
AN INDEX FOR COUNTING FIXED POINTS

OF AUTOMORPHISMS OF FREE GROUPS

Damien Gaboriau, Andre Jaeger, Gilbert Levitt, Martin Lustig

Abstract. Let � be an automorphism of a free group F of rank n. The Scott
conjecture, proved by Bestvina-Handel, states that the �xed subgroup Fix� = fg 2
F j �(g) = gg has rank at most n. Using R-trees, we show the stronger inequality

rkFix� + 1

2
a(�) � n, where a(�) is the number of Fix�-orbits of attracting �xed

points for the action of � on the boundary of F .

Introduction

Let � be an automorphism of F = Fn, the free group of rank n. The Scott con-
jecture, proved by Bestvina-Handel [BH], states that the �xed subgroup Fix� =
fg 2 F j �(g) = gg has rank at most n.

We shall improve this result by showing:

Theorem 1. If � is any automorphism of Fn, then rkFix�+
1

2
a(�) � n:

Here a(�) is the number of equivalence classes of attracting �xed points for
the action of � on the boundary of F (de�ned below). This answers positively a
conjecture of Cooper's ([Co, p. 455]).

If Fix� is trivial, our result specializes to:

Corollary. An automorphism � of Fn with Fix� = f1g �xes at most 4n ends of
Fn.

To de�ne a(�) in general, we consider the boundary �F of F (see Part I), the
Cantor set of ends of F if n � 2. If we choose a free basis g1; : : : ; gn, it may be
viewed as the set of all in�nite reduced words X = x1 � � �xi � � � in the letters g�1j .
The action of � on F extends to a continuous action of � on �F . The boundary of
the subgroup Fix� naturally embeds in �F , and � acts on �(Fix�) as the identity.

We consider �xed points of � in �F . It turns out (Proposition I.1) that such
a �xed point X either belongs to �(Fix�), or is attracting, or is repelling (i.e.
attracting for ��1). Here attracting may be understood in the topological sense
(limp!+1 �p(X 0) = X for X 0 close to X in F [ �F ), or in the algebraic sense of
[CL 1, 1.4]. As in [CL 1], we say that two �xed points X1;X2 2 �F are equivalent
if there exists g 2 Fix� such that X2 = gX1. Note that any point equivalent to
an attracting �xed point of � is itself an attracting �xed point of �.
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We let A(�) be the set of equivalence classes of attracting �xed points of �,
and we denote a(�) the cardinality of A(�). Finiteness of a(�) follows from [Co]
(or [CL 1]).

Theorem 1 may be illustrated by the following example from [CL 1]. Let
� : F2 ! F2 be given by �(a) = aba, �(b) = ba. The �xed subgroup has
rank 1, it is generated by aba�1b�1. One obtains two inequivalent �xed words
X1 = ababaaba � � � and X2 = a�1b�1a�1a�1b�1a�1b�1a�1 � � � by taking the limit
as p goes to +1 of �p(a) and �p(a�1) respectively. Note that X3 = baabaaba � � � =
limp!1 �p(b) is equivalent to X1. The automorphism � is induced by a pseudo-
Anosov homeomorphism ' of a punctured torus M . The �xed subgroup corre-
sponds to the boundary of M , while the equivalence classes of attracting �xed
points correspond to the separatrices of the unstable foliation of '.

This paper elaborates on the note [GLL], which contains a proof of the Scott
conjecture based on R-trees. As in [GLL], the two main ingredients in this paper
are the existence of a certain �-invariant R-tree, and an inequality by Gaboriau-
Levitt [GL] about stabilizers of branch points in R-trees.

Given an automorphism � of F , there is an action of F on an R-tree T , which
is �-invariant in the following sense: its length function ` satis�es ` � � = �`
for some number � � 1 (this action represents a �xed point for the action of �
on the boundary of Culler-Vogtmann's outer space). Equivalently, there exists a
homothety H : T ! T with stretching factor � � 1 (i.e. d(Hx;Hy) = �d(x; y) for
x; y 2 T ), such that �(w)H = Hw for all w 2 F (we identify an element of F and
the associated isometry of T ).

The existence of such an invariant tree, with a very small action of F , is now
well-known (Bestvina-Handel, Skora, Lustig [Lu], Paulin [Pa 3]). In Part II we
shall construct T and derive additional properties. In particular we prove the fact
(due to Lustig [Lu]) that T may be assumed to have trivial arc stabilizers. We
also prove that H has a �xed point Q 2 T whenever rkFix� + 1

2a(�) > 0.
In Part IV we analyze the invariant tree T , relating properties of � to geometric

properties of T . This may be viewed as the heart of the paper. We distinguish
several cases. Here we mention only the most interesting one, when � > 1. In
this case we use the fact (proved in Part III using an estimate by Bestvina-Feighn-
Handel for maps between metric graphs) that everyR-tree with a very small action
of F has the following Bounded BackTracking property (BBT): Given Q 2 T ,
there exists C > 0 such that, if v, w are reduced words in F with no cancellation
in the product vw, then d(vQ; [Q; vwQ]) � C, where [Q; vwQ] denotes the segment
between Q and vwQ.

Consider an attracting �xed point of �, represented by a �xed in�nite word
X = x1 � � �xi � � � . We write Xp = x1 � � �xp. Applying (BBT) to the �xed point Q
of H we show that either X 2 �(StabQ) � �F (where StabQ � F is the stabilizer
of Q), or as p goes to +1 the sequence XpQ goes to in�nity in T , staying at a
bounded distance from an H-invariant in�nite ray � starting at Q.

This leads to a injection from the set of equivalence classes of attracting �xed
points of � not contained in �(StabQ), to the set of orbits of the action of StabQ
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on �0(T n fQg).
We now use Theorem III.2 of [GL], which in the special case when arc stabilizers

are trivial may be stated as follows:

Theorem 2 [GL]. Let T be an R-tree with a minimal Fn-action whose arc stabi-
lizers are all trivial. Given Q1; : : : ; Qq 2 T belonging to distinct orbits, we have

qX
`=1

(rk StabQ` +
1

2
v(Q`)� 1) � n� 1;

where v(Q`) � 1 is the number of orbits of the action of StabQ` on �0(T n fQ`g).
In particular, rk StabQ � n� 1 and v(Q) � 2n for every Q 2 T .

Using Theorem 2, we prove Theorem 1 by induction on n in Part V. As in
[GLL], we need to consider several automorphisms simultaneously to make the
induction work.

Two automorphisms �; � of F represent the same outer automorphism � 2
Out (F ) if there exists m 2 F such that � = im � �, with im(g) = mgm�1. As in
[GLL], we say that � and � are similar if m can be written m = c�(c�1) for some
c 2 F , or equivalently if � = ic � � � (ic)�1. Similar automorphisms represent the
same automorphism, up to a change of basis in F . In particular the rank of Fix�,
and the number a(�), are similarity invariants.

What we actually prove by induction on n in Part V is the following statement:

Theorem 1'. Let �0; : : : ; �k be automorphisms of Fn representing the same outer
automorphism and belonging to distinct similarity classes. Then

kX
i=0

(rkFix�i +
1

2
a(�i)� 1) � n� 1:

Equivalently:
P

�2S(�)max(0; rkFix�+ 1
2a(�)�1) � n�1, where S(�) is the set

of similarity classes of automorphisms representing a given outer automorphism
� 2 Out (F ).

(This theorem is only super�cially stronger than Theorem 1. It follows from
Theorem 1 by applying it to the automorphism of Fn � Fk equal to �0 on Fn and
sending the i-th generator ti of Fk to tiui where �i = iui � �0.)

As an example, let M be a compact orientable surface of genus 2 with one
boundary component. Let ' be a pseudo-Anosov homeomorphism of M whose
unstable foliation has two singularities, a 7-prong saddle x in the interior of M
and a tripod y on the boundary (see [MaSm, Theorem 2] for a proof of existence).
The homeomorphism ' induces two non-similar automorphisms �x and �y of
F4 ' �1M , depending on whether the basepoint is set at x or y (note that x and
y are �xed by ' but belong to di�erent Nielsen classes). One has Fix�y ' Z

and a(�y) = 1 (corresponding to the in�nite separatrix of y). On the other hand
Fix�x is trivial and a(�x) = 7. In this example, equality holds in Theorem 1'.
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In Part VI, written rather informally, we discuss and interpret the index

ind (�) := rkFix�+
1

2
a(�) � 1

of an automorphism of F , as well as the index

ind (�) :=
X

�2S(�)

max(0; rk Fix�+
1

2
a(�) � 1)

of � 2 Out (F ) that appears in Theorem 1'. It turns out that ind (�) is strongly
related to important structural properties of �. In particular we will consider
automorphisms of maximal index n� 1.

I. The action of � on �F

Let F be a free group of rank n and F its compacti�cation (end completion
as in [Co], or compacti�cation as a hyperbolic group, see e.g. [Sho 1, ch. 4]).
The boundary �F = F n F is a compact space, homeomorphic to a Cantor set if
n � 2. The natural actions of F and Aut (F ) on F extend continuously to F . Any
�nitely generated subgroup F 0 � F is quasiconvex [Sho 2], hence inclusion induces
a natural embedding �F 0 ! �F (see [CDP, p. 115]).

