, j) | 2 ≤ i ≤ m ∧ 1 ≤ j ≤ n − 1

∧ 1 ≤ i − 1 + vi ≤ m ∧ 1 ≤ j + 1 + vj ≤ n}.
In this case, the details of these domain definitions turn out to be unimportant.
In the nontrivial case, each Z is nonempty, as m and n are larger than 2, and
vi and vj are significantly smaller than m and n (otherwise there would be no
storage reuse with the occupancy vector.) Since each Z is nonempty, we can
eliminate the domain quantifiers and rewrite the storage constraints as we did
the schedule constraints. This gives us the linearized storage constraints:

(vi − 1) ∗ a + (vj − 2) ∗ b ≥ 0
(vi − 1) ∗ a + vj ∗ b ≥ 0
(vi − 1) ∗ a + (vj + 1) ∗ b ≥ 0.

5.1.2 Finding an Occupancy Vector. To find the shortest occupancy vec-
tor for the schedule that writes to the rows of A in parallel, we substitute
�S(i, j , m, n) = i into the linearized schedule and storage constraints. That is,
we set a = 1, b = 0, c = 0, d = 0, and e = 0, reducing the constraints to the
following:

vi − 1 ≥ 0.

Minimizing |vi|+ |vj | with respect to this constraint gives the occupancy vector
of (1, 0) (see Figure 5).

5.1.3 Finding a Schedule. To find the set of schedules that are valid for the
occupancy vector of (2, 0), we substitute vi = 2 and vj = 0 into the linearized
schedule and storage constraints.

Simplifying the resulting constraints yields:

a − 2 ∗ b ≥ 0
a + 2 ∗ b − 1 ≥ 0
a − b − 1 ≥ 0.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:32 • W. Thies et al.

j

i s1
s2

Fig. 13. Dependence diagram for Example 2.

Inspection of these inequalities reveals that the ratio b/a has a maximum value
of 1/2 and a minimum value that asymptotically approaches −1/2, thus corre-
sponding to the set of legal affine schedules depicted in Figure 10 (note that in
the frame of the figure, however, the schedule’s slope is −a/b.)

5.1.4 Finding an AOV. To find an AOV for A, we apply Farkas’ lemma
to rewrite each of the linearized storage constraints as a nonnegative affine
combination of the linearized schedule constraints:

⎡
⎣ (vi − 1) ∗ a + (vj − 2) ∗ b

(vi − 1) ∗ a + vj ∗ b
(vi − 1) ∗ a + (vj + 1) ∗ b

⎤
⎦ =

⎡
⎣ λ1,1 λ1,2 λ1,3 λ1,4

λ2,1 λ2,2 λ2,3 λ2,4

λ3,1 λ3,2 λ3,3 λ3,4

⎤
⎦

⎡
⎢⎢⎣

1
a + 2 ∗ b − 1

a − 1
a − b − 1

⎤
⎥⎥⎦

λi, j ≥ 0, ∀i ∈ [1, 3], ∀ j ∈ [1, 4].

Minimizing |vi|+|vj | subject to these constraints yields an AOV (vi, vj) = (2, 1).
To transform the data space of array A according to this AOV �v = (2, 1), we

follow the procedure given in Section 3.3. As the components of �v are relatively
prime, it is a primitive occupancy vector and there will be no modulation term.
We construct a unimodular matrix U�v with �v as the first column and calculate
its inverse:

U�v =
[

2 1
1 1

]
U−1

�v =
[

1 −1
−1 2

]
.

We set the projection matrix ��v to the bottom rows of U−1
�v : ��v = [−1 2]. We

calculate the index transformation as (−1, 2) · (i, j) = 2∗ j − i. Finally, to ensure
that all data accesses are nonnegative, we add m to the new index, such that the
final transformation is from A[i][j] to A[2 ∗ j − i + m]. Thus, we have reduced
storage requirements from m∗n to m+2∗n−1. The modified code corresponding
to this mapping is shown in Figure 11.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:33

Fig. 14. Original code for Example 2.

Fig. 15. Transformed storage mapping for Example 2, in which each array has an AOV of (1, 1). The

loops illustrate the example one-dimensional affine schedules of �S1
(i, j) = 2∗ j , �S2

(i, j) = 2∗ j +1.

5.2 Example 2: Two-Statement Stencil

We now consider an example adapted from Lim and Lam [1998] where there
is a uniform dependence between two statements in a loop (see Figures 13 and
14). The iteration domains for statements S1 and S2 are as follows:

D1 = D2 = {(i, j) | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ n}.

Since S1 and S2 are enclosed in exactly the same loops, their iteration domains
are equivalent. There are two data dependences,

P1 = (S1, S2, �h1, P1)

where �h1(i, j) = (i − 1, j) and P1 = {(i, j) | 2 ≤ i ≤ m ∧ 1 ≤ j ≤ n}
P2 = (S2, S1, �h2, P2)

where �h2(i, j) = (i, j − 1) and P2 = {(i, j) | 1 ≤ i ≤ m ∧ 2 ≤ j ≤ n}.

