
inerementalized Pointer and Escape Analysis*

Fred6ric Vivien
ICPS/LSIIT

Universit6 Louis Pasteur
Strasbourg, France

vivien @ icps. u-strasbg.fr

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139
rinard@lcs.mit.edu

A B S T R A C T

We present a new pointer and escape analysis. Instead of
analyzing the whole program, the algorithm incrementally
analyzes only those parts of the program that may deliver
useful results. An analysis policy monitors the analysis re-
sults to direct the incremental investment of analysis re-
sources to those parts of the program that offer the highest
expected optimization return.

Our experimental results show that almost all of the ob-
jects are allocated at a small number of allocation sites and
that an incremental analysis of a small region of the program
surrounding each site can deliver almost all of the benefit of a
whole-program analysis. Our analysis policy is usually able
to deliver this benefit at a fraction of the whole-program
analysis cost.

1. I N T R O D U C T I O N

Program analysis research has focused on two kinds of
analyses: local analyses, which analyze a single procedure,
and whole-program analyses, which analyze the entire pro-
gram. Local analyses fail to exploit information available
across procedure boundaries; whole-program analyses are
potentially quite expensive for large programs and are prob-
lematic when parts of the program are not available in ana-
lyzable form.

This paper describes our experience incrementalizing an
existing whole-program analysis so that it can analyze arbi-
trary regions of complete or incomplete programs. The new
analysis can 1) analyze each method independently of its
caller methods, 2) skip the analysis of potentially invoked
methods, and 3) incrementally incorporate analysis results
from previously skipped methods into an existing analysis
result. These features promote a structure in which the
algorithm executes under the direction of an analysis pol-
icy. The policy continuously monitors the analysis results
to direct the incremental investment of analysis resources

*The full version of this paper is available at
www.cag.lcs.mit.edu/~rinard/paper/pldi01.fulLps. This research
was done while Frdddric Vivien was a Visiting ProfesSor in the MIT
Laboratory for Computer Science. The research was supported in
part by DARPA/AFRL Contract F33615-00-C-1692, NSF Grant
CCR00-86154, and NSF Grant CCR00-63513.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
PLD/2001 6/01 Snowbird, Utah, USA
© 2001 ACM ISBN 1-58113.414-Z/01106,,.$5.00

to those parts of the program that offer the most attrac-
tive return (in terms of optimization opportunities) on the
invested resources. Our experimental results indicate that
this approach usually delivers almost all of the benefit of the
whole-program analysis, but at a fract!on of the cost.

1.1 Analysis Overview

Our analysis incrementalizes an existing whole-program
analysis for extracting points-to and escape information [16].
The basic abstraction in this analysis is a points-to escape
graph. The nodes of the graph represent objects; the edges
represent references between objects. In addition to points-
to information, the analysis records how objects escape the
currently analyzed region of the program to be accessed by
unanalyzed regions. An object may escape to an unanalyzed
caller via a parameter passed into the analyzed region or
via the return value. It may also escape m a potentially
invoked but unanalyzed method via a parameter passed into
that method. Finally, it may escape via a global variable or
parallel thread. If an object does not escape, it is captured.

The analysis is flow sensitive, context sensitive, and com-
positional. Guided by the analysis policy, it performs an
incremental analysis of the neighborhood of the program
surrounding selected object allocation sites. When it first
analyzes a method, it skips the analysis of all potentially
invoked methods, but maintains enough information to re-
construct the result of analyzing these methods should it
become desirable to do so. The analysis policy then ex-
amines the graph to find objects that escape, directing the
incremental integration of (possibly cached) analysis results
from potential callers (if the object escapes to the caller)
or potentially invoked methods (if the object escapes into
these methods). Because the analysis has complete infor-
mation about captured objects, the goal is to analyze just
enough of the program to capture objects of interest.

1.2 Analysis Policy
We formulate the analysis policy as a solution to an in-

vestment problem. At each step of the analysis, the policy
can invest analysis resources in any one of several allocation
sites in an at tempt to capture the objects allocated at that
site. To invest its resources wisely, the policy uses empirical
data from previous analyses, the current analysis result for
each site, and profiling data from a previous training run to
estimate the marginal return on invested analysis resources
for each site.

During the analysis, the allocation sites compete for re-
sources. At each step, the policy invests its next unit of
analysis resources in the allocation site that offers the best

35

marginal return. When the unit expires, the policy recom-
putes the estimated returns and again invests in the (po-
tentially different) allocation site with the best estimated
marginal return. As the analysis proceeds and the policy
obtains more information about each allocation site, the
marginal return estimates become more accurate and the
quality of the investment decisions improves.

1.3 Analysis Uses

We use the analysis results to enable a stack allocation op-
timization. If the analyis captures an object in a method,
it is unreachable once the method returns. In this case,
the generated code allocates the object in the activation
record of the method rather than in the heap. Other opti-
mization uses include synchronization elimination and the
elimination of ScopedMemory checks in Real-Time Java [6].
Potential software engineering uses include the evaluation of
programmer hypotheses regarding points-to and escape in-
formation for specific objects, the discovery of methods with
no externally visible side effects, and the extraction of infor-
mation about how methods access data from the enclosing
environment.

Becmlse the analysis is designed to be driven by an analy-
sis policy to explore only those regions of the program that
are relevant to a specific artalysis goal, we expect the analysis
to be particularly useful in settings (such as dynamic com-
pilers and interactive software engineering tools) in which it
must quickly answer queries about specific objects.

1,4 Context

In general, a base analysis must have several key proper-
ties to be a good candidate for incrementalization: it must
be able to analyze methods independently of their callers,
it must be able to skip the analysis of invoked methods,
and it must be able to recognize when a partial analysis of
the program has given it enough information to apply the
desired optimization. Algorithms that incorporate escape
information are good candidates for incrementalization be-
cause they enable the analysis to recognize captured objects
(for which it has complete information). As discussed fur-
ther in Section 7, many existing escape analyses either have
or can easily be extended to have the other two key prop-
erties [14, 7, 3]. Many of these algorithms are significantly
more efficient than our base algorithm, and we would expect
incrementalization to provide these algorithms with addi-
tional efficiency increases comparable to those we observed
for our algorithm.

An arguably more important benefit is the fact that incre-
mentatized algorithms usually analyze only a local neighbor-
hood of the program surrounding each object allocation site.
The analysis time for each site is therefore independent of
the overall size of the program, enabling the analysis to scale
to handle programs of arbitrary size. And incrementalized
algorithms can analyze incomplete programs.

1.5 Contributions

This paper makes the following contributions:

® Analysis Approach : It presents an incremental ap-
proach to program analysis. Instead of analyzing the
entire program, the analysis is focused by an analysis
policy to incrementally analyze only those regions of
the program that may provide useful results.

o Analysis Algor i thm: It presents a new combined
pointer and escape analysis algorithm bazed on the
incremental approach described above.

• Analysis Policy: It formulates the analysis policy as
a solution to an investment problem. Presented with
several analysis opportunities, the analysis policy in-
crementally invests analysis resources in those oppor-
tunities that offer the best estimated marginal return.

® Exper imenta l Results : Our experimental results
show that, for our benchmark programs, our analysis
policy delivers almost all of the benefit of the whole-
program analysis at a fraction of the cost.

