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Abstract We give a brief survey of some classi�cation results on orbit equivalence
of probability measure preserving actions of countable groups. The notion of �2

Betti numbers for groups is gently introduced. An account of orbit equivalence
invariance for �2 Betti numbers is presented together with a description of the theory
of equivalence relation actions on simplicial complexes. We relate orbit equivalence
to a measure theoretic analogue of commensurability and quasi-isometry of groups:
measure equivalence. Rather than a complete description of these subjects, a lot of
examples are provided.

1 Equivalence Relations

1.1 Equivalence Relation De�ned by an Action

Let (X,µ) be a standard Borel space, where µ is a probability measure with-
out atoms. Recall that (X,µ) is Borel isomorphic to the unit interval of the
reals, with the Lebesgue measure.

Let Γ be a countable group and α an action of Γ on (X,µ) by µ-preserving
Borel automorphisms. Consider the orbit equivalence relation on X :

Rα = {(x, γ.x) : x ∈ X, γ ∈ Γ} .

As a subset of X × X , this equivalence relation is just the union of the
graphs of the γ ∈ Γ . In this measured context, null sets are neglected. Thus
the action is free if the only element of Γ with a �xed-point set of positive
measure is the identity element.

Example 1.1. The �rst examples to keep in mind are the following:

(1) The action of Zn on the circle S1 by rationally independent rotations
(belongs to the next two families). This gives an idea of the wildness of
the quotient space Γ\X .

(2) Free volume-preserving group actions on �nite volume manifolds.

(3) A compact group K, its Haar measure µ and the action of a countable
subgroup Γ by left multiplication on K.
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(4) The shift action of Γ on the space X = {0, 1}Γ of sequences of 0's and
1's indexed by Γ , with any invariant probability measure � for example
the product of equiprobability measures on {0, 1}. This action is free
when Γ is in�nite. Thus, every countable group admits at least one free
probability measure preserving (p.m.p.) action.

Question:Which properties of the group Γ are determined by the orbit equiv-
alence relation Rα?

1.2 Standard Countable Borel Equivalence Relations

The orbit equivalence relation R = Rα enjoys the following properties:

1. the equivalence classes (or orbits) of R are countable;

2. R is a Borel subset of X ×X ;

3. every partial isomorphism ϕ : A → B whose graph is contained in R

preserves the measure (R preserves µ).

A partial isomorphism ϕ : A → B is a Borel isomorphism between two Borel
subsets A and B of X . Observe that if its graph {(x, ϕ(x)) : x ∈ A} is
contained in R then A admits a partition A =

∐
γ∈Γ Aγ where x ∈ Aγ ⇒

ϕ(x) = α(γ)(x) (soon replaced by the notation γ.x). The third item is now
obvious.

A standard countable measure preserving equivalence relation R on (X,µ)
is an equivalence relation that satis�es 1�3. This more general notion was
introduced by J. Feldman and C. Moore who immediately observed [FM77a,
Theorem 1] that every such equivalence relation is in fact the orbit equivalence
relation of some group Γ acting by µ-preserving Borel automorphisms of X .
The question of �nding a freely acting Γ remained open until A. Furman's
work [Fur99b, Theorem D], exhibiting lots of examples where it is impossible.

Example 1.2. There are at least two kinds of examples � where an underlying
Γ is not obvious � which motivates this generalization:

(1) Let Y ⊂ X be a Borel subset which meets all orbits of R. The induced
equivalence relation RY := R ∩ (Y × Y ) on Y , whose classes are re-
strictions of classes to Y , preserves the normalized probability measure
µY = µ/µ(Y ).

(2) When looking at a minimal measured lamination, choose a total transver-
sal X of �nite measure. The holonomy pseudogroup gives rise to such a
general equivalence relation on X , with the normalized transverse mea-
sure. It is generated by the �return maps�. Two points of the transversal
are in the same class i� they belong to the same leaf of the lamination.
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1.3 Orbit Equivalence

De�nition 1.3 Two actions αi of groups Γi on (Xi, µi), i = 1, 2 are said to
be Orbit Equivalent (OE) if they de�ne the same equivalence relation, i.e. if
there exists a Borel isomorphism f : X1 → X2 such that f∗(µ1) = µ2 and for
µ1-almost all x ∈ X1,

f(Γ1.x) = Γ2.f(x) .

An orbit equivalence between free actions gives rise to a cocycle (see
R. Feres' contribution to the present volume [Fer01]) σ : Γ1 × X1 → Γ2,
where σ(γ, x) is the unique element λ ∈ Γ2 s.t. λ.x = γ.x. The cocycle
identity is easily checked: σ(γ1γ2, x) = σ(γ1, γ2.x)σ(γ2, x).

The coarseness of this notion may be really distressing for certain ergodic
theorists: H. Dye showed that (for Γ1 = Γ2 = Z) any two ergodic probability
measure preserving Z-actions are orbit equivalent [Dye59, Theorem 1, p. 143
and Theorem. 5, p. 154]. A. Vershik obtained the same result at about the
same time.

Later on, in [Dye63, Theorem 1, p. 560], Dye showed the same result for
any group Γ of polynomial growth or Γ in�nite abelian: any free ergodic
probability measure preserving Γ -action is orbit equivalent to an ergodic Z-
action. All these actions thus de�ne THE same equivalence relation Rα. The
sadness of those people I just mentioned is far from decreasing.

R. Zimmer [Zim78] introduced the notion of amenability for an equiv-
alence relation and showed, in particular, that if Γ has a free p.m.p. ac-
tion which is orbit equivalent to a Z-action then Γ is amenable. The nat-
ural conjecture was that any p.m.p. ergodic action of an amenable group
is orbit equivalent to THE relation Rα, and this was proved by Ornstein�
Weiss [OW80], and by Connes�Feldman�Weiss [CFW81], in the context of
general non-singular (rather than p.m.p.) amenable equivalence relations.

This p.m.p. equivalence relation Rα is characterized as ergodic and hy-
per�nite: it is an increasing union of equivalence relations with �nite classes.