P1 represents the dependence of S1 on S2, and P2 represents the dependence
of S2 on S1.

Letting �S1
and �S2

denote the scheduling functions for S1 and S2, respec-
tively, we have the following schedule constraints:

∀(m, n) ∈ N , ∀(i, j) ∈ P1, �S1
(i, j , m, n) − �S2

(i − 1, j , m, n) − 1 ≥ 0
∀(m, n) ∈ N , ∀(i, j) ∈ P2, �S2

(i, j , m, n) − �S1
(i, j − 1, m, n) − 1 ≥ 0.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:34 • W. Thies et al.

and the following storage constraints:

∀(m, n) ∈ N , ∀(i, j) ∈ Z1, �S2
(i − 1 + vB,i, j + vB, j , m, n) − �S1

(i, j , m, n) ≥ 0
where Z1 = {(i, j) | 2 ≤ i ≤ m ∧ 1 ≤ j ≤ n ∧

1 ≤ i − 1 + vB,i ≤ m ∧ 1 ≤ j + vB, j ≤ n}
∀(m, n) ∈ N , ∀(i, j) ∈ Z2, �S1

(i + vA,i, j − 1 + vA, j , m, n) − �S2
(i, j , m, n) ≥ 0

where Z2 = {(i, j) | 1 ≤ i ≤ m ∧ 2 ≤ j ≤ n ∧
1 ≤ i + vA,i ≤ m ∧ 1 ≤ j − 1 + vA, j ≤ n}.

As in Example 1, the dependences are uniform and we can linearize the con-
straints without appealing to the vertex method or the Farkas method. How-
ever, for the sake of illustration, we will use the vertex method to linearize the
constraints. We observe that the iteration domains D1 and D2 each have ver-
tices (1, 1), (m, 1), (1, n), and (m, n), so we evaluate the schedule constraints at
these points to eliminate (i, j):

�S1
(1, 1, m, n) − �S2

(0, 1, m, n) − 1 ≥ 0
�S2

(1, 1, m, n) − �S1
(1, 0, m, n) − 1 ≥ 0

�S1
(m, 1, m, n) − �S2

(m − 1, 1, m, n) − 1 ≥ 0
�S2

(m, 1, m, n) − �S1
(m, 0, m, n) − 1 ≥ 0

�S1
(1, n, m, n) − �S2

(0, n, m, n) − 1 ≥ 0
�S2

(1, n, m, n) − �S1
(1, n − 1, m, n) − 1 ≥ 0

�S1
(m, n, m, n) − �S2

(m − 1, n, m, n) − 1 ≥ 0
�S2

(m, n, m, n) − �S1
(m, n − 1, m, n) − 1 ≥ 0.

Next, we eliminate the structural parameters m and n. Assuming m and n are
positive but might be arbitrarily large, the domain of these parameters is an
unbounded polyhedron: (m, n) = (1, 1)+ j ∗(0, 1)+k∗(1, 0), for positive integers
j and k. We must evaluate the above constraints at the vertex (1, 1), as well as
the linear part of the constraints for the rays (1, 0) and (0, 1). Doing so yields
24 equations, of which we show the first 3 (which result from substituting into
the first of the equations above):

�S1
(1, 1, 1, 1) − �S2

(0, 1, 1, 1) − 1 ≥ 0
�S1

(1, 1, 1, 0) − �S2
(0, 1, 1, 0) − �S1

(1, 1, 0, 0) + �S2
(0, 1, 0, 0) ≥ 0

�S1
(1, 1, 0, 1) − �S2

(0, 1, 0, 1) − �S1
(1, 1, 0, 0) + �S2

(0, 1, 0, 0) ≥ 0.

Expanding the scheduling functions as �x(i, j , m, n) = ax ∗ i + bx ∗ j + cx ∗ m +
dx ∗ n + ex , the entire set of 24 equations can be simplified to:

a1 = a2

b1 = b2

c1 = c2

d1 = d2

b2 − e1 + e2 − 1 ≥ 0
a2 + e1 − e2 − 1 ≥ 0.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:35

Fig. 16. Original code for Example 3, for multiple sequence alignment. Here f computes the initial

gap penalty and w computes the pairwise alignment cost.

These equations constitute the linearized schedule constraints. In a similar
fashion, we can linearize the storage constraints to obtain the following:

a1 = a2

b1 = b2

c1 = c2

d1 = d2

a2 ∗ (vB,i − 1) + b2 ∗ vB, j − e1 + e2 − 1 ≥ 0
a2 ∗ vA,i + b2 ∗ (vA, j − 1) + e1 − e2 − 1 ≥ 0.

Using the linearized schedule and storage constraints, we can now apply
Farkas’ lemma to find the shortest AOVs of �vA = �vB = (1, 1). The code that
results after transformation by these AOVs is shown in Figure 15; memory
requirements have been reduced from 2 ∗ m ∗ n to 2 ∗ (m + n).