The remainder of the paper is structured as follows. Sec-
tion 2 presents several examples. Section 3 presents our pre-
viously published base whole-program analysis [16]; readers
familiar with this analysis cart skip this section. Section 4
presents the incrementalized analysis. Section 5 presents
the analysis policy; Section 6 presents experimental results.
Section 7 discusses related work; we conclude in Section 8.

2. EXAMPLES
We next present several examples that illustrate the basic

approach of our analysis. Figure 1 presents two classes: the
complex class, which implements a complex number pack-
age, and the c l i en t class, which uses the package. The
complex class uses two mechanisms for returning values to
callers: the add and multiplyAdd methods write the re-
sult into the receiver object (the th i s object), while the
multiply method allocates a new object to hold the result.

2.1 The c o m p u t e Method

We assume that the analysis policy first targets the object
allocation site at line 3 of the compute method. The goal
is to capture the objects allocated at this site and allocate
them on the call stack. The initial analysis of compute skips
the call to the mulzip1yhdd method. Because the analysis
is flow sensitive, it produces a points-to escape graph for
each program point in the compute method. Because the
stack allocation optimization ties object lifetimes to method
lifetimes, the legality of this optimization is determined by
the points-to escape graph at the end of the method.

Figure 2 presents the points-to escape graph from the
end of the compute method. The solid nodes are inside
nodes, which represent objects created inside the currently
analyzed region of the program. Node 3 is an inside node
that represents all objects created at line 3 in the compute
method. The dashed nodes are outside nodes, which rep-
resent objects not identified as created inside the currently
analyzed region of the program. Nodes 1 and 2 are a kind
of outside node called a parameter node; they represent the
parameters to the compute method. The analysis result also
records the skipped call sites and the actual parameters at
each site.

In this case, the analysis policy notices that the target
node (node 3) escapes because it is a parameter to the
skipped call to mult£plyAdd. It therefore directs the al-
gorithm to analyze the multiplyAdd method and integrate
the result into the points-to escape graph from the program
point at the end of the compute method.

Figure 3 presents the points-to escape graph from the ini-
tial analysis of the multiplyAdd method. Nodes 4 through

36

class complex {
double x,y;
complex(double a, double b) { x = a; y = b; }
void add(complex u, complex v) {

x = u.x+v.x; y = u.y+v.y;
}
complex multiply(complex m) {

complex r = new complex(x*m.x-y*m.y, x*m.y+y*m.x);
return(r);

}
void multiplyAdd(complex a, complex b, complex c) {

complex s = b.multiply(c);
this.add(a, s);

}
}
class client {

public static void compute(complex d, complex e) {
3: complex t = new complex(O.O, 0.0);

t.multiplyAdd(d,e,e);
}

}

Figu re 1: C o m p l e x N u m b e r a nd Client Classes

Points-to Escape Graph Skipped Method Calls

t--~(~)
0 inside node (:) outside node

F igu re 2: Ana lys i s R e s u l t f r o m compute M e t h o d

Points-to Escape Graph

this ---~, 4, ..,
"" C---~: 7 ;

a--,< 5/ s--*({"

Skipped Method Calls

~8 ,= ',6",. multiply (,'~;,,'

',4, .add(, 5, ,

F i g u r e 3:

Points-to Escape Graph

d---~ I;

e---~, 2)

t---,-@

Ana lys i s Resu l t f rom multiplyAdd M e t h o d

Skipped Method Calls

,8 ,=~2 , .multi .ply(, 2,,)

Q

F i g u r e 4: Ana lys i s Resu l t f r o m compute M e t h o d after
I n t e g r a t i n g Resu l t f r o m multiplyAdd

Points-to Escape Graph Skipped Method Calls

d----','l)
e----* v,2) / " / ' •" ,8 . =, 2/ . m u l t i p l y (',~")

t---~(~)

Figu re 5: Ana lys i s Resu l t f r o m compute M e t h o d af te r
Integrat ing Resu l t s f r o m multiplyAdd a n d add

7 are parameter nodes. Node 8 is another kind of outside
node: a re turn node that represents the return value of an
unaaalyzed method, in this case the mul t ip ly method. To
integrate this graph into the caller graph from the compute
method, the analysis first maps the parameter nodes from
the multiplyAdd method to the nodes that represent the
actual parameters at the call site. In our example, node
4 maps to node 3, node 5 maps to node 1, and nodes 6
and 7 both map to node 2. The analysis uses this mapping
to combine the graphs into the new graph in Figure 4. The
analysis policy examines the new graph and determines that
the target node now escapes via the call to the add method.
It therefore directs the algorithm to analyze the add method
and integrate the resulting points-to escape graph into the
current graph for the compute method. Note that because
the call to the mul t ip ly method has no effect on the es-
cape status of the target node, the analysis policy directs
the algorithm to leave this method unanalyzed.

Figure 5 presents the new graph after the integration of
the graph from the add method. Because the add method
does not change the points-to or escape information, the net
effect is simply to remove the skipped call to the add method.
Note that the target node (node 3) is captured in this graph,
which implies that it is not accessible when the compute
method returns. The compiler can therefore generate code
that allocates all objects from the corresponding allocation
site in the activation record of this method.

2.2 The multiply Method
The analysis next taxgets the object allocation site in-~

side the mul t ip ly method. The points-to escape graph
from this method indicates that the taxget node escapes to
the caller (in this case the multiplyAdd method) via the
return value. The algorithm avoids repeated method re-
analyses by retrieving the cached points-to escape graph for
the multiplyAdd method, then integrating the graph from
the mul t ip ly method into this cached graph. The result is
cached as the new (more precise) points-to escape graph for
the mult iplyhdd method. It indicates that the target node
does not escape to the caller of the multiplyAdd method,
but does escape via the unanalyzed call to the add method.
The analysis therefore retrieves the cached points-to escape
graph from the add method, then integrates this graph into
the current graph from the multiplyAdd method, once again
caching the result as the graph for the multiplyAdd method.
The target node is captured in this graph - - it escapes its
enclosing method (the mul t ip ly method), but is recaptured
in a caller (the multiplyAdd method).

At this point the compiler has several options: it can
inlirte the mul t ip ly method into the multiplyAdd method
and allocate the object on the stack, or it cart preallocate
the object on the stack frame of the multiplyAdd method,
then pass it in by reference to a specialized version of the
mul t ip ly routine. Both options enable stack allocation even
if the node is captured in some but not all invocation paths,
if the analysis policy declines to analyze all potential callers,
or if it is not possible to identify all potential callers at com-
pile time. Our implemented compiler uses inlining.

2.3 Object Field Accesses
Our next example illustrates how the analysis deals with

object field accesses. Figure 6 presents a rational number
class that deals with return values in yet another way. Each

37

Rat iona l object has a field called r e s u l t ; the methods in
Figure 6 that operate on these objects store the result of
their computation in this field for the caller to access.

We next discuss how the analysis policy guides the analy-
sis for the Rational allocation site at line I in the evaluate
method. Figure 7 presents the initial analysis result at the
end of this method. The dashed edge between nodes I and
2 is an outside edge, which represents references not iden-
tified as created inside the currently analyzed region of the
program. Outside edges always point from an escaped node
to a new kind of outside node, a load node, which represents
objects whose references are loaded at a given load state-
ment, in this case the statement n = r . r e s u l t at line 2 in
the eva lua te method.

