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Pseudogroups of isometries of R:

reconstruction of free actions on R-trees

D. Gaboriau, G. Levitt, F. Paulin

Abstract : The theorem of Rips about free actions on R-trees relies on a
careful analysis of finite systems of partial isometries of R. In this paper we
associate a free action on an R-tree to any finite system of isometries without
reflection. Any free action may be approximated (strongly in the sense of
Gillet-Shalen) by actions arising in this way. Proofs use in an essential way
separation properties of systems of isometries. We also interpret these finite
systems of isometries as generating sets of pseudogroups of partial isometries
between closed intervals of R.

The theory of one-dimensional dynamical systems studies the iterations of selfmap(s) of a
subset of the line. We are interested in the isometric case with some finiteness assumptions.
More precisely we consider systems of isometries X = (D, {φj}), where D is the disjoint
union of a finite number of compact intervals, and {φj} is a finite set of partial isometries
between closed intervals in D. Using closed intervals, instead of the more usual open ones,
causes some difficulties (for instance for separation properties), but it is more convenient for
certain applications.

These systems arise for instance from transversely measured codimension 1 foliations on
compact manifolds, by taking transversals and first return maps (see for instance [Hae1,
Hae2]). As shown by E. Rips, who named them Makanin Combinatorial Objects, they also
arise in the study of actions of finitely generated groups G on R-trees T (see [GLP1] and
Section 4). Given a finite subtree K of T , one gets a system of isometries X(K) by taking
the restrictions to K of generators of G, and splitting K open at branch points to turn it
into a union of intervals. Recall that an R-tree is an arcwise connected metric space in which
every arc is isometric to an interval of R. See for instance [Sha1, Sha2, Mor1] for historical
remarks, references and motivations on R-trees.

There is a group G(X) naturally associated to X. When D is connected, it has the
following presentation (see [Lev1]) : the generators are in one-to-one correspondence with
the φj ’s, and the relations correspond to words in the φj ’s and their inverses having a fixed
point in D.

In [GLP1] we gave a proof of Rips’ result that G(X) is a free product of free abelian
groups and surface groups. This is the key step in proving that a finitely generated group G
acting freely on an R-tree T is such a free product: if the finite subtree K ⊂ T is big enough,
then G(X(K)) is isomorphic to G.

In this paper we show how to associate a free action of G(X) on an R-tree T (X) to any
system of isometries without reflection (see Section 3). This applies in particular to systems
X(K) obtained as above from a free action on an R-tree T . In this case we show that the
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trees T (X(K)) are strong approximations of the original tree T when K is big (see Section
4).

The tree T (X) may be viewed geometrically as follows. There is a compact foliated 2-
complex Σ(X) (see Section 1) canonically associated to X: it is obtained by attaching strips
to D, one for each φj . The group G(X) is obtained from π1Σ(X) by killing all loops contained
in leaves. Let Σ(X) be the covering of Σ(X) with transformation group G(X).

The group G(X) acts freely on the space of leaves of the foliation induced on Σ(X). This
space has a natural pseudo-metric d (coming from length on D) and the associated metric
space T (X) is an R-tree (see [Lev3], corollary III.5). But d may be quite far from being a
metric (it may even be identically 0), so that the natural isometric action of G(X) on T (X)
is not always free (from the point of view of [Lev3], this means that Σ(X) is not the right
covering space to consider!).

We thus have to impose some condition on X to rule out such pathologies. Say that X is
without reflection if no partial isometry obtained by composing the generators ϕj and their
inverses carries an interval [x− u, x] (u > 0) onto [x, x + u] in an orientation-reversing way.

Theorem 3.2 If X is a system without reflection, then d is a metric and the natural action
of G(X) on the R-tree T (X) is free.

Now suppose G is a finitely generated group acting freely and minimally on an R-tree
T . Let Kn be an increasing sequence of finite subtrees, with T =

⋃
Kn. Then G(X(Kn)) is

isomorphic to G for n big enough (see [GLP1]), and it is easy to see that the systems X(Kn)
have no reflection. We thus get a sequence of R-trees T (X(Kn)), each equipped with a free
action of G.

Theorem 4.3 The sequence T (X(Kn)) converges towards T strongly (in the sense of [GS]),
hence also in the equivariant Gromov topology (in the sense of [Pau2]).