5.3 Example 3: Multiple Sequence Alignment

We now consider a version of the Needleman-Wunsch sequence alignment al-
gorithm [Needleman and Wunsch 1970] to determine the cost of the optimal
global alignment of three strings (see Figure 16). The algorithm utilizes dy-
namic programming to determine the minimum-cost alignment according to
a cost function w that specifies the cost of aligning three characters, some of
which might represent gaps in the alignment.

Using �S1
and �S2

to represent the scheduling functions for statements 1
and 2, respectively, we have the following schedule constraints (we enumerate
only three constraints for each pair of statements since the other dependences

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:36 • W. Thies et al.

follow by transitivity):

∀(i, j , k) s.t. 3 ≤ i ≤ imax ∧ 2 ≤ j ≤ jmax ∧ 2 ≤ k ≤ kmax,
�S2

(i, j , k, imax, jmax, kmax) − �S2
(i − 1, j , k, imax, jmax, kmax) − 1 ≥ 0

∀(i, j , k) s.t. 2 ≤ i ≤ imax ∧ 3 ≤ j ≤ jmax ∧ 2 ≤ k ≤ kmax,
�S2

(i, j , k, imax, jmax, kmax) − �S2
(i, j − 1, k, imax, jmax, kmax) − 1 ≥ 0

∀(i, j , k) s.t. 2 ≤ i ≤ imax ∧ 2 ≤ j ≤ jmax ∧ 3 ≤ k ≤ kmax,
�S2

(i, j , k, imax, jmax, kmax) − �S2
(i, j , k − 1, imax, jmax, kmax) − 1 ≥ 0

∀(j , k) s.t. 2 ≤ j ≤ jmax ∧ 2 ≤ k ≤ kmax,
�S2

(2, j , k, imax, jmax, kmax) − �S1
(1, j , k, imax, jmax, kmax) − 1 ≥ 0

∀(i, k) s.t. 2 ≤ i ≤ imax ∧ 2 ≤ k ≤ kmax,
�S2

(i, 2, k, imax, jmax, kmax) − �S1
(i, 1, k, imax, jmax, kmax) − 1 ≥ 0

∀(i, j) s.t. 2 ≤ i ≤ imax ∧ 2 ≤ j ≤ jmax,
�S2

(i, j , 2, imax, jmax, kmax) − �S1
(i, j , 1, imax, jmax, kmax) − 1 ≥ 0.

Note that each constraint is restricted to the subset of the iteration domain
under which it applies. That is, S2 depends on S1 only when i, j , or k is equal
to 2; otherwise, S2 depends on itself. This example illustrates the precision of
our technique for general dependence domains.

The storage constraints are as follows. First, there are the storage constraints
based on the dependence of S2 on S2:

∀(i, j , k) s.t. 3 ≤ i ≤ imax ∧ 2 ≤ j ≤ jmax ∧ 2 ≤ k ≤ kmax ∧
1 ≤ i − 1 + vi ≤ imax ∧ 1 ≤ j + vj ≤ jmax ∧ 1 ≤ k + vk ≤ kmax,

�S2
(i − 1 + vi , j + vj , k + vk , imax, jmax, kmax) − �S2

(i, j , k, imax, jmax, kmax) − 1 ≥ 0

∀(i, j , k) s.t. 3 ≤ i ≤ imax ∧ 2 ≤ j ≤ jmax ∧ 2 ≤ k ≤ kmax ∧
1 ≤ i + vi ≤ imax ∧ 1 ≤ j − 1 + vj ≤ jmax ∧ 1 ≤ k + vk ≤ kmax,

�S2
(i + vi , j − 1 + vj , k + vk , imax, jmax, kmax) − �S2

(i, j , k, imax, jmax, kmax) − 1 ≥ 0

∀(i, j , k) s.t. 3 ≤ i ≤ imax ∧ 2 ≤ j ≤ jmax ∧ 2 ≤ k ≤ kmax ∧
1 ≤ i + vi ≤ imax ∧ 1 ≤ j + vj ≤ jmax ∧ 1 ≤ k − 1 + vk ≤ kmax,

�S2
(i + vi , j + vj , k − 1 + vk , imax, jmax, kmax) − �S2

(i, j , k, imax, jmax, kmax) − 1 ≥ 0.

Then, there are storage constraints that follow from the dependence of S2 on
S1:

∀(i, j , k) s.t. 2 ≤ j ≤ jmax ∧ 2 ≤ k ≤ kmax ∧
1 + vi = 1 ∧ 1 ≤ j + vj ≤ jmax ∧ 1 ≤ k + vk ≤ kmax,

�S1
(1 + vi , j + vj , k + vk , imax, jmax, kmax) − �S2

(2, j , k, imax, jmax, kmax) − 1 ≥ 0

∀(i, j , k) s.t. 2 ≤ j ≤ jmax ∧ 2 ≤ k ≤ kmax ∧
1 ≤ i + vi ≤ imax ∧ 1 + vj = 1 ∧ 1 ≤ k + vk ≤ kmax,