The analysis policy notices that the target node (node 1)
escapes via a call to the abs method. It therefore directs the
analysis to analyze abs and integrate the result into the re-
sult from the end of the eva lua te method. Figure 8 presents
the analysis result from the end of the abs method. Node 3
represents the receiver object, node 4 represents the object
created at line 4 of the abs method, and node 5 represents
the object created at line 5. The solid edges from node 3 to
nodes 4 and 5 are inside edges. Inside edges represent ref-
erences created within the analyzed region of the program,
in this case the abs method.

The algorithm next integrates this graph into the analysis
result from evaluate . The goal is to reconstruct the result
of the base whole-program analysis. In the base analysis,
which does not skip call sites, the analysis of abs changes
the points-to escape graph at the program point after the
call site. These changes in turn affect the analysis of the
statements in eva lua te after the call to abs. The incremen-
talized analysis reconstructs the analysis result as follows. It
first determines that node 3 represented node 1 during the
analysis of abs. It then matches the outside edge against
the two inside edges to determine that, during the analysis
of the region of eva lua te after the skipped call to abs, the
outside edge from node 1 to node 2 represented the inside
edges from node 3 to nodes 4 and 5, and that the load node
2 therefore represented nodes 4 and 5. The combined graph
therefore contains inside edges from node 1 to nodes 4 and
5. Because node 1 is captured, the analysis removes the
outside edge from this node. Finally, the updated analysis
replaces the load node 2 in the skipped call site to scale
with nodes 4 and 5. At this point the analysis has captured
node 1 inside the eva lua te method, enabling the compiler to
stack allocate all of the objects created at the corresponding
allocation site at line 1 in Figure 6.

3. THE BASE ANALYSIS

The base analysis is a previously published points-to and
escape analysis [16]. For completeness, we present the algo-
rithm again here. The algorithm is compositional, analyzing
each method once before its callers to extract a single pa-
rameterized analysis result that can be specialized for use at
different call sites.l It therefore analyzes the program in a
bottom-up fashion from the leaves of the call graph towards
the root. To simplify the presentation we ignore static class
variables, exceptions, and return values. Our implemented
algorithm correctly handles all of these features.

1 Recursive programs require a fixed-point a lgor i thm tha t may analyze
methods involved in cycles in the call graph mult iple t imes.

class Rational {
int numerator, denominator;
Rational result;
Rational(int n, int d) {

numerator = n;
denominator = d;

}
void scale(int m) {

result = new Rational(numerator * m,
denominator);

}
void abs() {

int n = numerator;
int d = denominator;
if (n < O) n = -n;
if (d < 0) d = -d;
if (d Z n == 0) {

4: result ffi new Rational(n / d, 1);
} else {

5: result = new Rational(n, d);
}

}
}
class client {

public static void evaluate(int i, int j) {
I: Rational r = new Rational(0.0, 0.0);

r.absO;
2: Rational n = r.result;

n.scale(m);
}

}

Figure 6: R a t i o n a l N u m b e r a n d Cl ien t Classes

Points-to Escape Graph Skipped Method Calls

result -- Q
r---~ i~ ~i) ,", .abs()

,2, scale() n ..."

inside edge • outside edge

Figure 7: Analysis Result from evaluate Method

Points-to Escape Graph Skipped Method Calls

Figure 8: Analysis Result from abs Method

Points-to Escape Graph Skipped Method Calls

result ~G

Figure 9: Analys is Resul t from evaluate After Inte-
grating Result from abs

8 "

3.1 Object Representation

The analysis represents the objects that the program ma-
nipulates using a set n 6 N of nodes, which consists of
a set Ni of inside nodes and a set No of outside nodes.
Inside nodes represent objects created inside the currently
analyzed region of the program. There is one inside node
for each object allocation site; that node represents all ob-
jects created at tha t site. The inside nodes include the set
of thread nodes NT C Ni. Thread nodes represent thread
objects, i.e. objects tha t inherit from Thread or implement
the Runnable interface.

The set of parameter nodes Np C No represents objects
passed as parameters into the currently analyzed method.
There is one load node n 6 NL C_ No for each load state-
ment in the program; tha t node represents all objects whose
references are 1) loaded at tha t statement, and 2) not iden-
tified as created inside the currently analyzed region of the
program. There is also a set f E F of fields in objects, a set
v 6 V of local or parameter variables, and a set 1 E L C V of
local variables.

3.2 Poin ts -To Escape Graphs
A points- to escape graph is a pair (O, I) , where

• O C (N × F) × NL is a set of outside edges. We write

an edge ((nl , :f), n2) as nl --~ n2.

• I C_ ((N × F) x N) U (V × N) is a set of inside edges. We
write an edge (v,n) as v ~ n and an edge ((n l , f) ,n2)

f
as nl ~ T~2.

A node escapes if it is reachable in OUI from a parameter
node or a th read node. We formalize this notion by defining
an escape function

eo,l (n) = {n' 6 NT U Np.n is reachable from n ' in O U I}

that returns the set of parameter and thread nodes through
which n escapes. We define the concepts of escaped and
captured nodes as follows:

• escaped((O, I) , n) if cod(n) # O

• captured((O, I), n) if eod(n) = O

We say tha t an allocation site escapes or is captured in the
context of a given analysis if the corresponding inside node
is escaped or captured in the points-to escape graph that
the analysis produces.

3.3 Program Representation
The algori thm represents the computat ion of each method

using a control flow graph. We assume the program has been
preprocessed so tha t all s tatements relevant to the analy-
sis are either a copy s ta tement I = v, a load statement
i t = 12.f, a store s ta tement l~.f = 12, an object allo-
cation s ta tement 1 = new c l , or a method call s tatement
lo.op(ll,... ,ik).

3.4 Intraprocedural Analysis
The intraprocedural analysis is a forward dataflow analy-

sis tha t produces a points-to escape graph for each program
point in the method. Each method is analyzed under the
assumption tha t the parameters are maximally unaliased,
i.e., point to different objects. For a method with formal
parameters vo , . . . , v~, the initial points-to escape graph at

the entry point of the method is (0,{(vl,nv~).l < i < n})
where nv~ is the parameter node for parameter vi. If the
method is invoked in a context where some of the parame-
ters may point to the same object, the interprocedural anal-
ysis described below in Section 3.5 merges parameter nodes
to conservatively model the effect of the aliasing.

Statement Existing Edges Generated Edges

l=v

1 1

ii = 12.f ~ f ~ f

11 11

= 12.f It 1 1 ~
11

12 ~@ 12 • @~ J~" --

where (~) escaped O is the load node
for 11 = 12.f

l~.f = 12 ~0

I / I

I = new cl i I ' @

where ~ is the inside node
for l=new¢l

existing inside edge ~ generated inside edge

. . . . ~ existing outside edge * generated outside edge

C) inside node or outside node

F i g u r e 10: G e n e r a t e d E d g e s for Basic Statements

The transfer function (O', I') = ~ s t] ((O , I)) models the
effect of each s ta tement s t on the current points-to escape
graph. Figure 10 graphically presents the rules tha t deter-
mine the new graph for each statement. Each row in this
figure contains three items: a s tatement , a graphical repre-
sentation of existing edges, and a graphical representation
of the existing edges plus the new edges that the statement
generates. Two of the rows (for s tatements 11 = 12.f and
1 = new cl) also have a where clause that specifies a set of
side conditions. The interpretat ion of each row is that when-
ever the points-to escape graph contains the existing edges
and the side conditions are satisfied, the transfer function
for the s ta tement generates the new edges. Assignments to

39

a variable kill existing edges from that variable; assignments
to fields of objects leave existing edges in place. At control-
flow merges, the analysis takes the union of the inside and
outside edges. At the end of the method, the analysis re-
moves all captured nodes and local or parameter variables
from the points-to escape graph.