The key point in Theorem 3.2 is that d is a metric (i.e. the space of leaves on Σ̃(X) is
Hausdorff). This is proved using a fact about systems of isometries established in Section 2,
generalizing Lemma VIII.1 of [Lev2].

Given X, say that two points x, y in D are in the same X-orbit if there is a word in the
φj ’s and their inverses defined at x with image y (we call such a word an X-word).

Theorem 2.3 Let X be a system of isometries. Suppose p, q are isometric embeddings
[0, η] → R with η > 0 such that qt = q(t) and pt = p(t) are in the same X-orbit for
all but countably many t’s. Then qt and pt are in fact in the same X-orbit for every t.
Furthermore there exist finitely many X-words ω1, · · · , ωn such that for every t ∈ [0, η] there
is an i ∈ {1, · · · , n} with ωi(pt) = qt.

This implies that a system of isometries is segment closed (a property introduced by
Rimlinger [Rim1]), see Section 2.

Theorem 2.3 has several other consequences. In Section 5, we interpret the systems X
as generating systems of finitely generated closed pseudogroups P on D. That is, P is the
smallest set of partial isometries between closed subintervals of D that contains the φj ’s and
is stable under the following operations: composition, passage to the inverse, restriction and
finite glueing. There is a notion of equivalence of closed pseudogroups (for instance different
choices of a complete transversal for a measured foliation yield equivalent pseudogroups).

We prove (Proposition 5.9) that if two systems X, X ′ generate equivalent closed pseu-
dogroups, then the associated groups G(X), G(X ′) are isomorphic (see [Rim3] for a partial
result) and the trees T (X), T (X ′) are isometric.
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Every orbit of a system X is the set of vertices of a graph, called the Cayley graph of the
orbit, where there is an edge labelled j between x, y whenever y = φj(x). We view this graph
as a metric space, by giving length 1 to every edge.

If systems X and X ′ on a given multi-interval D have the same orbits, then the orbits
of a given x ∈ D for X and X ′ are quasi-isometric (see Proposition 5.6). This follows from
Theorem 2.3 since X admits a finite refinement X0 such that every generator of X0 may be
expressed as an X ′-word. It is interesting to study properties of the orbits (such as growth
or number of ends), see [Gab] for results and examples.

This paper is a sequel to [GLP1], but it may be read independently.

1 Notations and definitions

For the sake of completeness, we recall here notations and definitions from [GLP1].
A multi-interval D is a union of finitely many disjoint compact intervals of R. Components

of D may be degenerate intervals, i.e. consist of only one point.

Definition 1.1 A system of isometries is a pair X = (D, {ϕj}j=1,···,k), where D is a multi-
interval and each ϕj : Aj → Bj (called a generator) is an isometry between closed (possibly
degenerate) subintervals of D.

The intervals Aj , Bj are called bases. A generator ϕj : Aj → Bj is a singleton if Aj is
degenerate.

An X-word is a word in the generators ϕ±1
j . It is a partial isometry of D, whose domain

(defined in the obvious maximal way) is a closed interval (possibly degenerate or empty). If

ϕj is not a singleton, define
◦
ϕj :

◦
Aj→

◦
Bj as the restriction of ϕj to the interior of Aj . An

◦
X-word is a word in the generators

◦
ϕj

±1
. Its domain is a (possibly empty) open interval.

Two points x, y in D belong to the same X-orbit (resp.
◦
X-orbit) if there exists an X-word

(resp.
◦
X-word) sending one to the other. Note that the orbits are countable and that an

orbit of
◦
X is contained in an orbit of X, with equality except perhaps for a finite number of

them. Every orbit of X may be viewed as a “Cayley graph” : the vertices are the elements
of the orbit, and there is an edge labelled j between x and y whenever y = ϕj(x).

We can associate a sign ± to every partial isometry of R whose domain has nonempty
interior, simply by taking its derivative.

