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A B S T R A C T  

We present a new pointer and escape analysis. Instead of 
analyzing the whole program, the algorithm incrementally 
analyzes only those parts of the program that may deliver 
useful results. An analysis policy monitors the analysis re- 
sults to direct the incremental investment of analysis re- 
sources to those parts of the program that offer the highest 
expected optimization return. 

Our experimental results show that almost all of the ob- 
jects are allocated at a small number of allocation sites and 
that an incremental analysis of a small region of the program 
surrounding each site can deliver almost all of the benefit of a 
whole-program analysis. Our analysis policy is usually able 
to deliver this benefit at a fraction of the whole-program 
analysis cost. 

1. I N T R O D U C T I O N  

Program analysis research has focused on two kinds of 
analyses: local analyses, which analyze a single procedure, 
and whole-program analyses, which analyze the entire pro- 
gram. Local analyses fail to exploit information available 
across procedure boundaries; whole-program analyses are 
potentially quite expensive for large programs and are prob- 
lematic when parts of the program are not available in ana- 
lyzable form. 

This paper describes our experience incrementalizing an 
existing whole-program analysis so that  it can analyze arbi- 
trary regions of complete or incomplete programs. The new 
analysis can 1) analyze each method independently of its 
caller methods, 2) skip the analysis of potentially invoked 
methods, and 3) incrementally incorporate analysis results 
from previously skipped methods into an existing analysis 
result. These features promote a structure in which the 
algorithm executes under  the direction of an analysis pol- 
icy. The policy continuously monitors the analysis results 
to direct the incremental investment of analysis resources 
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to those parts of the program that offer the most attrac- 
tive return (in terms of optimization opportunities) on the 
invested resources. Our experimental results indicate that  
this approach usually delivers almost all of the benefit of the 
whole-program analysis, but at a fract!on of the cost. 

1.1 Analysis Overview 

Our analysis incrementalizes an existing whole-program 
analysis for extracting points-to and escape information [16]. 
The basic abstraction in this analysis is a points-to escape 
graph. The nodes of the graph represent objects; the edges 
represent references between objects. In addition to points- 
to information, the analysis records how objects escape the 
currently analyzed region of the program to be accessed by 
unanalyzed regions. An object may escape to an unanalyzed 
caller via a parameter passed into the analyzed region or 
via the return value. It may also escape m a potentially 
invoked but unanalyzed method via a parameter passed into 
that method. Finally, it may escape via a global variable or 
parallel thread. If an object does not escape, it is captured. 

The analysis is flow sensitive, context sensitive, and com- 
positional. Guided by the analysis policy, it performs an 
incremental analysis of the neighborhood of the program 
surrounding selected object allocation sites. When it first 
analyzes a method, it skips the analysis of all potentially 
invoked methods, but maintains enough information to re- 
construct the result of analyzing these methods should it 
become desirable to do so. The analysis policy then ex- 
amines the graph to find objects that  escape, directing the 
incremental integration of (possibly cached) analysis results 
from potential callers (if the object escapes to the caller) 
or potentially invoked methods (if the object escapes into 
these methods). Because the analysis has complete infor- 
mation about captured objects, the goal is to analyze just 
enough of the program to capture objects of interest. 

1.2 Analysis Policy 
We formulate the analysis policy as a solution to an in- 

vestment problem. At each step of the analysis, the policy 
can invest analysis resources in any one of several allocation 
sites in an at tempt to capture the objects allocated at that 
site. To invest its resources wisely, the policy uses empirical 
data from previous analyses, the current analysis result for 
each site, and profiling data from a previous training run to 
estimate the marginal return on invested analysis resources 
for each site. 

During the analysis, the allocation sites compete for re- 
sources. At each step, the policy invests its next unit of 
analysis resources in the allocation site that offers the best 
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marginal return. When the unit expires, the policy recom- 
putes the estimated returns and again invests in the (po- 
tentially different) allocation site with the best estimated 
marginal return. As the analysis proceeds and the policy 
obtains more information about each allocation site, the 
marginal return estimates become more accurate and the 
quality of the investment decisions improves. 

1.3 Analysis Uses 

We use the analysis results to enable a stack allocation op- 
timization. If the analyis captures an object in a method, 
it is unreachable once the method returns. In this case, 
the generated code allocates the object in the activation 
record of the method rather than in the heap. Other opti- 
mization uses include synchronization elimination and the 
elimination of ScopedMemory checks in Real-Time Java [6]. 
Potential software engineering uses include the evaluation of 
programmer hypotheses regarding points-to and escape in- 
formation for specific objects, the discovery of methods with 
no externally visible side effects, and the extraction of infor- 
mation about how methods access data from the enclosing 
environment. 

Becmlse the analysis is designed to be driven by an analy- 
sis policy to explore only those regions of the program that 
are relevant to a specific artalysis goal, we expect the analysis 
to be particularly useful in settings (such as dynamic com- 
pilers and interactive software engineering tools) in which it 
must quickly answer queries about specific objects. 

1,4 Context 

In general, a base analysis must have several key proper- 
ties to be a good candidate for incrementalization: it must 
be able to analyze methods independently of their callers, 
it must be able to skip the analysis of invoked methods, 
and it must be able to recognize when a partial analysis of 
the program has given it enough information to apply the 
desired optimization. Algorithms that incorporate escape 
information are good candidates for incrementalization be- 
cause they enable the analysis to recognize captured objects 
(for which it has complete information). As discussed fur- 
ther in Section 7, many existing escape analyses either have 
or can easily be extended to have the other two key prop- 
erties [14, 7, 3]. Many of these algorithms are significantly 
more efficient than our base algorithm, and we would expect 
incrementalization to provide these algorithms with addi- 
tional efficiency increases comparable to those we observed 
for our algorithm. 

An arguably more important benefit is the fact that incre- 
mentatized algorithms usually analyze only a local neighbor- 
hood of the program surrounding each object allocation site. 
The analysis time for each site is therefore independent of 
the overall size of the program, enabling the analysis to scale 
to handle programs of arbitrary size. And incrementalized 
algorithms can analyze incomplete programs. 

1.5 Contributions 

This paper makes the following contributions: 

® Analysis  Approach :  It presents an incremental ap- 
proach to program analysis. Instead of analyzing the 
entire program, the analysis is focused by an analysis 
policy to incrementally analyze only those regions of 
the program that may provide useful results. 

o Analysis  Algor i thm:  It presents a new combined 
pointer and escape analysis algorithm bazed on the 
incremental approach described above. 

• Analysis Policy: It formulates the analysis policy as 
a solution to an investment problem. Presented with 
several analysis opportunities, the analysis policy in- 
crementally invests analysis resources in those oppor- 
tunities that offer the best estimated marginal return. 

® Exper imenta l  Results :  Our experimental results 
show that, for our benchmark programs, our analysis 
policy delivers almost all of the benefit of the whole- 
program analysis at a fraction of the cost. 

The remainder of the paper is structured as follows. Sec- 
tion 2 presents several examples. Section 3 presents our pre- 
viously published base whole-program analysis [16]; readers 
familiar with this analysis cart skip this section. Section 4 
presents the incrementalized analysis. Section 5 presents 
the analysis policy; Section 6 presents experimental results. 
Section 7 discusses related work; we conclude in Section 8. 