3.5 Interprocedural Analysis
At each call statement, the interprocedural analysis uses

the analysis result from each potentially invoked method to
compute a transfer function for the statement. We assume a
call site of the form 10.op(lt , . . . , lk), a potentially invoked
method op with formal parameters vo,. . . ,vk, a points-to
escape graph <Or, It) at the program point before the call
site, and a graph IO2,/2) from the end of op.

A map # C_ N x N combines the callee graph into the
caller graph. The map serves two purposes: 1) it maps
each outside node in the callee to the nodes in the caller
that it represents during the analysis of the callee, and 2)
it maps each node in the callee to itself if that node should
be present in the combined graph. We use the notation
#(n) = {W.<n, n'> e #} and nt - -~ n~ for n2 e #(nt).

The interprocedural mapping algorithm (<O, I), #) =
map(<Ot,I1), <O2, Is),p) starts with the points-to escape
graph (Or, It) from the caller, the graph (O2, Is) from the
callee, and an initial parameter map

{ Zt(li) i f{n}=Z~(v,)
~(n) = 0 otherwise

that maps each parameter node from the callee to the nodes
that represent the corresponding actual parameters at the
call site. It produces the new mapped edges from the callee
<0, I) and the new map #.

Figure 11 presents the constraints that define the new
edges (O, I) and new map #. Constraint 1 initializes the
map # to the initial parameter map/~. Constraint 2 extends
#, matching outside edges from the cailee against edges from
the caller to ensure that # maps each outside node from
the callee to the corresponding nodes in the caller that it
represents during the analysis of the callee. Constraint 3
extends # to model situations in which aliasing in the caller
causes an outside node from the callee to represent other
callee nodes during the analysis of the callee. Constraints 4
and 5 complete the map by computing which nodes from
the callee should be present in the caller and mapping these
nodes to themselves. Constraints 6 and 7 use the map to
translate inside and outside edges from the callee into the
caller. The new graph at the program point after the call
site is <I1 U I, Ot U O).

Because of dynamic dispatch, a single call site may invoke
several different methods. The transfer function therefore
merges the points-to escape graphs from the analysis of all
potentially invoked methods to derive the new graph at the
point after the call site. The current implementation obtains
this call graph information using a variant of a cartesian
product type analysis [1], but it can use any conservative
approximation to the dynamic call graph.

3.6 Merge Optimization
As presented so far, the analysis may generate points-to

escape graphs <O, I) in which a node n may have multiple

distinct outside edges n ~ n t , . . . ,n -~ nk E O. We elimi-
nate this inefficiency by merging the load nodes n l , . . . , nk.

fi(n) g #(n) (1)

f f
nt --~ n2 E 02,n3 -+ n4 E Ot U I t , m - -~ n3 (2)

n2 ~ n 4

2
nt ---~n4 E 0 2 , n 2 - + n ~ E 0 2 U I2

~(n4) C #(ns)

n l ~ n 2 ~ 1 2 , n t ">n, n 2 C N I

n~ --% n2

2
nt -+ n2 6 0 s , n t ~ n, escaped((O,I) ,n)

(3)

(4)

(5)

Figure 11:

n 2 ~ n 2

nl ~ n 2 EI2 (6)
(~(nt) x {~}) × #(ns) C I

nl -~ n2 e Os, n2 ---% ns (7)
(#(hi) × {f}) × {n2} C_ 0

Cons t ra in t s for I n t e rp rocedu ra l Analysis

With this optimization, a single load node may be associ-
ated with multiple load statements. The load node gener-
ated from the merge of k load nodes nl , . . . , nk is associated
with all of the statements of n t , . . . , nk.

4. THE INCREMENTALIZED ANALYSIS

We next describe how to incrementalize the base algo-
rithm - - how to enhance the algorithm so that it can skip
the analysis of call sites while maintaining enough infor-
mation to reconstruct the result of analyzing the invoked
methods should the analysis policy direct the analysis to
do so. The first step is to record the set S of skipped call
sites. For each skipped call site s, the analysis records the
invoked method ops and the initial parameter map ~s that
the base algorithm would compute at that call site. To sim-
plify the presentation, we assume that each skipped call site
is 1) executed at most once, and 2) invokes a single method.
Section 4.8 discusses how we eliminate these restrictions in
our implemented algorithm.

The next step is to define an updated escape function
e s , o j that determines how objects escape the currently an-
alyzed region of the program via skipped call sites:

es,o,l(n) = {s E S.3nl E Np .n l ~ n2 and
n is reachable from n2 in O U I} U eO,l(n)

We adapt the interprocedural mapping algorithm from Sec-
tion 3.5 to use this updated escape function. By definition,
n escapes through a call site s if s E e s , o j (n) .

A key complication is preserving flow sensitivity with re-
spect to previously skipped call sites during the integration
of analysis results from those sites. For optimization pur-
poses, the compiler works with the analysis result from the
end of the method. But the skipped call sites occur at var-

0 -

ious program points inside the method. We therefore aug-
ment the points-to escape graphs from the base analysis with
several orders, which record ordering information between
edges in the points-to escape graph and skipped call sites:

e w C S x ((N x {:~}) x NL). For each call site s, w(s) =
{n~ -~ nz.(s, n~ -£~ n2) ~ co} is the set of outside edges
tha t the analysis generates before it skips s.

® t C S x ((N x {:f}) x N). For each call site s~ t(s) =
{nl .L~ nu.(s, nl ~ n2) E t} is the set of inside edges
tha t the analysis generates before it skips s.

® v C S x ((N x {f}) x NL). For each call site s, T(s) =

{nl --~ n2.(s, nl --~ n2) E ~-} is the set of outside edges
tha t the analysis generates after it skips s.

® ~, C S x ((N x {f}) x N). For each call site s, u(s) =

{nl -~ n2.(s, nl ~ n2) E ~,} is the set of inside edges
tha t the analysis generates after it skips s.

® fl C S x S. For each call site s, f~(s) = {st.(s,s ') e fl}
is the set of call sites tha t the analysis skips before
skipping s.

* a C S x S. For each call site s , a(s) = {s' .(s,s ') e
c~} is the set of call sites that the analysis skips after
skipping s.

The incrementalized analysis works with augmented points-
to escape graphs of the form (O,I ,S ,w, t ,v ,~ , , f l , a). Note
that because fl and a are inverses, 2 the analysis does not
need to represent both explicitly. It is of course possible
to use any conservative approximation of w, t, r , u, f~ and
a; an especially simple approach uses w(s) = r(s) = O,
t(s) ---- v(s) = I, and ;3(s) = or(s) = S.

We next discuss how the analysis uses these additional
components during the incremental analysis of a call site.
We assume a current augmented points-to escape graph
(01 , I1 ,S l ,wl , t1 , ' r l , v l , t31 ,a l) , a call site s E $1 with in-
voked operation ops, and an augmented points-to escape
graph (02, I2, $2, w2, t2, ~'2, ~'2, ~2, o~2) from the end of opt.