Once we �x a free generating system g1; : : : ; gn for F , we view F as the set
of reduced words in the letters g�1j , and �F as the set of in�nite reduced words
X = x1 � � � xi � � � . We denote Xi = x1 � � � xi.

Given two reduced wordsX;X 0, �nite or in�nite, we let X^X 0 be their common
initial segment (the empty word if x1 6= x01) and we denote cX0(X) the length of
X ^X 0. A sequence of reduced words Xp 2 F converges to X 2 �F if and only if
limp!+1 cX(Xp) = +1.

Now let � be an automorphism of F . Recall ([Co], see Part III) that there is a
cancellation bound for �, that is a number B such that

j�(vw)j � j�(v)j+ j�(w)j � 2B

whenever v;w; vw are �nite reduced words with jvwj = jvj+ jwj (j j denotes word
length).

Let X = x1 � � � xi � � � be �xed by �. We write �(Xi) = Xk(i)Zi with k(i) =
cX(�(Xi)). Since X is �xed by �, the sequence k(i) goes to +1 as i increases.
Bounded cancellation implies jZij � B. Also note that jk(i+1)� k(i)j is bounded
by a constant depending only on � (namely max j�(gi)j).

As in [CL 1], we say that X is an attracting �xed word of � if

lim
i!+1

(k(i) � i) = +1:

Note that there exists i0 such that for all i � i0 one has k(i) � i + B + 1 and
hence

cX(X
0) � i0 =) cX(�(X

0)) > cX(X
0): (�)
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We say that X is an attracting �xed point of � if there exists a neighborhood
U of X in F such that

X 0 2 U =) lim
p!+1

�p(X 0) = X:

The following proposition shows that the two notions of attraction are the same.
We say that X is repelling for � if it is attracting for ��1.

Proposition I.1. Let X 2 �F be an in�nite �xed word of �. The following are
equivalent:

(1) X is an attracting or repelling �xed word.
(2) X is an attracting or repelling �xed point for the action of � on F .
(3) X =2 �(Fix�).

(of course the subcases attracting or repelling in (1) and (2) coincide).

Proof. (1) =) (2): Suppose X is an attracting �xed word. Choose i0 as in (�).
If cX(X 0) � i0, we get cX(�(X 0)) > cX(X 0), hence limp!+1 cX(�p(X 0)) = +1
and limp!+1�p(X 0) = X.

(2) =) (3): this is clear since � acts as the identity on Fix� and no point
X 2 �(Fix�) can be isolated in Fix�.

To prove (3) =) (1), let X be any in�nite �xed word. As in [Co], we consider
the words wi = X�1i �(Xi). We note that

wi = wp =) XpX
�1
i 2 Fix�:

If the sequence of words wi takes the same value in�nitely often we get X 2 Fix�
since for �xed i we have X = limp!+1XpX

�1
i .

Otherwise jwij goes to in�nity. Recall that �(Xi) = Xk(i)Zi with jZij � B and
jk(i + 1) � k(i)j bounded. Since jwij is comparable to jk(i) � ij (the di�erence
is bounded by B) we see that k(i) � i goes to either +1 or �1 as i increases.
If the limit is +1, then X is an attracting �xed word. If it is �1, we repeat
the argument for ��1. De�ne k(i) and Zi analogously to k(i) and Zi. Writing
Xi = ��1(Xk(i))�

�1(Zi) we see that k(k(i)) � i stays bounded. Then k(k(i)) �

k(i) = (k(k(i)) � i)� (k(i)� i) goes to +1, and so does k(i) � i (recall that k(i)
goes to +1). This means that X is a repelling �xed word.

Note that the corollary stated in the introduction is an immediate consequence
of Theorem 1: if Fix� = f1g, then there are at most 2n attracting �xed points
and 2n repelling ones.

II. The invariant tree

A. Statement of the result.

For the convenience of the reader we state some basic de�nitions about R-trees.
For more detailed information see e.g. [MoSh], [CM] or the survey articles [Sha 1],
[Sha 2].
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An R-tree is a non-empty metric space in which any two distinct points x; y are
joined by a unique arc [x; y], and in which every such arc is isometric to a closed
interval of R (recall that a (nondegenerate) arc is a space homeomorphic to [0; 1]).

Alternatively, an R-tree is a path-connected metric space (X;d) which satis�es
the 0-hyperbolicity condition

d(x; z) + d(y;w) � maxfd(x; y) + d(z;w); d(x;w) + d(z; y)g;

see [GH].
We considerR-trees equipped with a left action of a group G by isometries. The

stabilizer Stab (x) of a point x 2 T is the subgroup of G consisting of elements
�xing x. Similarly, the stabilizer of an arc [x; y] is the subgroup consisting of
elements �xing [x; y] pointwise.

The G-action on T (or sometimes just T ) is called

{ trivial () 9 x 2 T with Stab (x) = G,

{ simplicial () T arises from a simplicial tree by setting each edge length equal
to some positive value (always 1 in this paper),

{ minimal () there is no proper G-invariant subtree,

{ free () the stabilizer of every point is trivial,

{ with trivial arc stabilizers () the stabilizer of every arc [x; y] is trivial,

{ small () no arc stabilizer contains a free group of rank 2.

Let � be an automorphism of F . Recall that the index of � is the quantity

ind (�) = rkFix�+
1

2
a(�) � 1

that appears in Theorem 1'. It is an integer, or a half-integer, with ind (�) � �1.
Our interest will be in automorphisms with positive index.

We now state the main result of this section which is proved in subsections
B to E. A homothety of a metric space (X;d) is a map H : X ! X satisfying
d(Hx;Hy) = �d(x; y) for some �xed � > 0 called the stretching factor .

Theorem II.1. For every automorphism � of F there exists an R-tree T such
that:

(1) F acts on T non-trivially, minimally, with trivial arc stabilizers.
(2) There exist � � 1 and a homothety H: T ! T with stretching factor �

such that
�(w)H = Hw: T ! T

for all w 2 F . If � = 1, then T is simplicial.
(3) If ind (�) > 0, then H has at least one �xed point Q 2 T . More generally,

if � = im � � satis�es ind (�) > 0, then H� = mH has a �xed point (recall
that im(g) =mgm�1).
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Remark II.2. It is easy to see that, given � and T , the equation �(w)H = Hw
uniquely determines H (and �). The second part of Assertion 3 will be used
when we study several automorphisms simultaneously (see Part V). Note that
�(w)H� = H�w for all w 2 F , since

�(w)H� =m�(w)m�1mH = m�(w)H =mHw = H�w:

Thus we may use the same tree T to study all automorphisms representing a
given outer automorphism �. Indeed, Assertion 2 is equivalent to the equation
` �� = �`, where ` is the length function of the action of F on T .

B. A criterion for a �xed point.

Let � be a �nite connected graph, with �1� free of rank n � 2. We �x a universal
covering ~� ! � , and an isomorphism from the group of covering transformations
to F (this is a way of identifying �1� with F without having to choose a basepoint;
of course this identi�cation is only de�ned up to a conjugacy in F ).

Let f : � ! � be a homotopy equivalence. It induces a well-de�ned outer
automorphism � of F , and the formula

�(w) ~f = ~fw (��)

de�nes a 1-to-1 correspondence between the set of lifts ~f : ~� ! ~� and the set
of automorphisms � of F representing �. We �x an automorphism � and the
corresponding ~f .

The following result generalizes Lemma 2.1 of [BH].

Proposition II.3. Let ~f : ~� ! ~� be associated with the automorphism � of F by
(��). If ind (�) > 0, then ~f has a �xed

point.

Proof. As in [BH, p. 19], we shall use the following geometric �xpoint criterion for
~f : Let x; y 2 ~� be distinct points with the property that ~f(x) is distinct from x and
is not contained in the same connected component of ~� �fxg as y, and conversely.

Then ~f has a �xed point on [x; y].
Make � into a metric graph by declaring that every edge has length 1, and equip

~� with the lifted metric. For any point P 2 ~� , the map j : w 7! wP gives a quasi-
isometric embedding F ! ~� . This induces a homeomorphism between �F and the
space �~� of ends of ~� , which is independent of the choice of P . Furthermore, the
distance in ~� between ~f (j(w)) = �(w) ~f (P ) and j(�(w)) = �(w)P is bounded by

the distance between P and ~f (P ), independently of w 2 F . It follows that the

extension of ~f to �~� agrees with the extension of � to �F , and an attracting �xed
point of � in �F de�nes an attracting �xed point for ~f in �~� .

In the situation of Proposition II.3, �rst assume that � has at least two distinct
(possibly equivalent) attracting �xed points X1;X2 in �F . Then any two points
x; y 2 ~� which are su�ciently close to the corresponding �xed points on �~� satisfy
the hypothesis of the above criterion and ~f has a �xed point.
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Such points X1;X2 exist if a(�) � 2. They also exist if there exist both an
attracting �xed point X1 in �F and a nontrivial �-�xed u 2 F , as we can then
take X2 = uX1. Since we assume ind (�) > 0, the only remaining case is when
rk (Fix�) � 2. But then Lemma 2.1 of [BH] applies.