2. EXAMPLES 
We next present several examples that illustrate the basic 

approach of our analysis. Figure 1 presents two classes: the 
complex class, which implements a complex number pack- 
age, and the c l i en t  class, which uses the package. The 
complex class uses two mechanisms for returning values to 
callers: the add and multiplyAdd methods write the re- 
sult into the receiver object (the th i s  object), while the 
multiply method allocates a new object to hold the result. 

2.1 The c o m p u t e  Method 

We assume that the analysis policy first targets the object 
allocation site at line 3 of the compute method. The goal 
is to capture the objects allocated at this site and allocate 
them on the call stack. The initial analysis of compute skips 
the call to the mulzip1yhdd method. Because the analysis 
is flow sensitive, it produces a points-to escape graph for 
each program point in the compute method. Because the 
stack allocation optimization ties object lifetimes to method 
lifetimes, the legality of this optimization is determined by 
the points-to escape graph at the end of the method. 

Figure 2 presents the points-to escape graph from the 
end of the compute method. The solid nodes are inside 
nodes, which represent objects created inside the currently 
analyzed region of the program. Node 3 is an inside node 
that represents all objects created at line 3 in the compute 
method. The dashed nodes are outside nodes, which rep- 
resent objects not identified as created inside the currently 
analyzed region of the program. Nodes 1 and 2 are a kind 
of outside node called a parameter node; they represent the 
parameters to the compute method. The analysis result also 
records the skipped call sites and the actual parameters at 
each site. 

In this case, the analysis policy notices that the target 
node (node 3) escapes because it is a parameter to the 
skipped call to mult£plyAdd. It therefore directs the al- 
gorithm to analyze the multiplyAdd method and integrate 
the result into the points-to escape graph from the program 
point at the end of the compute method. 

Figure 3 presents the points-to escape graph from the ini- 
tial analysis of the multiplyAdd method. Nodes 4 through 
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class complex { 
double x,y; 
complex(double a, double b) { x = a; y = b; } 
void add(complex u, complex v) { 

x = u.x+v.x; y = u.y+v.y; 
} 
complex multiply(complex m) { 

complex r = new complex(x*m.x-y*m.y, x*m.y+y*m.x); 
return(r); 

} 
void multiplyAdd(complex a, complex b, complex c) { 

complex s = b.multiply(c); 
this.add(a, s); 

} 
} 
class client { 

public static void compute(complex d, complex e) { 
3: complex t = new complex(O.O, 0.0); 

t.multiplyAdd(d,e,e); 
} 

} 

Figu re  1: C o m p l e x  N u m b e r  a nd  Client  Classes 

Points-to Escape Graph Skipped Method Calls 

t--~(~) 
0 inside node ( : )  outside node 

F igu re  2: Ana lys i s  R e s u l t  f r o m  compute M e t h o d  

Points-to Escape Graph 

this ---~, 4, .., 
"" C---~: 7 ; 

a--,< 5/ s--*({" 

Skipped Method Calls 

~8 ,= ',6",. multiply ( ,'~;,,' 

',4, .add(,  5, , 

F i g u r e  3: 

Points-to Escape Graph 

d---~ I; 

e---~, 2) 

t---,-@ 

Ana lys i s  Resu l t  f rom multiplyAdd M e t h o d  

Skipped Method Calls 

,8 ,=~2 , .multi .ply(,  2,,) 

Q 

F i g u r e  4: Ana lys i s  Resu l t  f r o m  compute M e t h o d  after 
I n t e g r a t i n g  Resu l t  f r o m  multiplyAdd 

Points-to Escape Graph Skipped Method Calls 

d----','l) 
e----* v,2) / " / ' •" ,8 .  =, 2/ .  m u l t i p l y  ( ',~" ) 

t---~(~) 

Figu re  5: Ana lys i s  Resu l t  f r o m  compute M e t h o d  af te r  
Integrat ing  Resu l t s  f r o m  multiplyAdd a n d  add 

7 are parameter nodes. Node 8 is another kind of outside 
node: a re turn node that  represents the return value of an 
unaaalyzed method, in this case the mul t ip ly  method. To 
integrate this graph into the caller graph from the compute 
method, the analysis first maps the parameter nodes from 
the multiplyAdd method to the nodes that represent the 
actual parameters at the call site. In our example, node 
4 maps to node 3, node 5 maps to node 1, and nodes 6 
and 7 both map to node 2. The analysis uses this mapping 
to combine the graphs into the new graph in Figure 4. The 
analysis policy examines the new graph and determines that 
the target node now escapes via the call to the add method. 
It therefore directs the algorithm to analyze the add method 
and integrate the resulting points-to escape graph into the 
current graph for the compute method. Note that  because 
the call to the mul t ip ly  method has no effect on the es- 
cape status of the target node, the analysis policy directs 
the algorithm to leave this method unanalyzed. 

Figure 5 presents the new graph after the integration of 
the graph from the add method. Because the add method 
does not change the points-to or escape information, the net 
effect is simply to remove the skipped call to the add method. 
Note that  the target node (node 3) is captured in this graph, 
which implies that it is not accessible when the compute 
method returns. The compiler can therefore generate code 
that allocates all objects from the corresponding allocation 
site in the activation record of this method. 

2.2 The multiply Method 
The analysis next taxgets the object allocation site in-~ 

side the mul t ip ly  method. The points-to escape graph 
from this method indicates that  the taxget node escapes to 
the caller (in this case the multiplyAdd method) via the 
return value. The algorithm avoids repeated method re- 
analyses by retrieving the cached points-to escape graph for 
the multiplyAdd method, then integrating the graph from 
the mul t ip ly  method into this cached graph. The result is 
cached as the new (more precise) points-to escape graph for 
the mult iplyhdd method. It  indicates that the target node 
does not escape to the caller of the multiplyAdd method, 
but does escape via the unanalyzed call to the add method. 
The analysis therefore retrieves the cached points-to escape 
graph from the add method, then integrates this graph into 
the current graph from the multiplyAdd method, once again 
caching the result as the graph for the multiplyAdd method. 
The target node is captured in this graph - -  it escapes its 
enclosing method (the mul t ip ly  method), but  is recaptured 
in a caller (the multiplyAdd method). 

At this point the compiler has several options: it can 
inlirte the mul t ip ly  method into the multiplyAdd method 
and allocate the object on the stack, or it cart preallocate 
the object on the stack frame of the multiplyAdd method, 
then pass it in by reference to a specialized version of the 
mul t ip ly  routine. Both options enable stack allocation even 
if the node is captured in some but not all invocation paths, 
if the analysis policy declines to analyze all potential callers, 
or if it is not possible to identify all potential callers at com- 
pile time. Our implemented compiler uses inlining. 

2.3 Object Field Accesses 
Our next example illustrates how the analysis deals with 

object field accesses. Figure 6 presents a rational number 
class that deals with return values in yet another way. Each 
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Rat iona l  object has a field called r e s u l t ;  the methods in 
Figure 6 that operate on these objects store the result of 
their computation in this field for the caller to access. 