Recall that abelian, nilpotent, and solvable groups are amenable groups.
By contrast, the free groupsFn, n ≥ 2 are not, as well as any group containing
F2, and it is not easy to produce a non-amenable group not containing F2.

1.4 Stable Orbit Equivalence

It is important to realize that when the classes are in�nite (in all non-trivial
situations), the equivalence relation does not admit any Borel fundamental
domain, i.e. a Borel subset D ⊂ X that meets once and only once the orbit
of µ-almost all x ∈ X . In other words it is not possible to measurably pick
one point in each orbit, or the space of orbits is ugly. This is obvious in the
context of free actions, where the iterates γ.D of a hypothetical fundamental
domain would provide a partition of almost all of X (�nite measure) with
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in�nitely many pieces of equal measure. And it is almost that obvious in
general.

Nevertheless, the following notion gives a meaning to the idea of two
equivalence relations R1 and R2 having the �same space of orbits�: First,
observe that if a Borel subset Y ⊂ X meets almost all orbits of R, then R

and the induced equivalence relation RY (Example 1.2.(1)) have the same
space of orbits. Now comes the:

De�nition 1.4 Two equivalence relations R1 and R2 on (Xi, µi), i = 1, 2 are
said to be Stably Orbit Equivalent (SOE) if there exist Borel subsets Yi ⊂ Xi,
i = 1, 2 which meet almost all orbits of Ri on which the induced equivalence
relations are the same R1Y1 � R2Y2 , via an isomorphism f : Y1 → Y2 which
preserves the normalized measures f∗(µ1/µ1(Y1)) = µ2/µ2(Y2). The number
i(R1,R2) = µ2(Y2)/µ1(Y1) is called the index of R2 in R1 (given by this
SOE).

In Example 1.2.(2), the choice of various transversal leads to SOE equiv-
alence relations. Notice that for a given R, the set of possible i(R,R) forms
a subgroup of R∗

+, called the fundamental group of R.

Remark 1.5. Why is it called stable? The countable stabilization of an equiva-
lence relation (X,µ,R) is the equivalence relation R′ on the space (X×C, µ′),
where C is any in�nite discrete countable set and µ′ = µ×counting measure,
de�ned by (x1, c1) ∼ (x2, c2) i� (x1, x2) ∈ R. It can be shown that SOE
equivalence relations R1 and R2 have isomorphic countable stabilizations.

More precisely, there exists a Borel isomorphism X1×C1
f→ X2×C2 sending

µ′
1 to λ · µ′

2, with λ−1 = i(R1,R2), and sending almost every R′
1-class onto

an R′
2-class.

We refer to [FM77a], [Moo82], [Sch87] and [Zim84] for more material on
this section.

2 Measure Equivalence

Stable orbit equivalence must be related to another notion introduced by
M. Gromov and developed by A. Furman [Fur99a], namely measure equiv-
alence (ME) between countable groups, which is a measure theoretical ana-
logue of quasi-isometry.

Criterion for quasi-isometry ([Gro93, 0.2.C′
2]). Two �nitely gener-

ated groups Γ1 and Γ2 are quasi-isometric (QI) i� there exist commuting,
continuous actions of Γ1 and Γ2 on some locally compact space M , such that
the action of each of the groups is properly discontinuous and has a compact
fundamental domain. Similarly:
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De�nition 2.1 ([Gro93, 0.5.E]) Two countable groups Γ1 and Γ2 are Mea-
sure Equivalent (ME) i� there exist commuting, measure preserving, free ac-
tions of Γ1 and Γ2 on some Lebesgue measure space (Ω,m) such that the
action of each of the groups admits a �nite measure fundamental domain
(Di for Γi).

In this case we say that Γ1 is ME to Γ2 with index

iΩ(Γ1, Γ2) = m(D2)/m(D1) ,

and, following [Fur99a], we say that (Ω,m) (together with the actions) is a
coupling between Γ1 and Γ2.

Example 2.2. (1) The basic example of QI groups are cocompact lattices in
the same locally compact second countable group G (applying the crite-
rion to M = G and Γ1 and Γ2 acting by left and right multiplication).

(2) The basic example of ME groups are general lattices Γ1 and Γ2 in the
same locally compact second countable groupG. The existence of a lattice
(that is a discrete, �nite covolume subgroup) forces G to be unimodular:
the Haar measure is invariant under the commuting actions by left and
right multiplication of Γ1 and Γ2.
Thus, (G,Haar) gives a measure equivalence between Γ1 and Γ2 which
are ME with index iG(Γ1, Γ2) = Vol(G/Γ2)/Vol(Γ1\G).

(3) Notice that the de�nition also makes sense when Γ1 � Γ2 and that the
values iΩ(Γ1, Γ2) for various couplings may a priori assume any value
in R∗

+ as shown by the example of Γ1 = Z, Γ2 = αZ acting on R by
translations which produces the values iR(Z,Z) = |α| (see Sect. 2.2).

2.1 Comparison SOE�ME

ME is an equivalence relation on countable groups and is strongly related to
SOE (as was already noticed by A. Furman [Fur99b]).

Theorem 2.3 The groups Γ1 and Γ2 are measure equivalent (with index i)
i� they admit stably orbit equivalent free actions (with index i).

Proof. (⇐) Suppose, that the free actions of Γi, i = 1, 2 are in fact orbit equiv-
alent via a measure preserving isomorphism f : X1 → X2 (see De�nition 1.3).
Then one gets an identi�cation of the equivalence relations RΓ1 = RΓ2 , as
subsets of X1 × X2. The product action of the group Γ1 × Γ2 on X1 × X2

by (γ1, γ2).(x, y) = (γ1.x, γ2.y) restricts to an action on RΓ1 = RΓ2 , which
preserves the natural measure ν (cf. Example 5.1). Each group Γi acts freely
and admits as a �nite measure fundamental domain the diagonal of the re-
lation {(x1, x2) ∈ X1 × X2 : f(x1) = x2}. We have constructed the desired
ME.
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Let now RΓi , i = 1, 2, be equivalence relations given by SOE free actions.
There is an isomorphism f : X1 × N → X2 × N which rescales the mea-
sure and allows the identi�cation of the countable stabilizations R′

1 = R′
2 as

subsets of (X1 × N) × (X2 × N) (cf. Remark 1.5). The two possible mea-
sures on it are proportional: choose, say, the one given by R′

2, and de-
note it by ν. The same as above may now be done on the intersection
R2

′ ∩ (X1 × {0}) × (X2 × {0}) leading to a free action of Γ1 × Γ2. Any
Borel section of X2 × {0} (resp. X1 × {0}) is a fundamental domain for the
Γ1-action (resp. Γ2-action) with ν-measures equal to 1 (resp. i(RΓ1 ,RΓ2)).