C. Partial train track maps.

There have been various independent attempts (see [BH], [Lo], [Lu]) to carry
Thurston's concept of train tracks for surface homeomorphisms over to automor-
phisms of free groups. Our notion of partial train track maps in De�nition II.4
is close to but weaker than the \relative train track maps" in [BH, ch.5]. Below
we crucially use the existence of such a relative train track map for every outer
automorphism of F , as shown in [BH, Theorem 5.12]. Alternatively one can use
x5 of [LuOe].

Given f : � ! � as above, we say that a locally injective path c : [0; 1] ! �
from a point p to a point q is f-backtracking if f(p) = f(q) and the loop f � c
is null-homotopic in � . Equivalently, any lift of c to the universal covering ~� is a
segment [~p; ~q] with ~f (~p) = ~f (~q).

De�nition II.4. A continuous map f : � ! � is called a partial train track map
relative to � 0 � � if the following conditions are satis�ed:

(1) � is a �nite connected graph with no vertices of valence 1.
(2) f is a homotopy equivalence.
(3) f preserves the set �0 of vertices of � : f(�0) � �0.
(4) � 0 is a (not necessarily connected) subgraph of � which satis�es:

(a) � 0 6= �
(b) f(� 0) � � 0

(c) � 0 [ �0 is maximal with respect to (a) and (b).
(5) For any k � 1, all fk-backtracking paths which are contained in ��(� 0[�0)

are mapped by fk to � 0.

Lemma II.5. Let f : � ! � be a relative train track map in the sense of [BH],
with f-invariant maximal �ltration �0 � : : : � �m. If � has no vertices of valence
1, then f is a partial train track map relative to � 0 = �m�1.

Proof. Condition (1) of De�nition II.4 holds by assumption. Conditions (2) and (3)
hold, as f is a topological representative, see [BH, pp. 4-5]. Condition (4) follows
from our de�nition of � 0. If the m-th stratum of � is exponentially growing, then
Condition (5) follows from Lemma 5.8 of [BH]. If this stratum is not exponentially
growing, then the transition matrix M(f) is a permutation matrix and hence, for
every k � 1, the fk-image of any edge e 2 � � � 0 contains only one edge of � � � 0.
This implies Condition (5).

Proposition II.6. Given an outer automorphism � of F , there exists a partial
train track map f : � ! � which induces �.

Proof. By Theorem 5.12 of [BH], there exists a relative train track map f : � ! �
for �. By Lemma 5.2 of [BH] we can modify
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f and � so that � doesn't contain any vertex of valence one. Now apply Lemma
II.5.

Now let f : � ! � be a partial train track map. Let e1; : : : ; ep be the (unori-
ented) edges of ��� 0 (or more precisely of the closure of ��� 0). Conditions (3) and
(5) of De�nition II.4 imply that for any k � 1 the fk-image of any edge ei � � �� 0

crosses properly over the edges of � � � 0. Hence f determines a p � p transition
matrix M(f) with non-negative integer entries, where the i-th row records the
number of times the f-image of ei crosses the edges e1; : : : ; ep, disregarding the
orientation.

>From condition (4c) it follows that M(f) is either zero, or irreducible with
Perron-Frobenius eigenvalue � � 1 (for de�nitions and the Perron-Frobenius The-
orem, see [Ga] or [DV]). As Conditions (1) and (2) exclude the possibility ofM(f)
being zero, we have � � 1.

Let v = (vi) be a strictly positive eigenvector v associated to the eigenvalue �
(it exists and is unique up to scaling). We de�ne the PF-length of an edge ei of
� � � 0 as L(ei) = vi (and we set L(e) = 0 for all edges e � � 0). Note that the
image by f of any edge e is a path of PF-length �L(e).

Let �� be the tree obtained from the universal covering ~� by collapsing every
connected component of the preimage of � 0 to a point. The action of F on ~� induces
an action on �� which is not necessarily free but which has trivial arc stabilizers.
Make �� into a metric tree by lifting the PF-length L to the edges of �� . We get an
F -invariant distance function d: if x; y 2 �� , then d(x; y) is the PF-length of the
segment [x; y].

Remark. If the automorphism � is irreducible (in the sense of [BH]), then there
exists an absolute train track representative for �, i.e. a train track representative
f : � ! � with only one stratum. In this important special case f is a partial train
track map relative to � 0 = ;, and �� = ~� .

Given � 2 Aut (F ), let f be a partial train track map inducing the outer

automorphism determined by �. Let ~f : ~� ! ~� be the lift of f associated to � by
(��) (see the beginning of II.B).

Since f(� 0) � � 0, the map ~f induces �f : �� ! �� . By Condition (5) of De�nition
II.4, the image by �f of an edge e is a segment of length �L(e). We may then
rede�ne �f on the interior of e, so that �f je expands uniformly by �. We do this
equivariantly, thus making sure that the relation �(w) �f = �fw still holds. The new
map (also denoted �f )

satis�es d( �f (x); �f (y)) � �d(x; y), and equality holds if x; y belong to the same
edge.

D. The case � = 1.
If � = 1, thenM(f) is a permutation matrix, and we can choose the eigenvector

v to have all entries vi = 1. Since f permutes the edges of ��� 0, the map �f : �� ! ��
is a homeomorphism and therefore a global isometry (no folding occurs).

We claim that T = �� satis�es the conclusions of Theorem II.1. Conditions (1)

and (2) obviously hold, with H = �f . If ind (�) > 0, the map ~f has a �xed point
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q 2 ~� by Proposition II.3. The image Q of q in T is a �xed point of H. To get a
�xed point for H� = mH, we simply apply this argument to the map m ~f , noting
that it satis�es (��) with respect to �.

E. The case � > 1.
The rest of Part II will be devoted to the proof of Theorem II.1 when � > 1. In

this case we �rst have to replace the distance d by a pseudo-distance d1 for which
�f acts as a homothety (recall that �f only satis�es the inequality d( �f (x); �f (y)) �
�d(x; y)). We present this construction with a fairly high degree of generality.

A pseudo-distance on a set Z is a function �:Z � Z ! R+ which satis�es the
axioms of a distance, except that there may be distinct points of Z which have
distance 0. The function � induces a genuine distance on the set Z(�) obtained
from Z by identifying x; y whenever �(x; y) = 0. We will denote  : Z ! Z(�) the
canonical quotient map.

Let Z be a set equipped with a distance d (a pseudo-distance would in fact be
enough). Let � > 0, and let h: Z ! Z be any map which satis�es a Lipschitz
condition d(h(x); h(y)) � �d(x; y) for all x; y 2 Z.

Let d1 be the limit of the non-increasing sequence of pseudo-distances

dk(x; y) =
d(hk(x); hk(y))

�k
:

It obviously satis�es d1(x; y) � d(x; y) and d1(h(x); h(y)) = �d1(x; y) for all
x; y 2 Z.

The map H induced by h on the associated metric space Z(d1) is thus a
homothety with stretching factor �.

Now assume that a group G acts on Z isometrically with respect to d, and that
there exists a map �:G! G (usually an automorphism) which \commutes" with
h in the sense that h(g(x)) = �(g)(h(x)) for all g 2 G; x 2 Z.

Then G preserves the pseudo-distance d1 as well. In other words there is an
induced isometric action of G on Z(d1), for which the natural surjection  : Z !
Z(d1) is G-equivariant. Furthermore this action commutes with H in the sense
that �(g)H = Hg for all g 2 G. We shall also denote d1 the induced distance on
Z(d1).

In particular, suppose that Z is a path-connected metric space and d satis�es
a �-hyperbolicity inequality

d(x; z) + d(y;w) � maxfd(x; y) + d(z;w); d(x;w) + d(z; y)g + 2�:

If � > 1, then T = Z(d1) is 0-hyperbolic. It is an R-tree, equipped with an
isometric action of G and a homothety H: T ! T with stretching factor � (T is
path-connected because  : Z ! T is continuous as d1 � d).

Remark. In general, it is quite possible that all points of Z have d1-distance 0 from
each other, so that T consists of a single point only. In particular this is true if � is
strictly larger than the in�mumof all numbers � such that d(h(x); h(y)) � �d(x; y).
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Applying the above construction to the metric space Z = (�� ; d) and the map
h = �f , we obtain an R-tree T = ��(d1) equipped with an isometric action of F
and a homothety H satisfying Condition (2) of Theorem II.1. Condition (3) holds
for the same reasons as in the case � = 1 (of course any homothety with � > 1 has
a unique �xed point in the metric completion of T , but we insist that the �xed
point be in T ).

There remains to check Condition (1).

Lemma II.7. The action of F on T is non-trivial and minimal.

