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An R-tree is an arcwise connected metric space in which every arc is isometric to an
interval of R. See for instance [Sha1, Sha2, Mor1] for historical remarks, references and
motivations. This paper contains a proof of the following result, formerly known as the
Morgan-Shalen conjecture [MS2] :

Theorem 0.1 (E. Rips) Let G be a finitely generated group acting freely on an R-tree. Then
G is a free product of free abelian groups and surface groups.

More generally, we shall prove :

Theorem 0.2 Let G be a finitely generated group acting on an R-tree T . Let Ge be the
(normal) subgroup of G generated by all elements acting with a fixed point (elliptic elements).
Then G/Ge is a free product of free abelian groups and surface groups.

There is a restriction on the groups that may occur in theorem 0.1 : the fundamental
group of a closed non-orientable surface of Euler characteristic ≥ −1 does not act freely
[MS2]. This restriction does not exist in theorem 0.2. For instance, the example in [AY]
leads to an action with G/Ge � Z/2Z, the fundamental group of a projective plane (see
[Lev4], example 5).

It is shown in [Lev4] that, given an action of G, there exists a canonical normal subgroup
H0 ⊂ G such that the quotient space T/H0, made Hausdorff, is an R-tree ̂T/H0, and the
natural action of G/H0 on ̂T/H0 is free. Theorem 0.2 leads to an effective procedure for
finding H0 : consider the action of G/Ge on ̂T/Ge (an R-tree by [Lev4], theorem 2), divide
G/Ge by the subgroup generated by elliptic elements, and iterate. This process stops after
finitely many steps (see lemma 2.2).

Fix the finitely generated group G. It is asked in [Lev4] whether G/H0 is a free product of
free abelian groups for a generic action of G. More generally, one may ask (“generic Lyndon
conjecture”) : is it true that, for a generic action of G, the groups H0 and Ge are equal, and
G/Ge is a free product of free abelian groups ?

We now sketch the proof of theorem 0.1 (the proof of theorem 0.2 is similar). We will
also mention related results, to be found in [GLP2]. Our proof has been inspired by the
one Rips sketched at the Isle of Thorns conference in july 1991 (see [Mor2], [BF]), but it is
different in several aspects. In particular, Rips uses a combinatorial complexity introduced
by Makanin [Mak] and Razborov [Raz]. We rely instead on ideas developed by Imanishi and
Levitt [Ima, Lev1, Lev2] in the context of foliations.

So let G act freely on T (for simplicity, we assume here that G is finitely presented). Let
{γ1, . . . , γp} be a system of generators of G. Let K ⊂ T be a finite subtree. Each γi gives
rise to a (partially defined) isometry gi : K ∩ γ−1

i K → γiK ∩ K.
If K is large enough, then G may be read off the dynamical system T = (K, {gi}) :

one gets a presentation of G in terms of the generators γi by taking as relations all words
γ±1
i1

. . . γ±1
in

such that there exists x ∈ K with g±1
i1

◦ . . . ◦ g±1
in

(x) = x (staying in K).
This leads to an important idea of Rips’ : since theorem 0.1 is about the group G,

not about the action, we may forget about T and concentrate on T ; the loss of dynamical
information involved in this process is not important if one only wants to prove theorem 0.1.
In [GLP2], we shall associate to T a free action of G, and show that this action converges to
the original one when K grows to exhaust T .
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A simple manipulation allows us to replace T by our real object of study : a system X
consisting of a finite disjoint union D of compact subintervals of R, together with a finite
number of partially defined isometries ϕj : Aj → Bj , where each base Aj , Bj is a compact
subinterval of D (for simplicity, we assume here that every component of D and every base
has positive length). One may associate a group G(X) to a system X (either by giving
generators and relations, as before, or by using a foliated 2-complex Σ(X)), and thus recover
G. Our task then is to determine G(X).

Consider the orbits of X (2 points x, y ∈ D belong to the same orbit if some word in
the generators ϕj and their inverses takes x to y). Furthermore, a given orbit of X has the
structure of a metric graph, well defined up to quasi-isometry (just like the Cayley graph of
a finitely generated group). It is then possible (see [Gab]) to relate dynamical properties of
X to properties of these graphs such as the growth of balls or the number of ends.

The system X splits up canonically into finitely many pieces (theorem 3.1). On each piece,
either every orbit is finite or every orbit is dense. This follows from a theorem about singular
measured foliations proved by Imanishi [Ima] in 1979 (we provide a direct proof, based on the
appendix of [AL]). Imanishi’s theorem was rediscovered, in the slightly generalized context
of laminations, by Morgan-Shalen [MS1].

This dynamical decomposition of X corresponds to a decomposition of G(X) as a free
product (proposition 3.5). Finite orbits are easy to analyze (G(X) is free if every orbit is
finite, see corollary 3.7), so that we assume from now on that X is minimal : every orbit is
dense.

For t > 0 small, we define X−t = (D, {ϕ−t
j }) as follows : if the domain of ϕj is Aj = [aj , bj ],

then ϕ−t
j is the restriction of ϕj to [aj + t, bj − t].

We now have the following dichotomy (cf. [Lev1], lemme III.5) : either every orbit of X−t

is finite, or X is homogenous (proposition 4.1). By X homogenous, we mean that there exists
a finitely generated dense subgroup P ⊂ R such that 2 points x, y in the same component
of D belong to the same orbit if and only if x− y ∈ P (there is another type of homogenous
system, which we do not mention here). If X is homogenous, it is easy to show that G(X) is
isomorphic to P , hence free abelian (proposition 4.2).

Define
◦
G (X) as the direct limit of G(X−t) as t goes to 0 (see section 1). It is equal to

G(X) for generic X. At this point it is easy to show (using an argument similar to lemma 2.2

below) that
◦
G (X) is a free product of free abelian groups (when all maps ϕj are orientation-

preserving, this is essentially théorème 1 of [Lev2]; the proof of [Lev2] extends to the general
case [Gus]). Of course we need to compute G(X) for all X, so that we go on.

We say that the generators ϕj are independent if the following holds : if a nontrivial
reduced word ϕ±1

i1
◦ . . . ◦ ϕ±1

in
has a fixed point, then its domain consists only of that point.