4.1 M a t c h e d Edges
In the base algorithm, the analysis of a call site matches

outside edges from the analyzed method against existing
edges in the points-to escape graph from the program point
before the site. By the time the algorithm has propagated
the g r a p h to the end of the method, it may contain addi-
tional edges generated by the analysis of statements that
execute after the call site. When the incrementalized algo-
r i thm integrates the analysis result from a skipped call site,
it matches outside edges from the invoked method against
only those edges that were present in the points-to escape
graph at the program point before the call site. w(s) and t(s)
provide just those edges. The algorithm therefore computes

(0, I , #) ---- map((wl (s), tl (s)), (02, I2),/2~)

where 0 and I are the new sets of edges that the analysis
of the callee adds to the caller graph.

2Under the interpretation f~-I __ {(sl' s~>.(s2, sl) E /~} and oc -1 =
{(sl,s2).(s2,sl) • a}, ~ ---- a -1 and f~--1 = a.

4.2 Propagated Edges

In the base algorithm, the transfer function for an ana-
lyzed call site may add new edges to the points-to graph
from before the site. These new edges create effects that
propagate through the analysis of subsequent statements.
Specifically, the analysis of these subsequent statements may
read the new edges, then generate additional edges involv-
ing the newly referenced nodes. In the points-to graph from
the incrementalized algorithm, the edges from the invoked
method will not be present if the analysis skips the call site.
But these missing edges must come (directly or indirectly)
from nodes that escape into the skipped call site. In the
points-to graphs from the caller, these missing edges are rep-
resented by outside edges that are generated by the analysis
of subsequent statements. The analysis can therefore use
T1 (S) and ul (s) to reconstruct the propagated effect of ana-
lyzing the skipped method. It computes

(O' , I ' ,# ') = map((O , I) , (71(s),ul(s)), { (n ,n) .n e N})

where O' and I ' are the new sets of edges tha t come from
the interaction of the analysis of the skipped method and
subsequent statements, and f maps each outside node from
the caller to the nodes from the callee that it represents
during the analysis from the program point after the skipped
call site to the end of the method. Note that this algorithm
generates all of the new edges that a complete reanalysis
would generate. But it generates the edges incrementally
without reanalyzing the code.

4.3 Sk ipped Call Sites f r o m the Cal le r
In the base algorithm, the analysis of one call site may

affect the initial parameter map for subsequent call sites.
Specifically, the analysis of a site may cause the formal pa-
rameter nodes at subsequent sites to be mapped to addi-
tional nodes in the graph from the caller.

For each skipped call site, the incrementalized algorithm
records the parameter map tha t the base algorithm would
have used at tha t site. When the incrementalized algorithm
integrates an analysis result from a previously skipped site,
it muss update the recorded parameter maps for subsequent
skipped sites. At each of these sites, outside nodes repre-
sent the additional nodes tha t the analysis of the previously
skipped site may add to the map. And the map # ' records
how each of these outside nodes should be mapped. For
each subsequent site s ' E a l (s), the algorithm composes the
site's current recorded parameter map f~,, with f to obtain
its new recorded parameter map # ' o/i8,.

4.4 Skipped Call Sites f r o m the Callee

The new set of skipped call sites S' = ($1 t.J $2) contains
the set of skipped call sites $2 from the callee. When it maps
the callee graph into the caller graph, the analysis updates
the recorded parameter maps for the skipped call sites in
$2. For each site s' E $2, the analysis simply composes the
site's current map/28, with the map # co obtain the new
recorded parameter map # o/28, for s'.

4.5 New O r d e r s
The analysis constructs the new orders by integrating the

orders from the caller and callee into the new analysis result
and extending the orders for s to the mapped edges and
skipped call sites from the callee. So, for example, the new
order between outside edges and subsequent call sites (w')

41

consists of the order from the caller (oat), the mapped order
from the callee (w2[#]), the order from s extended to the
skipped call sites from the callee ($2 xwt (s)), and the outside
edges from the callee ordered with respect to the call sites
after s (oft(s) x O):

~'=~1 u ~2[#] u (s~ × ~,(~)) v (~ (s) × o)
~'=~t u ~2[#] u (222 x ~(s)) u (at(s) x I)
r'=r~ U ~-~[#] U (S2 X T~(S)) U (,&(s) X O)
-'=-~ U -2[#] U (S~ x .~(s)) U (~(s) x /)

a ' = ~ U ~ U (s2 x ~ (s)) u (at(s) x S2)

Here w[/z] is the order w under the map #, i.e., w[#] =

{(s,n~ -~ n~).(s, nl -~ n2) E w, nl ~ n~, and n2 ~ n~},
and similarly for L, r, and u.

4.6 Cleanup
At this point the algorithm can compute a new graph

(O1 U O U O', I t U I U F , S t, w I, el, r ' , u',/3 t, a l) tha t reflects
the integration of the analysis of s into the previous anal-
ysis result (O1,11, $1, wl, el, ~'t, ~'1,/31, a l) . The final step is
to remove s from all components of the new graph and to
remove all outside edges from captured nodes.

4.7 Updated Intraproeedural Analysis
The transfer function for a skipped call site s performs

the following additional tasks:

• Record the initial parameter map ~ that the base al-
gorithm would use when i t analyzed the site.

• Update ov to include {s} x O, update ~ to include {s} x
I , update a to contain S × {s}, and update f~ to contain
{s} x S.

® Update S to include the skipped call site s.

Whenever a load s tatement generates a new outside edge
f

nt ~ n2, the transfer function updates T to include S x
{nl ~ n2}. Whenever a store s tatement generates a new

inside edge nt -~ n2, the transfer function updates ~, to

include S x {nl -~ n2}.
Finally, the incrementalized algorithm extends the con-

fluence operator to merge the additional components. For
each additional component (including the recorded param-
eter maps #s), the confluence operator is set union.

4.8 Extensions
So far, we have assumed tha t each skipped cal! site is ex-

ecuted at most once and invokes a single method. We next
discuss how our implemented algorithm eliminates these re-
strictions. To handle dynamic dispatch, we compute the
graph for all of the possible methods that the call site may
invoke, then merge these graphs to obtain the new graph.

We also extend the abstraction to handle skipped call sites
tha t are in loops or are invoked via multiple paths in the
control flow graph. We maintain a multiplicity flag for each
call site specifying whether the call site may be executed
multiple times:

® The transfer function for a skipped call site s checks to
see if the site is already in the set of skipped sites S. If
so, it sets the multiplicity flag to indicate tha t s may
be invoked multiple times. It also takes the union of

the site's current recorded parameter map ,58 and the
parameter map ~ from the transfer function to obtain
the site's new recorded parameter map f~8 U f~.

o The algorithm that integrates analysis results from
previously skipped call sites performs a similar set of
operations to maintain the recorded parameter maps
and multiplicity flags for call sites tha t may be present
in the analysis results from both the callee and the
caller. If the skipped call site may be executed mul-
tiple times, the analysis uses a fixed-point algorithm
when it integrates the analysis result from the skipped
call site. This algorithm models the effect of executing
the site multiple times.

4.9 Recursion
The base analysis uses a fixed-point algorithm to ensure

that it terminates in the presence of recursion. It is possible
to use a similar approach in the incrementalized algorithm.
Our implemented algorithm, however, does not check for
recursion as it explores the call graph. If a node escapes
into a recursive method, the analysis may, in principle, never
terminate. In practice, the algorithm relies on the analysis
policy to react to the expansion of the analyzed region by
directing analysis resources to other allocation sites.