Proof. For each edge ei of � � � 0, choose a lift �ei = [a; b] to �� . By Condition
(5) of De�nition II.4, all the backtracking in fk(ei) takes place in � 0. It follows

that dk(a; b) =
d(hk(a);hk(b))

�k
equals d(a; b) for all k, and the image of �ei in T is a

segment fi of length L(ei).
Note that the F -orbit of any x 2 T meets some fi. In particular, if T 0 � T

is an F -invariant subtree, the Hausdor� distance D(T 0; T ) = supx2T d1(x; T 0)
is �nite: it is bounded by the diameter of any subtree containing all of the
fi's. If furthermore T 0 is invariant under H, then D(T 0; T ) has to be 0 because
�D(T 0; T ) = D(T 0; T ).

Now we can prove that the action is not trivial. Assume it is. The �xed subtree
T0 = fx 2 T j gx = x 8g 2 Fg is compact (it is contained in the union of the
fi's because F acts as the identity on T0 \ fi and every orbit meets some fi).
Since it is H-invariant, it has to be a point. This forces T to be a point because
D(T0; T ) = 0, a contradiction since fi � T .

As the action is nontrivial, there is a unique minimal F -invariant subtree T1
(see [CM]), which is H-invariant. We want to show T1 = T . We know that
D(T1; T ) = 0, in other words T � T1 may contain only endpoints of T (points x
with T�fxg connected). It follows that the interior of each segment fi is contained
in T1. Irreducibility of M(f) and � > 1 imply that �ei occurs in the interior of
�fk(�e) for some edge e of �� and some k � 1. This proves that fi is contained in
HkT1 = T1, and therefore T1 = T .

Lemma II.8. The F -action on T has trivial arc stabilizers.

Proof. The action of F on T = ��(d1) is the limit of the sequence of actions
(F; �� (dk)). Each of these actions is small because it has trivial arc stabilizers.
Therefore the action on T is small, as a limit of small actions (see [CM], [Pa 1]).

To prove that T has trivial arc stabilizers, assume that c � T is a nondegenerate
arc �xed by some nontrivial w 2 F . Let p � 1 be the largest integer such that
w is a p-th power (in fact p = 1 because the action is very small in the sense of
[CL 2]). Recall that the F -orbit of any x 2 T meets some fi. Since the length of
Hk(c) grows arbitrary large with k, we can �nd, for su�ciently large k, disjoint
non-degenerate subarcs c0; : : : ; cp of Hk(c) such that ci = vic0 for some vi 2 F
(i = 1; : : : ; p).

The element w0 = �k(w) �xes Hk(c). Since w0; v1; : : : ; vp all have di�erent
actions on c0, there exists i such that vi and w0 do not generate a cyclic subgroup
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of F . Then w0 and v�1i w0vi generate a free subgroup of rank 2 which �xes ci
pointwise, contrary to the fact that the action is small.

Remark. The last argument may be extended to small actions of hyperbolic groups
such that there exists a homothety with � > 1 which commutes with an automor-
phism � (in the sense of Assertion (2) of Theorem II.1). This applies in particular
to the actions constructed by Paulin [Pa 3].

III. Bounded backtracking

Let f : T1 ! T2 be a continuous map between R-trees. As in Part II, a path
c: [0; 1]! T1 is called an f-backtracking path if c is injective and f(c(0)) = f(c(1)).
We say that the map f has bounded backtracking if the image (f � c)([0; 1]) of any
f-backtracking path c has diameter bounded independently of c.

Proposition III.1. Let T be an R-tree with a minimal action of F . The following
properties are equivalent:

(BBT1) Given Q 2 T , there exists C > 0 such that, if v, w, vw 2 F have word
length satisfying jvwj = jvj+ jwj, then d(vQ; [Q; vwQ]) � C.

(BBT2) Given Q 2 T , there exists C > 0 such that d((v1 ^ v2)Q; [v1Q; v2Q]) � C
if v1; v2 are reduced (recall that ^ denotes the common initial subword).

(BBT3) Every F -equivariant map f : ~�! T , where ~� is a simplicial R-tree with a
free minimal F -action, has bounded backtracking.

(BBT4) For every F -equivariant map f : ~� ! T , where ~� is a simplicial R-tree
with a free minimal F -action, there exists a constant � � 0 such that for
all x; y 2 ~� one has f([x; y]) � N�([f(x); f(y)]) (the �-neighborhood of
[f(x); f(y)]).

Notice that (BBT4) admits direct generalizations to actions of arbitrary groups

G on R-trees, through replacing ~�
by a Cayley graph of G. Notice also that in this view BBT appears to be a

kind of \one-sided quasi-isometry".
We shall not prove Proposition III.1, as we only need the easy implication

(BBT1) =) (BBT2) (which is proved by setting v and w equal to the reduced
words representing v�11 (v1 ^ v2) and (v1 ^ v2)�1v2 respectively). We will need,
however, the fact that the tree T provided by Theorem II.1 satis�es (BBT1) when
� > 1. This may be derived directly from the construction of T in II.E, but we
give a general argument.

Note that every free minimal action of F on a simplicial R-tree T satis�es
(BBT3), as every map f as in (BBT3) is a quasi-isometry. Also note that Cooper's
cancellation bound ([Co], see Part I), is a special case of this. However, we need
the following stronger version, due to Bestvina-Feighn-Handel (see [DV, Lemma
II.2.4]).

Lemma III.2. If a minimal action of F on an R-tree T is free and simplicial,
then it satis�es (BBT1) with C =

Pn

i=1 d(Q; giQ).
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Proof. Let Z be the quotient graph of T by the action of F . Let Y be a wedge of
n circles, the i-th circle having length d(Q; giQ). Let  : Y ! Z be the natural
map sending the i-th circle to the projection of the segment [Q; giQ]. Then apply
Lemma II.2.4 of [DV].

The action given by Theorem II.1 has trivial arc stabilizers, hence it is very
small in the sense of Cohen-Lustig [CL 2].

Corollary III.3. Every very small action of F on an R-tree T has BBT.

We do not know whether this can be extended to more general actions, such as
small actions of hyperbolic groups.

Proof of Corollary III.3. Every very small F -action on T is a limit of free simplicial
F -actions on R-trees Ti by [BF]. This limit may be understood as convergence of
length functions, or equivalently [Pa 2] as convergence in the equivariant Gromov-
Hausdor� topology: given Q 2 T , a �nite subset F0 � F , and " > 0, then for
i large there exists Qi 2 Ti such that the distance between Qi and gQi in Ti is
"-close to d(Q; gQ) for g 2 F0. It follows easily that Lemma III.2 is also valid for
very small actions.

Now let T be an R-tree with a minimal action of F satisfying (BBT1). A ray
� � T , with origin a point Q 2 T , is the image of an isometric map (0;1) ! T ,
with closure �� = � [ fQg. Two rays (with di�erent origins) are equivalent if their
intersection has in�nite length. We denote �T the set of equivalence classes. The
action of F on T induces a natural action of F on �T .

Suppose � is a ray, R, S are points of T , and vn 2 F is a sequence such that
the length of [R; vnS] \ � goes to in�nity as n ! 1. Then clearly the length of
[R0; vnS0] \ �0 goes to in�nity for any R0; S0 2 T and �0 equivalent to �.

Lemma III.4. Suppose the length of [R; vnS] \ � goes to in�nity as n ! 1.
Then vn converges to some X 2 �F depending only on �. Furthermore the length
of [R;wnS] \ � goes to in�nity for every sequence wn ! X.

Proof. We may assume R = S = Q, the origin of �. First note that jvnj goes
to in�nity with n. Thus some subsequence converges to a point of �F . To prove
uniqueness of the limit, we suppose vn; v0n are two sequences as in the lemma,
converging to X;X 0 2 �F respectively, and we show X = X 0. Indeed, with the
notations of Part I, the

distance between Q and (vn ^v0n)Q goes to in�nity as n!1 by (BBT2). This
implies that jvn ^ v0nj goes to in�nity, i.e. X = X 0.

Denoting Xt(p) = vp ^ X = limi!1(vp ^ vi), we note that the length of
[Q;Xt(p)Q] \ � goes to in�nity with p by (BBT2). Property (BBT1) then im-
plies that the length of [Q;wnQ] \ � goes to in�nity for any wn ! X.

Given R;S 2 T and a ray �, minimality of the action of F on T provides a
sequence vn as in Lemma III.4. We de�ne j(�) 2 �F as the limit X of vn. Of
course j(�) depends only on the equivalence class of �.
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Lemma III.5. This de�nes an F -equivariant injection j : �T ! �F . If H is a
homothety of T as in Theorem II.1, then �(j(�)) = j(H(�)) for any ray �. The
image of j is disjoint from every �(StabQ).

Proof. Equivariance and injectivity are clear. For the second assertion, simply
note that

H([R; vnS] \ �) = [R0; �(vn)S
0] \H(�)

withR0 = H(R) and S0 = H(S). Since the length of [Q; vnQ]\� is 0 if vn 2 StabQ,
we have j(�) =2 �(StabQ).

IV. Analyzing the tree

Let � be an automorphism of F with positive index

ind (�) = rk Fix� +
1

2
a(�) � 1 > 0;

and let T;H be given by Theorem II.1. Recall that H has at least one �xed point.