Assuming that X is minimal but not homogenous, we will show (proposition 5.1) how
to replace X by an “equivalent” system Y with independent generators . Generalizing the
equivalence of pseudogroups introduced by Haefliger [Hae1, Hae2], we will take some extra
time in [GLP2] to define what it means for systems X, Y to be equivalent. Equivalence
implies in particular that the associated groups are isomorphic.

The quest for independent generators was initiated in [Lev2], théorème 5, see also [Rim2].
The optimal result is due to Gaboriau [Gab] : if X is as above, one may replace each ϕj by its
restriction to a closed (possibly empty) subinterval of Aj , so as to get independent generators
for a system having the same orbits as X. Note that this process does not increase the
number of generators.
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We assume from now on that X is minimal and that the generators ϕj are independent.
Then the sum of the lengths of the intervals Aj is equal to the total length of D (proposition
6.1). This is a special case of a much more general result, see [Lev3], cor. II.5 and [Lev5].
Involved here is the amenability of the equivalence relation on D whose classes are the orbits
of X.

First suppose that every x ∈ D belongs to at least 2 bases. Then all but finitely many
points belong to exactly 2 bases, and we say that X is an interval exchange. Even if D
is connected, this is a generalization of the usual notion [Kea], as in [DN]. For one thing,
some of the maps ϕj may reverse orientation. Furthermore, the bases determine 2 partitions
of D (up to finitely many points), but for a given j the bases Aj and Bj may belong to
the same partition. Geometrically, an interval exchange corresponds to a (possibly non-
orientable) measured foliation on a (possibly non-orientable) closed surface (of arbitrary
Euler characteristic), and G(X) is a surface group (proposition 6.4).

If X is not an interval exchange, let N ⊂ D be the open set consisting of points belonging
to only one base. We define a new system X1 on D1 = D \N , replacing the generator ϕj by
its restriction(s) to D1 \ ϕ−1

j (N) (this may increase the number of generators). It is easy to
check that G(X1) = G(X). Iterate this operation if possible (in Rips’ proof, this elementary
operation has to be combined with others, so that a certain complexity does not increase).

If this process terminates, some Xn is an interval exchange and G(X) is a surface group.
Suppose it does not (what Rips calls the Levitt case, cf. [Lev3], [Lev4]). In this case, one
shows that the intersection of the family Dn is nowhere dense in D (proposition 7.1).

Finally, one proves (section 8) that G(Xn) is free for n large enough, completing the
proof. This last argument, in our opinion the main novelty in Rips’ proof, may be sketched
as follows.

Given X = (D, {ϕj}), there is a presentation of G(X) in terms of generators ϕj . There
are 2 kinds of relators. First, certain generators (p−1 of them if D has p components) have to
be set equal to 1. Then one takes as relators words in the ϕj

±1 such that the corresponding
word in the ϕj

±1 has a fixed point. One may restrict relations of the second kind to a fixed,
finite set R.

Relations in R carry over to each Xn, but the labelling of the generators changes :
typically, a generator ϕj of X is replaced by many generators of Xn, each defined on a small
subinterval of Dn.

Of course a given generator ϕj of G(X) may appear many times in R. But recall that⋂
Dn is nowhere dense. It follows that, when the relations are considered for Xn (n large),

the total number of occurrences of a given generator and its inverse is at most one, so that
G(Xn) is free.

In [GLP2], the systems X (Rips’ Unidentified Combinatorial Objects) are interpreted as
finite generating systems of closed pseudogroups. We generalize [Lev3], lemme VIII.1, to
prove an important technical fact. Suppose Φ = {ϕj} and Ψ = {ψk} generate systems X,Y
having the same orbits on a given multi-interval D. Then Φ admits a finite refinement Φ′ such
that every element of Φ′ may be expressed as a word in the elements of Ψ and their inverses.
We also show that X is segment closed (a property introduced by Rimlinger [Rim1]).

This has several consequences. First of all, one may associate to X a free action of G(X)
on some R-tree T , provided X satisfies (a property similar to) the following “no reflection
condition” : there is no x such that x+t is in the orbit of x−t for t > 0 small. Note that there
are examples with G(X) � Z/2Z; this condition rules them out. This condition is satisfied
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if X is obtained from a free action on a tree as above. In this case, the corresponding free
actions are approximations of the original action.

The tree T may be viewed geometrically as follows. There is a compact foliated 2-complex
Σ(X) canonically associated to X, and G(X) is obtained from π1Σ(X) by killing all loops
contained in leaves. Let Σ′(X) → Σ(X) be the covering with transformation group G(X).
The tree T is the space of leaves of the lifted foliation on Σ′(X). The absence of reflection
implies that every leaf in Σ′(X) is closed, and the technical property mentioned above implies
that the leaf space is Hausdorff.

Another consequence is the fact that two systems on the same multi-interval D with the
same orbits are equivalent in a strong sense. In particular, the group G(X) depends only on
the orbits of X, not on a particular system of generators. See also [Rim3].

We would like to thank E. Rips and Z. Sela for their conversations at the Isle of Thorns
conference (also in Toulouse or at the ENS Lyon for Z. Sela), and S. Mozes, M. Feighn, M.
Bestvina and F. Rimlinger.
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1 Systems of isometries

A multi-interval D is a union of finitely many disjoint closed intervals of R. Components of
D may be degenerate intervals, i.e. consist of only one point.

Definition 1.1 A system of isometries is a pair X = (D, {ϕj}j=1,···,k), where D is a multi-
interval and each ϕj : Aj → Bj is an isometry between closed (possibly degenerate) subin-
tervals of D.

The intervals Aj , Bj are called bases. A system of isometries X is said to be connected
if any two components I, I ′ of D are equivalent under the equivalence relation generated by
I ∼ I ′ if there exists j ∈ {1, · · · , k} with Aj ⊂ I and Bj ⊂ I ′.

A generator ϕj : Aj → Bj is a singleton if Aj is degenerate.
A system of isometries X is said to be non degenerate if every component of D and every

base Aj , Bj has positive length.
A ϕ-word is a word in the generators ϕ±1

j . It is a partial isometry of D, whose domain
(defined in the obvious maximal way) is a closed interval (possibly degenerate or empty).
The domain of composition of two partial isometries corresponding to two reduced words
may be smaller than the domain of the partial isometry associated to the reduced product
word (for instance, consider the product of the words ϕi1 and ϕ−1

i1
).