(⇒) Conversely, start from a coupling (Ω,m) and �nite measure funda-
mental domains Di ⊂ Ω for Γi, i = 1, 2. By commutativity, one gets (extend-
ing the left�right notations of Example 2.2 (2) to the commuting actions) an
action of Γ1 on Ω/Γ2 � D2 and an action of Γ2 on Γ1\Ω � D1.

These actions are SOE. In fact, the corresponding equivalence relations
RΓ1 and RΓ2 have countable stabilizations on Ω = Ω/Γ2 × Γ2 and on Ω =
Γ1\Ω × Γ1 which can both be identi�ed with the orbit equivalence relation
of the (Γ1 × Γ2)-action on Ω.

Recall that the measure on Ω/Γ2 and Γ1\Ω must be normalized. The
corresponding measures on Ω are µ′

1 = (m(D2))−1m and µ′
2 = (m(D1))−1m.

Following Remark 1.5, the SOE index i(RΓ1 ,RΓ2) equals λ−1, where λ satis-
�es µ′

1 = λµ′
2, i.e. λ

−1 = m(D2)/m(D1).
If the actions are not free, just choose any free probability measure pre-

serving action of Γ1 on a standard Borel space (X,µ), let Γ2 act trivially
(γ2x = x) and replace (Ω,m) by (Ω ×X,m× µ) with the diagonal Γ1 × Γ2-
action, which turns out to be free. This new coupling leads to free actions.

2.2 Values of Indices

Remark that two groups Γ1 and Γ2 are commensurable (i.e. there exists a
group Λ which is isomorphic to a �nite index subgroup in both of them) i�
they are ME for a countable coupling Ω (with counting measure) and in this
case iΩ(Γ1, Γ2) = [Γ1 : Λ]/[Γ2 : Λ]. Given Γ , the set of values {iΩ(Γ, Γ )} for
all couplings Ω between Γ and itself is denoted by IME(Γ ). Notice that it is
a ME invariant.

The condition IME(Γ ) = {1} means that for each free p.m.p. action of Γ ,
the induced equivalence relation (RΓ )Y (Example 1.2) cannot be generated
by any free action of Γ , when Y is a proper (µ(Y ) < µ(X)) Borel subset
which meets all orbits. This implies, in particular the following:

[∗] for each free p.m.p. action of Γ , the equivalence relation RΓ

has trivial fundamental group (for every self SOE, i(RΓ ,RΓ ) ≡ 1).

The condition IME(Γ ) = {1} also implies that iΩ(Γ, Γ1) only depends on Γ1

in the ME class of Γ and not on the particular coupling Ω.
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It follows from Theorem 4.1 below, that if one of the  2 Betti numbers of
Γ is �= 0,∞ (see Sect. 4), then IME(Γ ) = {1}. Also lattices in higher rank
connected simple Lie groups satisfy IME(Γ ) = {1} ([GG88, Corollary B.3],
[Fur99a], [Fur99b]). On the other hand, amenable groups do not have [∗],
and neither do groups Λ which are ME to the direct product of an in�nite
amenable group by any group. For such a Λ, one has IME(Λ) = IME(Z) =
R∗

+.

Question: Do there exist groups Γ with an in�nite discrete IME(Γ ) ? For this
question to make sense, one should restrict the attention to ergodic situations.

2.3 Comparison QI�ME

Amenability is both a QI and a ME invariant. In fact, Ornstein�Weiss' result
(cf. Sect. 1.3) implies that all in�nite (countable) amenable groups belong to
the same ME class. This single class splits into many QI classes (distinguished
for example by growth).

This could suggest that QI implies ME and that the latter in just a coarser
equivalence relation. The QI classi�cation of lattices in semi-simple Lie groups
(where lattices in a given G split into several QI classes, but remain in the
same ME class � Example 2.2) also support such an idea.

However, this turns out to be wrong. In fact, A. Furman proved that
Kazhdan property (T) is a ME invariant [Fur99a, Theorem 8.2]. But Kazhdan
property (T) is not a QI invariant: if Γ has property (T) and admits a non-
trivial Z-valued bounded 2-cocycle (many property (T) hyperbolic groups
admit such cocycles, e.g. cocompact lattices in Sp(1, n), [Li92]) then the
direct product Γ1 = Γ × Z does not have property (T), but is QI to a non-
trivial central extension of Γ by Z which has property (T). I am grateful to
A. Furman and N. Monod for discussions on this example.

For ME groups, the Euler characteristics are positively proportional (The-
orem 4.1 below). This is not the case for QI. In fact, by forming the free prod-
uct Γ ∗Fp of a group Γ with various free groups (p ≥ 2), one gets QI groups
(Gromov hyperbolic if Γ was). This is because the Fp are in fact Lipschitz
equivalent according to a theorem due to P. Papasoglu (see P. De la Harpe's
book [Har00, IV-B.46] for further results and references). Now, if χ(Γ ) ≥ 2,
the Euler characteristics χ(Γ ∗ Fp) = χ(Γ ) − p do not all have the same
sign. In fact, Theorem 4.1 states that ME groups have proportional  2 Betti
numbers βn while P. Pansu showed that for QI groups Γ1 and Γ2, one has
βn(Γ1) = 0 i� βn(Γ2) = 0.