4.10 Incomplete Call Graphs
Our algorithm deals with incomplete call graphs as fol-

lows. If it is unable to locate all of the potential callers of a
given method, it simply analyzes those it is able to locate.
If it is unable to locate all potential callees at a given call
site, it simply considers all nodes tha t escape into the site
as permanently escaped.

5. A N A L Y S I S P O L I C Y

The goal of the analysis policy is to find and analyze al-
location sites tha t can be captured quickly and have a large
optimization payoff. Conceptually, the policy uses the fol-
lowing basic approach. It estimates the payoff for capturing
an allocation site as the number of objects allocated at that
site in a previous profiling run. It uses empirical da ta and
the current analysis result for the site to estimate the like-
lihood that it will ever be able to capture the site, and,
assuming that it is able to capture the site, the amount of
time required to do so. It then uses these estimates to calcu-
late an estimated marginal return for each unit of analysis
time invested in each site.

At each analysis step, the policy is faced with a set of par-
tially analyzed sites tha t it can invest in. The policy simply
chooses the site with the best estimated marginal return,
and invests a (configurable) unit of analysis time in that
site. During this time, the algorithm repeatedly selects one
of the skipped call sites through which the allocation site
escapes, analyzes the methods potentially invoked at that
site (reusing the cached results if they are available), and
integrates the results from these methods into the current
result for the allocation site. If these analyses capture the
site, the policy moves on to the site with the next best esti-
mated marginal return. Otherwise, when the time expires,
the policy recomputes the site,s estimated marginal return
in light of the additional information it has gained during
the analysis, and once again invests in the (potentially dif-
ferent) site with the current best estimated marginal return.

42

5.1 Stack Allocat ion

The compiler applies two potential stack allocation opti-
mizations depending on where an allocation site is captured:

o S t ack Al loca t e : If the site is captured in the method
that contains it, the compiler generates code to allo-
cate all objects created at that site in the activation
record of the containing method.

• In l ine a n d S t ack Al loca te : If the site is captured
in a direct caller of the method containing the site, the
compiler first inlines the method into the caller. After
inlining, the caller contains the site, and the generated
code allocates all objects created at that site in the
activation record of the caller.

The current analysis policy assumes that the compiler is 1)
unable to inline a method if, because of dynamic dispatch,
the corresponding call site may invoke multiple methods,
and 2) unwilling to enable additional optimizations by fur-
ther inlining the callers of the method containing the alloca-
tion site into their callers. It is, of course, possible to relax
these assumptions to support more sophisticated inlining
and/or specialization strategies.

Inlining complicates the conceptual analysis policy de-
scribed above. Because each call site provides a distinct
analysis context, the same allocation site may have differ-
ent analysis characteristics and outcomes when its enclosing
method is inlined at different call sites. The policy therefore
treats each distinct combination of call site and allocation
site as its own separate analysis opportunity.

5.2 Analysis Opportunities
The policy represents an opportunity to capture an alloca-

tion site a in its enclosing method op as (a, op, G, p, c, d, m),
where G is the current augmented points-to escape graph for
the site, p is the estimated payoff for capturing the site, c is
the count of the number of skipped call sites in G through
which a escapes, d is the method call depth of the analyzed
region represented by G, and m is the mean cost of the
call site analyses performed so far on behalf of this analysis
opportunity. Note that a, op, and G are used to perform
the incremental analysis, while p, c, d, and m are used to
estimate the marginal return. Opportunities to capture an
allocation site a in the caller op of its enclosing method have
the form (a, op, s, G, p, c, d, m), where s is the call site in op
that invokes the method containing a, and the remainder of
the fields have the same meaning as before.

Figure 12 presents the state-transition diagram for anal-
ysis opportunities. Each analysis opportunity can be in one
of the states of the diagram; the transitions correspond to
state changes that take place during the analysis of the op-
portunity. The states have the following meanings:

• U n a n a l y z e d : No analysis done on the opportunity.

• E s c a p e s Be low E n c l o s i n g M e t h o d : The opportu-
nity's allocation site escapes into one or more skipped
call sites, but does not (currently) escape to the caller
of the enclosing method. The opportunity is of the
form (a, op, G, p, c, d, m).

® Escapes Below Cal ler o f Enclos ing M e t h o d : The
opportunity 's site escapes to the caller of its enclos-
ing method, but does not (currently) escape from this

F igu re 12: S t a t e - T r a n s i t i o n D i a g r a m for Ana lys i s
O p p o r t u n i t i e s

caller. The site may also escape into one or more
skipped call sites. The opportunity is of the form
(a, op, s, G, p, c, d, m).

® C a p t u r e d : The opportunity 's site is captured.

• A b a n d o n e d : The policy has permanently abandoned
the analysis of the opportunity, either because its allo-
cation site permanently escapes via a static class vari-
able or thread, because the site escapes to the caller of
the caller of its enclosing method (and is therefore um
optimizable), or because the site escapes to the caller
of its enclosing method and (because of dynamic dis-
patch) the compiler is unable to inline the enclosing
method into the caller.

In Figure 12 there are multiple transitions from the Es-
capes Below Enclosing Method state to the Escapes Below
Caller of Enclosing Method state. These transitions indi-
cate that one Escapes Below Enclosing Method opportunity
may generate multiple new Escapes Below Caller of Enclos-
ing Method opportunities - - one new opportunity for each
potential call site that invokes the enclosing method from
the old opportunity.

When an analysis opportunity enters the Escapes Below
Caller of Enclosing Method state, the first analysis action
is to integrate the augmented points-to escape graph from
the enclosing method into the graph from the caller of the
enclosing method.

5.3 Estimated Marginal Returns
If the opportunity is Unanalyzed, the estimated marginal

return is (4 • p)/a, where ~ is the probability of capturing
an allocation site given no analysis information about the
site, p is the payoff of capturing the site, and, assuming
the analysis eventually captures the site, a is the expected
analysis time required to do so.

If the opportunity is in the state Escapes Below Enclosing
Method, the estimated marginal return is (El(d) .p)/(a. m).
Here ~1 (d) is the conditional probability of capturing an al-
location site given that the algorithm has explored a region
of call depth d below the method containing the site, the al-
gorithm has not (yet) captured the site, and the site has not
escaped (so far) to the caller of its enclosing method: If the
opportunity is in the state Escapes Below Caller of Enclosing
Method, the estimated marginal return is (~2(d) .p)/(c . m).
Here ~2(d) has the same meaning as ~l(d), except that the
assumption is that the site has escaped to the caller of its

43

enclosing method, but not (so far) to the caller of the caller
of its enclosing method.

We obtain the capture probability functions ~, ~1, and ~2
empirically by preanalyzing all of the executed allocation
sites in some sample programs and collecting data that al-
lows us to compute these functions. For Escapes Below En-
closing Method opportunities, the estimated payoff p is the
number of objects allocated at the opportunity's allocation
site a during a profiling run. For Escapes Below Caller of
Enclosing Method opportunities, the estimated payoff is the
number of objects allocated at the opportunity's allocation
site a when the allocator is invoked from the opportunity's
call site s.

When an analysis opportunity changes state or increases
its method call depth, its estimated marginal return may
change significantly. The policy therefore recomputes the
opportunity's return whenever one of these events happens.
If the best opportunity changes because of this recomputa-
tion, the policy redirects the analysis to work on the new
best opportunity.