Two points x, y in D belong to the same X-orbit if there exists a ϕ-word sending one to
the other. We denote the orbit of x by X(x). Note that the orbits are countable.

If ϕj is not a singleton, define
◦
ϕj :

◦
Aj→

◦
Bj as the restriction of ϕj to the interior of Aj .

A
◦
ϕ-word is a word in the generators

◦
ϕ
±1

j . Its domain is a (possibly empty) open interval.

Let
◦
X (x) be the orbit of x under the pseudogroup generated by

◦
ϕ-words.

An orbit of X or
◦
X is singular if it consists of an endpoint of D, or if it meets some ∂Aj

or ∂Bj , and is regular otherwise. Note that an orbit of
◦
X is contained in an orbit of X with

equality except perhaps for a finite number of them, the singular ones.
We can associate a sign ± to every

◦
ϕ-word with nonempty domain : it is precisely the

value of the derivative of the associated global isometry of R. We call
◦
X

+
(x) the orbit of x

under positive
◦
ϕ-words (i.e. restrictions of translations).

A reflection is a negative
◦
ϕ-word having a fixed point, the center of the reflection. For

the proof of theorem 0.1, it is enough to consider systems without reflections (see section 2).

The orbit of x ∈
◦
D by

◦
X is one-sided if x is the center of a reflection, and two-sided otherwise.

If X is a system of isometries on a multi-interval D, we define a foliated 2-complex
(Σ(X),F) (or simply Σ) associated to X. Start with the disjoint union of D (foliated by
points) and strips Aj × [0, 1] (foliated by {∗} × [0, 1]). We get Σ by glueing the Aj × [0, 1]
to D, identifying each (t, 0) ∈ Aj × {0} with t ∈ Aj ⊂ D and each (t, 1) ∈ Aj × {1} with
ϕj(t) ∈ Bj ⊂ D. We will identify D with its image in Σ.

The foliation F is the decomposition of Σ into the leaves. A leaf is an equivalence class for
the equivalence relation ∼ generated by x ∼ y if there is a j = 1, · · · , k with x, y corresponding
to two points in the same leaf {∗}× [0, 1] of Aj × [0, 1]. Two points of D are in the same leaf
of F if and only if they are in the same X-orbit. For instance, if a point in D belongs to no
base, then its leaf consists of itself.
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This suspension process is well known for interval exchanges. See J. Morgan’s notes
[Mor2] for the first appearance under the above generality, and [AL][Lev4] for suspensions as
measured foliations with Morse singularities on manifolds.

It is clear that X is connected if and only if Σ is connected. In what follows, we assume
that X is connected.

The 2-complex Σ has the homotopy type of a finite graph, so that its fundamental group
π1(Σ) is a finitely generated free group. We will denote by L the normal subgroup of π1(Σ)
normally generated by the free homotopy classes of loops contained in leaves of F .

Definition 1.2 If X is a system of isometries, we define G(X) = π1(Σ)/L.

In the case where D is connected, there is an easy presentation of the group G(X) associ-
ated to a system of isometries X. The generators are the elements ϕj , and the relations are
ϕ-words having a fixed point. See [Lev2] for instance. See Appendix 1 of [GLP2] for Rips’
combinatorial definition when D is not connected.

Our goal will be to prove :

Theorem 1.3 (E. Rips) Let X be a connected system of isometries. Then G(X) is a free
product of free abelian groups and surface groups.

In the next section, we show that this theorem implies theorem 0.2, which obviously
implies theorem 0.1.

There are two other interesting groups
◦
G (X) and G+(X) associated to a given X.

They are studied in [Lev2] and [Gus]. They are related to actions on simply connected
non-Hausdorff 1-manifolds.

Assume for simplicity that X is non-degenerate. Let int Σ be the complement in Σ of the
open segments ∂Aj × (0, 1), and

◦
F the foliation induced on int Σ. We let L be the normal

subgroup of π1(int Σ) � π1(Σ) normally generated by the free homotopy classes of loops

contained in leaves of
◦
F , and we define

◦
G (X) = π1(Σ)/L.

As mentioned in the introduction,
◦
G (X) is the direct limit of G(X−t) as t > 0 goes to

0, and
◦
G (X) = G(X) for generic X. Furthermore

◦
G (X) is a free product of free abelian

groups; the factors of rank ≥ 2 are isomorphic to the groups of periods of the orientable
homogenous components of X (in the sense of section 4). This implies that G(X) is finitely
presented, since the set of left classes L/L is finite. But we won’t need this a priori fact, it
will follow from our arguments.

Now let L+ be the normal subgroup of π1(Σ) normally generated by the free homotopy

classes of loops contained in leaves of
◦
F and having trivial holonomy, and G+(X) = π1(Σ)/L+.

This group is the fundamental group of Haefliger’s classifying space B
◦
X. By [Gus], it is a

free product whose factors are surface groups, free abelian groups, Z/2Z, and dihedral groups
(twisted product) Za×Z/2Z (a ≥ 2); the free abelian factors of rank ≥ 2 are as before, while
the dihedral factors are the groups P associated to the nonorientable homogenous components
of X (see section 4).

2 From actions on R-trees to systems of isometries

We define an action of a group on a metric space to be a left isometric action. A branch
point in an R-tree T is a point x such that T \ {x} has at least 3 components. A finite tree
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is a compact R-tree which is the convex hull of finitely many points, hence has only finitely
many branch points.

Let G be a finitely generated group acting on an R-tree T , and {γ1, · · · , γp} a fixed
system of generators for G. Let K be a finite subtree of T . We define a system of isometries
X = X(K) as follows.

Let I1, · · · , In be the segments of K that are the closures of the connected components of
K minus its branch points. Consider them as embedded disjointly in R, and let D be their
union. The system X has 2 types of generators.

For every branch point b of K, let xi1 , · · · , xis be the endpoints of the segments Ii1 , · · · , Iis
corresponding to b. Consider the following finite set of singletons on D : Φ0 = {xb

i1
�→

xb
i2

, · · · , xb
i1

�→ xb
is / b branch point of K}. We could have taken all the possible pairs, but

those one suffice.
Now the elements γ1, · · · , γp of Γ define partial isometries of K (defined on a maybe empty

closed finite subtree of K) gi : K ∩ γ−1
i (K) → γi(K) ∩ K with gi(t) = γi(t). The partial

isometries gi of K induce partial isometries of D in the natural way. That is, for every
1 ≤ i, j ≤ n and 1 ≤ k ≤ p, gk defines, by maximal restriction, an isometry ϕijk between a
closed interval of Ii and a closed interval of Ij . Set

Φ = Φ0 ∪ {ϕijk}1≤i,j≤n, 1≤k≤p

and X = (D,Φ). If the action on T is free, then no
◦
Φ-word is a reflection.