To complete the picture, let us come back to lattices in Lie groups. A. Fur-
man, improving R. Zimmer's super-rigidity for cocycles, showed [Fur99a, The-
orem 3.2] that for a higher rank simple Lie group G, the collection of all its
lattices (up to �nite groups) forms a single ME class. More precisely, let Γ
be a lattice in a simple, connected Lie group G with �nite center and R-rank
≥ 2. Furman proved that if a countable group Λ is measure equivalent to
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Γ , then Λ has a �nite index subgroup which maps with �nite kernel onto a
lattice of Ad(G).

Finally, the ME class of the free group F2 on two generators, in addition
to all �nitely generated (non-cyclic) free groups and compact surface groups,
contains all free products of a �nite number of amenable groups, with the
exception of Z/2Z ∗ Z/2Z.

3 Cost of an Equivalence Relation

3.1 Graphings

To any group Γ , one can associate the minimal number n(Γ ) of generators.
The cost of an equivalence relation is a similar quantity. It was �rst introduced
by G. Levitt [Lev95].

One way to produce an equivalence relation is by considering a graphing,
i.e. a countable family Φ = (ϕi : Ai → Bi)i∈I of µ-preserving partial isomor-
phisms between Borel subsets Ai, Bi ∈ X . A graphing generates a standard
countable µ-preserving Borel equivalence relation RΦ, namely the smallest
equivalence relation that satis�es

x ∼ ϕi(x) for all i ∈ I and all x ∈ Ai .

In other words, (x, y) ∈ Rφ i� there exists a Φ±1-word (i.e. a word in the ϕi's
and their inverses) whose associated partial isomorphism is de�ned at x and
sends x to y.

The cost of the generating system Φ is the number of elements in Φ,
weighted by the measure of their domain: C(Φ) =

∑
i∈I µ(Ai).

The cost of the equivalence relation is the in�mum of the costs over all
the generating graphings: C(R) := inf{C(Φ) : RΦ = R}. This is by de�nition
an invariant of the equivalence relation (of OE), and the di�culty is now
the computation. If all classes are in�nite, then C(R) ≥ 1. The costs of SOE
equivalence relations R1 and R2 are related as follows : µ2(Y2)(C(R1)− 1) =
µ1(Y1)(C(R2)−1), where µ1, µ2 are probability measures onX1,X2 ([Gab00a,
Corollaire II.12.]).

A generating graphing Φ associates in a Borel varying way a Cayley graph
like structure to each orbit (this explains the terminology). Precisely, for each
x in X , its orbit under R is the vertex set of a graph Φx, where two points are
neighbors if one of the ϕi's sends one to the other. The generating condition
implies the connectedness of these graphs. Graphings appeared in a paper of
S. Adams [Ada90].

Example 3.1. (1) For a free action α of a group Γ , given a generating fam-
ily (γ1, γ2, . . . ) of Γ , one has a particular graphing Φ where each ϕi is
the automorphism α(γi), de�ned on all of X . Each orbit graph for that
graphing is then isomorphic to the Cayley graph of Γ .
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(2) Ornstein�Weiss' theorem (cf. Sect. 1.3) implies that almost all orbits of
a free action of an in�nite amenable group can be given a line structure
and thus the corresponding orbit relation has cost 1.

A treeing is a graphing where the graphs associated to almost all x ∈ X
are trees. If Φ is not a treeing, there is a Φ±1-word with a non-trivial �xed
point set. One can then remove a subset from the domain of one of its let-
ters (opening cycles in the graphs Φx), in order to de�ne a new generating
graphing with smaller cost (when �nite). Conversely:

Theorem 3.2 ([Gab98], [Gab00a, Théorème 2]) If Φ is a treeing of the
equivalence relation R, then it realizes the in�mum of the costs: C(R) = C(Φ).

While the general result involving free products with amalgamation over
amenable groups can be found in [Gab00a, Théorème 2, Théorème IV.15],
the reader interested in the proof of that restricted statement is advised to
look at the simpli�ed proof in the announcement [Gab98].

As a corollary, any free action of the free group Fn has cost n (see Ex-
ample 3.1 with a basis of Fn as generating set), thus free groups of di�erent
ranks cannot have orbit equivalent actions. Now comes the natural:

Question: How many non-orbit equivalent p.m.p. free actions does the free
group F2 admit?

Only �nitely many of them are known (three following a personal com-
munication of S. Popa). Note that S. Gefter and V. Golodets [GG88, Corol-
laire A.9, p. 843] showed that non-cocompact lattices in a simple, connected
Lie group with �nite center and R-rank ≥ 2, have a continuum of non-OE
free p.m.p. ergodic actions.

Costs of actions are computed for lots of groups Γ in [Gab00a]. For
example, if Γ is an amalgamated product A ∗C B of �nite groups, then
cost= 1−(1/|A|+1/|B|−1/|C|) (it is always treeable); if Γ is the fundamental
group π1(Sg) of a compact orientable surface of genus g, then cost= 2g − 1.

Question: Does there exist a group with two actions of di�erent costs?

3.2 Non-Treeability

But not every equivalence relation admits a treeing. Countable groups with
Kazhdan property (T) are not tree-friendly. For example, any simplicial ac-
tion of such a group on a tree �xes a point. Adams and Spatzier [AS90, The-
orem 1.8, Lemma 2.1] showed that probability measure preserving ergodic
free actions of (in�nite) Kazhdan property (T) groups do not admit any tree-
ing. The analogy between these two results will be made more transparent
in Example 6.4, Sect. 6.

The di�culty in showing that the cost is a non-trivial invariant comes
from the fact that many groups have only cost 1 actions (like direct products
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of in�nite groups, see [Gab00a, VI-D] for other examples). Thus, the following
statement gives many groups with no treeable free action: the only groups
which admit both a cost 1 and a treeable free action are amenable [Gab00a,
Corollaire VI.22].

Question: Does the surface group π1(Sg) admit a non-treeable action?

3.3 An Application

The theory of graphings is useful for a classi�cation of equivalence relations.
It can also be applied to group theory in order to show a result similar to
Schreier's theorem for normal subgroups of the free group:

Theorem 3.3 ([Gab01]) If the �rst  2 Betti number of Γ is not zero, then
any �nitely generated normal subgroup N of Γ is either �nite or has �nite
index.