Lemma IV.1.

(1) If Q is �xed by H, then StabQ is �-invariant. We denote �Q = �jStabQ.
(2) If Q is the only �xed point of H, then StabQ contains Fix� (i.e. Fix� =

Fix�Q).

Proof. (1) From wQ = Q it follows �(w)Q = �(w)HQ = HwQ = Q.
(2) From �(w) = w it follows HwQ = �(w)HQ = wQ, so that wQ = Q if H

has only one �xed point.

Our main goal will be to relate ind (�) to data coming from T and automor-
phisms of groups of smaller rank (such as StabQ, which has rank < n by Theorem
2). In particular, we will map subsets of A(�) injectively into A(�Q) thanks to
the following lemma (recall that A(�) is the set of equivalence classes of attracting
�xed points of �).

Lemma IV.2. Let Q 2 T be �xed by H. Let AStabQ(�) � A(�) be the set of
equivalence classes of attracting �xed points having nonempty intersection with
�(StabQ).

(1) There is an injection �Q : AStabQ(�) ,!A(�Q).
(2) If Q is the only �xed point of H, then �Q is a bijection.

Proof. (1) Given a class inAStabQ(�), represent it by someX 2 �(StabQ). Propo-
sition I.1 implies that X is an attracting �xed point of �Q, and we map the class of
X in A(�) to the class of X in A(�Q). Since �xed points X;X 0 2 �(StabQ) that
are inequivalent for � are inequivalent for �Q, we get the required (non-canonical)
injection.

(2) If Q is the only �xed point of H, then Fix� = Fix�Q � StabQ. This
implies that any X 0 equivalent to X 2 �(StabQ) also belongs to �(StabQ) and is
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equivalent to X as a �xed point of �Q. It follows that �Q is a bijection: the class
of an attracting X 2 �(StabQ) is the image of the class of X in AStabQ(�) (note
that X is attracting for � by Proposition I.1).

Now we distinguish several cases.

Case A: � > 1.
In this case the map H has a unique �xed point Q. Note that T has BBT by

Corollary III.3. We will use properties (BBT1) and (BBT2) relative to Q.
If a; b 2 T , we say that the segments [Q; a] and [Q; b] overlap if their intersection

is a (non-degenerate) arc. This is equivalent to saying that a and b belong to the
same component of T n fQg.

If H sends a component A of T n fQg to itself, then A contains a unique H-
invariant ray � at Q , i.e. �(�x) = H�(x) for x > 0 (see [Li]). Such rays will be
called eigenrays of H. Notice that � contains [Q; a]\ [Q;Ha] for every a 2 A. (As
noted in [Li], the restriction of H to A is topologically conjugate to a hyperbolic
isometry of an R-tree, and � corresponds to the translation axis).

Proposition IV.3. If X 2 �F is attracting, then either X 2 �(StabQ), or there
exists an eigenray � of H such that X = j(�).

Remark. The conclusions are mutually exclusive by Lemma III.5.

Proof. We shall use repeatedly equations such as Hp(XiQ) = �p(Xi)Q, obtained
by combining �(w)H = Hw and HQ = Q.

Let X = x1 � � � xi � � � be an attracting �xed word (in a given free basis g1; : : : ; gn
of F ). If XiQ = Q for in�nitely many i, we have X 2 �(StabQ). Otherwise we �x
an integer i with XiQ 6= Q such that the sequence cX(�pXi) is strictly increasing
(see (�) in Part I).

Recall (Theorem 2) that the action of StabQ on �0(T n fQg) has �nitely
many orbits. Thus there exist d � 1 and w 2 StabQ such that [Q;wXiQ] and
[Q;Hd(XiQ)] overlap. We distinguish two cases, depending on whether w is trivial
or not.
� First assume that w is trivial. Let A be the component of T nfQg containing

XiQ, and � the corresponding eigenray of Hd.
By assumption the sequence �(p) = cX(�pdXi) is strictly increasing. In partic-

ular notice X�(p) = (�pdXi) ^ (�(p+1)dXi). By (BBT2), the distance from X�(p)Q

to [(�pdXi)Q; (�(p+1)dXi)Q] = [Hpd(XiQ);H(p+1)d(XiQ)] is bounded by C. On
the other hand the intersection between [Q;Hpd(XiQ)] and [Q;H(p+1)d(XiQ)] =
[Q;Hd(Hpd(XiQ))] is contained in the Hd-eigenray �. Furthermore the length
of this intersection is a constant multiple of �pd. This implies that the length of
[Q;X�(p)Q] \ � goes to in�nity with p, i.e. X = j(�) (see Lemma III.4).

There remains to show that � is invariant under H, not only under Hd. This
follows from Lemma III.5 since j(�) = �(j(�)) = j(H(�)) and hence � = H(�).
� Now we assume that the element w 2 StabQ is not trivial. In this case we

show X 2 �(StabQ).
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The length of the intersection between [Q;�p(wXi)Q] = [Q;Hp(wXiQ)] and
[Q; (�p+d(Xi))Q] = [Q;Hp(Hd(XiQ))] goes to in�nity as p goes to1. By (BBT2)
this implies that d(Q;wpQ) goes to in�nity, with wp = �p(wXi) ^�p+d(Xi). This
in turn implies that the length of the word wp goes to in�nity.

Write wp = �p(w)�p(Xi)^�p+d(Xi) and recall that cX(�p(Xi)) goes to in�nity
with p. If the amount of cancellation between �p(w) and �p(Xi) does not remain
bounded, thenX is a limit point of the sequence �p(w�1) and belongs to �(StabQ).
Similarly, if the length of �p(w) ^�p+d(Xi) is unbounded, then X is a limit point
of �p(w) and belongs to �(StabQ).

Since jwpj goes to in�nity, the only remaining possibility is that j�p(w)j is
bounded. Choose a subsequence pk such that �pk(w) is a nontrivial word v 2
StabQ independent of k. We then get vX = X since �pk(Xi) and �pk+d(Xi)
converge to X as p goes to1. This impliesX 2 �(StabQ) since X is a limit point
of one of the sequences vp or v�p.

Let V(Q) be the set of orbits of the action of StabQ on components of T nQ,
and let VH(Q) � V(Q) be the subset consisting of orbits containing a component
�xed by H.

Proposition IV.4.

(1) There exists an injection � : A(�) ,!A(�Q) [ V(Q) (disjoint union).
(2) The image of � is A(�Q) [ VH(Q).

Remark. Assertion (2) is not needed for the proof of Theorem 1.

Recalling that Fix� = Fix�Q and that ind (�) = rkFix� + 1
2a(�) � 1, we get

from Assertion (1):

Corollary. ind (�) � ind (�Q) + 1
2v(Q).

Proof of Proposition IV.4. (1) If an attracting �xed point X of � belongs to
�(StabQ), so does every X 0 equivalent to X since StabQ contains Fix�. We map
the corresponding set of classes AStabQ(�) bijectively onto A(�Q) using Lemma
IV.2.

If an attracting �xed point X does not belong to �(StabQ), we map the class
of X to the orbit under StabQ of the component AX of T n fQg containing the
points XpQ for p large and the associated eigenray � = �X. To prove that � is
well-de�ned and injective on A(�) n AStabQ(�), we need to check that AX and
AX0 belong to the

same StabQ-orbit if and only if X and X 0 are equivalent.
If X and X 0 are equivalent, then by de�nition there exists w 2 Fix� with X 0 =

wX. Equivariance of j (see Lemma III.5) gives j(w�X) = wj(�X) = X 0 = j(�X0)
and thus w�X = �X0. In particular wAX = AX0 .

Conversely, assume that some h 2 StabQ maps AX to AX0. The intersection
of the rays �X and h�1�X0 is a nondegenerate segment (Q;Q0]. For a 2 (Q;Q0 ]
close enough to Q we have Ha 2 (Q;Q0] and therefore hHa = Hha. But we
also have Hha = �(h)Ha. This implies that h�1�(h) �xes the nondegenerate
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subsegment [Q;Ha] of [Q;Q0]. As by Theorem II.1 the group action on T has
trivial arc stabilizers, it follows that �(h) = h. In particular the isometry de�ned
by h commutes with H and therefore the fact that �X and h�1�X0 overlap non-
trivially implies �X = h�1�X0. We get X = j(�X) = j(h�1�X0) = h�1X 0, and
hence X and X 0 are equivalent.

(2) To prove Assertion (2), it su�ces to consider an H-invariant component A
of T nQ, and to show that its orbit

under StabQ belongs to the image of � . Let � be the H-eigenray contained in
A, and X = j(�) 2 �F . We now show that X is an attracting �xed point of �.
This will complete the proof since the class of X maps to the StabQ-orbit of A.