We next discuss how the analysis policy guides the analy- 
sis for the Rational allocation site at line I in the evaluate 
method. Figure 7 presents the initial analysis result at the 
end of this method. The dashed edge between nodes I and 
2 is an outside edge, which represents references not iden- 
tified as created inside the currently analyzed region of the 
program. Outside edges always point from an escaped node 
to a new kind of outside node, a load node, which represents 
objects whose references are loaded at a given load state- 
ment, in this case the statement n = r . r e s u l t  at line 2 in 
the eva lua te  method. 

The analysis policy notices that  the target node (node 1) 
escapes via a call to the abs method. It  therefore directs the 
analysis to analyze abs and integrate the result into the re- 
sult from the end of the eva lua te  method. Figure 8 presents 
the analysis result from the end of the abs method. Node 3 
represents the receiver object, node 4 represents the object 
created at line 4 of the abs method, and node 5 represents 
the object created at line 5. The solid edges from node 3 to 
nodes 4 and 5 are inside edges. Inside edges represent ref- 
erences created within the analyzed region of the program, 
in this case the abs method. 

The algorithm next integrates this graph into the analysis 
result from evaluate .  The goal is to reconstruct the result 
of the base whole-program analysis. In the base analysis, 
which does not skip call sites, the analysis of abs changes 
the points-to escape graph at the program point after the 
call site. These changes in turn affect the analysis of the 
statements in eva lua te  after the call to abs. The incremen- 
talized analysis reconstructs the analysis result as follows. It  
first determines that  node 3 represented node 1 during the 
analysis of abs. It then matches the outside edge against 
the two inside edges to determine that, during the analysis 
of the region of eva lua te  after the skipped call to abs, the 
outside edge from node 1 to node 2 represented the inside 
edges from node 3 to nodes 4 and 5, and that  the load node 
2 therefore represented nodes 4 and 5. The combined graph 
therefore contains inside edges from node 1 to nodes 4 and 
5. Because node 1 is captured, the analysis removes the 
outside edge from this node. Finally, the updated analysis 
replaces the load node 2 in the skipped call site to scale  
with nodes 4 and 5. At this point the analysis has captured 
node 1 inside the eva lua te  method, enabling the compiler to 
stack allocate all of the objects created at the corresponding 
allocation site at line 1 in Figure 6. 

3. THE BASE ANALYSIS 

The base analysis is a previously published points-to and 
escape analysis [16]. For completeness, we present the algo- 
rithm again here. The algorithm is compositional, analyzing 
each method once before its callers to extract a single pa- 
rameterized analysis result that can be specialized for use at 
different call sites.l It therefore analyzes the program in a 
bottom-up fashion from the leaves of the call graph towards 
the root. To simplify the presentation we ignore static class 
variables, exceptions, and return values. Our implemented 
algorithm correctly handles all of these features. 

1 Recursive programs require a fixed-point a lgor i thm tha t  may analyze 
methods involved in cycles in the call graph mult iple  t imes.  

class Rational { 
int numerator, denominator; 
Rational result; 
Rational(int n, int d) { 

numerator = n; 
denominator = d; 

} 
void scale(int m) { 

result = new Rational(numerator * m, 
denominator); 

} 
void abs() { 

int n = numerator; 
int d = denominator; 
if (n < O) n = -n; 
if (d < 0) d = -d; 
if (d Z n == 0) { 

4: result ffi new Rational(n / d, 1); 
} else { 

5: result = new Rational(n, d); 
} 

} 
} 
class client { 

public static void evaluate(int i, int j )  { 
I: Rational r = new Rational(0.0, 0.0); 

r.absO; 
2: Rational n = r.result; 

n.scale(m); 
} 

} 

Figure 6: R a t i o n a l  N u m b e r  a n d  Cl ien t  Classes 

Points-to Escape Graph Skipped Method Calls 

result -- Q 
r---~ i~ ........ ~i ) ,", .abs() 

,2, scale() n ..." 

inside edge ...... • outside edge 

Figure 7: Analysis Result from evaluate Method 

Points-to Escape Graph Skipped Method Calls 

Figure 8: Analysis Result from abs Method 

Points-to Escape Graph Skipped Method Calls 
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Figure 9: Analys is  Resul t  from evaluate After Inte- 
grating Result  from abs 
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3.1 Object Representation 

The analysis represents the objects that  the program ma- 
nipulates using a set n 6 N of nodes, which consists of 
a set Ni of inside nodes and a set No of outside nodes. 
Inside nodes represent objects created inside the currently 
analyzed region of the program. There is one inside node 
for each object  allocation site; that  node represents all ob- 
jects created at  tha t  site. The inside nodes include the set 
of thread  nodes NT C Ni. Thread nodes represent thread 
objects, i.e. objects  tha t  inherit  from Thread or implement 
the Runnable interface. 

The set of parameter  nodes Np C No represents objects 
passed as parameters  into the  currently analyzed method. 
There is one load node n 6 NL C_ No for each load state- 
ment in the program; tha t  node represents all objects whose 
references are 1) loaded at tha t  statement,  and 2) not iden- 
tified as created inside the currently analyzed region of the 
program. There is also a set f E F of fields in objects, a set 
v 6 V of local or parameter  variables, and a set 1 E L C V of 
local variables. 

3.2 Poin ts -To Escape Graphs 
A points- to escape graph is a pair (O, I) ,  where 

• O C (N  × F) × NL is a set of outside edges. We write 

an edge ((nl ,  :f), n2) as nl  --~ n2. 

• I C_ ( (N × F) x N)  U (V × N)  is a set of inside edges. We 
write an edge (v,n)  as v ~ n and an edge ( (n l , f ) ,n2 )  

f 
as nl ~ T~2. 

A node escapes if it  is reachable in OUI from a parameter 
node or a th read  node. We formalize this notion by defining 
an escape function 

eo,l (n) = {n' 6 NT U Np.n is reachable from n '  in O U I} 

that  returns the  set of parameter  and thread nodes through 
which n escapes. We define the concepts of escaped and 
captured nodes as follows: 

• escaped((O, I) ,  n) if cod(n) # O 

• captured((O,  I), n) if eod(n) = O 

We say tha t  an allocation site escapes or is captured in the 
context of a given analysis if the corresponding inside node 
is escaped or captured in the  points-to escape graph that  
the analysis produces. 

3.3 Program Representation 
The algori thm represents the  computat ion of each method 

using a control flow graph. We assume the program has been 
preprocessed so tha t  all s tatements relevant to the analy- 
sis are either a copy s ta tement  I = v, a load statement 
i t  = 12.f, a store s ta tement  l~.f  = 12, an object allo- 
cation s ta tement  1 = new c l ,  or a method call s tatement 
lo.op(ll,... ,ik). 

3.4 Intraprocedural Analysis 
The intraprocedural  analysis is a forward dataflow analy- 

sis tha t  produces a points-to escape graph for each program 
point in the method. Each method is analyzed under the 
assumption tha t  the parameters  are maximally unaliased, 
i.e., point to  different objects. For a method with formal 
parameters  vo , . . .  , v~, the initial points-to escape graph at  

the entry point of the method is (0,{(vl,nv~).l  < i < n}) 
where nv~ is the  parameter  node for parameter  vi. If the 
method is invoked in a context where some of the parame- 
ters may point to the same object,  the interprocedural anal- 
ysis described below in Section 3.5 merges parameter  nodes 
to conservatively model the effect of the aliasing. 