5.4 Termination
In principle, the policy can continue the analysis indefi-

nitely as it invests in ever less profitable opportunities. In
practice, it is important to terminate the analysis when the
prospective returns become small compared to the analy-
sis time required to realize them. We say that the analysis
has decided an object if that object's opportunity is in the
Captured or Abandoned state. The payoffs p in the analy-
sis opportunities enable the policy to compute the current
number of decided and undecided objects.

Two factors contribute to our termination policy: the
percentage of undecided objects (this percentage indicates
the maximum potential payoff from continuing the analy-
sis), and the rate at which the analysis has recently been
deciding objects. The results in Section 6 are from analy-
ses terminated when the percentage of decided objects rises
above 90% and the decision rate for the last quarter of the
analysis drops below 1 percent per second, with a cutoff of
75 seconds of total analysis time.

We anticipate the development of a variety of termination
policies to fit the particular needs of different compilers. A
dynamic compiler, for example, could accumulate an analy-
sis budget as a percentage of the time spent executing the
application - - the longer the application ran, the more time
the policy would be authorized to invest analyzing it. The
accumulation rate would determine the maximum amortized
analysis overhead.

6. E X P E R I M E N T A L RESULTS
We have implemented our analysis and the stack alloca-

tion optimization in the MIT Flex compiler, an ahead-of-
time compiler written in Java for Java. 3 We ran the exper-
iments on an 800 MHz Pentium III PC with 768Mbytes of
memory running Linux Version 2.2.18. We ran the compiler
using the Java Hotspot Client VM version 1.3.0 for Linux.
The compiler generates portable C code, which we compile
to an executable using gcc. The generated code manages the
heap using the Boehm-Demers-Weiser conservative garbage
collector [4] and uses alloca for stack allocation.

aThe compiler is available at www.flexc.lcs.mit.edu.

6.1 Benchmark Programs
Our benchmark programs include two multithreaded sci-

entific computations (Barnes and Water), Jlex, and several
Spec benchmarks (Db, Compress, and Raytrace). Figure 13
presents the compile and whole-program analysis times for
the applications.

Application
Barnes
Water
Jlex
Db
Raytrace
Compress

Compile Time Whole-Program
Without Analysis Analysis Time

89.7 34.3
91.1 38.2

119.5 222.8
93.6 126.6

118.4 102.2
219.6 645.1

Figure 13: Compi le and W h o l e - P r o g r a m Analys is
T imes (seconds)

Tile estimated optimization payoff for each allocation site
is the number of objects allocated at that site during a train-
ing run on a small training input. The presented execution
and analysis statistics are for executions on larger produc-
tion inputs.

6.2 Analysis Payoffs and Statistics
Figure 14 presents analysis statistics from the incremen-

talized analysis. We present the number of captured al-
location sites as the sum of two counts. The first count
is the number of sites captured in the enclosing method;
the second is the number captured in the caller of the en-
closing method. Fractional counts indicate allocation sites
that were captured in some but not all callers of the en-
closing method. In Db, for example, one of the allocation
sites is captured in two of the eight callers of its enclosing
method. The Undecided Allocation Sites column counts the
number of allocation sites in which the policy invested some
resources, but did not determine whether it could stack al-
locate the corresponding objects or not. The Analyzed Call
Sites, Total Call Sites, Analyzed Methods, and Total Meth-
ods columns show that the policy analyzes a small fraction
of the total program.

The graphs in Figure 15 present three curves for each ap-
plication. The horizontal dotted line indicates the percent-
age of objects that the whole-program analysis allocates on
the stack. The dashed curve plots the percentage of decided
objects (objects whose analysis opportunities are either Cap-
tured or Abandoned) as a function of the analysis time. The
solid curve plots the Percentage of objects allocated on the
stack. For Barnes, Jlex, and Db, the incrementalized anal-
ysis captures virtually the same number of objects as the
whole-program analysis, but spends a very small fraction of
the whole-program analysis time to do so. Incrementaliza-
tion provides less of a benefit for Water because two large
methods account for a much of the analysis time of both
analyses. For Raytrace and Compress, a bug in the 1.3 JVM
forced us to run the,incrementalized analysis, but not the
whole-program analysis, on the 1.2 JVM. Our experience
with the other applications indicates that both analyses run
between five and six times faster on the 1.3 JVM than on
the 1.2 JVM.

6.3 Application Execution Statistics
Figure 16 presents the total amount of memory that the

applications allocate in the heap. Almost all of the allocated

Barnes
Water
Jlex
Db
Raytrace
Compress

Analysis
Time

(seconds)

Captured Abandoned Undecided Total Analyzed Total
Allocation Allocation Allocation Allocation Call Call

Sites Sites Sites Sites Sites Sites
Analyzed
Methods

Total
Methods

0.8 3+0 0 2 736 18 1675 13 512
21.7 33+0 4 33 748 94 1799 33 481

0.9 0+2 1 2 1054 27 2879 12 569
4.5 1+0.25 4 1.75 1118 54 2444 25 631

76.3 8+0.37 20.63 54 1067 271 3109 64 699
79.5 4+0.33 4 19.66 1354 111 4084 40 808

F i g u r e 14: Analys i s Stat is t ics f r o m I n c r e m e n t a l i z e d Ana lys i s

..... Stack Allocation Percentage, Whole-Program Analysis
- - - Decided Percentage, Incrementalized Analysis
- - Stack Allocation Percentage, Incrementalized Analysis

o° 10075 U " ,
:'~ 50 0

25

~0 0.0 0.3 0.6 0.9
Analysis Time (seconds)

Barnes

100
75

8" 50
25

0 ~ I

0.0 0.3 0.6 0.9
Analysis Time (seconds)

Jlex

100 I 75
0 50 . . - , ' -

25 7== :":"

0 25 50 75
Analysis Time (seconds)

Compress

 001 y
0 50

25
g 0

0 7 14 21
~9 ¢2 Analysis Time (seconds)

Water

100 , - - -

5o
25
0 , r " , ,
0.0 1.5 3.0 4.5

Analysis Time (seconds)

Db

10o f o 75
50 . 0 - f ¢
25 ,: S - -

0 25 50 75
Analysis Time (seconds)

Raytrace

F i g u r e 15: Ana lys i s T i m e Payoffs

memory in Barnes and Water is devoted to temporary arrays
that hold the results of intermediate computations. The
C + + version of these applications allocates these arrays on
the stack; our analysis restores this allocation strategy in
the Java version. Most of the memory in Jlex is devoted to
temporary iterators, which are stack allocated after inlining.
Note the anomaly in Db and Compress: many objects are
allocated on the stack, but the heap allocated objects are
much bigger than the stack allocated objects.

Figure 17 presents the execution times. The optimizations
provide a significant performance benefit for Barnes and Wa-
ter and some benefit for Jlex and Db. Without stack allo-
cation, Barnes and Water interact poorly with the conser-
vative garbage collector. We expect that a precise garbage
collector would reduce the performance difference between
the versions with and without stack allocation.

7. RELATED WORK
We briefly discuss related work in escape analysis, demand

analysis, program fragment analysis, and incremental anal-
ysis. See the full paper for a more comprehensive discussion.