Lemma 2.1 The group G(X(K)) is generated by {γ1, . . . , γp}, relations being words γε1
i1

. . . γεn
in

(εi = ±1) such that there exists x ∈ K with γε1
i1

. . . γεn
in

(x) = x and γεm
im

. . . γεn
in

(x) ∈ K for
1 ≤ m ≤ n.

Proof. Let Σ(K) be the foliated 2-complex obtained (as in the construction for D) by glueing
K (foliated by points) and strips Ki × [0, 1] (foliated by {∗}× [0, 1]), where Ki = K ∩ γ−1

i K,
by identifying each (t, 0) ∈ Ki × {0} with t ∈ Ki ⊂ K and each (t, 1) ∈ Ki × {1} with
gi(t) ∈ gi(Ki) ⊂ K. If L(K) is the subgroup of π1Σ(K) normally generated by closed loops
in leaves, then π1Σ(K)/L(K) obviously has the presentation of the statement of the lemma.

Now first make a foliated homotopy equivalence on Σ(K) consisting in pinching to a point
every leaf correponding to an element of Φ0. The new foliated 2-complex is obtained from
Σ(X(K)) by cutting open along leaves {∗}×]0, 1[ corresponding to the subdivision of gk into
the ϕijk for every k. The new generators introduced in π1Σ(K) are killed when we take the
quotient by loops in leaves. ✷

Now consider G as in theorem 0.2. The convex hull of any orbit is an invariant subtree.
Since G is countable, we may assume that T is the union of an increasing sequence of finite
subtrees Kn. By lemma 2.1, there are natural epimorphisms ρn : G(X(Kn)) → G(X(Kn+1)),
and G/Ge is the direct limit of the sequence ρn. Indeed, if Fp is the free group on γ1, · · · , γp,
then the natural maps Fp → G(X(Kn)) defined in lemma 2.1 induce epimorphisms G →
G(X(Kn)) that commute with the ρn, hence defines an epimorphism from G to the direct
limit. The kernel is obviously Ge. Theorem 0.2 then follows from theorem 1.3 and the
following fact :

Lemma 2.2 Suppose ρn : Gn → Gn+1 is a sequence of epimorphisms, where each Gn is
a finitely generated free product of free abelian groups and surface groups. Then ρn is an
isomorphism for n large enough.
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Proof. First note that only finitely many isomorphism classes of groups may appear in the
sequence, since the Gn have a bounded minimal number of generators. Then observe that the
groups Gn are residually finite by [Gru], hence hopfian, that is are not isomorphic to proper
factors. ✷

Remark. If G is a finitely presented group acting freely on T , then it follows from the
above lemmae that there is a finite subtree Kn of T such that G � G(X(Kn)). As Rips has
suggested, an explicit Kn may be taken to be the convex hull of the finitely many points wix
where x is any base point in T , and the wi’s are the generators of G and the words in the
γi that appear as final subwords (including the empty one) of a finite set of relations for G.
Also note that X(Kn) has no reflection.

3 Imanishi’s theorem : minimal components

Let X be nondegenerate. Let E ⊂ D be the union of all finite singular
◦
X-orbits. It is finite

and contains all endpoints of D, so that D \ E is a finite union of open intervals.
Consider the equivalence relation generated on π0(D \ E) by saying that two intervals

are equivalent if some
◦
X-orbit meets them both. Let U be the union of all intervals in an

equivalence class. The following theorem states that either U contains only finite
◦
X-orbits,

or every
◦
X-orbit contained in U is dense in U . The important point (compare [Ima], theorem

1) is that every orbit (of X or
◦
X) is finite or locally dense : the closure of an orbit cannot

be a Cantor set.

Theorem 3.1 D \E is a disjoint union of open
◦
X-invariant sets U1, . . . , Up, where each Ui

admits one of the following descriptions :

• family of finite orbits : Ui consists of intervals of equal length meeting only finite
◦
X-

orbits ; the family may be untwisted (every
◦
X-orbit contained in Ui is two-sided and

meets each interval exactly once) or twisted (there is a one-sided orbit meeting each
interval once, while all other orbits are two-sided and meet each interval twice).

• minimal component : every
◦
X-orbit contained in Ui is dense in Ui.

Remark 3.2 • A minimal component Ui may consist of several intervals.

• Twisted families of finite orbits may occur only if X contains reflections.

• The number p may be bounded in terms of k and the number of components of D.

• We define the width ei of a family of finite orbits as the common length of components
of Ui (half this length if the family is twisted).

Proof. (following [AL], appendice) If L is a finite regular
◦
X-orbit, orbits close to it are also

finite, with the same cardinality (twice this cardinality if L is one-sided). These orbits may
be pushed until orbits in E are reached. This shows that intervals of D \ E meeting finite
◦
X-orbits belong to families of finite orbits.
Claim. No leaf closure is a Cantor set. More precisely, let L be an infinite

◦
X-orbit. We

claim that there exists δ > 0 such that every component of D \ L has length ≥ δ.
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To prove this, choose δ > 0 such that :
– any 2 points in E have distance > δ;
– if a is an endpoint of a base Aj , then the distance between a and

◦
Aj ∩L is either 0 or

> δ.
Suppose J is a component of D \ L of length c < δ. At least one endpoint x of J has

infinite
◦
X-orbit. Indeed, if both endpoints have finite orbits, they cannot be regular, because

the infinite L accumulates on them, hence are singular, contradicting the first assumption on

δ. Choose y, z ∈
◦
X (x) such that z ∈

◦
X

+
(y) and 0 < |y − z| < c. Interchanging y and z if

necessary, fix a word
◦
ϕ
εq

jq ◦ . . . ◦ ◦
ϕ
ε1

j1 (εi = ±1) taking x to y and sending some subinterval of
J between y and z. Define x′ ∈ J by |x − x′| = |y − z|.