From Lemma III.5 it follows �(X) = �(j(�)) = j(H(�)) = j(�) = X. By way
of contradiction, assume that X is not attracting. Writing �(Xi) = Xk(i)Zi with
jZij � B as in Part I, there exist arbitrarily large i such that k(i) � i + p for
some �xed integer p. For these values of i, we claim that d(�(Xi)Q; [Q;XiQ]) is
bounded by a constant independent of i. Indeed

d(�(Xi)Q;Xk(i)�pQ) � (B + p)max
j
d(Q; gjQ);

and d(Xk(i)�pQ; [Q;XiQ]) � C by (BBT1) since k(i) � p � i.
On the other hand [Q;�(Xi)Q] \ � = [Q;H(XiQ)] \ � = H([Q;XiQ] \ �) has

length � times bigger than [Q;XiQ] \ �. As the length of [Q;XiQ] \ � goes to
in�nity as i!1, this contradicts the above observation.

For later purposes we also need the following fact:

Lemma IV.5. Let A;A0 be components of T nfQg belonging to the same StabQ-
orbit. Suppose A is invariant under H and A0 is invariant under mH for some
m 2 StabQ. Then there exists c 2 StabQ such that m = c�(c�1) (hence im �� is
similar to �).

Proof. Let c be an element of StabQmappingA toA0. For a 2 A close enough to Q
on the H-invariant ray we write cHa = (mH)ca =m�(c)Ha. Thus c�1m�(c) �xes
a nondegenerate segment. Since arc stabilizers are trivial this impliesm = c�(c�1).

Case B: � = 1.
If � = 1, then T is simplicial. In this case we choose T so as to minimize the

number of edges of the quotient graph � = T=F .

Lemma IV.6. If H has more than one �xed point, then � = T=F has only one
edge.

Proof. Let e be an edge �xed (pointwise) by H and let T 0 be the tree obtained by
collapsing each component of the orbit of e to a point. This orbit is preserved by
H, so that H induces an isometry H 0 of T 0 satisfying the commutation equation
�(w)H 0 = H 0w with the induced F -action on T 0. If � has more than one edge,
the action of F on T 0 is nontrivial. This contradicts the choice of T .
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Hence for � = 1 we need only consider three more cases:

(1) H has exactly one �xed point Q.
(2) H has more than one �xed point and � is a segment.
(3) H has more than one �xed point and � is a loop.

Case B1: H has exactly one �xed point Q.

Proposition IV.7. There is an injection � : A(�) ,!A(�Q).

Since Fix� = Fix�Q by Lemma IV.1 we get:

Corollary. ind (�) � ind (�Q).

Proof of Proposition IV.7. By Lemma IV.2, it su�ces to prove that every attract-
ing �xed point of � belongs to �(StabQ). Recall that the action of F on T is
simplicial with trivial edge stabilizers. Bass-Serre theory expresses F as a free
product whose factors are vertex groups and �1� (see [Ser, I.5.1]). We use this to
get a preferred free basis of F as follows.

Let T0 � T be a �nite subtree containing Q and projecting isomorphically onto
a maximal subtree �0 � �. Orient the edges of � n �0. The basis we construct
consists of the element of F naturally associated to each edge of � n �0, together
with bases of the groups StabV , for V a vertex of T0.

Such a basis has the following property. Supposew 2 FnStabQ, andw0 contains
w as an initial subword. Then the segments [Q;wQ] and [Q;w0Q] intersect in a
nondegenerate segment.

Now let X be an attracting �xed word of � (in a preferred basis of F ). We
show X 2 �(StabQ). Fix an integer p. Since H is an isometry having a �xed
point, the midpoint of the segment between XpQ and H(XpQ) = �(Xp)Q is equal
to Q because it is �xed by H (see e.g. [MoSh, Lemma II.2.16]). The segments
[Q;XpQ] and [Q;�(Xp)Q] thus do not overlap. For p large, the word Xp is an
initial subword of �(Xp). Our choice for the basis of F then implies Xp 2 StabQ.
Hence X 2 �(StabQ) as required.

Case B2: H has more than one �xed point and � is a segment.

Let e = [Q;R] be an edge of T �xed (pointwise) by H. Bass-Serre theory gives a
nontrivial decomposition F = StabQ � StabR. This decomposition is �-invariant
by Lemma IV.1.

Proposition IV.8.

(1) Fix� = Fix�Q � Fix�R.
(2) There is an injection � : A(�) ,!A(�Q) [ A(�R).

Corollary. ind (�) � ind (�Q) + ind (�R) + 1.

Proof of Proposition IV.8. The proof we give is purely algebraic, using only the
�-invariant decomposition of F . We choose a free basis of F consisting of a basis
of StabQ together with a basis of StabR.
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Write any �nite word v 2 F as a product of subwords belonging alternatively
to both factors. If v is �xed by �, then each subword has to be �xed. This shows
the �rst assertion.

Now suppose X is any attracting �xed in�nite word. If X contains in�nitely
many letters from both factors, then it is an in�nite product of subwords belonging
alternatively to Fix�Q and Fix�R, and X 2 �(Fix�). This is impossible since
X is attracting. Thus X is equivalent to an in�nite word contained in one of the
factors, and we get � using Lemma IV.2.

Case B3: H has more than one �xed point and � is a loop.

Let again e = [Q;R] be an edge of T �xed (pointwise) by H. We now have
(by Bass-Serre theory) F = (StabQ)� < t >, where t is any element such that
t(Q) = R. Note that �(t)Q = �(t)HQ = HtQ = R, so that �(t) = tu with
u 2 StabQ.

If there exists t0 with t0(Q) = R and �(t0) = t0, we have an �-invariant decom-
position as before and the previous analysis yields ind (�) � ind (�Q) + 1. We
assume therefore that there is no such t0. This implies that u cannot be written
u = v�(v�1) with v 2 StabQ, since otherwise we can set t0 = tv.

Proposition IV.9.

(1) Fix� = Fix�Q � tFix (iu � �Q) t�1.
(2) There is an injection � : A(�) ,!A(�Q) [ A(iu � �Q).

Corollary. ind (�) � ind (�Q) + ind (iu � �Q) + 1.

Proof of Proposition IV.9. Choose a free basis of F consisting of t together with
a basis of StabQ. Any element of F has a unique reduced expression

w = v0t
"1v1t

"2 : : : vp�1t
"pvp

where "i = �1 and vi is a (possibly trivial) word not containing t�1. We study
the word �(w), paying special attention to the letters t�1.

Recall that �(vi) does not contain t�1 and that �(t) = tu. Thus no new letters
t�1 appear in �(w). Also note that there can be no cancellation between the p
letters t"i in �(w), since the image of a subword tvt�1 is tu�(v)u�1t�1 (similarly
�(t�1vt) = u�1t�1�(v)tu).

Now assume that w is �xed by �. This forces the words vi (1 � i � p � 1) to
satisfy equations, whose form depends on "i and "i+1:

vi = �(vi) if w contains t�1vit

vi = u�(vi)u
�1 if w contains tvit

�1

vi = u�(vi) if w contains tvit

vi = �(vi)u
�1 if w contains t�1vit

�1:

The �rst two equations express that vi should belong to Fix (�Q) or Fix (iu��Q).
On the other hand the assumption that u cannot be written u = v�(v�1) prevents
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the other two equations from being satis�ed. Thus the letters t and t�1 alternate
in w. Furthermore the relation �(w) = w also implies v0 2 Fix�Q, "1 = 1, and
vp 2 Fix�Q, "p = �1.

Summing up, the words invariant under � are precisely those of the form
v0tv1t

�1v2t : : : v2q with vi 2 Fix�Q for i even and vi 2 Fix (iu ��Q) for i odd. We
have shown Assertion 1.

Proving Assertion 2 is now easy. If an attracting �xed word X contains t�1

in�nitely often, then X is an in�nite product v0tv1t�1v2tv3t�1 � � � with the vi's
as above. This implies X 2 �(Fix�), a contradiction. Thus X is equivalent to a
word X0 not

containing t�1, or to a word tX0 with no letter t�1 in X0. The word X0 is an
attracting �xed word of �Q in the �rst case, of iu � �Q in the second: if �(tX0) =
tX0, then tu�

Q(X0) = tX0 and therefore X0 = u�Q(X0) = (iu � �Q)(X0).
Once again we obtain � using Lemma IV.2.

Notice that results analogous to Propositions IV.8 and IV.9 are true if T
has more than one orbit of edges, provided H �xes each of them.

V. The induction

Let �0; : : : ; �k be automorphisms of F representing the same outer automor-
phism and belonging to distinct similarity classes. We prove the following inequal-
ity by induction on n = rkF :

kX
i=0

ind (�i) � n� 1:

It is clear if n = 1, so we assume n � 2. We also assume ind (�i) > 0 8i. Since
the index is a similarity invariant, we will be free to replace each �i by a similar
automorphism when needed.

Apply Theorem II.1 to � = �0. We get a tree T and a homothety H : T ! T
with stretching factor �. If � = im � � with m 2 F , we associate to � the map
H� = mH. It satis�es �(w)H� = H�w for all w 2 F (see Remark II.2). If
� = ic ��� (ic)�1 = ic�(c�1) �� is similar to �, we get H� = c�(c�1)H� = cH�c

�1.
In particular the �xed point sets satisfy FixH� = cFixH�.