Notice that �nite generation may be replaced by �niteness of β1(N),
as it was proven by W. Lück, under additional hypotheses on the quo-
tient Γ/N , like containing an in�nite order element or arbitrarily large �nite
groups [Lüc94] and [Lüc98b, Theorem 3.3]. Let us show the following weaker
statement:

Theorem 3.4 If Γ has no cost 1 free action, then any �nitely generated
normal subgroup of Γ is either �nite or has �nite index.

Proof. Consider an extension 1 → N → Γ
f→ Q → 1. Suppose that N and Q

are in�nite and that N is �nitely generated. Let us show that Γ has a cost 1
free action, by exhibiting generating graphings of small costs.

Consider a probability measure preserving ergodic free action of Γ (resp.
Q) on X (resp. Y ); then the diagonal Γ -action γ.(x, y) = (γ.x, f(γ).y) on Z =
X×Y is free and preserves the product measure. It generates an equivalence
relation R = RΓ . The �bers of the projection π : Z → Y are preserved by N .

Fix ε > 0. The relation RQ, as any equivalence relation whose classes are
in�nite, contains a hyper�nite (see Sect. 1.3) subrelation S, whose classes are
all in�nite. The latter is generated by an automorphism t of Y and Y admits
a partition Y =

∐
q∈Q Yq where x ∈ Yq i� q(x) = t(x). De�ne Zq = π−1(Yq),

choose a pullback γq ∈ f−1(q) and denote by ϕq the partial isomorphism of
Z de�ned by restricting γq to Zq. As the Zq's form a partition of Z, the cost
of Φ1 := (ϕq) equals 1.

Now let A ⊂ Z be a π-saturated Borel subset of measure ε and denote by
ϕ′
j the restriction of nj to A where n1, . . . , nr is a generating set for N . The

graphing Φ2 := (ϕ′
j)j=1,...,r generates the restriction of RN to A and its cost

equals (rε).
Claim: The relation generated by Φ1 ∪ Φ2 contains RN . In fact, for each

(x, y) ∈ Z there exists a Φ±1
1 -word m1 de�ned at (x, y) and sending (x, y)
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into A. Let ω be the corresponding element of Γ . If n ∈ N , the point n.(x, y)
lies in the same π-�ber as (x, y), so that ω is also de�ned at n.(x, y). By
normality, ωnω−1 belongs to N , thus ω(x, y) and ωn(x, y) are connected by
a Φ±1

2 -word m2. The word m−1
1 m2m1 connects (x, y) to n.(x, y).

Choose a sequence of positive numbers (ηγ)γ∈Γ with sum ≤ ε and Borel
subsets Aγ ⊂ Z of measure ≤ ηγ which meet every N -orbit � since N is
in�nite, this is possible; one could also have supposed that the N -action
is ergodic on X . Denote by ϕγ the restriction of γ to Aγ . The graphing
Φ3 = (ϕγ)γ∈Γ has cost ≤ ε.

Claim: Φ1 ∪ Φ2 ∪ Φ3 generates RΓ . In fact, for each (x, y) ∈ Z, there is
an element of N sending it into Aγ , and also a (Φ1 ∪ Φ2)±1-word m. By
normality, γ.(x, y) and ϕγm(x, y) are N -equivalent, thus they are connected
by a (Φ1 ∪ Φ2)±1-word m′. Now m′ϕγm connects (x, y) to γ.(x, y).

Since Φ1∪Φ2∪Φ3 has cost 1+ rε+ ε, one concludes that RΓ has cost 1.

4 �2 Betti Numbers for Groups

To each countable group Γ is associated a sequence of numbers ∈ [0,∞]
called its  2 Betti numbers (βn(Γ ))n∈N that are de�ned using the  2 chains
of CW-complexes on which Γ acts. They were de�ned in this generality in
[CG86].

Theorem 4.1 ([Gab01]) If Γ1 and Γ2 are measurably equivalent, then they
have proportional  2 Betti numbers.

More precisely if (Ω,m) is a coupling between them with index iΩ(Γ1, Γ2),
then for all n ∈ N, one has βn(Γ2) = iΩ(Γ1, Γ2) · βn(Γ1).

In particular, ME groups have positively proportional Euler characteristics
(when de�ned) χ(Γ ) = χ(2)(Γ ) =

∑
n(−1)nβn(Γ ).

Corollary 4.2 Lattices in the same locally compact second countable group
have proportional  2 Betti numbers with constant of proportionality equal to
the ratio of the covolumes.

4.1 �2 Homology

In this section, we give some indications about  2 homology and  2 Betti num-
bers for cocompact free actions on simplicial complexes. We refer to W. Lück's
and B. Eckmann's surveys ([Lüc98], [Eck00]) for a general exposition of these
ideas, or to Lück's forthcoming book [Lück].

Let K be a simplicial complex on which Γ acts freely and simplicially.
The space of n-chains is the free Z-module Cn(K,Z) with the family Sn of
n-simplices as a basis. It is the space of (�nite) formal integer linear combi-
nations of elements of Sn. The boundary map ∂n sends an n-simplex to the
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obvious (n−1)-chain � one has at some point to order simplices, let us forget
about it � and is extended to n-chains by linearity.