Statement Existing Edges Generated Edges 

l=v 

1 1 

ii = 12.f ~ f  ~ f  

11 11 

= 12.f It 1 1 ~  
11 

12 ~@ 12 • @~ J~" -- 

where (~) escaped O is the load node 
for 11 = 12.f 

l~.f = 12 ~0 

I / I 

I = new cl i I ' @ 

where ~ is the inside node 
for l=new¢l 

existing inside edge ~ generated inside edge 

. . . .  ~ existing outside edge . . . .  * generated outside edge 

C) inside node or outside node 

F i g u r e  10: G e n e r a t e d  E d g e s  for  Basic Statements  

The transfer function (O', I') = ~ s t ] ( ( O , I ) )  models the 
effect of each s ta tement  s t  on the  current points-to escape 
graph. Figure 10 graphically presents the rules tha t  deter- 
mine the new graph for each statement.  Each row in this 
figure contains three items: a s tatement ,  a graphical repre- 
sentation of existing edges, and a graphical representation 
of the existing edges plus the  new edges that  the statement 
generates. Two of the rows (for s tatements 11 = 12.f and 
1 = new cl )  also have a where clause that  specifies a set of 
side conditions. The interpretat ion of each row is that  when- 
ever the points-to escape graph contains the existing edges 
and the side conditions are satisfied, the transfer function 
for the s ta tement  generates the  new edges. Assignments to 
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a variable kill existing edges from that variable; assignments 
to fields of objects leave existing edges in place. At control- 
flow merges, the analysis takes the union of the inside and 
outside edges. At the end of the method, the analysis re- 
moves all captured nodes and local or parameter variables 
from the points-to escape graph. 

3.5 Interprocedural Analysis 
At each call statement, the interprocedural analysis uses 

the analysis result from each potentially invoked method to 
compute a transfer function for the statement. We assume a 
call site of the form 10.op(lt , . . .  , lk), a potentially invoked 
method op with formal parameters vo,. . .  ,vk, a points-to 
escape graph <Or, It) at the program point before the call 
site, and a graph IO2,/2) from the end of op. 

A map # C_ N x N combines the callee graph into the 
caller graph. The map serves two purposes: 1) it maps 
each outside node in the callee to the nodes in the caller 
that it represents during the analysis of the callee, and 2) 
it maps each node in the callee to itself if that node should 
be present in the combined graph. We use the notation 
#(n) = {W.<n, n'> e #} and nt - -~  n~ for n2 e #(nt). 

The interprocedural mapping algorithm (<O, I), #) = 
map(<Ot,I1), <O2, Is),p) starts with the points-to escape 
graph (Or, It) from the caller, the graph (O2, Is) from the 
callee, and an initial parameter map 

{ Zt(li) i f{n}=Z~(v,)  
~(n) = 0 otherwise 

that maps each parameter node from the callee to the nodes 
that represent the corresponding actual parameters at the 
call site. It produces the new mapped edges from the callee 
<0, I) and the new map #. 

Figure 11 presents the constraints that define the new 
edges (O, I) and new map #. Constraint 1 initializes the 
map # to the initial parameter map/~. Constraint 2 extends 
#, matching outside edges from the cailee against edges from 
the caller to ensure that # maps each outside node from 
the callee to the corresponding nodes in the caller that it 
represents during the analysis of the callee. Constraint 3 
extends # to model situations in which aliasing in the caller 
causes an outside node from the callee to represent other 
callee nodes during the analysis of the callee. Constraints 4 
and 5 complete the map by computing which nodes from 
the callee should be present in the caller and mapping these 
nodes to themselves. Constraints 6 and 7 use the map to 
translate inside and outside edges from the callee into the 
caller. The new graph at the program point after the call 
site is <I1 U I, Ot U O). 

Because of dynamic dispatch, a single call site may invoke 
several different methods. The transfer function therefore 
merges the points-to escape graphs from the analysis of all 
potentially invoked methods to derive the new graph at the 
point after the call site. The current implementation obtains 
this call graph information using a variant of a cartesian 
product type analysis [1], but it can use any conservative 
approximation to the dynamic call graph. 

3.6 Merge Optimization 
As presented so far, the analysis may generate points-to 

escape graphs <O, I) in which a node n may have multiple 

distinct outside edges n ~ n t , . . .  ,n -~ nk E O. We elimi- 
nate this inefficiency by merging the load nodes n l , . . .  , nk. 

fi(n) g #(n) (1) 

f f 
nt --~ n2 E 02,n3 -+ n4 E Ot U I t , m  - -~  n3 (2) 

n2 ~ n 4  

2 
nt ---~n4 E 0 2 , n 2 - + n ~  E 0 2  U I2 

~(n4) C #(ns) 

n l ~ n 2 ~ 1 2 , n t  ">n,  n 2 C N I  

n~ --% n2 

2 
nt -+ n2 6 0 s , n t  ~ n, escaped((O,I) ,n)  

(3) 

(4) 

(5) 

Figure  11: 

n 2  ~ n 2  

nl ~ n 2  EI2 (6) 
(~(nt) x {~}) × #(ns) C I 

nl  -~  n2 e Os,  n2 ---% ns (7) 
(#(hi) × {f}) × {n2} C_ 0 

Cons t ra in t s  for I n t e rp rocedu ra l  Analysis  

With this optimization, a single load node may be associ- 
ated with multiple load statements. The load node gener- 
ated from the merge of k load nodes nl , . . .  , nk is associated 
with all of the statements of n t , . . .  , nk. 

4. THE INCREMENTALIZED ANALYSIS 

We next describe how to incrementalize the base algo- 
rithm - -  how to enhance the algorithm so that it can skip 
the analysis of call sites while maintaining enough infor- 
mation to reconstruct the result of analyzing the invoked 
methods should the analysis policy direct the analysis to 
do so. The first step is to record the set S of skipped call 
sites. For each skipped call site s, the analysis records the 
invoked method ops and the initial parameter map ~s that 
the base algorithm would compute at that call site. To sim- 
plify the presentation, we assume that each skipped call site 
is 1) executed at most once, and 2) invokes a single method. 
Section 4.8 discusses how we eliminate these restrictions in 
our implemented algorithm. 

The next step is to define an updated escape function 
e s , o j  that determines how objects escape the currently an- 
alyzed region of the program via skipped call sites: 

es,o,l(n) = {s E S.3nl E Np .n l  ~ n2 and 
n is reachable from n2 in O U I} U eO,l(n) 

We adapt the interprocedural mapping algorithm from Sec- 
tion 3.5 to use this updated escape function. By definition, 
n escapes through a call site s if s E e s , o j ( n ) .  

A key complication is preserving flow sensitivity with re- 
spect to previously skipped call sites during the integration 
of analysis results from those sites. For optimization pur- 
poses, the compiler works with the analysis result from the 
end of the method. But the skipped call sites occur at var- 
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ious program points inside the method. We therefore aug- 
ment the points-to escape graphs from the base analysis with 
several orders, which record ordering information between 
edges in the points-to escape graph and skipped call sites: 

e w C S x ( (N x {:~}) x NL). For each call site s, w(s) = 
{n~ -~ nz.(s, n~ -£~ n2) ~ co} is the set of outside edges 
tha t  the analysis generates before it skips s. 