If X is a system of isometries on a multi-interval D, we define (see [GLP1], Section 1) a
foliated 2-complex (Σ(X),F) (or simply Σ) associated to X. Start with the disjoint union of
D (foliated by points) and strips Aj × [0, 1] (foliated by {∗} × [0, 1]). We get Σ by glueing
the strips Aj × [0, 1] to D, identifying each (t, 0) ∈ Aj × {0} with t ∈ Aj ⊂ D and each
(t, 1) ∈ Aj × {1} with ϕj(t) ∈ Bj ⊂ D. We will identify D with its image in Σ.

The foliation F is the decomposition of Σ into leaves. A leaf is an equivalence class for the
equivalence relation ∼ generated by x ∼ y if there is a j = 1, · · · , k with x, y corresponding
to two points in the same leaf {∗}× [0, 1] of Aj × [0, 1]. Each leaf L is a simplicial 1-complex
(whose embedding in Σ may fail to be proper): the vertices are the intersections of L with
D, and the edges correspond to the leaves {∗} × [0, 1] of the strips Aj × [0, 1]. Two points of
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D are in the same leaf of F if and only if they are in the same X-orbit. For instance, if a
point x ∈ D belongs to no base, then its leaf is just {x}.

This suspension process is well-known for interval exchanges. See J. Morgan’s notes
[Mor2] for the first appearance under the above generality, and [AL][Lev3] for suspensions as
measured foliations with Morse singularities on manifolds.

In what follows, we assume that Σ is connected. The 2-complex Σ has the homotopy
type of a finite graph, so that its fundamental group π1(Σ) is a finitely generated free group.
We will denote by L the normal subgroup of π1(Σ) normally generated by the free homotopy
classes of loops contained in leaves of F .

Definition 1.2 If X is a system of isometries, we define G(X) = π1(Σ)/L.

2 The segment closed property

When one wants to study separation properties of the quotient of a metric space by an
isometric equivalence relation, the following notion, introduced by F. Rimlinger [Rim1][Rim2],
may be considered.

Definition 2.1 Let R be an equivalence relation on a metric space M . Then R is segment
closed if, given an isometry ϕ between geodesic segments [a, c] and [b, d] in M sending a to b,
with ϕ(t) equivalent to t for every t ∈ (a, c], then a and b are equivalent.

Proposition 2.2 If X is a system of isometries, the equivalence relation on D defined by
“being in the same X-orbit” is segment closed.

More precisely:

Theorem 2.3 Let X be a system of isometries. Suppose p, q are isometric embeddings
[0, η] → R with η > 0 such that qt = q(t) and pt = p(t) are in the same X-orbit for all but
countably many t’s. Then qt and pt are in the same X-orbit for every t. Furthermore there
exist finitely many X-words ω1, · · · , ωn such that for every t ∈ [0, η] there is an i ∈ {1, · · · , n}
with ωi(pt) = qt.

First a few definitions, for X a system of isometries. Let X = {ϕj : [aj , cj ] → [bj , dj ]}j=1,···,k.
Implicit in this notation is the fact that ϕj(aj) = bj , so that we allow aj > cj or bj > dj .
Define Ω to be the set of points aj , cj , bj , dj . Let ΓX be the (non oriented) graph having

as vertices the
◦
X-orbits meeting Ω, and having two edges for each j = 1, · · · , k, one edge

between the
◦
X-orbit of aj and the

◦
X-orbit of bj , and another edge between the

◦
X-orbit of cj

and the
◦
X-orbit of dj . Define DX to be the number of vertices of ΓX minus the number of

connected components of ΓX .
Say that x ∈ R is bad for X if there is no

◦
X-word w of derivative −1 with w(x) = x, but

there is an
◦
X-word w of the form (x− u, x) → (x + u, x) with u > 0. Say that X is good if

it has no bad point. Note that if X has a bad point, then some point of Ω is bad. Indeed,
every point in the

◦
X-orbit of a bad point is also bad. But endpoints of domains and ranges

of
◦
X-words are in

◦
X-orbits meeting Ω.
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Lemma 2.4 For every system of isometries X, there exists a good system of isometries X ′

such that X and X ′ (resp.
◦
X and

◦
X ′) have the same orbits, and DX = DX′.