�S1
(i + vi , 1 + vj , k + vk , imax, jmax, kmax) − �S2

(i, 2, k, imax, jmax, kmax) − 1 ≥ 0

∀(i, j , k) s.t. 2 ≤ j ≤ jmax ∧ 2 ≤ k ≤ kmax ∧
1 ≤ i + vi ≤ imax ∧ 1 ≤ j + vj ≤ jmax ∧ 1 + vk = 1,

�S1
(i + vi , j + vj , 1 + vk , imax, jmax, kmax) − �S2

(i, j , 2, imax, jmax, kmax) − 1 ≥ 0.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:37

Fig. 17. Transformed storage mapping for Example 3, using the AOV of (1, 1, 1). The

new array has dimension [imax+jmax][imax+kmax], with each reference to [i][j][k] mapped

to [jmax+i−j][kmax+i−k]. The loops illustrate an example one-dimensional affine schedule of

�S1
(i, j , k, imax, jmax, kmax) = �S2

(i, j , k, imax, jmax, kmax) = i + j + k.

In practice, the domains of the three constraints above are empty—and thus
no constraints are imposed—as each requires a component of �v to be zero. How-
ever, if any component of �v is zero, then �v is not a valid occupancy vector because
it violates one of the first three storage constraints (based on the dependence of
S2 on S2). Intuitively, one can see this as follows. For any dimension of array A,
each instance of S2 references two distinct elements of A whose indices differ
only in this dimension; if the corresponding component of �v was zero, then all
elements along this dimension of A would be collapsed to a scalar, leaving space
for only one of the two elements referenced by S2.

Applying our method for this example yields an AOV of (1, 1, 1). The trans-
formed code under this occupancy vector appears in Figure 17; the trans-
formed array is of dimension [imax+jmax][imax+kmax] and element [i][j][k]
of the original array is mapped to [jmax+i−j][kmax+i−k] of the transformed
array. Memory requirements have been reduced from imax ∗ jmax ∗ kmax to
(imax + jmax) ∗ (imax + kmax).

As described in Section 4.6.3, a tiled loop nest can be constructed using loops
that correspond to valid, independent, one-dimensional affine schedules. In
this case, such schedules can be constructed as �S1

(i, j , k, imax, jmax, kmax) =
�S2

(i, j , k, imax, jmax, kmax) = ai + bj + ck for any a, b, c ≥ 1. Choosing three
independent valuations for (a, b, c) yields schedules corresponding to a three-
level loop nest that can be tiled.

5.4 Example 4: Nonuniform Dependences

Our final example is constructed to demonstrate the application of our method
to nonuniform dependences and imperfectly nested loops (see Figures 18 and
19). Let �S1

and �S2
denote the scheduling functions for statements S1 and S2,

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:38 • W. Thies et al.

j

i s2
s1

Fig. 18. Dependence diagram for Example 4.

Fig. 19. Original code for Example 4.

respectively. Then we have the following schedule constraints:

∀(i, j) s.t. 2 ≤ i ≤ n ∧ 1 ≤ j ≤ n, �S1
(i, j , n) − �S2

(i − 1, n) − 1 ≥ 0
∀i s.t. 1 ≤ i ≤ n, �S2

(i, n) − �S1
(i, n − i, n) − 1 ≥ 0

and the following storage constraints:

∀(i, j) s.t. 2 ≤ i ≤ n ∧ 1 ≤ j ≤ n ∧ 1 ≤ i − 1 + vB ≤ n,
�S2

(i − 1 + vB, n) − �S1
(i, j , n) ≥ 0

∀i s.t. 1 ≤ i ≤ n ∧ 1 ≤ i + vA,i ≤ n ∧ 1 ≤ n − i + vA, j ≤ n,
�S1

(i + vA,i, n − i + vA, j , n) − �S2
(i, n) ≥ 0.

Applying our method to these constraints yields the AOVs �vA = (1, 0) and
vB = 1. The transformed code (shown in Figure 20) requires only n+ 1 memory
locations, compared to the original memory requirements of n ∗ (n + 1).

6. RELATED WORK

The work most closely related to ours is that of Strout et al. [1998], which con-
siders schedule-independent storage mappings using the Universal Occupancy
Vector (UOV). While an AOV is valid only for affine schedules, a UOV is valid for
any legal execution ordering. Consequently, sometimes there exist AOVs that
are shorter than any UOV since the AOV must be valid for a smaller range of
schedules; for example, the shortest UOV for Example 1 is (3, 0) whereas our
technique finds an AOV of (2, 1). While the analysis of Strout et al. [1998] is lim-
ited to a stencil of dependences involving only one statement within a perfectly

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:39

Fig. 20. Transformed storage mapping for Example 4. The AOVs for A and B are (1, 0) and 1,

respectively. The loops illustrate example one-dimensional affine schedules of �S1
(i, j) = 2 ∗ i,

�S2
(i, j) = 2 ∗ i + 1.

nested loop, our method applies to general affine dependences across state-
ments and loop nests (both perfectly nested and nonperfectly nested). Moreover,
our framework goes beyond AOVs to unify the notion of occupancy vectors with
known affine scheduling techniques.