® t C S x ( (N x {:f}) x N). For each call site s~ t(s) = 
{nl .L~ nu.(s, nl ~ n2) E t} is the set of inside edges 
tha t  the analysis generates before it skips s. 

® v C S x ( (N x {f}) x NL). For each call site s, T(s) = 

{nl --~ n2.(s, nl --~ n2) E ~-} is the set of outside edges 
tha t  the analysis generates after it skips s. 

® ~, C S x ( (N x {f}) x N).  For each call site s, u(s) = 

{nl -~ n2.(s, nl  ~ n2) E ~,} is the set of inside edges 
tha t  the analysis generates after it skips s. 

® fl C S x S. For each call site s, f~(s) = {st.(s,s ')  e fl} 
is the set of call sites tha t  the analysis skips before 
skipping s. 

* a C S x  S. For each call site s ,  a(s)  = {s' .(s,s ')  e 
c~} is the set of call sites that  the analysis skips after 
skipping s. 

The incrementalized analysis works with augmented points- 
to escape graphs of the form (O,I ,S ,w, t ,v ,~ , , f l ,  a). Note 
that  because fl and a are inverses, 2 the analysis does not 
need to represent both  explicitly. It  is of course possible 
to use any conservative approximation of w, t, r ,  u, f~ and 
a; an especially simple approach uses w(s) = r(s)  = O, 
t(s) ---- v(s) = I,  and ;3(s) = or(s) = S. 

We next discuss how the analysis uses these additional 
components during the incremental analysis of a call site. 
We assume a current augmented points-to escape graph 
(01 , I1 ,S l ,wl , t1 , ' r l , v l , t31 ,a l ) ,  a call site s E $1 with in- 
voked operation ops, and an augmented points-to escape 
graph (02, I2, $2, w2, t2, ~'2, ~'2, ~2, o~2) from the end of opt. 

4.1 M a t c h e d  Edges  
In the base algorithm, the analysis of a call site matches 

outside edges from the analyzed method against existing 
edges in the points-to escape graph from the program point 
before the site. By the time the algorithm has propagated 
the g r a p h  to the end of the method, it may contain addi- 
tional edges generated by the analysis of statements that  
execute after the call site. When the incrementalized algo- 
r i thm integrates the analysis result from a skipped call site, 
it matches outside edges from the invoked method against 
only those edges that  were present in the points-to escape 
graph at the program point before the call site. w(s) and t(s) 
provide just those edges. The algorithm therefore computes 

(0,  I ,  #) ---- map((wl (s), tl (s)), (02, I2),/2~) 

where 0 and I are the new sets of edges that  the analysis 
of the callee adds to the caller graph. 

2Under the interpretation f~-I __ {(sl' s~>.(s2, sl) E /~} and oc -1 = 
{(sl,s2).(s2,sl) • a}, ~ ---- a -1 and f~--1 = a. 

4.2 Propagated  Edges  

In the base algorithm, the transfer function for an ana- 
lyzed call site may add new edges to the points-to graph 
from before the site. These new edges create effects that  
propagate through the analysis of subsequent statements. 
Specifically, the analysis of these subsequent statements may 
read the new edges, then generate additional edges involv- 
ing the newly referenced nodes. In the points-to graph from 
the incrementalized algorithm, the edges from the invoked 
method will not  be present if the analysis skips the call site. 
But these missing edges must come (directly or indirectly) 
from nodes that  escape into the skipped call site. In the 
points-to graphs from the caller, these missing edges are rep- 
resented by outside edges that  are generated by the analysis 
of subsequent statements. The analysis can therefore use 
T1 (S) and ul (s) to reconstruct the propagated effect of ana- 
lyzing the skipped method. It  computes 

(O' , I ' ,# ' )  = map( (O , I ) ,  (71(s),ul(s)), { (n ,n) .n  e N}) 

where O' and I '  are the new sets of edges tha t  come from 
the interaction of the analysis of the skipped method and 
subsequent statements,  and f maps each outside node from 
the caller to the nodes from the callee that  it represents 
during the analysis from the program point after the skipped 
call site to the end of the method.  Note that  this algorithm 
generates all of the new edges that  a complete reanalysis 
would generate. But it generates the edges incrementally 
without reanalyzing the code. 

4.3 Sk ipped  Call  Sites f r o m  the Cal le r  
In the base algorithm, the analysis of one call site may 

affect the initial parameter map for subsequent call sites. 
Specifically, the analysis of a site may cause the  formal pa- 
rameter nodes at subsequent sites to be mapped to addi- 
tional nodes in the graph from the caller. 

For each skipped call site, the incrementalized algorithm 
records the parameter  map tha t  the base algorithm would 
have used at tha t  site. When the incrementalized algorithm 
integrates an analysis result from a previously skipped site, 
it muss update  the recorded parameter  maps for subsequent 
skipped sites. At each of these sites, outside nodes repre- 
sent the additional nodes tha t  the analysis of the previously 
skipped site may add to the map. And the map # '  records 
how each of these outside nodes should be mapped. For 
each subsequent site s '  E a l  (s), the algorithm composes the 
site's current recorded parameter  map f~,, with f to obtain 
its new recorded parameter map # '  o/i8,. 

4.4 Skipped  Call  Sites f r o m  the Callee 

The new set of skipped call sites S' = ($1 t.J $2) contains 
the set of skipped call sites $2 from the callee. When it maps 
the callee graph into the caller graph, the analysis updates 
the recorded parameter  maps  for the skipped call sites in 
$2. For each site s' E $2, the analysis simply composes the 
site's current map/28, with the map # co obtain the new 
recorded parameter map # o/28, for s'. 

4.5 New O r d e r s  
The analysis constructs the new orders by integrating the 

orders from the caller and callee into the new analysis result 
and extending the orders for s to the mapped  edges and 
skipped call sites from the callee. So, for example, the new 
order between outside edges and subsequent call sites (w') 
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consists of the order from the caller (oat), the mapped order 
from the callee (w2[#]), the order from s extended to the 
skipped call sites from the callee ($2 xwt (s)), and the outside 
edges from the callee ordered with respect to the call sites 
after s (oft(s) x O): 

~'=~1 u ~2[#] u (s~ × ~,(~)) v ( ~ ( s )  × o)  
~'=~t u ~2[#] u (222 x ~(s)) u (at(s) x I) 
r'=r~ U ~-~[#] U (S2 X T~(S)) U (,&(s) X O) 
-'=-~ U -2[#] U (S~ x .~(s)) U (~(s) x /) 

a ' = ~  U ~ U (s2 x ~ ( s ) ) u  (at(s) x S2) 

Here w[/z] is the order w under the map #, i.e., w[#] = 

{(s,n~ -~ n~).(s, nl -~ n2) E w, nl ~ n~, and n2 ~ n~}, 
and similarly for L, r, and u. 