Proof. If x ∈ Ω is a bad point for X, with an
◦
X-word w of the form (x− u, x) → (x+ u, x),

we add a generator [x−δ, x+δ] → [x+δ, x−δ] of derivative −1, with δ < u. The orbits of X

and X ′ (resp.
◦
X and

◦
X

′
) are the same, where X ′ is the new system of isometries. By choosing

δ outside a countable set, we may assume that x±δ does not belong to the X-orbit of a point
of Ω. In particular, there is no

◦
X-word w of the form (x + δ − u, x + δ) → (x + δ + u, x + δ)

with u > 0. Hence, the points x± δ are not bad for X ′.
The graph ΓX′ is obtained from ΓX by adding a component with one vertex and two

edges, so that DX has not changed. By iterating, one gets the result. ✷

The following proposition is a statement analogous to Theorem 2.3 in the open case
(compare [Lev2], lemme VIII.1).

Proposition 2.5 Let X be a good system of isometries. There exists δ > 0 such that if p, q

are isometric embeddings [0, η] → R with 0 < η < δ such that qt = q(t) is in the
◦
X-orbit

of pt = p(t) for every t ∈ (0, η), then there exists an
◦
X-word sending (p0, pη) to (q0, qη). In

particular, p0 and q0 are in the same X-orbit.

Proof. For every u, v in Ω and µ = ±1 such that there exists an
◦
X-word sending u to v with

derivative µ, we fix such a word wu,v,µ. Since Ω is finite, we may find δ > 0 such that each
wu,v,µ is defined on (u− δ, u + δ).

-bb-error = =

Figure 1 : Pushing part of an orbit into close ones.

Define λ to be +1 if the orientations of p and q coincide, and −1 otherwise. For all but
countably many t ∈ (0, η), there exists an

◦
X-word w with derivative λ such that w(pt) = qt:

there are countably many
◦
X-words, and such a word can send at most one pt to qt with the

wrong orientation.
Consider

◦
X-words w = ϕi1 · · ·ϕin with derivative λ, such that the domain of w meets

(p0, pη) and w(pt) = qt for some t ∈ (0, η). Define by induction x0
t = qt, ϕij (x

j
t ) = xj−1

t , so
that pt = xn

t . For every 0 ≤ t′ ≤ η, let xi
t′ be the point of R at distance |t− t′| from xi

t and on
the correct side (for instance if q0 < qt and ϕi1 preserves the orientation then x1

0 < x1
t < x1

η).
Let c(w) be the number of j ∈ {1, · · · , n} such that ϕij is not defined on the whole open

interval between xi
0 and xi

η. Choose w with c(w) minimal. If c(w) = 0, then we are done.
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Otherwise, since the set of t such that w(pt) = qt is an open interval, there is a biggest
t0 ∈ [0, t) such that w is not defined at pt0 and a smallest t′0 ∈ (t, η] such that w is not defined
at pt′0 .

If t0 = 0 and t′0 = η, then we are done. So suppose for instance that t0 > 0. Let s ≥ 0
be the smallest j such that ϕ−1

ij+1
(xj

t0) is not defined. Let r ≤ n be the biggest j such that

ϕij (x
j
t0) is not defined. Observe that both v = xs

t0 and u = xr
t0 are in Ω. Moreover, we have

0 ≤ s < r ≤ n since otherwise w would be defined at pt0 .
Let w∗ be the subword of w taking xr

t to xs
t for t > t0 close enough to t0, and let µ be its

derivative. Since qt0 is in the same
◦
X-orbit as pt0 , there is an

◦
X-word w′ sending u to v. We

claim that w′ may be chosen to have derivative µ.
If w′ has the wrong derivative −µ, then by composing it with the inverse of w∗, we get a

map of the form (u − ν, u) → (u + ν, u) with ν > 0. Since X is good, we can correct w′ by

using an
◦
X-word with derivative −1 fixing u.

Replacing the subword w∗ in w by wu,v,µ, we now get a contradiction to the minimality
of c(w), since η < δ. ✷

Proof of Theorem 2.3. We first prove that qt and pt are in the same X-orbit for every
t. According to Lemma 2.4, we may assume that X is good. Define λ to be +1 if the
orientations of p and q coincide, and −1 otherwise. Let F ⊂ [0, η] be the set of t such that

there is no
◦
X-word with derivative λ taking pt to qt.