Application
Barnes
Water
Jlex
Db
Raytrace
Compress

No Incrementalized Whole-Program
Analysis Analysis Analysis

36.0 3.2 2.0
190.2 2.2 0.6
40.8 3.1 2.5
77.6 31.2 31.2
13.4 9.0 6.7

110.1 110.1 110.1

F igure 16: A l l o c a t e d H e a p M e m o r y (M b y t e s)

Application
Barnes
Water
Jlex
Db
Raytrace
Compress

No Incrementalized Whole-Program
Analysis Analysis Analysis

33.4 22.7 24.0
18.8 11.2 10.7
5.5 5.0 4.7

103.8 104.0 101.3
3.0 2.9 2.9

44.9 44.8 45.1

F igu re 17: E x e c u t i o n T i m e s (seconds)

7.1 Escape Analysis
Many other researchers have developed escape analyses for

Java [16, 7, 14, 3, 5]. These analyses have been presented
as whole-program analyses, although many contain elements
that make them amenable to incrementalization. All of the
analyses listed above except the last [5] analyze methods
independently of their callers, generating a summary that
can be specialized for use at each call site. Unlike our base
analysis [16], these analyses are not designed to skip call
sites. But we believe it would be relatively straightforward
to augment them to do so. With this extension in place, the
remaining question is incrementalization. For flow-sensitive
analyses [16, 7], the incrementalized algorithm must record
information about the ordering of skipped call sites relative
to the rest of the analysis information if it is to preserve
the precision of the base whole-program analysis with re-
spect to skipped call sites. Flow-insensitive analyses [14, 3],
can ignore this ordering information and should therefore
be able to use an extended abstraction that records only
the mapping information for skipped call sites. In this sense
flow-insensitive analyses should be, in general, simpler to
incrementalize than flow-sensitive analyses.

Escape analyses have typically been used for stack allo-
cation and synchronization elimination. Our results show
that analyzing a local region around each allocation site
works well for stack allocation, presumably because stack
allocation ties object lifetimes to the lifetimes of the captur-
ing methods. But for synchronization elimination, a whole-
program analysis may deliver significant additional opti-
mization opportunities. For example, Ruf 's synchronization
elimination analysis determines which threads may synchro-

45

nize on which objects [14]. In many cases, the analysis is able
to determine that only one thread synchronizes on a given
object, even though the object may be accessible to multi-
ple threads or even, via a static class variable, to all threads.
Exploiting this global information significantly improves the
ability of the compiler to eliminate superfluous synchroniza-
tion operations, especially for single threaded programs.

7.2 Demand, Fragment, and Incremental Analysis
Demand algorithms analyze only those parts of the pro-

gram required to compute an analysis fact at a subset of
the program points or to answer a given query [2, 10, 8, 11].
Our approach differs in that it is designed to temporarily
skip parts of the program even if the skipped parts poten-
tially affect the analysis result.

Fragment analysis is designed to analyze a predetermined
part of the program [12, 13]. A similax effect may be ob-
tained by explicitly specifying the analysis results for miss-
ing parts of the program [9, 15]. Our approach differs in
that it monitors the analysis results to dynamically deter-
mine which parts of the program it should analyze to obtain
the best optimization outcome. Incremental algorithms up-
date an existing analysis result to reflect the effect of pro-
gram changes [17]. Our algorithm, in contrast, analyzes part
of the program assuming no previous analysis results.

8. CONCLUSION
This paper presents a new incrementalized pointer and es-

cape analysis. Instead of analyzing the whole program, the
analysis executes under the direction of an analysis policy.
The policy continually monitors the analysis results to di-
rect the incremental analysis of those parts of the program
that offer the best marginal return on the invested analysis
resources. Our experimental results show that our analysis,
when used for stack allocation, usually delivers almost all
of the benefit of the whole-program analysis at a fraction of
the cost. And because it analyzes only a local region of the
program surrounding each allocation site, it scales to handle
programs of arbitrary size.

9. ACKNOWLEDGEMENTS
The research presented in this paper would have been im-

possible without the assistance of C. Scott Ananian, Brian
Demsky, and Alexandru Salcianu. Scott and Brian provided
invaluable assistance with the Flex compiler infrastructure.
In particular, Brian developed the profiling package on very
short notice. Alex provided invaluable assistance with the
implementation of the base algorithm. We thank David
Karger and Ron Rivest for interesting discussions regarding
potential analysis policies, and the anonymous reviewers for
their helpful and exceptionally competent feedback.

10. REFERENCES
[1] O. Agesen. The cartesian product algorithm: Simple

and precise type inference of parametric
polymorphism. In Proceedings of the 9th European
Conference on Object-Oriented Programming, Aarhus,
Denmark, Aug. 1995.

[2] G. Agrawal. Simultaneous demand-driven data-flow
and call graph analysis. In Proceedings of the 1999
International Conference on Software Maintenance,
Oxford, UK, Aug. 1999.

[3] B. Blanchet. Escape analysis for object oriented
languages, application to Java. In Proceedings of the
l~th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications,
Denver, CO, Nov. 1999.

[4] H. Boehm and M. Weiser. Garbage collection in an
uncooperative environment. Software--Practice and
Experience, 18(9):807-820, Sept. 1988.

[5] J. Bogda and U. Hoelzle. Removing unnecessary
synchronization in Java. In Proceedings of the l~th
Annual Conference on Object- Oriented Programming
Systems, Languages and Applications, Denver, CO,
Nov. 1999.

[6] G. Bollella et al. The Real-Time Specification for
Java. Addison-Wesley, Reading, Mass., 2000.

[7] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and
S. Midkiff. Escape analysis for Java. In Proceedings of
the 14th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications,
Denver, CO, Nov. 1999.

[8] E. Duesterwald, R. Gupta, and M. Sofia. A practical
framework for demand-driven interprocedural data
flow analysis. A CM Transactions on Programming
Languages and Systems, 19(6):992-1030, Nov. 1997.

[9] S. Guyer and C. Lin. Optimizing the use of high
performance libraries. In Proceedings of the Thirteenth
Workshop on Languages and Compilers for Parallel
Computing, Yorktown Heights, NY, Aug. 2000.

[10] Y. Lin and D. Padua. Demand-driven interprocedural
array property analysis. In Proceedings of the Twelfth
Workshop on Languages and Compilers for Parallel
Computing, La Jolla, CA, Aug. 1999.

[11] T. Reps, S. Horowitz, and M. Sagiv. Demand
interprocedural data.flow analysis. In Proceedings of
the ACM SIGSOFT 95 Symposium on the
Foundations of Software Engineering, Oct. 1995.

[12] A. Rountev and B. Ryder. Points-to and side-effect
analyses for programs built with precompiled libraries.
In Proceedings of CC 2001: International Conference
on Compiler Construction, Genoa, Italy, Apr. 2001.

[13] A. Rountev, B. Ryder, and W. Landi. Data-flow
analysis of program fragments. In Proceedings of the
ACM SIGSOFT 99 Symposium on the Foundations of
Software Engineering, Toulouse, France, Sept. 1999.

[14] E. Ruff Effective synchronization removal for Java. In
Proceedings of the SIGPLAN '00 Conference on
Program Language Design and Implementation,
Vancouver, Canada, June 2000.

[15] R. Rugina and M. Rinard. Design-directed
compilation. In Proceedings of CC 2001: International
Conference on Compiler Construction, Genoa, Italy,
Apr. 2001.

[16] J. Whaley and M. Rinard. Compositional pointer and
escape analysis for Java programs. In Proceedings of
the l~th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications,
Denver, CO, Nov. 1999.

[17] J. Yur, B. Ryder, and W. Landi. Incremental
algorithms and empirical comparison for flow- and
context-sensitive pointer aliasing analysis. In
Proceedings of the 21st International conference on
Software Engineering, Los Angeles, CA, May 1999.

46