Since x′ does not belong to
◦
X (z) = L, there is an i such that

◦
ϕ
εi

ji ◦ . . . ◦ ◦
ϕ
ε1

j1 is not defined

at x′. Considering the smallest such i shows that
◦
ϕ
εi−1

ji−1
◦ . . . ◦ ◦

ϕ
ε1

j1 (x′) (x if i = 1), which is

not in L, is an endpoint of the domain of ϕji , at distance < δ from
◦
ϕ
εi−1

ji−1
◦ . . . ◦ ◦

ϕ
ε1

j1 (x) ∈ L.
This contradicts the way δ was chosen, thus proving the claim. ✷

To complete the proof of the theorem, we consider an infinite
◦
X-orbit L1 meeting a

component J1 of D \ E, and we show that L1 is dense in J1.

Suppose not. Let L be an
◦
X-orbit in the frontier of L1 in J1. Since L is infinite, we can

find δ as above. Choose y, z ∈ L with 0 < |y − z| < δ and z ∈
◦
X

+
(y). Then by definition of

δ, the segment [y, z] is contained in L, hence in L1. Since y and z are in the same
◦
X

+
-orbit,

this implies that L belongs to the interior of L1, a contradiction. ✷

Definition 3.3 A nondegenerate X is minimal if D \ E consists of a single minimal com-
ponent U .

This implies that every X-orbit is dense. Indeed, more generally, let a ∈ E be in the
closure of a minimal component U of a nondegenerate X. Let J be a closed nondegenerate
interval with a ∈ ∂J and J \ {a} ⊂ U . Consider images of a by ϕ-words defined on some
nondegenerate interval [a, b] ⊂ J . At least one of them has to be in U : otherwise they would
all be in the finite set E, and X-orbits meeting J near a would be finite. In particular, X(a)
contains U .

Remark. Together with a simple compactness argument, this leads to the following fact
(noticed by E. Rips) : given a closed interval H of positive length in a minimal component
U , there exists an integer N such that every x ∈ U can be sent into H by a ϕ-word of length
≤ N .

Definition 3.4 A system of isometries X is pure if X is connected, nondegenerate, and E
consists only of endpoints of D. Note that either D \ E is a family of finite orbits or X is
minimal.

Proposition 3.5 Let X be connected, possibly degenerate. There exist X1, . . . , Xp pure such
that G(X) � G(X1) ∗ . . . ∗ G(Xp) ∗ F , with F a free group.

Proof. We use 2 simple operations.
– Removing a singleton. Let X ′ be obtained from X by removing a singleton ϕj : {a} →

{b}. It is easy to check that G(X) and G(X ′) are related as follows.
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If X ′ is connected, then G(X) � G(X ′) if b ∈ X ′(a), while G(X) � G(X ′)∗Z if b /∈ X ′(a).
Indeed, in the first case, if one adds a band Aj × [0, 1] to the foliated 2-complex Σ(X ′) such
that the points of X ′ ⊂ Σ(X ′) joined by a leaf in Aj × [0, 1] were already in the same leaf
on Σ(X ′), then π1Σ(X) has a new free generator immediately killed in G(X). In the second
case, the new generator is involved in no relation.

If X ′ has 2 components X1 and X2, then G(X) � G(X1) ∗ G(X2). Indeed, Σ(X) is
obtained from Σ(X1),Σ(X2) by joining them with an arc Aj × [0, 1]. Hence π1Σ(X) �
π1Σ(X1) ∗ π1Σ(X2) and only relations in the free factors and their product may appear.

– Splitting an interval. Let x be an interior point of a component I of D. Assume that x
is not the domain or range of a singleton ϕj . We are going to split I apart at x.

First we split bases Aj containing x in their interior, replacing ϕj by two generators : the
restrictions of ϕj to the closures of the components of Aj \{x}. Split bases Bj similarly. This
does not change G(X).

Then replace I by two disjoint intervals I1 and I2, disjoint from the other components of
D, isometric to the closures of the components of I \ {x}, so that x is replaced by two points
x1, x2. We get a new multi-interval D′. Each generator gives rise to a partial isometry of D′ in
the obvious way, defining X ′ on D′. To relate G(X) and G(X ′), simply note G(X) � G(X ′′),
where X ′′ is obtained from X ′ by adding a singleton taking x1 to x2.

To prove the proposition, first remove singletons and isolated points of D, so as to get a
non-degenerate Xnd. Then define E as before, and split D apart at each point of E∩

◦
D. We

get X1, . . . , Xp corresponding to the sets U1, . . . , Up associated to Xnd by theorem 3.1. ✷

Theorem 1.3 will now follow from :

Proposition 3.6 If X is pure, then G(X) is either a free group, or a free abelian group, or
a surface group.

Recall that either X is minimal or
◦
D is a family of finite orbits. In the first case, the

result will follow from propositions 4.2, 6.4 and section 8. We settle the second case right
away, as follows.

If the family is untwisted, Σ is the product of an interval by a finite 1-complex σ, with
the product foliation {∗} × σ. If it is twisted, Σ is a twisted interval bundle over a finite
1-complex σ. In both cases G(X) is trivial, since every cycle in σ is freely homotopic into a
leaf in Σ.

Corollary 3.7 If X is a system of isometries whose orbits are finite, then G(X) is free. ✷

4 Homogeneous components and discrete approximation

Let X be non-degenerate. A minimal component U is orientable homogenous if there exists
an interval J ⊂ U of positive length, and a dense subgroup P ⊂ R, such that x, y ∈ J belong
to the same

◦
X-orbit if and only if x − y ∈ P . This property then holds for every interval

contained in U , with the same P . The group P should be viewed as a group of periods, see
below.

If reflections are allowed, there may also be nonorientable homogenous components. The
definition is the same as above, but now P is a dense subgroup of Isom(R) (well defined up

to conjugacy), and x, y ∈ J belong to the same
◦
X-orbit if and only if they belong to the same

P -orbit.
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Note that P has to be finitely generated, since it is a subgroup of the finitely generated
subgroup of Isom(R) generated by the global isometries of R whose restrictions are the

◦
ϕj ’s.

Remark. Orientable homogenous components were called weakly complete in [Lev2], com-
plete or equivalent to a group in [Lev3]. Rips calls them axial because they correspond to
free actions on R. Of course the word homogenous applies to more general situations.