If now Sn is considered as a Hilbert orthonormal base, one gets the space

of  2 n-chains C
(2)
n (K), i.e. the space of (in�nite) formal linear combinations

of elements of Sn with square summable coe�cients.
Once a representative is chosen in each orbit of Sn, there are natural

Γ -equivariant identi�cations of Sn with αn copies of Γ , where αn is the
number of Γ -orbits in Sn. These induce isomorphisms Cn(K,Z) � ⊕αn

i=1ZΓ

and C
(2)
n (K) � ⊕αn

i=1 
2(Γ ) where Γ acts by left translations, and where the

latter is a Hilbert sum. The spaces of chains thus get a Γ -module structure.
The ∂n's, de�ned on the Hilbert basis, require some �niteness condition

to extend to a well de�ned and bounded (hence continuous) operator on  2

chains. For example, suppose that a vertex v is the endpoint of in�nitely many
edges e1, e2, . . . of K. Since

∑
j∈N(1/j2) converges, the chain

∑
j∈N(1/j)ej

is  2, i.e. belongs to C
(2)
1 (K), but by applying the boundary operator ∂1 for-

mally, the vertex v would receive the coe�cient
∑
j∈N(1/j) !! More precisely,

the sequence ∂1(
∑p
j=1(1/j)ej) is not bounded when p → ∞ since, when ex-

pressed in the vertices Hilbert base, its v-coe�cient is
∑p
j=1(1/j). But if K

is cocompact, then the boundary maps extend to bounded operators still
denoted ∂n, and give a chain complex (∂ ◦ ∂ = 0)

0 C
(2)
0 (K)

∂0�� C
(2)
1 (K)

∂1�� C
(2)
2 (K)

∂2�� C
(2)
3 (K)

∂3�� . . .
∂4�� (1)

As usual, consider its homology H
(2)
n (K) := Ker ∂n/Im ∂n+1. If one wants to

keep dealing with Hilbert spaces one has to divide out by a closed subspace,
i.e. to consider the closure Im ∂n+1 of Im ∂n+1, thus considering the so called

reduced  2 homology H
(2)

n (K) := Ker ∂n/Im ∂n+1.

4.2 �2 Betti Numbers

In fact, all of this is Γ -equivariant, so that the reduced  2 homology has
the additional structure of a Hilbert Γ -module. It is a Hilbert space, with
a Γ representation and it admits an isometric equivariant embedding into
an orthogonal sum Lr = ⊕ri=1 

2(Γ ), where Γ acts by λr, the sum of its

left regular representations λ on each  2(Γ ). Namely, H
(2)

n (K) embeds into

C
(2)
n (K) � ⊕αn

i=1 
2(Γ ) as the space Hn(K) of harmonic n-chains, the ortho-

complement of Im ∂n+1 in Ker ∂n.
It thus gets a Γ -dimension (see Sect. 4.4), in some sense a dimension

modulo the Γ -action (cf. 1�2, Sect. 4.4).
The  2 Betti numbers for the action of Γ on K are by de�nition:

βn(K,Γ ) := dimΓ H
(2)

n (K) .
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These numbers were �rst introduced byM. Atiyah in [Ati76], and Cheeger�
Gromov have extended the notion to not necessarily cocompact simplicial ac-
tions [CG86], and even in the much more general context of singular  2 coho-
mology. A very nice alternative theory was developed by W. Lück ([Lüc98a],
[Lüc98b]).

The  2 Betti numbers of the group Γ are those of any free Γ -action on a
contractible simplicial complex EΓ :

βn(Γ ) = βn(EΓ, Γ ) ,

and are shown to depend only on Γ [CG86].

4.3 Example

Let us consider the example of the free group Γ = Fn acting on the regular
tree T which is the universal cover of a bouquet of n circles with one vertex
and n oriented edges e1, e2, . . . , en. The tree is the Cayley graph of Fn for
a generating basis. Once a vertex x and an edge ei in each of the n orbits
of edges are chosen, C0(T,Z) = ZΓ.x and C1(T,Z) = ⊕ni=1ZΓ.ei give a

chain complex 0 ZΓ�� ⊕ni=1 ZΓ
∂1�� 0�� where ∂1 is injective and not

surjective � the image 0-chains are those for which the sum of the coe�cients
vanishes � leading to a 1-dimensional H0 and trivial H1 which is not very
interesting (just related to the fact that T is contractible). To get something
interesting one has to �divide out �rst" by Γ .

By contrast, at the  2 level and for n ≥ 2, in the associated chain

complex 0  2(Γ )�� ⊕ni=1  2(Γ )
∂1�� 0�� ∂1 becomes surjective � as

Kesten's theorem shows, since Γ is non-amenable � and far from injective
since dimΓ Ker ∂1 = dimΓ ⊕ni=1 

2(Γ )−dimΓ Im ∂1 = n−1 (Item 7, Sect. 4.4).

Thus H
(2)
0 (T ) = 0 while H

(2)
1 (T ) � ⊕n−1

i=1  2(Γ ). Taking the von Neumann di-
mension amounts in some sense to �dividing out afterwards�.

An example of a harmonic 1-chain is obtained in the most obvious manner:
put the coe�cient +1 on some oriented edge e = [a, b]. Tail a and head b of
e receive −1, resp. +1, by ∂1. Compensate this by putting the coe�cient
(2n−1)−1 on each edge with head a or with tail b, and so on, put (2n−1)−d

on edges at distance d oriented towards a, or oriented away from b. Since
n ≥ 2, this is an  2 chain.

4.4 Von Neumann Dimension

Hilbert Γ -modules M possess a well de�ned generalized dimension dimΓ M .
It enjoys the following properties:

1. dimΓ  2(Γ ) = 1;
2. if Γ is �nite, dimΓ M = 1

|Γ | dimM (usual vector space dimension);
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3. dimΓ M ≥ 0;
4. dimΓ M = 0 ⇐⇒ M = 0;
5. M ⊂ N ⇒ dimΓ M ≤ dimΓ N ;
6. dimΓ M ⊕N = dimΓ M + dimΓ N ;

7. dimΓ Ker f + dimΓ Im f = dimΓ M1, when f : M1 → M2 is a Γ -
equivariant bounded operator between Hilbert Γ -modules .

The Γ -dimension is de�ned as follows: consider �rst a closed Γ -invariant
subspace M of  2(Γ ) = L1 and let p be the orthogonal projection onto M . By
Γ -invariance, the operator p belongs to the von Neumann algebra of the group
Γ , the algebra N(Γ ) of those operators that commute with all the unitary
operators λ(γ), γ ∈ Γ . The crucial feature is the existence of a �nite trace
τ on N(Γ ): for a ∈ N(Γ ), τ(a) = 〈a(δe)|δe〉 (where δe is the characteristic
function of the identity element of Γ ). Now the von Neumann dimension of
M is the trace of its projector dimΓ M = τ(p).