Clearly F is closed, since domains of
◦
X-words are open and orientations agree. Moreover,

F is countable : qt is in the same
◦
X-orbit as pt for all but countably many t’s (the orbits

for X and
◦
X differ only for countably many points) and the derivative is right for all but

countably many t’s.
If F is finite, we are done by Proposition 2.5. We now assume that F is infinite and

we work towards a contradiction. Let t0 ∈ (0, η) be an isolated point of F (recall that a
nonempty closed countable subset of R has an isolated point).

If there is an
◦
X-word w sending pt0 to qt0 , then w has derivative −λ by definition of F .

Applying Proposition 2.5 on the right or on the left of pt0 and composing by w−1, we see that

there is an
◦
X-word of the form (pt0 − u, pt0) → (pt0 + u, pt0) with u > 0. Since X is good,

there is a reflection around pt0 . Composing it with w contradicts t0 ∈ F .

The
◦
X-orbits of pt0 and qt0 are thus distinct. Construct a new system of isometries X ′

by adding to X a new generator [pt0−u, pt0+u] → [qt0−u, qt0+u] with u > 0 chosen so that the
◦
X-orbits of pt0−u and qt0+u do not meet Ω. By Proposition 2.5, orbits for X and X ′ are the
same if u is small enough.

We claim that DX′ = DX − 1. By Proposition 2.5, the
◦
X-orbits of pt0 and qt0 both meet

Ω. So one goes from ΓX to ΓX′ by identifying 2 vertices belonging to the same component,
and adding 2 components with one vertex and one edge (if the

◦
X-orbits of pt0−u and qt0+u

are the same) or 1 component with one vertex and two edges (otherwise), so that D always
decreases. Since D is non-negative, we obtain a contradiction by making X ′ good by Lemma
2.4 and iterating.

Finally, the “furthermore” certainly holds if X is good, since F is finite. To prove it in
general, we simply note that all new generators ϕ introduced in the proof of Lemma 2.4 have
the following property: their domain is a finite union of closed intervals Ii such that on Ii
the map ϕ agrees with the restriction of some X-word. ✷
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3 The R-tree associated to a system of isometries

We define an action of a group on a metric space to be a left isometric action.
Let X be a system of isometries on a multi-interval D. We assume that the associated

foliated 2-complex (Σ(X),F) is connected, and we consider the group G(X) = π1Σ(X)/L.
We define a metric space T (X) as follows (see for instance [Lev3]). Let π : Σ(X) → Σ(X)

be the covering defined by L, and F be the measured foliation lifting F . A path γ in Σ(X)
has a length ‖γ‖, defined as the total mass of the measure induced on γ by the transverse
measure of F . Given x, y in Σ(X), let dF (x, y) be the infimum of the lengths of all paths
from x to y. This defines a pseudo-distance on Σ(X) (two different points x, y may have
dF (x, y) = 0, for instance if they are in the same leaf).

The metric space T (X) is obtained by identifying two points in Σ(X) at pseudo-distance
0 from each other. Since F is invariant by G(X), there is a natural (isometric) action of
G(X) on T (X). The natural projection θ : Σ(X) → T (X) is equivariant and continuous.

Using ideas of [GS] Theorem 5.20, [Pau3] Proposition 4.6, the second author has proved
the following general result.

Proposition 3.1 ([Lev3] Corollary III.5) If X is a system of isometries, then T (X) is an
R-tree.

We will reprove it when X is without reflection. A reflection in X is a negative X-
word having a fixed point, called its center (recall that a negative word is a word with
nondegenerate domain and derivative −1). According to Theorem 2.3, a system of isometries
is without reflection if and only if there is no x such that x+ t is in the orbit of x− t for t > 0
small. Note that a system of isometries without reflection may still have negative words.

Theorem 3.2 If X is a system of isometries without reflection, then G(X) acts freely on
the R-tree T (X). Moreover, T (X) is the space of leaves of F , that is dF (x, y) = 0 if and only
if x, y are in the same leaf.

Eliminating reflections (called “folds”) is the main technical problem in [MS1] and the
ideas of the above theorem may be found therein and in [MO].

Note that the same result is proved in [Lev3], Theorem 7, under the stronger hypothesis
that F is transversely orientable.