Recall that X−t = (D, {ϕ−t
j }), where ϕ−t

j is the restriction of ϕj to [aj + t, bj − t] (with
Aj = [aj , bj ]). Note that X−t is defined for t ≥ 0 small enough.

Proposition 4.1 Assume no minimal component of X is homogenous. For t > 0, all orbits
of X−t are finite.

Remark. (cf. [Lev1]) If X has a homogenous component U and K ⊂ U is compact, then K
is contained in a homogenous component of X−t for t small. In the other direction, define
Xt by enlarging the domain of each ϕj . Then every minimal component of X is contained in
a homogenous component of Xt for t > 0.

Proof. (following [Lev1], proof of lemme III.5) We suppose that X−t has a minimal compo-
nent V , and we prove that X has a homogenous component. Fix an interval J = [a, a+1] ⊂ V

of length 1 ∈ (0, t) with b ∈
◦
X

+

−t (a). In the rest of the argument, all points x0, y0, x, y will be
in J .

First note the following : if x0, y0 are in the same
◦
X

+

−t-orbit, and x− y ≡ x0 − y0 mod 1,

then y ∈
◦
X

+
(x). If X contains no reflection, it follows that only positive elements of

◦
X can

send a point of J to a point of J .

Let P0 be the subgroup of R generated by {x0−y0/y0 ∈
◦
X

+

−t}. It is dense, and x−y ∈ P0

implies y ∈
◦
X

+
(x).

Consider a
◦
ϕ-word γ taking some x0 ∈ J to some y0 ∈ J . If γ is positive, we claim that

x − y ≡ x0 − y0 mod 1 implies y ∈
◦
X

+
(x). Indeed, choose p0 ∈ P0 such that x + p0 belongs

to the domain of γ. Then the
◦
X

+
-orbit of x contains γ(x + p0), which is congruent to y mod

P0. If γ is negative, a similar argument shows that x + y ≡ x0 + y0 mod 1 implies y ∈
◦
X (x).

It is now clear that the minimal component of X containing V is homogenous. If it is

orientable, the group P is generated by {x0 − y0 | y0 ∈
◦
X

+
(x0)}. ✷

Proposition 4.2 Suppose X is pure and
◦
D is a homogenous minimal component. If the

component is orientable, then G(X) is free abelian (isomorphic to P ). If the component is
not orientable, then G(X) is trivial.

Proof. [Conceptually, the system X must be thought of as equivalent to the action of P
on R (cf. [GLP2]). Arguing as in [GLP2], one then gets that G(X) is isomorphic to the
quotient of P by the subgroup generated by elements acting with a fixed point, that is P or
{1}. We provide here a direct proof. The argument is similar to the proof of prop. I.2 of

[Lev2], which says that
◦
G (X) � P in the orientable case.]

First a remark. Let [a, a+ τ ] and [b, b+ τ ] be contained in
◦
D, with b ∈

◦
X

+
(a). Since

◦
D is

homogenous, we can choose a path σt joining a + t to b + t in a leaf of
◦
F (defined in section

1) for each t ∈ [0, τ ]. Let λt be the loop consisting of σ0, [b, b + t], σt, [a, a + t]. Its class [λt]
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in
◦
G (X), hence in G(X), is independent of the choice of σ0 and σt, and it is locally constant

in t. It follows that [λt] = 1 for all t ∈ [0, τ ]. A similar result holds for intervals [a, a+ τ ] and
[b − τ, b] if some negative

◦
ϕ-word takes a to b.

Since X is pure, this remark (and an easy compactness argument) makes it possible to
represent any class in G(X) by a piecewise smooth loop γ consisting of segments αi tangent
to F and segments βi ⊂ D, with γ quasi-transverse in the following sense (cf. [FLP]) : for
each i, a segment of a leaf of F close to αi meets βi−1 or βi, but not both.

If
◦
D is an orientable component, we may change the embedding D → R so that all maps

ϕj preserve orientation. Given γ ⊂ Σ as above (but not necessarily quasi-transverse), define
ρ(γ) ∈ P by following γ and adding the variations of the x-coordinate along the segments βi.
[One may think of F as being defined by a closed differential 1-form ω (equal to dx on D),
and ρ(γ) is simply

∫
γ ω. The group P is the group of periods of ω.]

This defines an epimorphism ρ : π1Σ → P which factors through G(X). If γ is quasi-
transverse, there is no cancellation in the computation of ρ(γ), so that ρ induces an isomor-
phism G(X) → P .

If the component is not orientable, it is easy to see that G(X) is trivial, using the argu-
ments given above and the fact that centers of reflections are dense in D. ✷

5 Independent generators

Say that the generators ϕj are independent if no nontrivial reduced word in the
◦
ϕ
±1

j with
nonempty domain is a restriction of the identity (in particular, X contains no reflection).
Equivalently (when X is connected), the group L ⊂ π1Σ is trivial. This may be shown to
imply that X has no homogenous minimal component.

Proposition 5.1 Let X be connected nondegenerate without homogenous component. There
exists Y = (J, {ψi}) connected nondegenerate such that G(Y ) � G(X) and the generators ψi

are independent.

Proof. We first assume that X has no reflection, and we argue in 2 steps.
1. First consider any connected nondegenerate X. Fix t > 0 smaller than half the

length of any base, and assume that all orbits of X−t are finite. For 0 < s ≤ t, we note
Σ−s = Σ(X−s), F−s = F(X−s), L−s = L(X−s). We view F−s as a partial foliation of Σ,
defined on the subcomplex Σ−s.

The space of orbits of X−t, equal to the space of leaves of F−t, is a finite metric graph
Γ−t. Its vertices are singular orbits, its terminal vertices being the endpoints of D. Its edges
are families of finite orbits, their length being the width ei of the family (see remark 3.2).

The quotient map p−t : Σ−t → Γ−t induces an epimorphism π1Σ−t → π1Γ−t whose
kernel is clearly L−t (for a proof à la Bass-Serre, consider the action of π1Σ−t on the space
of leaves of the foliation induced by F−t on the universal covering of Σ−t; also see corollary
3.7).

On the other hand, the natural inclusion Σ−t → Σ induces an isomorphism π1Σ−t → π1Σ
and an injection L−t ↪→ L. The group G(X) thus appears as the quotient of π1Γ−t � G(X−t)
by a subgroup C ⊂ π1Γ−t. We want to describe C.