The leading method for schedule-specific storage optimization in the context
of the polyhedral model is that of Darte et al. [2005]. They formulate mod-
ular memory allocations in terms of integer lattices, where the basis of the
lattice is akin to a set of occupancy vectors that are applied simultaneously. A
lattice admits a modular storage mapping that is a generalization of ours (it
collapses multiple dimensions of storage). There is also a generalized storage
constraint: a lattice is valid for a given array if it does not intersect a convex
set K that bounds the shape of the live data elements across all points in the
schedule. For multidimensional affine schedules, K can be calculated statically.
The authors show that the size of the allocated storage is equivalent to the de-
terminant of the lattice, and they propose several heuristics for minimizing this
quantity.

The minimization heuristics generally operate in two stages: first by fixing
the direction of the vectors which will form the basis for the lattice, and then by
scaling the vectors until the lattice is valid. For certain orientations of the ini-
tial basis vectors, the minimization heuristics can be proven to perform within
a factor of the optimum (though the factor grows exponentially with the di-
mensionality of the array). In manipulating the orientation of the lattice, this
technique generalizes that of Lefebvre and Feautrier [1998] and possibly that
of Quilleré and Rajopadhye [2000]. While the optimization metric is more pre-
cise than ours (it minimizes the exact size of the transformed storage instead of
the length of the occupancy vector), the lattice technique seems to assume that
all loop bounds are compiletime constants. Our technique (as well as Lefebvre
and Feautrier [1998]; Quilleré and Rajopadhye [2000]) supports symbolic pa-
rameters in the program.

We view our technique as being complementary to that of Darte et al. [2005].
When the schedule is given, their method provides more powerful storage op-
timization than ours. However, our work addresses a different goal: that of
adding flexibility to the scheduling process, such that some storage optimiza-
tion can precede the final choice of schedules. Integrating our approach with
their framework could provide an interesting avenue for future research.

Another approach to schedule-specific storage optimization in the polyhedral
model is that of Quilleré and Rajopadhye [2000], which builds on that of Wilde

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:40 • W. Thies et al.

and Rajopadhye [1997]. We also consider this technique to be more powerful
than ours for finding a storage mapping given a schedule. Like our technique,
their analysis targets static control flow programs in a single assignment form.
However, they also support multi dimensional affine schedules, as well as multi-
ple dimensions of storage reuse. The method is optimal in the sense that it finds
the maximum number of linearly independent projection vectors for collapsing
a given array. It is not clear how storage is minimized along each dimension of
the final mapping.

Related approaches to storage management for parallel programs are due
to Lefebvre, Feautrier, and Cohen [Cohen and Lefebvre 1999; Cohen 1999;
Lefebvre and Feautrier 1998]. Given an affine schedule, Lefebvre and Feautrier
[1998] optimize storage first by restricting the size of each array dimension and
then by combining distinct arrays via renaming. This work is extended by Co-
hen and Lefebvre [1999] and Cohen [1999] to consider storage mappings for a
set of schedules, towards the end of capturing the tradeoff between parallelism
and storage. However, these techniques utilize a storage mapping where, in an
assignment, each array dimension is indexed by a loop counter and is modulated
independently (e.g., A[i mod n][j mod m]). This is distinct from the occupancy
vector mapping, where the data space of the array is projected onto a hyperplane
before modulation (if any) is introduced. The former mapping—when applied
to all valid affine schedules—does not enable any storage reuse in Examples
2 and 3, where the AOV did. However, with a single occupancy vector we can
only reduce the dimensionality of an array by one, whereas the other mapping
can introduce constant bounds in several dimensions.

De Greef, Catthoor, and De Man describe another approach to storage trans-
formations in the polyhedral model, assuming the schedule is fixed [De Greef
et al. 1997b]. In their model, each array is effectively flattened into a one-
dimensional array, which is implemented as a circular buffer using a single
modulo operation. In flattening a multidimensional array, each permutation
and orientation of dimensions is evaluated (e.g., column-major vs. row-major)
and the configuration yielding the smallest buffer size is selected. This stor-
age mapping corresponds to a set of transformations that partially overlaps
with ours. Both mappings can describe compression along a single dimension
of the original array. Our mapping (but not De Greef et al.’s) can describe a
projective mapping, compressing in a direction that spans multiple dimensions
of the original array. The De Greef et al. mapping (but not ours) can describe
complete compression of some array dimensions with partial compression of
another, as well as “unaligned” compression in which the buffer size is not
a multiple of any dimension size. The same authors describe a second pass
in which arrays with non-intersecting lifetimes can reuse storage locations
[De Greef et al. 1997a]; this pass uses a greedy layout algorithm that could be
run following our optimizations. Murthy and Bhattacharyya [2001, 2004] also
study the problem of reusing buffer space in the context of synchronous dataflow
graph.