If M is a closed Γ -invariant subspace of Lr, its projection belongs to the
commuting algebra of λr(Γ ) and admits a bloc decomposition as an r × r
matrix with coe�cients pi,j in N(Γ ). By de�nition dimΓ M =

∑r
i=1 τ(pi,i).

The trace property (τ(ab) = τ(ba)) ensures that any two Γ -equivariant
isometric embeddings in Lr of a Hilbert Γ -module have indeed the same
dimension, giving rise to the well de�ned notion of Γ -dimension for such a
module. This de�nition has a natural extension when r = ∞.

5 Simplicial Actions of an Equivalence Relation

5.1 Fibered Spaces

Fundamental Example. Consider a free measure preserving action of a
countable group Γ on (X,µ) and the orbit equivalence relation RΓ . Consider
moreover an honest free simplicial action of Γ on a countable simplicial com-
plex K. The space ΣK := X ×K is equipped with the diagonal action of Γ :
γ.(x, τ) = (γ.x, γ.τ). It is �bered over X .

Choose a fundamental domain D(0) := {v1, v2, . . . , } , that is a set of
Γ -orbit representatives for the Γ -action on the 0-skeleton K(0) of K. The
set X × D(0) is a fundamental domain for the diagonal action on X × K(0)

which permits us to identify the latter with countably many copies of R (one
for each vertex vj ∈ D(0)) by Θj : (x, γ.vj) �→ (x, γ−1.x). Notice that the
Θj are equivariant when R is given the Γ -action on the left coordinates:
Θj(γ′.(x, γ.vj)) = (γ′.x, γ−1.x) = γ′.Θj(x, γ.vj).

An analogous construction can be done in each dimension, by choosing
a fundamental domain D(n) for the Γ -action on the set of n-simplices K(n)

of K. This permits us to identify the space X × K(n) with countably many
copies of R. Notice that an n-simplex in X×K(n) is made of an (n+1)-tuple
of points in X ×K(0), with the same projection on X .
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Fibered Spaces. A standard Borel �bered space over X is a standard Borel
space U together with a speci�ed Borel map (projection map), with countable
�bers p : U → X .

The natural measure νU on U is de�ned as the product of µ (the measure
on X) with the counting measure in the �bers of p. Thus, the measure of a
Borel subset V ⊂ U is obtained by integrating over (X,µ) the function x �→
number of points in the intersection of V with the �ber of x. Alternatively,
νU is built by considering any countable Borel partition U =

∐
Ui such that

the restriction of p to each Ui is injective and by putting on each Ui the pull
back of µ.

When U and V are standard Borel �bered spaces over X , via projection
maps p and q, their �bered product

U ∗ V = {(u, v) ∈ U × V/ p(u) = q(v)}
is a standard Borel �bered space over X .

Example 5.1. The equivalence relation R has two natural �berings over X ,
given by the projection maps pl : (x, y) �→ x and pr : (x, y) �→ y, where the
r in pr stands for right while pl is the range map and pr is the source map
for the groupoid R. Due to the invariance of µ for R, the natural measures
de�ned by these two �berings coincide; just denote them by ν.

5.2 Groupoid Actions

Space with Standard Left R-Action. A standard left R-space or space
with standard left R-action consists of a (standard Borel) �bered space U over
X and a map called the action map de�ned on the �bered product, where R

�bers via pr,

R ∗ U → U, ((y, z), u) �→ (y, z).u ,

such that (x, y).[(y, z).u] = (x, z).u and (z, z).u = u. In particular, z =
p(u) and y = p((y, z).u). The space X itself is a standard left R-space. The
projection map p of a left R-space is R-equivariant: p((y, z).u) = (y, z).p(u).
The orbit of u is the set R.u := {(y, z).u : (y, z) ∈ R, z = p(u)} and the
saturation R.B of a Borel subset B ⊂ U is the union of the orbits that meet
B.

Discrete Actions. A standard left R-space U is discrete if the action admits
a Borel fundamental domain D, i.e. a Borel subset D ⊂ U that meets once
and only once the orbit of νU -almost all u ∈ U .

Example 5.2. An obvious instance of such a left R-space is the �bered space
(U, p) = (R, pl) itself, with the action map R∗U → U, ((x, y), (y, z)) �→ (x, z)
and the diagonal of R = U as a fundamental domain.
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Given a discrete standard left R-space U , choose any countable Borel
partition of a fundamental domain D =

∐
i∈I Di, such that, on each Di, p

restricts to bijections Di
p→ p(Di) ⊂ X . The natural identi�cation of Di

with the diagonal subset ∆i = {(z, z) : z ∈ p(Di)} ⊂ R extends by R-
equivariance to an identi�cation of the saturation R.Di with the saturation
R.∆i = p−1

r (p(Di)). One thus gets an isomorphism of discrete standard left
R-spaces between U and the disjoint union

∐
i∈I R.∆i.

If U is a discrete left R-space (with fundamental domain D), then also
U ∗ U ∗ · · · ∗ U is a discrete left R-space (with fundamental domain equal to
D ∗ U ∗ · · · ∗ U).

6 Actions of the Equivalence Relation on a Simplicial

Complex

De�nition 6.1 A simplicial complex with standard left R-action or more
brie�y an R-simplicial complex Σ consists of the following data:

• a discrete left R-space Σ(0) p→ X (space of vertices);
• for each n ∈ N, a Borel subset Σ(n) ⊂ Σ(0) ∗ · · · ∗Σ(0)︸ ︷︷ ︸

n+1 times

, called the space
of ordered n-simplexes (possibly empty
for large n's), satisfying four conditions:

1. (permutations) Σ(n) is invariant under permutation of the coordi-
nates;

2. (non-degeneracy) if (v0, v1, · · · , vn) ∈ Σ(n), then v0 �= v1, and:
3. (boundary condition) (v1, · · · , vn) ∈ Σ(n−1);
4. (invariance) R.Σ(n) = Σ(n).

The data in the �ber of each x ∈ X is just an ordinary (countable) sim-
plicial complex, denoted by Σx. Notice that the �rst two conditions could be
slightly modi�ed according to your favorite de�nition of a simplicial complex.