Since we are assuming that X has no reflection, any orbit H of X−t is transversely
orientable, in the following sense : we can choose local orientations of D near each point of
H in such a way that any ϕ−t-word whose domain meets H preserves these orientations.
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We can then define on Γ−t a differentiable structure for which the restriction p−t : D →
Γ−t is an immersion. We need only do it near a vertex v of valence ≥ 3. Thanks to the
transverse orientation, we partition initial segments of edges near v into exactly 2 classes,
and we declare that edges in a given class are tangent to each other and opposite to edges in
the other class.

An immersed cusp of length s is a map c : [−s, s] → Γ−t such that the restrictions of c
to [−s, 0] and [0, s] are locally isometric immersions but c is not an immersion : it folds at 0.
For a basic example, consider a segment [a, a+s] ⊂ D, with s ≤ t, and suppose ϕ−t

j is defined
at a. Then define c by setting c(u) = p−t(a + u) for u ∈ [0, s] and c(u) = p−t(ϕj(a − u)) for
u ∈ [−s, 0].

A loop in Γ−t is s-cuspidal if it consists of a finite number of immersed cusps of length
≤ s, joined at their endpoints.

Lemma 5.2 The group G(X) is isomorphic to the quotient of π1Γ−t by the normal subgroup
C generated by free homotopy classes of t-cuspidal loops.

Proof. (cf. [Lev2], p.743) Choose a strong deformation retraction r−t : Σ → Σ−t, and
consider the epimorphism π1Σ → π1Γ−t induced by p−t ◦ r−t. The image of L is clearly
contained in C (cf. the basic example of immersed cusps).

We complete the proof by showing the following : given a cusp of length s ≤ t, and points
x, y ∈ D with p−t(x) = c(−s) and p−t(y) = c(s), there exists a path δ ⊂ Σ from x to y,
contained in a leaf of Fs−t, such that p−t(δ) is homotopic to c in Γ−t.

Choose 0 = s1 < s2 < . . . < sp = s such that there exist h+
i : [si, si+1] → D and

h−
i : [−si+1,−si] → D with p−t ◦ h±

i = c. Then prove the result for the restriction of c to
[−sn, sn], by induction on n. ✷

2. Now let X be as in the proposition. By proposition 4.1, every orbit of X−t is finite
for t > 0. Since free froups are hopfian, we may choose t so that the natural epimorphism
G(X−t) → G(X−s) is an isomorphism for all s ∈ (0, t).

For every edge e of Γ−t, consider a segment Ee isometric to e. Enlarge it by glueing a
segment of length t on every endpoint of e that does not come from an endpoint of D. Let
J be the disjoint union of these enlarged segments.

Since any edge of Γ−t containing an endpoint of D has length ≥ t, there exists an im-
mersion (possibly non unique) q : J → Γ−t whose restriction to each Ee is the natural
embedding.

We now associate singletons on J to every vertex v of valence ≥ 3 of Γ−t. Lift a transverse
orientation of the X−t-orbit v (see above) to a neighborhood of q−1(v) in J , and partition
q−1(v) into two classes by considering the position of Ee, for e edge containing v. Choose x+

and x−, one in each class. Then define singletons from x+ to each point in the opposite class,
and from x− to each point �= x+ in the opposite class. Let Y−t be the connected degenerate
system thus obtained on J .

Define Y by extending each singleton {x1} → {x2} to [x1 − t, x1 + t] (the transverse
orientation of q(x1) dictates which of the 2 possible extensions must be chosen).

Clearly L(Y−t) is trivial, and G(Y−t) is isomorphic to π1Γ−t. In fact, the space of orbits
Γ′
−t of Y−t is obtained from Γ−t by glueing edges of length t at one endpoint (they correspond

to the segments that were added), so that π1Γ′
−t is canonically isomorphic to π1Γ−t.

Using the retraction from Γ′
−t to Γ−t induced by q, we can project s-cuspidal loops from

Γ′
−t to Γ−t for s ≤ t. The lemma then implies G(Y−s) � G(X−s) for s ∈ [0, t]. In particular
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G(Y ) � G(X). Furthermore the generators of Y are independent since L(Y−s) is trivial for
s > 0.

This completes the proof of the proposition when X has no reflection. If reflections are
allowed, we choose t outside of a countable set, so that all centers of reflections of X belong to
regular X−t-orbits. The graph Γ−t may have a new type of terminal vertices, corresponding
to one-sided orbits. The definition of an immersion (and of an immersed cusp) must then
be changed, so as to allow folding at these vertices. With these changes, the lemma remains
valid.

We then define J and Y−t as before, but with a new type of singletons : for each terminal
vertex vi coming from a one-sided orbit, we add the trivial singleton {vi} → {vi}. To
define Y , we extend these singletons as reflections. It is still true that G(Y−t) � π1Γ−t and
G(Y−s) � G(X−s) for s ∈ [0, t].

Of course the generators of Y are not independent, because of the reflections. But the
injection L(Y−t) → L(Y−s) is an isomorphism for s > 0, and we get independent generators
after replacing each reflection defined on [vi − t, vi + t] by its restriction to [vi, vi + t]. ✷

6 An inequality

Given a system of isometries X, define :

• m as the total length of D;

• 1 as the sum of the lengths of the domains Aj of the generators;

• e as the sum of the widths ei of the families of finite orbits (see 3.2).

Proposition 6.1 (cf. [Lev3], cor. II.5) Let X be nondegenerate.

1. The inequality e + 1 ≥ m always holds.

2. If the generators ϕj are independent, then e + 1 = m.

Remark. We will use (and prove) this proposition only when X has no homogenous compo-
nent. It is a special case of the following general result [Lev5]. Let µ be a probability measure
on a standard Borel space K. Let ϕj : Aj → Bj be measure preserving isomorphisms be-
tween Borel subsets of K. They are independent if the fixed point set of any nontrivial
reduced ϕ-word has measure 0. Define 1 =

∑
j µ(Aj), and e = inf{µ(Z) | Z ⊂ K meets

every orbit} (one can show e =
∫
K

1
n(x)dµ(x), where n(x) is the cardinality of the orbit of

x and 1
∞ = 0). In this situation, one has e + 1 ≥ 1 with equality if and only if the ϕj’s are

independent and the equivalence relation whose classes are the orbits is amenable. The proof
uses a result of S. Adams [Ada].