4.6 Cleanup 
At this point the algorithm can compute a new graph 

(O1 U O U O',  I t  U I U F ,  S t, w I, el, r ' ,  u',/3 t, a l) tha t  reflects 
the integration of the analysis of s into the previous anal- 
ysis result (O1,11, $1, wl, el, ~'t, ~'1,/31, a l ) .  The final step is 
to remove s from all components of the new graph and to 
remove all outside edges from captured nodes. 

4.7 Updated Intraproeedural Analysis 
The transfer function for a skipped call site s performs 

the following additional tasks: 

• Record the initial parameter  map ~ that  the base al- 
gorithm would use when i t  analyzed the site. 

• Update  ov to include {s} x O, update  ~ to include {s} x 
I ,  update  a to contain S × {s}, and update f~ to contain 
{s} x S. 

® Update  S to include the skipped call site s. 

Whenever a load s tatement  generates a new outside edge 
f 

nt  ~ n2, the transfer function updates  T to include S x 
{nl ~ n2}. Whenever a store s tatement  generates a new 

inside edge nt  -~ n2, the transfer function updates ~, to 

include S x {nl -~ n2}. 
Finally, the incrementalized algorithm extends the con- 

fluence operator to merge the additional components. For 
each additional component  (including the recorded param- 
eter maps #s), the confluence operator is set union. 

4.8 Extensions 
So far, we have assumed tha t  each skipped cal! site is ex- 

ecuted at most  once and invokes a single method. We next 
discuss how our implemented algorithm eliminates these re- 
strictions. To handle dynamic dispatch, we compute the 
graph for all of  the possible methods that  the call site may 
invoke, then merge these graphs to obtain the new graph. 

We also extend the abstraction to handle skipped call sites 
tha t  are in loops or are invoked via multiple paths in the 
control flow graph. We maintain a multiplicity flag for each 
call site specifying whether the call site may be executed 
multiple times: 

® The transfer function for a skipped call site s checks to 
see if the site is already in the set of skipped sites S. If 
so, it sets the multiplicity flag to indicate tha t  s may 
be invoked multiple times. It  also takes the union of 

the site's current recorded parameter  map  ,58 and the 
parameter map ~ from the transfer function to obtain 
the site's new recorded parameter  map f~8 U f~. 

o The algorithm that  integrates analysis results from 
previously skipped call sites performs a similar set of 
operations to maintain the recorded parameter  maps 
and multiplicity flags for call sites tha t  may be present 
in the analysis results from both  the callee and the 
caller. If  the skipped call site may be executed mul- 
tiple times, the analysis uses a fixed-point algorithm 
when it integrates the analysis result from the skipped 
call site. This algorithm models the effect of executing 
the site multiple times. 

4.9 Recursion 
The base analysis uses a fixed-point algorithm to ensure 

that  it terminates in the presence of recursion. It is possible 
to use a similar approach in the incrementalized algorithm. 
Our implemented algorithm, however, does not check for 
recursion as it explores the call graph. If a node escapes 
into a recursive method, the analysis may, in principle, never 
terminate. In practice, the algorithm relies on the analysis 
policy to react to the expansion of the analyzed region by 
directing analysis resources to other allocation sites. 

4.10 Incomplete Call Graphs 
Our algorithm deals with incomplete call graphs as fol- 

lows. If it is unable to locate all of the potential callers of a 
given method, it simply analyzes those it is able to locate. 
If it is unable to locate all potential callees at a given call 
site, it simply considers all nodes tha t  escape into the site 
as permanently escaped. 

5. A N A L Y S I S  P O L I C Y  

The goal of the analysis policy is to find and analyze al- 
location sites tha t  can be captured quickly and have a large 
optimization payoff. Conceptually, the policy uses the fol- 
lowing basic approach. It  estimates the payoff for capturing 
an allocation site as the number  of objects allocated at  that  
site in a previous profiling run. It  uses empirical da ta  and 
the current analysis result for the site to estimate the like- 
lihood that  it will ever be able to capture the site, and, 
assuming that  it is able to capture the site, the amount  of 
time required to do so. It  then uses these estimates to calcu- 
late an estimated marginal return for  each unit  of analysis 
time invested in each site. 

At each analysis step, the policy is faced with a set of par- 
tially analyzed sites tha t  it can invest in. The policy simply 
chooses the site with the best  estimated marginal return, 
and invests a (configurable) unit of analysis time in that  
site. During this time, the algorithm repeatedly selects one 
of the skipped call sites through which the allocation site 
escapes, analyzes the methods potentially invoked at that  
site (reusing the cached results if they are available), and 
integrates the results from these methods into the current 
result for the allocation site. If  these analyses capture the 
site, the policy moves on to the site with the next best esti- 
mated marginal return. Otherwise, when the time expires, 
the policy recomputes the site,s estimated marginal return 
in light of the additional information it has gained during 
the analysis, and once again invests in the (potentially dif- 
ferent) site with the current best estimated marginal return. 
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5.1 Stack Allocat ion 

The compiler applies two potential stack allocation opti- 
mizations depending on where an allocation site is captured: 

o S t ack  Al loca t e :  If the site is captured in the method 
that  contains it, the compiler generates code to allo- 
cate all objects created at that  site in the activation 
record of the containing method. 

• In l ine  a n d  S t ack  Al loca te :  If the site is captured 
in a direct caller of the method containing the site, the 
compiler first inlines the method into the caller. After 
inlining, the caller contains the site, and the generated 
code allocates all objects created at that  site in the 
activation record of the caller. 

The current analysis policy assumes that  the compiler is 1) 
unable to inline a method if, because of dynamic dispatch, 
the corresponding call site may invoke multiple methods, 
and 2) unwilling to enable additional optimizations by fur- 
ther inlining the callers of the method containing the alloca- 
tion site into their callers. It is, of course, possible to relax 
these assumptions to support more sophisticated inlining 
and/or specialization strategies. 

Inlining complicates the conceptual analysis policy de- 
scribed above. Because each call site provides a distinct 
analysis context, the same allocation site may have differ- 
ent analysis characteristics and outcomes when its enclosing 
method is inlined at different call sites. The policy therefore 
treats each distinct combination of call site and allocation 
site as its own separate analysis opportunity. 

5.2 Analysis Opportunities 
The policy represents an opportunity to capture an alloca- 

tion site a in its enclosing method op as (a, op, G, p, c, d, m), 
where G is the current augmented points-to escape graph for 
the site, p is the estimated payoff for capturing the site, c is 
the count of the number of skipped call sites in G through 
which a escapes, d is the method call depth of the analyzed 
region represented by G, and m is the mean cost of the 
call site analyses performed so far on behalf of this analysis 
opportunity. Note that  a, op, and G are used to perform 
the incremental analysis, while p, c, d, and m are used to 
estimate the marginal return. Opportunities to capture an 
allocation site a in the caller op of its enclosing method have 
the form (a, op, s, G, p, c, d, m), where s is the call site in op 
that invokes the method containing a, and the remainder of 
the fields have the same meaning as before. 

Figure 12 presents the state-transition diagram for anal- 
ysis opportunities. Each analysis opportunity can be in one 
of the states of the diagram; the transitions correspond to 
state changes that  take place during the analysis of the op- 
portunity. The states have the following meanings: 

• U n a n a l y z e d :  No analysis done on the opportunity. 