For simplicity we write Hi for H�i
. We may assume as before that the quotient

graph � = T=F has only one edge if � = 1 and some Hi has more than one �xed
point (see Remark II.2 and Lemma IV.6).

By Assertion 3 of Theorem II.1, each Hi has at least one �xed point. If Q is
�xed by Hi, then StabQ is �i-invariant (Lemma IV.1). We denote �Qi the induced
automorphism.

Lemma V.1. Suppose Q 2 T is �xed by both Hi and Hj (i 6= j) and rk StabQ �

2. Then �Qi , �
Q
j represent the same outer automorphism of StabQ and belong to

distinct similarity classes in Aut (StabQ).
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Proof. If �j = ih � �i, we have h 2 StabQ because Hj = hHi. Thus �
Q
i and �Qj

represent the same outer automorphism of StabQ.
Now suppose there exists v 2 StabQ such that �j(g) = v�i(v

�1gv)v�1 for all
g 2 StabQ. Then

h�i(g)h
�1 = �j(g) = v�i(v

�1)�i(g)�i(v)v
�1

for g 2 StabQ. Since StabQ has rank � 2, we deduce h = v�i(v�1), so that
�j(g) = v�i(v

�1gv)v�1 holds for every g 2 F . This is a contradiction since �i
and �j are not similar.

As in Part IV, we now distinguish several cases.

Case A: � > 1.
Each Hi has exactly one �xed point Qi. Recall that FixH� = cFixH� if

� = ic � � � (ic)�1 is similar to �. Replacing each �i by a similar automorphism,
we may then assume that for i 6= j either Qi = Qj , or Qi and Qj belong to
di�erent F -orbits. Let Q � T be the set of all points Qi, and � : f0; : : : ; kg ! Q
the map taking i to Qi.

Proposition IV.4 yields injections �i : A(�i) ! A(�Qi

i ) [ V(Qi). We denote
vi(Qi) the cardinality of �i(A(�i))\V(Qi). Using Proposition IV.4 and its corollary
we write

kX
i=0

ind (�i) �
kX
i=0

(ind (�Qi

i ) +
1

2
vi(Qi)) =

X
Q2Q

X
i2��1(Q)

(ind (�Qi

i ) +
1

2
vi(Qi)):

We then have X
i2��1(Q)

ind (�Qi

i ) � rk StabQ� 1:

This is clear for points Q with rk StabQ � 1. For other points it follows from
Lemma V.1 and the induction hypothesis, as rk StabQ � n� 1 by Theorem 2.

On the other hand X
i2��1(Q)

1

2
vi(Qi) �

1

2
v(Q)

because by Lemma IV.5 two components of T nfQg containing rays invariant under
Hi and Hj respectively cannot be in the same StabQ-orbit if i 6= j.

As a result we obtain

kX
i=0

ind (�i) �
X
Q2Q

X
i2��1(Q)

(ind (�Qi

i ) +
1

2
vi(Qi))

�
X
Q2Q

(rk StabQ� 1 +
1

2
v(Q))

� n� 1:

The third inequality follows from Theorem 2 since di�erent points of Q are in
di�erent F -orbits.
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Case B1: � = 1 and each Hi has exactly one �xed point.

The proof is the same, using the corollary to Proposition IV.7. One does not
need the v terms.

Now we suppose some Hi (say H0) �xes (pointwise) an edge e = [Q;R]. Recall
that we have assumed the graph � = T=F has only one edge.

Case B2: H0 has more than one �xed point, and � is a segment.

Note that for i > 0 the map Hi has only one �xed point Qi. Otherwise we
could replace �i by a similar automorphism and get Hi to �x e (recall that there
is only one F -orbit of edges). This would contradict triviality of edge stabilizers
since Hi =miH for some nontrivial mi 2 F .

The �xed point Qi cannot be the midpoint of an edge because StabQi would be
trivial (F acts without inversions) and Proposition IV.7 would imply ind (�i) < 0.
Thus Qi belongs to the orbit of either Q or R. Changing �i within its similarity
class if needed, we may assume Qi = Q or R.

Taking � to be the obvious map from f1; : : : ; kg to fQ;Rg, we get by the
corollaries to Propositions IV.8 and IV.7

kX
i=0

ind (�i) � ind (�Q0 ) + ind (�R0 ) + 1 +
X

i2��1(Q)

ind (�Qi ) +
X

i2��1(R)

ind (�Ri )

� 1 +

0
@ind (�Q0 ) + X

i2��1(Q)

ind (�Qi )

1
A+

0
@ind (�R0 ) + X

i2��1(R)

ind (�Ri )

1
A

� 1 + (rk StabQ � 1) + (rk StabR� 1)

� n� 1:

The third inequality comes from Lemma V.1 and the induction hypothesis, as F
is isomorphic to the nontrivial free product StabQ � StabR (see the discussion in
Part IV).

Case B3: H0 has more than one �xed point, and � is a loop.

Arguing as in the beginning of case B2, we may assume that H0 �xes an edge
e = [Q;R] and that Q is the only �xed point of Hi for i > 0 (now there is only
one F -orbit of vertices).

With the notations of Part IV we have F = (StabQ)� < t > with �0(t) = tu,
u 2 StabQ. If t may be chosen with �0(t) = t, we simply write

kX
i=0

ind (�i) � ind (�Q0 ) + 1 +
kX
i=1

ind (�Qi ) � rk StabQ = n� 1:

Otherwise we recall that u cannot be written u = v�0(v�1) with v 2 StabQ
and we apply the corollaries to Propositions IV.7 and IV.9. We get

kX
i=0

ind (�i) �
kX
i=0

ind (�Qi ) + ind (iu � �
Q
0 ) + 1:
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There is nothing to prove if StabQ has rank 1. Otherwise we argue as follows.
By Lemma V.1, the automorphisms �Q0 ; �

Q
1 ; : : : ; �

Q
k ; iu � �

Q
0 represent the same

outer automorphism of StabQ. If we show that no two of them are similar, the
inductive proof will be complete since we can write

kX
i=0

ind (�i) � rk StabQ� 1 + 1 = n� 1:

By Lemma V.1 we need only check that iu � �
Q
0 is not similar to any of the

others. Arguing as in the proof of Lemma V.1 we �rst see that it is not similar to
�Q0 since

iu � �
Q
0 = iv � �

Q
0 � (iv)

�1 =) u = v�Q0 (v
�1):

Then we note that iu ��0 is similar to �0 in Aut (F ) since iu ��0 = (it)�1 ��0 � it.

It follows that iu � �0 and �i are not similar for i � 1. By Lemma V.1, iu � �
Q
0

and �Qi are not similar in Aut (StabQ).

VI. Discussion and remarks

In this last section we want to discuss some properties of certain classes of
automorphisms of F , with respect to their index. We will not give formal proofs
but rather indicate the reason for our claims; details may be worked out elsewhere.

First we recall the de�nition of the index of an outer automorphism of the free
group �̂ 2 Out (F ), induced by � 2 Aut (F ). Let S(�̂) denote the set of similarity
classes [�0] of automorphisms �0 inducing the outer automorphism �̂0 = �̂. We
de�ne

ind (�̂) :=
X

[�0]2S(�̂)

max(ind (�0); 0):

Our main result, Theorem 1', is equivalent to the inequality

ind (�̂) � rk (F ) � 1 (1)

for all �̂ 2 Out (F ).

Next we observe that the techniques for computing a basis of the �xed subgroup
as well as representatives for each equivalence class of attracting �xed points, de-
scribed in [CL 1] for positive automorphisms, can be extended to all automor-
phisms of F . In [CL 1] the only speci�c property of positive automorphisms used
is the fact that for any w 2 F there is an obvious lower bound for the length of
�k(w) for any k � 1. A similar bound can be deduced for arbitrary � 2 Aut (F )
if we use a relative train track representative for � as constructed in [BH]. This
gives the following, which can be used to verify some of the statements below:
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VI.1. There is a combinatorial algorithm which computes for any � 2 Aut (F )
the indices ind (�) and ind (�̂).

There is an obvious question as to when the inequality (1) is an equality. Using
Theorem 1' together with standard Nielsen-Thurston theory one can compute the
index of any geometric automorphism, i.e. an automorphism which is induced by
a homeomorphism of a surface M with boundary, where �1M �= F . For example,
if �̂ is induced by a pseudo-Anosov automorphism which �xes each separatrix at
every singularity of the stable foliation, then ind (�̂) is indeed equal to �(S) =
rk (�1S) � 1. These arguments extend to the case where � is a multiple Dehn
twist on disjoint closed curves, possibly with pseudo-Anosov components on the
complementary subsurfaces. This shows:

VI.2. Every geometric automorphism �̂ 2 Out (F ) has a power �̂k with

ind (�̂k) = rk (F )� 1:

This fact was used in earlier work of the fourth author to describe new classes of
non-geometric automorphisms with properties very similar to those of geometric
ones. Also, from the above discussion it is easy to construct geometric �'s which
do not satisfy equality in (1).