Lim et al. [2001] also address the problem of the interplay between schedul-
ing and storage optimization. Their technique encompasses affine partitioning

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:41

[Lim and Lam 1998], array contraction, and generalized blocking to improve
cache performance. The algorithm works by extracting independent threads
from a program, eliminating array dimensions that are not live within an indi-
vidual thread, and then interleaving and blocking certain threads to improve
memory locality. In the context of phase ordering, this approach could be seen as
a sequence of schedule optimization, storage optimization, and another round
of schedule optimization (with extra storage adjustments possible to support
blocking.) However, their array contraction is more limited than an occupancy
vector transformation, as the only direction of collapse is along the original axis
of the array, and no modulation is allowed.

Pike [2002] presents a set of storage optimizations for scientific programs,
including a flexible array contraction algorithm that appears to preserve the
semantics for a range of legal execution orderings. The algorithm targets array
accesses that are unimodular functions of the enclosing loop indices. Thus, no
statement can write the same element twice; however, multiple statements can
write to the same array. The algorithm attempts to generate a different array
contraction for each assignment statement, provided that each array reference
has a unique source. This model of contraction is more general than occupancy
vector methods, as different parts of the array can be collapsed to different
extents. However, the program domain is different—it is more restrictive in
requiring unimodular accesses, but more general in allowing multiple writes to
the same array. A more direct comparison is difficult, as the technique is posed
algorithmically instead of in terms of the polyhedral model.

Wong and Delosme [Wong and Delosme 1992; Wong 1989] and Saouter [1992]
consider a problem in systolic array synthesis that is related to our storage
optimizations. Given a linear schedule and fixed values for all structural pa-
rameters in the program, they derive a linear allocation function (mapping
operations to processors) that minimizes the number of processors needed. The
allocation function is analogous to a transformation by a single primitive occu-
pancy vector. The approach is more precise than ours in that it considers the
shape of the allocated region, minimizing the total number of allocated proces-
sors rather than minimizing the length of the occupancy vector. The solution is
obtained via enumerative search. Wong and Delosme make the search practical
by using a nontrivial upper bound on the length of the optimal occupancy vec-
tor, while Saouter employs a heuristic and restricts the search to vectors that
are “close” to one of the longest diameters of the polyhedral domain (a diameter
of a polyhedron is a vector linking two of its vertices). However, the techniques
do not apply to the problem considered in this paper, due to a difference in the
constraints. In systolic array synthesis, a processor allocation is valid if each
processor performs at most one operation per time step; that is, the validity
of the allocation depends only on the schedule. In contrast, our storage con-
straints specify that live values must not be overwritten; that is, the validity
of the storage mapping depends on both the schedule and the program depen-
dences. Consequently, the shortest occupancy vector satisfying our constraints
can be longer than the upper bound derived by Wong and Delosme. In addition,
our technique is not restricted to primitive occupancy vectors.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:42 • W. Thies et al.

7. CONCLUSION

We have presented a mathematical framework that unifies the techniques of
affine scheduling and occupancy vector analysis. Within this framework, we
showed how to determine, under some restrictions explained below, a good stor-
age mapping for a given schedule, a good schedule for a given storage mapping,
and a good storage mapping that is valid across a range of schedules. Our
technique is general and precise, allowing interstatement affine dependences
and solving for the shortest occupancy vector using integer linear program-
ming. The analysis we describe could be fully automated within a parallelizing
compiler.

We consider this research to be a first step towards automating a proce-
dure that finds the optimal tradeoff between parallelism and storage space.
This question is relevant in the context of array expansion, where the cost of
extra array dimensions must be weighed against the scheduling freedom that
they provide. Additionally, our framework could be applied to single-assignment
functional languages where all storage reuse must be orchestrated by the com-
piler. In both of these applications, and even for compiling to uniprocessor sys-
tems, understanding the interplay between scheduling and storage is crucial
for achieving good performance.

However, since finding an exact solution for the “best” occupancy vector is
a very complex problem, our method relies on several assumptions to make
the problem tractable. We ignore the shape of the data space and assume that
the shortest occupancy vector is the best; further, we minimize the Manhattan
length of the vector, since minimizing the Euclidean length is nonlinear. Also,
we restrict the input domain to programs where 1) the data space matches the
iteration space, 2) only one statement writes to each array, 3) the schedule is one-
dimensional and affine, and 4) there is an affine description of the dependences.
It is with these qualifications that our method finds the “best” solution.

As the ultimate goal of a storage optimization is to reduce the absolute stor-
age volume, it would be worthwhile to consider the shape of the data space
rather than considering only the Manhattan length of the occupancy vector.
Unfortunately, the shape of the data space may not be known at compile time;
for example, an array of dimension 100×n×m contains non-comparable param-
eters, and it is unclear which dimension is most important to collapse. While
other techniques minimize the absolute storage volume by fixing the structural
parameters (e.g., [Darte et al. 2005], [Wong and Delosme 1992], and [Saouter
1992]), our focus lies in deriving storage transformations that are valid for all
values of the parameters. Future work could explore a hybrid approach, de-
riving a good storage mapping for various orderings of the parameters and
choosing between them at runtime.