Remark. P. Arnoux and J.-C. Yoccoz [AY] have constructed examples of singular measured
foliations on the projective plane such that every leaf is dense and simply connected. Taking
transversals, one gets a system of isometries X (having infinitely many centers of reflections)
such that the associated group is G(X) = Z/2Z and T (X) is a point (see [Lev3]). This
shows that the absence of reflection is not a superfluous condition (though it may be relaxed
to almost without reflection, see Theorem 5.13).

General position of surfaces in 2-complexes
Before giving the proof of Theorem 3.2, we need to define what it means for a map f

of a surface with boundary S into a foliated (finite) cellular 2-complex Σ to be in general
position.

First, a map γ from a 1-complex K into Σ is in general position if it is PL (see for
instance [RS]) and every 1-simplex may be finitely subdivided such that every subinterval
maps injectively and is either transverse or contained in a leaf. Looking at the local models,
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we see that every path in Σ may be homotoped (relatively to endpoints) to a nearby path
in general position (without increasing the total mass if the foliation is equipped with a
transverse measure).

Second, a map from a compact surface into a foliated 2-complex is in general position if,
as a map from the surface to the 2-complex, it is PL (see for instance [RS]) and the restriction
to the 1-skeleton is in general position. Any continuous map from a compact surface into a
foliated 2-complex whose restriction to the boundary is in general position may be homotoped
relatively to its boundary to a map in general position. The preimage of the foliation defines
(up to subdivision) a foliated 2-complex structure on the surface.

Proof of Theorem 3.2. We consider the pseudometric dF on Σ(X). We are going to prove
two things:

1. given x, y ∈ Σ(X), there exists a path γ from x to y such that ‖γ‖ = dF (x, y).

2. the metric space T (X) associated to dF is an R-tree.

The fact that the action of G(X) on T (X) is free then follows. Indeed, if g ∈ G(X) has
a fixed point θ(x) in T (X), then dF (x, gx) = 0 so that x and gx are in the same leaf by (1).
Since the covering is defined by L, this implies that g is the identity.

Say that a path γ : [0, 1] → Σ(X) (or by abuse its image) is taut if γ−1(L) is connected
for every leaf L of F . If A ⊂ Σ(X), let sat(A) be the union of all leaves meeting A.

Lemma 3.3 If a path γ between x, y ∈ Σ(X) is taut, then ‖γ‖ = dF (x, y). If γ′ is another
path between x and y, then γ is contained in sat(γ′).

Proof. Let γ, γ′ be two paths from x to y, with γ taut. We show ‖γ‖ ≤ ‖γ′‖ and γ ⊂ sat(γ′).
We may assume that both paths are in general position with respect to F .

Since π1(Σ(X)) = L, there is a compact planar surface P and a map f : P → Σ(X)
sending one boundary component of P onto γγ′−1 and the others into leaves of F . Assume
f is in general position with respect to F .

We then get a measured foliation with finitely many isolated singularities in P , such
that boundary components are contained in leaves, except one that consists of two arcs α, α′

mapped by f to γ, γ′.
A non singular leaf starting at a point of α has to reach the boundary of P : it cannot

accumulate inside P , because of the transverse measure (Poincaré recurrence theorem, see
[FLP], exposé 5, Theorem 1.5). It cannot return to α because of tautness. Thus it has to
reach α′. The same thing holds for the (finitely many) singular leaves. ✷

Using the absence of reflection, we now show:

Lemma 3.4 No leaf of F meets the same component of π−1(D) twice: every component of
π−1(D) is taut.

Proof. Otherwise there would be a measured foliation on a surface P as before, the only
difference being that the exceptional boundary component of P now consists of an arc β
contained in a leaf and an arc β′ transverse to the foliation. This implies that every regular
leaf meeting β′ is a segment with endpoints in β′. Since P is compact, any such regular leaf
belongs to a maximal band of regular leaves joining two open subintervals (a, b) and (c, d) of
β′. The leaves through the endpoints of those subintervals are singular. Since P is planar

8



    

and the number of singular leaves is finite, there is a band of regular leaves joining two open
subintervals (a, b) and (c, d) of β′ having a common endpoint b = c. This point must be the
center of a reflection. ✷

Let A1, · · · , An, · · · be the components of π−1(D). Let In be the intersection of An with
Bn−1 = sat(A1 ∪ . . . ∪An−1). Since Σ(X) is connected, we may assume that In is nonempty
for n ≥ 2. The set Bn is then path-connected for every n.