• E s c a p e s  Be low E n c l o s i n g  M e t h o d :  The opportu- 
nity's allocation site escapes into one or more skipped 
call sites, but does not (currently) escape to the caller 
of the enclosing method. The opportunity is of the 
form (a, op, G, p, c, d, m). 

® Escapes Below Cal ler  o f  Enclos ing  M e t h o d :  The 
opportunity 's site escapes to the caller of its enclos- 
ing method, but does not (currently) escape from this 

F igu re  12: S t a t e - T r a n s i t i o n  D i a g r a m  for Ana lys i s  
O p p o r t u n i t i e s  

caller. The site may also escape into one or more 
skipped call sites. The opportunity is of the form 
(a, op, s, G, p, c, d, m). 

® C a p t u r e d :  The opportunity 's  site is captured. 

• A b a n d o n e d :  The policy has permanently abandoned 
the analysis of the opportunity, either because its allo- 
cation site permanently escapes via a static class vari- 
able or thread, because the site escapes to the caller of 
the caller of its enclosing method (and is therefore um 
optimizable), or because the site escapes to the caller 
of its enclosing method and (because of dynamic dis- 
patch) the compiler is unable to inline the enclosing 
method into the caller. 

In Figure 12 there are multiple transitions from the Es- 
capes Below Enclosing Method state to the Escapes Below 
Caller of Enclosing Method state. These transitions indi- 
cate that  one Escapes Below Enclosing Method opportunity 
may generate multiple new Escapes Below Caller of Enclos- 
ing Method opportunities - -  one new opportunity for each 
potential call site that  invokes the enclosing method from 
the old opportunity. 

When an analysis opportunity enters the Escapes Below 
Caller of Enclosing Method state, the first analysis action 
is to integrate the augmented points-to escape graph from 
the enclosing method into the graph from the caller of the 
enclosing method. 

5.3 Estimated Marginal Returns 
If the opportunity is Unanalyzed, the estimated marginal 

return is (4 • p)/a, where ~ is the probability of capturing 
an allocation site given no analysis information about the 
site, p is the payoff of capturing the site, and, assuming 
the analysis eventually captures the site, a is the expected 
analysis time required to do so. 

If the opportunity is in the state Escapes Below Enclosing 
Method, the estimated marginal return is (El(d) .p)/(a.  m). 
Here ~1 (d) is the conditional probability of capturing an al- 
location site given that the algorithm has explored a region 
of call depth d below the method containing the site, the al- 
gorithm has not (yet) captured the site, and the site has not 
escaped (so far) to the caller of its enclosing method: If the 
opportunity is in the state Escapes Below Caller of Enclosing 
Method, the estimated marginal return is (~2(d) .p)/(c .  m). 
Here ~2(d) has the same meaning as ~l(d), except that the 
assumption is that  the site has escaped to the caller of its 
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enclosing method, but not (so far) to the caller of the caller 
of its enclosing method. 

We obtain the capture probability functions ~, ~1, and ~2 
empirically by preanalyzing all of the executed allocation 
sites in some sample programs and collecting data that al- 
lows us to compute these functions. For Escapes Below En- 
closing Method opportunities, the estimated payoff p is the 
number of objects allocated at the opportunity's allocation 
site a during a profiling run. For Escapes Below Caller of 
Enclosing Method opportunities, the estimated payoff is the 
number of objects allocated at the opportunity's allocation 
site a when the allocator is invoked from the opportunity's 
call site s. 

When an analysis opportunity changes state or increases 
its method call depth, its estimated marginal return may 
change significantly. The policy therefore recomputes the 
opportunity's return whenever one of these events happens. 
If the best opportunity changes because of this recomputa- 
tion, the policy redirects the analysis to work on the new 
best opportunity. 

5.4 Termination 
In principle, the policy can continue the analysis indefi- 

nitely as it invests in ever less profitable opportunities. In 
practice, it is important to terminate the analysis when the 
prospective returns become small compared to the analy- 
sis time required to realize them. We say that the analysis 
has decided an object if that object's opportunity is in the 
Captured or Abandoned state. The payoffs p in the analy- 
sis opportunities enable the policy to compute the current 
number of decided and undecided objects. 

Two factors contribute to our termination policy: the 
percentage of undecided objects (this percentage indicates 
the maximum potential payoff from continuing the analy- 
sis), and the rate at which the analysis has recently been 
deciding objects. The results in Section 6 are from analy- 
ses terminated when the percentage of decided objects rises 
above 90% and the decision rate for the last quarter of the 
analysis drops below 1 percent per second, with a cutoff of 
75 seconds of total analysis time. 

We anticipate the development of a variety of termination 
policies to fit the particular needs of different compilers. A 
dynamic compiler, for example, could accumulate an analy- 
sis budget as a percentage of the time spent executing the 
application - -  the longer the application ran, the more time 
the policy would be authorized to invest analyzing it. The 
accumulation rate would determine the maximum amortized 
analysis overhead. 

6. E X P E R I M E N T A L  RESULTS 
We have implemented our analysis and the stack alloca- 

tion optimization in the MIT Flex compiler, an ahead-of- 
time compiler written in Java for Java. 3 We ran the exper- 
iments on an 800 MHz Pentium III PC with 768Mbytes of 
memory running Linux Version 2.2.18. We ran the compiler 
using the Java Hotspot Client VM version 1.3.0 for Linux. 
The compiler generates portable C code, which we compile 
to an executable using gcc. The generated code manages the 
heap using the Boehm-Demers-Weiser conservative garbage 
collector [4] and uses alloca for stack allocation. 

aThe compiler is available at www.flexc.lcs.mit.edu. 

6.1 Benchmark Programs 
Our benchmark programs include two multithreaded sci- 

entific computations (Barnes and Water), Jlex, and several 
Spec benchmarks (Db, Compress, and Raytrace). Figure 13 
presents the compile and whole-program analysis times for 
the applications. 

Application 
Barnes 
Water 
Jlex 
Db 
Raytrace 
Compress 

Compile Time Whole-Program 
Without Analysis Analysis Time 

89.7 34.3 
91.1 38.2 

119.5 222.8 
93.6 126.6 

118.4 102.2 
219.6 645.1 

Figure  13: Compi le  and  W h o l e - P r o g r a m  Analys is  
T imes  (seconds) 

Tile estimated optimization payoff for each allocation site 
is the number of objects allocated at that  site during a train- 
ing run on a small training input. The presented execution 
and analysis statistics are for executions on larger produc- 
tion inputs. 

6.2 Analysis Payoffs and Statistics 
Figure 14 presents analysis statistics from the incremen- 

talized analysis. We present the number of captured al- 
location sites as the sum of two counts. The first count 
is the number of sites captured in the enclosing method; 
the second is the number captured in the caller of the en- 
closing method. Fractional counts indicate allocation sites 
that were captured in some but not all callers of the en- 
closing method. In Db, for example, one of the allocation 
sites is captured in two of the eight callers of its enclosing 
method. The Undecided Allocation Sites column counts the 
number of allocation sites in which the policy invested some 
resources, but did not determine whether it could stack al- 
locate the corresponding objects or not. The Analyzed Call 
Sites, Total Call Sites, Analyzed Methods, and Total Meth- 
ods columns show that the policy analyzes a small fraction 
of the total program. 