It would also be desirable to extend our analysis to a broader domain of pro-
grams. In particular, the method would be more general if it could deal with
arbitrary affine references on the left-hand side; this not only would widen the
input domain, but would allow for the reduction of multiple array dimensions
via application of successive occupancy vectors. Also of primary importance is
support for multi dimensional schedules, as there are many programs that do

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:43

not admit a one-dimensional schedule. However, all of our attempts to formu-
late these extensions have resulted in a set of constraints that is nonlinear.
We consider it to be an open question to formulate these problems in a linear
programming framework.

In the long term, there are also other questions that one would like a frame-
work such as ours to answer. For instance, what is the range of schedules that
is legal for any valid occupancy vector? This would capture a notion of storage-
independent scheduling, such that one could optimize a schedule without re-
stricting the legal storage options. Perhaps a more natural question is to solve
for a schedule that permits the shortest possible occupancy vectors for a given
program. However, even in the case of our restricted input domain, both of these
questions lead to nonlinear constraints that we cannot readily linearize via the
techniques of this paper. We consider it to be an interesting open problem to
develop a framework that can answer these questions in a practical way.

ACKNOWLEDGMENTS

We are grateful to Paul Feautrier for helpful discussions regarding our optimiza-
tion problems, and to the anonymous reviewers for their insightful comments.

REFERENCES

BALEV, S., QUINTON, P., RAJOPADHYE, S., AND RISSET, T. 1998. Linear programming models for

scheduling systems of affine recurrence equations, a comparative study. In Proceedings of the
10th ACM Symposium on Parallel Algorithms and Architectures. 250–258.

BARTHOU, D., COHEN, A., AND COLLARD, J. 2000. Maximal static expansion. Int. J. Parl. Pro-
gram. 28, 3, 213–243.

CLAUSS, P. 1996. Counting solutions to linear and nonlinear constraints through Ehrhart poly-

nomials: applications to analyze and transform scientific programs. In Proceedings of the 10th
ACM International Conference on Supercomputing. 278–285.

COHEN, A. 1999. Parallelization via constrained storage mapping optimization. In Proceedings
of the 2nd International Symposium on High Performance Computing. 83–94.

COHEN, A. AND LEFEBVRE, V. 1999. Storage mapping optimization for parallel programs. In Pro-
ceedings of the 5th International Euro-Par Conference. 375–382.

DARTE, A. 1991. Regular partitioning for synthesizing fixed-size systolic arrays. INTEGRATION,
VLSI J. 12, 293–304.

DARTE, A. 1998. Mathematical tools for loop transformations: From systems of uniform recur-

rence equations to the polytope model. In Algorithms for Parallel Processing, M. H. Heath,

A. Ranade, and R. S. Schreiber, Eds. IMA Volumes in Mathematics and its Applications, vol.

105. Springer-Verlag, 147–183.

DARTE, A., ROBERT, Y., AND VIVIEN, F. 2000. Scheduling and Automatic Parallelization. Birkhäuser,

Boston, MA.

DARTE, A., SCHREIBER, R., AND VILLARD, G. 2005. Lattice-based memory allocation. IEEE Trans.
Comput. 54, 10, 1242–1257.

DARTE, A., SILBER, G.-A., AND VIVIEN, F. 1997. Combining retiming and scheduling techniques for

loop parallelization and loop tiling. Paral. Process. Lett. 7, 4, 379–392.

DE GREEF, E., CATTHOOR, F., AND DE MAN, H. 1997a. Array placement for storage size reduction

in embedded multimedia systems. In Proceedings of the 8th IEEE International Conference on
Application-Specific Systems, Architectures and Processors. 66–75.

DE GREEF, E., CATTHOOR, F., AND DE MAN, H. 1997b. Memory size reduction through storage order

optimization for embedded parallel multimedia applications. Parall. Comput. 23, 12, 1811–1837.

FEAUTRIER, P. 1988. Array expansion. In Proceedings of the 2nd ACM International Conference
on Supercomputing. 429–441.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

34:44 • W. Thies et al.

FEAUTRIER, P. 1991. Dataflow analysis of array and scalar references. Int. J. Paral. Program. 20, 1,

23–51.

FEAUTRIER, P. 1992a. Some efficient solutions to the affine scheduling problem. I. One-

dimensional time. Int. J. Paral. Program. 21, 5, 313–347.

FEAUTRIER, P. 1992b. Some efficient solutions to the affine scheduling problem. Part II. Multi-

dimensional time. Int. J. Paral. Program. 21, 6, 389–420.

FEAUTRIER, P. 1996. The Data Parallel Programming Model. LNCS Tutorial, vol. 1132 Chapter

Automatic Parallelization in the Polytope Model. Springer Verlag, 79–103.

FEAUTRIER, P. 2001a. Array dataflow analysis. In Compiler Optimizations for Scalable Paral-
lel Systems: Languages, Compilation Techniques, and Run Time Systems, D. P. Agrawal and

S. Pande, Eds. Lecture Notes in Computer Science, vol. 1808. Springer, 173–220.

FEAUTRIER, P. 2001b. The use of Farkas lemma in memory optimization. Unpublished note, June,

2001.