Lemma 3.5 The set In is a closed connected subset of An.

Connectedness is analogous to Lemma 1.7 in F. Rimlinger [Rim1]. Closedness is a conse-
quence of segment closure (Proposition 2.2).

Proof. If x, y ∈ In, the interval [x, y] ⊂ An is taut by Lemma 3.4. By Lemma 3.3, it is
contained in Bn−1 because Bn−1 is saturated and path-connected. This shows that In is
connected. We now show that it is closed.

If not, there exists η > 0 and an isometric map p : [0, η] → An such that p(t) ∈ In if and
only if t > 0. Choose a decreasing sequence tp converging to 0 such that the leaf of p(tp)
contains a point qp belonging to a fixed component A of (A1 ∪ . . . ∪ An−1). By Lemmas 3.3
and 3.4 there exists η′ < η and an isometric map q : [0, η′] → A such that q(t) is in the same
leaf as p(t) for t > 0 and qp = q(tp).

Using the covering projection from Σ(X) to Σ(X), one gets maps p, q : [0, η′] → D such
that p(t) and q(t) are in the same leaf of F for all t in (0, η′].

By Theorem 2.3, for some 0 < η′′ ≤ η′, there is a “band” of leaves from p([0, η′′]) to
q([0, η′′]) joining p(t) to q(t). This band of leaves may be lifted to a band of leaves starting
from p([0, η]). Since the covering Σ(X) is defined by L, the leaf issued from p(t) in this lifted
band terminates at q(t) for every t in (0, η]. By continuity, p(0) and q(0) belong to the same
leaf. ✷

Lemma 3.6 Two points x, y in Bn = A1 ∪ . . .∪An may be joined by a taut path γ contained
in sat(Bn).

Proof. We argue by induction on n, noting that the result is true for n = 1 by Lemma
3.4. It is enough to consider the case when x ∈ An \ In and y /∈ An. Let x′ be the point
of In closest to x on An (it exists because In is a nonempty closed subinterval). Choose
y′ ∈ A1 ∪ . . .∪An−1 in the same leaf as x′. The required path γ between x and y is obtained
by concatenating the arc [x, x′] ⊂ An, a segment of a leaf between x′ and y′, and a taut path
γ′ between y′ and y given by the induction hypothesis. The path γ is taut because leaves
meeting γ′ meet A1 ∪ . . . ∪An−1 while those meeting [x, x′) don’t. ✷

Since every leaf of F meets π−1(D), assertion (1) above follows from Lemmas 3.6 and 3.3.
To prove assertion (2), we can either apply Corollary III.5 of [Lev3] or argue as follows. We

prove by induction that the metric space Kn associated to (Bn, dF |Bn) is a finite metric tree.
This is true for n = 1 by Lemmas 3.4 and 3.3. From the way the taut path γ was constructed
in the proof of Lemma 3.6, we see that one passes from Kn to Kn+1 by isometrically glueing
An+1 along the closed subinterval In+1, so that Kn+1 is indeed a finite tree. The space T (X)
is an R-tree because it is the increasing union of the finite trees Kn. ✷
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4 Approximating free actions on R-trees

A finite R-tree is a compact R-tree which is the union of finitely many segments. Let G be a
finitely generated group acting on an R-tree T , and {g1, · · · , gp} a fixed system of generators
for G. Let K be a finite subtree of T .

The elements g1, · · · , gp of Γ define partial isometries of K

ψi : Ai = K ∩ g−1
i (K) → Bi = gi(K) ∩K

with ψi(t) = gi(t). The domains Ai and ranges Bi are finite subtrees. We assume that K is
big enough for them to be nonempty. Let K = (K, {ψi}).

¿From K we could obtain a system of isometries X(K) on a multi-interval as in [GLP1]
Section 2. To approximate free actions, it turns out to be easier to work with finite R-trees.
Most definitions given for multi-intervals extend readily to K.

In particular, we asssociate to K a foliated 2-complex Σ = Σ(K) by glueing strips Ai×[0, 1]
to K. We define G(K) = π1Σ/L by killing loops contained in leaves.