Dehn twists on surfaces have been generalized in [CL 2] to Dehn twist automor-
phisms of free groups. It is shown in [CL 3] that every Dehn twist automorphism

D̂ 2 Out (F ) has maximal index ind (D̂) = rk (F ) � 1. This implies (see [CL 3]):

VI.3. Every linear growth automorphism �̂ 2 Out (F ) has a power �̂k with

ind (�̂k) = rk (F )� 1:

Recall that �̂ is said to have polynomial growth of degree � k if, for every g 2 F ,
there exists C such that �t(g) is conjugate to an element of length � Cnk for every
t � 1 (for some, hence any, � representing �̂).

We now want to discuss how or why the index of an outer automorphism can
be non-maximal. Our proof of Theorem 1' gives rather explicit information about
this, and we can distinguish between two qualitatively di�erent phenomena.

VI.4. Given two automorphisms � 2 Aut (F 0) and � 2
Aut (F"); wecancomposethemcanonicallytoanewautomorphism��� 2 Aut (F 0�

F 00). On the level of outer automorphisms, however, there is no such canonical

composition. Given �̂ and �̂, one �rst has to choose representatives �0 and �0,

and then one can de�ne a freely composed outer automorphism\�0 � �0. If one has
both ind (�0) � 0 and ind (�0) � 0, then one obtains

ind (\�0 � �0) = ind ( b�0) + ind ( b�0) + 1 ; (2)

which gives maximal index for\�0 � �0 if both �̂ and �̂ have maximal index. If,

however, the index of �0 or �0 is negative, then the index of\�0 � �0 di�ers from
the maximal value (2) by 1

2 or 1.
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Similarly, for � 2 Aut (F ), the HNN-composition �+ 2
Aut (F*hti) given by �+(w) = v�(w)v�1 if w 2 F; �+(t) = tu (v; u 2 F ), which

has been considered in case B3 of Parts IV and V, \connects" similarity classes of
�̂ with varying possibilities for their index (according to the choice of v and u).
Again, the index of �̂+ 2 Out (F � hti) can drop by 1

2 or 1 from the maximal value

ind (c�+) = ind (�) + 1 :

We obtain as immediate consequence the existence of outer automorphismswith
all positive powers of very small index: for example, for � : a ! a; b ! ba; ck !
bkckb

k (k = 1; : : : ;m) one has rk (F ) =m+ 2 and ind (�̂t) = 1 for all t � 1.

VI.5. It follows from [BH] that �̂ has exponential growth if for some stratum of
some (and hence any) relative train track representative of �̂ the transition matrix
has Perron-Frobenius eigenvalue strictly bigger than 1. Otherwise, after possibly
re�ning the strata structure, every transition matrix is either 0 or a permutation
matrix. In this case �̂ has polynomial growth, and it is not hard to see that a suit-
able power of �̂ arises precisely as iterated free composition or HNN-composition
as in VI.4, where all ???? starting ???? factors are Dehn twist automorphisms.
One can show that at each composition the degree of polynomial growth can be
raised by one, but only at the expense of strictly decreasing the index of the
composed automorphism with respect to the maximal possible composition value.
This shows:

Every polynomially but non-linearily growing (and hence non-geometric) outer au-
tomorphism �̂ has non-maximal index:

ind (�̂) � rk (F ) �
3

2

Let us now turn to the second basic phenomenon which produces non-maximal
index of an outer automorphism.

If � \commutes" with a homothety H of an R-tree T as in Theorem II.1, then
by the analysis of Part V the index of �̂ is bounded by the index ind (T ) of the
tree T , de�ned as the maximal value of the sum

Pq
`=1(rk StabQ` +

1
2
v(Q`) � 1)

that appears in Theorem 2 (see [GL], which considers i(T ) = 2 ind (T )). In [GL] a
distinction is drawn between the case when the action of F on T is geometric, in
which case the index of T is shown to be rk (F ) � 1 (i.e. maximal), and the case
when T is non-geometric, where one proves 1

2
� ind (T ) � rk (F )� 3

2
.

A prototype of geometric actions is given by pseudo-Anosov automorphisms and
the R-tree dual to an invariant foliation. However, somehow surprisingly, there
are also non-geometric automorphisms for which the invariant R-tree is geometric
but not simplicial. These parageometric automorphisms can be found even among
irreducible automorphisms with irreducible powers (i.e. no �t with t � 1 leaves
a proper free factor of F invariant), see [BF] or [Le], and those deserve special
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attention as they seem rather atypical among all irreducible ones. It is shown
in [BF] that precisely the non-geometric and non-parageometric irreducible au-
tomorphisms admit train track representatives without non-trivial Nielsen paths.
Combining their result with ours can be summarized as follows:

VI.6. Assume that the outer automorphism �̂ 2 Out (F ) is irreducible, let f : � !
� be a train track representative for � with the least number of indivisible Nielsen
paths among all such representatives, and let T be the invariant tree obtained from
iterating f as in Part II. Then precisely one of the following two cases occurs:

(i) The index of �̂ satis�es

1

2
� ind (�̂t) � rk (F )�

3

2

for all t � 1. The action of F on T is non-geometric. The train track �
has no non-trivial Nielsen path with respect to f or to any f t.

(ii) The index of �̂ satis�es

ind (�̂t) = rk (F ) � 1

for some t � 1. The action of F on T is geometric. The train track � has
a non-trivial Nielsen path with respect to f t.

It is shown in [BF] that in case (ii) there is precisely one f-orbit of non-trivial
indivisible Nielsen paths, and that this path is closed precisely if �̂ is geometric.
It has been shown by the second author that (contrary to the geometric case!) in
the parageometric case the similarity class of that representative � 2 Aut (F ) of �̂
which is given by the Nielsen path is not an invariant of �̂, but can change when
passing over to a di�erent train track representative.

We now turn again to ordinary automorphisms rather than outer ones. For any
� 2 Aut (F ) our Theorem 1' (see (1) above) gives

0 � rk (Fix (�)) � rk (F ) and 0 � a(�) � 2rk (F ):

We are interested in the case where one of the two summands rk (Fix (�)) or a(�)
for the index becomes maximal.

VI.7. Assume rk (Fix (�)) = rk (F ). As a consequence we obtain a(�t) = 0 for
any t � 1, i.e. �t has no attracting �xed point in �F , by Theorem 1. Hence,
by Lemma IV.2, there is no �-invariant tree T as in Theorem II.1 with � > 1,

as it follows from Theorem 2 [GL] that VH
t

(Q) = V(Q) for some t � 1. Thus
we can decompose � as in the cases B2 or B3, since case B1 yields immediately
that rk (Fix (�)) < rk (F ). We now consider the restriction of � to the vertex
group (case B3) or to the vertex groups (case B2) and observe that they also must
have �xed subgroup of maximal rank. Hence (by inverting the HNN-composition
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process described in VI.4) we can proceed inductively to obtain a \normal form"
for such automorphisms, see [CT] and [CL 2].

VI.8. Assume that the action on the invariant tree (satisfying � > 1) is free,
and that � is replaced by a su�ciently high power so that H� �xes all orbits of
branch points and all orbits of directions at those branch points. Then one obtains
ind (�̂) = ind (T ). If furthermore T has only one orbit of branch points, then any
automorphism �0, with �̂0 = �̂ and with the property that H�0 �xes one of the
branch points, satis�es

ind (�0) = ind (T ):

Thus, if the F -action on T is geometric, one has a(�) = 2rk (F ), which is the
upper bound. Such examples can be constructed from an irreducible parageometric
automorphism through subsequent HNN-compositions chosen so as to connect all
similarity classes with positive index (see VI.4). Notice however that the resulting
automorphism of a free group of higher rank is of course no longer irreducible.
An irreducible automorphism with a(�) = 2rk (F ) must be represented by a train
track map for � which has one nonclosed Nielsen path connecting the only two �xed
points of the map with positive index. Somehow surprisingly such automorphisms
exist. An example is given by a 7! aac�1aac�1b�1; b 7! bca�1a�1; c 7! ca�1.

VI.9. Finally, we compare ind (�̂) to ind (�̂�1). It is easy to �nd examples with

ind (�̂) 6= ind (�̂�1), (and hence ind (�0) 6= ind (�0�1) for some �0 representing
�̂). Such examples occur even among irreducible automorphisms with irreducible
powers. In particular there are positive automorphisms � satisfying ind (�) =
ind (�̂) = n� 3

2 , while �̂
�1 is parageometric and hence satis�es ind (�̂�t) = n� 1

for some t � 1. An example is the automorphism � : a 7! abc; b 7! bab; c 7! cabc,
which is the inverse of the one given in VI.8. Notice that this example also satis�es
�(�̂) 6= �(�̂�1); for further examples satisfying this last inequality see [BH].

VI.10. Notice that the automorphism �3 = � from VI.9 has 11 �xed points
on �F , 5 of them being attractive, and 6 repelling. The analogue is true for
�4 : a 7! abcd; b 7! bab; c 7! cabc; d 7! dabcd, which has 7 attractive and 8
repelling �xed points at �F . We believe this pattern repeats for all the analogously
de�ned �n.
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