FEAUTRIER, P., COLLARD, J.-F., BARRETEAU, M., BARTHOU, D., COHEN, A., AND LEFEBVRE, V. 1998. The

interplay of expansion and scheduling in PAF. Tech. rep. PRiSM, University of Versailles.

IRIGOIN, F. AND TRIOLET, R. 1988. Supernode partitioning. In Proceedings of the 15th ACM Sym-
posium on Principles of Programming Languages. 319–329.

KOUACHE, R. 2002. Durées de vie et compression mémoire. M.S. thesis, Université Louis Pasteur,

Strasbourg. (In French).

LEFEBVRE, V. AND FEAUTRIER, P. 1998. Automatic storage management for parallel programs.

Paral. Comput. 24, 3–4, 649–671.

LIM, A. W. AND LAM, M. S. 1998. Maximizing parallelism and minimizing synchronization with

affine partitions. Paral. Comput. 24, 3–4, 445–475.

LIM, A. W., LIAO, S.-W., AND LAM, M. S. 2001. Blocking and array contraction across arbitrarily

nested loops using affine partitioning. In Proceedings of the 8th ACM Symposium on Principles
and Practices of Parallel Programming, 103–112.

LOECHNER, V. AND WILDE, D. K. 1997. Parameterized polyhedra and their vertices. Int. J. Paral.
Program. 25, 6, 525–549.

MAYDAN, D. E., AMARASINGHE, S. P., AND LAM, M. S. 1993. Array data-flow analysis and its use in

array privatization. In Proceedings of the 20th ACM Symposium on Principles of Programming
Languages. 2–15.

MURTHY, P. K. AND BHATTACHARYYA, S. S. 2001. Shared buffer implementations of signal process-

ing systems using lifetime analysis techniques. IEEE Trans. Comput.-Aid. Des. Integr. Circuits
Syst. 20, 2, 177–198.

MURTHY, P. K. AND BHATTACHARYYA, S. S. 2004. Buffer merging–a powerful technique for reducing

memory requirements of synchronous dataflow specifications. ACM Trans. Des. Autom. Elect.
Sys. 9, 2, 212–237.

NEEDLEMAN, S. B. AND WUNSCH, C. D. 1970. A general method applicable to the search for simi-

larities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453.

PIKE, G. 2002. Reordering and storage optimizations for scientific programs. Ph.D. thesis, Uni-

versity of California, Berkeley.

PUGH, W. 1992. The Omega test: a fast and practical integer programming algorithm for depen-

dence analysis. Comm. ACM 8, 102–114.

QUILLERÉ, F. AND RAJOPADHYE, S. 2000. Optimizing memory usage in the polyhedral model. ACM
Trans. Program. Lang. Sys. 22, 5, 773–815.

QUILLERÉ, F., RAJOPADHYE, S., AND WILDE, D. 2000. Generation of efficient nested loops from poly-

hedra. Int. J. Paral. Program. 28, 5, 469–498.

QUINTON, P. 1987. Automata Networks in Computer Science, Chapter The systematic design of

systolic arrays, 229–260. Manchester University Press.

QUINTON, P. AND DONGEN, V. V. 1989. The mapping of linear recurrence equations on regular

arrays. J. VLSI Sign. Process. 1, 2, 95–113.

RAJOPADHYE, S., PURUSHOTHAMAN, S., AND FUJIMOTO. 1986. Synthesizing systolic arrays from recur-

rence equations with linear dependencies. In Proceedings of the 6th International Conference on
Foundations of Software Technology and Theoretical Computer Science. 488–503.

SAOUTER, Y. 1992. À propos de systèmes d’équations récurrentes. Ph.D. thesis, Université de

Rennes 1.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

A Step Towards Unifying Schedule and Storage Optimization • 34:45

SCHRIJVER, A. 1986. Theory of Linear and Integer Programming. John Wiley and Sons, New York.

SHELDON, J. W., LEE, W., GREENWALD, B., AND AMARASINGHE, S. 2001. Strength reduction of integer

divison and modulo operations. In Proceedings of the 14th International Workshop on Languages
and Compilers for Parallel Computing. 254–273.

STROUT, M. M., CARTER, L., FERRANTE, J., AND SIMON, B. 1998. Schedule-independent storage map-

ping for loops. In Proceedings of the 8th International Conference on Architectural Support for
Programming Languages and Operating Systems. 24–33.

WILDE, D. AND RAJOPADHYE, S. 1997. Memory reuse analysis in the polyhedral model. Paral. Proces.
Lett. 7, 2, 203–215.

WONG, Y. 1989. Algorithms for systolic array synthesis. Ph.D. thesis, Yale University.

WONG, Y. AND DELOSME, J.-M. 1992. Space-optimal linear processor allocation for systolic arrays

synthesis. In Proceedings of the 6th International Parallel Processing Symposium. 275–282.

Received March 2003; revised February 2005, September 2006; accepted May 2007

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 34, Publication date: October 2007.