The graphs in Figure 15 present three curves for each ap- 
plication. The horizontal dotted line indicates the percent- 
age of objects that the whole-program analysis allocates on 
the stack. The dashed curve plots the percentage of decided 
objects (objects whose analysis opportunities are either Cap- 
tured or Abandoned) as a function of the analysis time. The 
solid curve plots the Percentage of objects allocated on the 
stack. For Barnes, Jlex, and Db, the incrementalized anal- 
ysis captures virtually the same number of objects as the 
whole-program analysis, but spends a very small fraction of 
the whole-program analysis time to do so. Incrementaliza- 
tion provides less of a benefit for Water because two large 
methods account for a much of the analysis time of both 
analyses. For Raytrace and Compress, a bug in the 1.3 JVM 
forced us to run the,incrementalized analysis, but not the 
whole-program analysis, on the 1.2 JVM. Our experience 
with the other applications indicates that both analyses run 
between five and six times faster on the 1.3 JVM than on 
the 1.2 JVM. 

6.3 Application Execution Statistics 
Figure 16 presents the total amount of memory that the 

applications allocate in the heap. Almost all of the allocated 



Barnes 
Water 
Jlex 
Db 
Raytrace 
Compress 

Analysis 
Time 

(seconds) 

Captured Abandoned Undecided Total Analyzed Total 
Allocation Allocation Allocation Allocation Call Call 

Sites Sites Sites Sites Sites Sites 
Analyzed 
Methods 

Total 
Methods 

0.8 3+0 0 2 736 18 1675 13 512 
21.7 33+0 4 33 748 94 1799 33 481 

0.9 0+2 1 2 1054 27 2879 12 569 
4.5 1+0.25 4 1.75 1118 54 2444 25 631 

76.3 8+0.37 20.63 54 1067 271 3109 64 699 
79.5 4+0.33 4 19.66 1354 111 4084 40 808 

F i g u r e  14: Analys i s  Stat is t ics  f r o m  I n c r e m e n t a l i z e d  Ana lys i s  
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F i g u r e  15: Ana lys i s  T i m e  Payoffs  

memory in Barnes and Water is devoted to temporary arrays 
that hold the results of intermediate computations. The 
C + +  version of these applications allocates these arrays on 
the stack; our analysis restores this allocation strategy in 
the Java version. Most of the memory in Jlex is devoted to 
temporary iterators, which are stack allocated after inlining. 
Note the anomaly in Db and Compress: many objects are 
allocated on the stack, but the heap allocated objects are 
much bigger than the stack allocated objects. 

Figure 17 presents the execution times. The optimizations 
provide a significant performance benefit for Barnes and Wa- 
ter and some benefit for Jlex and Db. Without stack allo- 
cation, Barnes and Water interact poorly with the conser- 
vative garbage collector. We expect that  a precise garbage 
collector would reduce the performance difference between 
the versions with and without stack allocation. 

7. RELATED WORK 
We briefly discuss related work in escape analysis, demand 

analysis, program fragment analysis, and incremental anal- 
ysis. See the full paper for a more comprehensive discussion. 

Application 
Barnes 
Water 
Jlex 
Db 
Raytrace 
Compress 

No Incrementalized Whole-Program 
Analysis Analysis Analysis 

36.0 3.2 2.0 
190.2 2.2 0.6 
40.8 3.1 2.5 
77.6 31.2 31.2 
13.4 9.0 6.7 

110.1 110.1 110.1 

F igure  16: A l l o c a t e d  H e a p  M e m o r y  ( M b y t e s )  

Application 
Barnes 
Water 
Jlex 
Db 
Raytrace 
Compress 

No Incrementalized Whole-Program 
Analysis Analysis Analysis 

33.4 22.7 24.0 
18.8 11.2 10.7 
5.5 5.0 4.7 

103.8 104.0 101.3 
3.0 2.9 2.9 

44.9 44.8 45.1 

F igu re  17: E x e c u t i o n  T i m e s  (seconds)  

7.1 Escape Analysis 
Many other researchers have developed escape analyses for 

Java [16, 7, 14, 3, 5]. These analyses have been presented 
as whole-program analyses, although many contain elements 
that make them amenable to incrementalization. All of the 
analyses listed above except the last [5] analyze methods 
independently of their callers, generating a summary that  
can be specialized for use at each call site. Unlike our base 
analysis [16], these analyses are not designed to skip call 
sites. But we believe it would be relatively straightforward 
to augment them to do so. With this extension in place, the 
remaining question is incrementalization. For flow-sensitive 
analyses [16, 7], the incrementalized algorithm must record 
information about the ordering of skipped call sites relative 
to the rest of the analysis information if it is to preserve 
the precision of the base whole-program analysis with re- 
spect to skipped call sites. Flow-insensitive analyses [14, 3], 
can ignore this ordering information and should therefore 
be able to use an extended abstraction that records only 
the mapping information for skipped call sites. In this sense 
flow-insensitive analyses should be, in general, simpler to 
incrementalize than flow-sensitive analyses. 

Escape analyses have typically been used for stack allo- 
cation and synchronization elimination. Our results show 
that analyzing a local region around each allocation site 
works well for stack allocation, presumably because stack 
allocation ties object lifetimes to the lifetimes of the captur- 
ing methods. But for synchronization elimination, a whole- 
program analysis may deliver significant additional opti- 
mization opportunities. For example, Ruf 's  synchronization 
elimination analysis determines which threads may synchro- 
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nize on which objects [14]. In many cases, the analysis is able 
to determine that only one thread synchronizes on a given 
object, even though the object may be accessible to multi- 
ple threads or even, via a static class variable, to all threads. 
Exploiting this global information significantly improves the 
ability of the compiler to eliminate superfluous synchroniza- 
tion operations, especially for single threaded programs. 

7.2 Demand, Fragment, and Incremental Analysis 
Demand algorithms analyze only those parts of the pro- 

gram required to compute an analysis fact at a subset of 
the program points or to answer a given query [2, 10, 8, 11]. 
Our approach differs in that it is designed to temporarily 
skip parts of the program even if the skipped parts poten- 
tially affect the analysis result. 

Fragment analysis is designed to analyze a predetermined 
part of the program [12, 13]. A similax effect may be ob- 
tained by explicitly specifying the analysis results for miss- 
ing parts of the program [9, 15]. Our approach differs in 
that it monitors the analysis results to dynamically deter- 
mine which parts of the program it should analyze to obtain 
the best optimization outcome. Incremental algorithms up- 
date an existing analysis result to reflect the effect of pro- 
gram changes [17]. Our algorithm, in contrast, analyzes part 
of the program assuming no previous analysis results. 

8. CONCLUSION 
This paper presents a new incrementalized pointer and es- 

cape analysis. Instead of analyzing the whole program, the 
analysis executes under the direction of an analysis policy. 
The policy continually monitors the analysis results to di- 
rect the incremental analysis of those parts of the program 
that offer the best marginal return on the invested analysis 
resources. Our experimental results show that our analysis, 
when used for stack allocation, usually delivers almost all 
of the benefit of the whole-program analysis at a fraction of 
the cost. And because it analyzes only a local region of the 
program surrounding each allocation site, it scales to handle 
programs of arbitrary size. 
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