The R-simplicial complex Σ is n-connected, resp. contractible, resp. n-
dimensional if for almost all x in X , the simplicial complex Σx has the cor-
responding property.

Example 6.2. (1) The basic and motivating example for this is the funda-
mental example in Sect. 5.1, where each Σx is identi�ed with a copy of
K.

(2) A graphing Φ = (ϕi)i∈I of R (cf. Sect. 3.1), with no loops or double edges,
gives a 1-dimensional connected R-simplicial complex. As left R-spaces
(cf. Example 5.2) Σ(0) = R and Σ(1) = {((x, y), (x, z)) ∈ R ∗ R : y =
ϕ±1
i (z) for some i ∈ I}.

(3) The complete structure where each Σ(n) = R ∗ · · · ∗ R with all diago-
nals removed (for non-degeneracy) is a contractible in�nite dimensional
example.
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De�nition 6.3 The geometric dimension of an equivalence relation R is the
smallest dimension of a contractible R-simplicial complex.

The ergodic dimension of a countable group Γ is the smallest dimension
of the equivalence relations RΓ produced by free actions of Γ .

Example 6.4. The already mentioned result of Adams and Spatzier (Sect. 3.2)
about non-treeability for ergodic free actions of Kazhdan property (T) groups
Γ can now be rephrased: RΓ does not admit any 1-dimensional contractible
RΓ -simplicial complex and Kazhdan property (T) groups have ergodic di-
mension > 1.

One easily concludes that measure equivalent groups have the same er-
godic dimension and that geometric (resp. ergodic) dimensions decrease when
passing to subrelations (resp. subgroups).

7 �2 Betti Numbers for Equivalence Relations and

Their Actions

7.1 �2 homology of Σ

An R-simplicial complex Σ de�nes a Borel �eld of simplicial complexes x �→
Σx and, for each n ∈ N, a Borel �eld of Hilbert spaces x �→ C

(2)
n (Σx).

What is a Borel vector �eld? Notice that a Borel section s of the �bering
Σ(n) → X leads to a Cn(Σx)-valued vector �eld x �→ s(x). A vector �eld

x �→ σ(x) ∈ C
(2)
n (Σx) is Borel if x �→ 〈σ(x)|s(x)〉x is a Borel function for

every Borel section s.
The Hilbert integral of the  2 n-chains of Σx is called the space of n-

dimensional  2 chains of Σ and denoted by:

C(2)
n (Σ) :=

∫ ⊕

X

C(2)
n (Σx)dµ(x) .

It is the Hilbert space of those Borel vector �elds that are square integrable,
that is for which x �→ ||σ(x)||x ∈ L2(X,µ).

If the Σx are uniformly locally bounded, then the �elds of the boundary

operators lead by integration to bounded operators ∂n : C(2)
n (Σ) → C

(2)
n−1(Σ)

still satisfying ∂ ◦ ∂ = 0. The reduced homology H
(2)

n (Σ) of the associated
chain complex is called the reduced  2 homology of Σ. Like in the group case
(Sect. 4), these spaces have additional structure: they are Hilbert modules �
the von Neumann algebra M involved is that of the equivalence relation R

(see Sect. 7.2) � giving them a von Neumann dimension, �dimension modulo
the groupoid action�, which is called  2 Betti number of Σ and denoted:

βn(Σ,R) := dimM H
(2)

n (Σ) .
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By using some ideas from [CG86], this de�nition is extended from uni-
formly locally bounded Σ's to general Σ's (see [Gab01]). A major di�culty
arises here from the fact that operators appearing in homotopy equivalences
do not lead to bounded operators (see [Gab00b]). The next result must be
compared to A. Connes' notion of Betti numbers of foliations [Co82, p. 549]
and to the claim in [Gro93, 8.A4, p. 233] where the hypothesis forces bound-
edness of certain operators.

Theorem 7.1 ([Gab01]) Any two contractible R-simplicial complexes have
the same  2 Betti numbers, called the  2 Betti numbers of the equivalence
relation R and denoted by βn(R). If R is de�ned by a free measure preserving
action of a countable group Γ , then for all n ∈ N, βn(R) = βn(Γ ).

If βp(R) > 0 then the geometric dimension of R is ≥ p. One deduce the
existence of equivalence relations of any geometric dimension: consider a free
action of F2×F2×· · ·×F2, p times, to get a relation of dimension exactly p.

By the Morse inequalities, one gets a relation between  2 Betti numbers
and cost: cost(R) − 1 ≥ β1(R) − β0(R), with no known example of strict
inequality.

Question: Is it always the case, that cost(R) − 1 = β1(R) − β0(R)?

7.2 Von Neumann Algebra of an Equivalence Relation

Consider the Hilbert space L2(R, ν) arising from the Borel space R with its
measure ν (see Example 5.1).

For each partial isomorphism ϕ : A → B whose graph is contained in R

(see Sect. 1.2) denote by Lϕ the operator on L2(R, ν) de�ned by Lϕ(η(x, y)) =
η(ϕ−1(x), y) if x ∈ B and 0 otherwise. The von Neumann algebra M of R is
the algebra of those bounded operators that commute with the family L of
all the Lϕ's (see [FM77b] and [Moo82]). Notice that adjoining to L the Lψ's
de�ned for ψ ∈ L∞(X,µ) by Lψ(η(x, y)) = ψ(x)η(x, y) would not change M.

If R = RΓ , then by the observation in Sect. 1.2, one could replace L by the
Lγ 's, γ ∈ Γ , together with the Lψ's. In the free action case, M is described
as a � cross product� of L∞(X,µ) with Γ (see [MvN36, part IV, p. 192�209]).

The algebra M has a trace τ(a) = 〈a(χ∆)|χ∆〉, where χ∆ is the charac-
teristic function of the diagonal of R. This allows us to de�ne, as in Sect. 4.4,
the von Neumann dimension of closed L-invariant subspaces of ⊕L2(R, ν).

The embedding of C
(2)
n (Σ) into a sum of L2(R, ν) is obtained from the

identi�cation at the end of Sect. 5.2.
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