Proof. As mentioned above, we assume that X has no homogenous component. The
functions t �→ 1(X−t) and t �→ e(X−t) are continuous : 1 is clearly linear, and e is Lipschitz.
Indeed, if k is the number of genrators in X, then going from X−t to X−t+s perturbs at most
a subset of D of measure 4ks, hence e changes by at most 4ks (e is even piecewise linear, cf.
[Lev3]). Using proposition 4.1, we then reduce to the case when all orbits of X are finite.

Every orbit of X may be viewed as a “Cayley graph” : the vertices are the elements of the
orbit, and there is an edge labelled j between x and y whenever y = ϕj(x). The generators
are independent if and only if all regular orbits are trees.
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Consider a family Ui of finite orbits. All orbits in Ui are isometric as graphs (except the
one-sided orbit if Ui is twisted). Let vi be the number of vertices, ai the number of edges, ei
the width of any two-sided orbit. Note that 1+ai ≥ vi, with equality if and only if the graph
is a tree. (If Ui is twisted, the graph is not a tree.) The proposition then follows, since

e =
∑

ei
1 =

∑
aiei

m =
∑

viei

✷

Definition 6.2 X is an interval exchange if X is connected, nondegenerate, and every x ∈ D
outside of a finite set belongs to exactly 2 bases.

The number of bases to which a point belongs is the sum of the number of j’s such that
x is in Aj and of the number of j’s such that x is in Bj .

Corollary 6.3 Let X be connected nondegenerate with independent generators. Suppose X
has only finitely many finite orbits (hence e = 0), and every x ∈ D belongs to at least 2 bases.
Then X is an interval exchange (otherwise 1 > m). ✷

By a surface group, we mean the fundamental group of a closed connected (possibly non
orientable) surface. We also have :

Proposition 6.4 If X is a pure, minimal, interval exchange, then G(X) is a surface group.

Proof. In this case Σ is homeomorphic to a compact surface with boundary, and L is the
normal subgroup of π1Σ generated by loops contained in ∂Σ. If one had a closed loop in
a leaf of Σ not in the boundary, then it would correspond to a point of

◦
D whose

◦
X-orbit

consists of itself, contradicting the pureness of X. ✷

7 Erasing intervals

Let X0 = (D0, {ϕj}) be minimal and pure. The set L(X0) of points belonging to only one
base is open in D0. If it is not empty, define X1 on the multi-interval D1 = D0 \ L(X0) by
replacing every ϕj by its restrictions to the finitely many components of the multi-interval
D1 − ϕ−1

j (L(X0)). If some component of L(X0) coincide with a component of D, then the
corresponding is simply removed. Note that by minimality and pureness, the closures of
ϕ−1
j (L(X0)) and L(X0) do not meet.

It is easy to check that X1 is pure and minimal (every
◦
ϕ1-orbit is still dense in D1), with

G(X1) � G(X0). Indeed, Σ(X1) is an obvious strong retract of Σ(X0), where the retraction
does not change the loops in leaves contributing to relations, since the leaves of L(Xn)× [0, 1]
do not contribute to relations. If the generators of X0 are independent, so are those of X1.

If there are points of D1 belonging to only one base, we can repeat this operation. Iterating
leads to an infinite sequence Xn defined on multi-intervals D0 ⊃ D1 ⊃ . . . ⊃ Dn ⊃ . . ., unless
for some n every point of Dn belongs to at least 2 bases.

Proposition 7.1 Let X0 be pure minimal with independent generators. If the process (due
to Rips) described above does not terminate after a finite number of steps, then ∩n∈NDn is
nowhere dense in D0.
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Proof. By absurd, suppose there is a non degenerate closed interval I in ∩n∈NDn. According
to the remark above proposition 3.5, there exists NinN such that every y ∈ D can be sent
into I by a X0-word of length ≤ N .

Every orbit O of Xn is a “Cayley graph” : given a generator ϕ : A → B of Xn and
x ∈ O∩A, there is an edge labelled ϕ between x and ϕ(x). The distance between two points
of O is the minimum length of a path between them in this graph. By construction, an orbit
of Xn+1 is obtained from an orbit of Xn by removing all the terminating edges.

In particular, since the erasing process has length ≥ N + 1, there is an XN+1-orbit
ON+1 and a point y in L(X0) ∩ ON+1 such that, in the X0-orbit of y, the distance from the
terminating vertex y to ON+1 is equal to N + 1. By minimality of X0, the X0-orbit of y

meets
◦
I ⊂ DN+1. Hence y is, in its X0-orbit, at distance ≥ N + 1 from any point of I. This

contradicts our first assertion. ✷

8 The group is free

Let X be pure, minimal, not homogenous, not an interval exchange. Replace X by X0 having
independent generators, using proposition 5.1. One checks that X0 is also pure and minimal.
Alternatively, one can check that, if X has independent generators, then so do the Xi’s given
by proposition 3.5.

Apply the erasing process to X0. If it stops after n steps, then Xn is an interval exchange
by corollary 6.3, and G(X) � G(X0) � G(Xn) is a surface group.

Assuming the process goes on for ever, consider the foliated 2-complex Σ0 associated to
X0. Since generators are independent, any loop contained in a leaf and disjoint from each
δAj × (0, 1) is nullhomotopic.

This allows us to find a finite 1-complex K ⊂ Σ0, whose 0-skeleton is K0 = K∩D0, whose
edges are segments of leaves, such that L(X0) ⊂ π1Σ0 is the normal subgroup generated by
loops in K.

First assume that the intersection of K with each strip Aj × (0, 1) is connected. Then
we claim that G(X0) is free. To see this, choose a maximal subtree in each component of
K. For each edge not in these trees, remove from Σ0 the corresponding strip Aj × (0, 1).
This does not change the associated group, and brings us to the trivial situation where every
component of K is a tree.

To do the general case, consider the finite set K0 = K ∩ D0. Using proposition 7.1,
perform the erasing process until all points of K0 belong to different components of the
multi-interval Dn. The 2-complex Σn associated to Xn is contained in Σ0 in a natural way,
and Kn = K ∩ Σn generates L(Xn). It follows that G(X0) � G(Xn) is free. ✷
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