It is easy to see that G(K) is generated by {g1, . . . , gp}, relations being words gi1
ε1 . . . gin

εn

such that there exists x ∈ K with ψε1
im

. . . ψεn
in

(x) ∈ K for 1 ≤ m ≤ n and ψε1
i1

. . . ψεn
in

(x) = x.
We say that K has a reflection if there is a segment s : [−ε,+ε] → K and a K-word fixing

s(0) and sending s(−ε) to s(ε).
We associate as before a metric space T (K) to K by considering the natural pseudo-

distance dF on the covering Σ of Σ associated to L. We let π : Σ → Σ be the covering
map.

Theorem 4.1 Let K = (K, {ψi}) be a finite set of partial isometries between closed subtrees
of a finite R-tree K. If K is without reflection, then T (K) is an R-tree with a free action
of G(K). Furthermore, for any component K of π−1(K), the restriction of π to K is an
isometry from (K, dF ) onto K.

Proof. The proof is the same as for Theorem 3.2. In the course of the proof, corresponding
to Lemma 3.4, one shows that no leaf of F meets the same component of π−1(K) twice.
It follows that (K, dF ) is isometric to K for every component K of π−1(K). To prove the
equivalent of Lemma 3.5, we note that Theorem 2.3 also holds on K. ✷

¿From now on, we assume that G is a finitely generated group acting freely on an R-tree
T . Let K be a finite subtree of T such that each Ai is nonempty (see above). Since G acts
freely, it is clear that K has no reflection.

¿From the presentation of G(K) given above we get a natural epimorphism G(K) → G.
Since G is finitely presented (see [GLP1]), this epimorphism is an isomorphism for K big
enough. In what follows, we identify G and G(K).

Hence if K is a sufficiently large finite subtree of T , Theorem 4.1 yields a free action of the
group G on the R-tree T (K). We will fix a component K of π−1(K). Using the “furthermore”
in Theorem 4.1, we may then embed K isometrically into T (K), by identifying K with the
image of K in T (K).

It is not always true that T (K) is (equivariantly) isometric to T for K big enough. Indeed,
if G is a free group, it happens precisely when the action on T is geometric (see [GL]). But
our goal (Theorem 4.3) is to show that T (K) is a strong approximation of T .

Recall that an action of a group on an R-tree is said to be minimal if there is no proper
invariant subtree. If g ∈ G, the translation length of g on T is 9T (g) = inf{d(x, gx)/x ∈ T}.
Also recall the following definition from [MO].
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Definition 4.2 Let T, T ′ be R-trees endowed with an action of a group G. A morphism
from T to T ′ is an equivariant continuous map f : T → T ′ such every segment in T may be
subdivided into finitely many subsegments that inject isometrically in T ′.

A sequence of R-trees Tn with an action of G converges strongly (see [GS]) to an R-tree
T with a minimal action of G if there exist morphisms fn from Tn to T and fk,n from Tk to
Tn for k < n, such that fk = fn ◦ fk,n, and for every x, y in Tk there exists some n ≥ k such
that d(fk,n(x), fk,n(y)) = d(fk(x), fk(y)). In particular, for every g ∈ G, 9Tn(g) is eventually
constant and equal to 9T (g) (see [GS]).

A sequence of metric G-spaces Yn converges to a metric G-space Y for the equivariant
Gromov topology if, given a finite subset K of Y , a finite subset P of G, and ε > 0, then for
n big enough, there is a map ρn : K → Yn such that for every x, y in K and g in P ,

|d(gx, y) − d(gρn(x), ρn(y))| ≤ ε.

For further information on this topology, see [Pau1][Pau2], where a slight mistake in the
definition took place, as pointed out to the third author by R. Skora, all results remaining
true.

It is proved in [Pau1] that, for R-trees, convergence for the equivariant Gromov topology
implies convergence of the translation lengths, the converse being true if the action is minimal
and if the translation lengths are not the absolute values of a homomorphism from G to R.
The heuristic difference between strong convergence and equivariant Gromov convergence
of R-trees Tn towards T is the following: if the convergence is strong, one is able to lift
finite subsets from T to Tn isometrically, while otherwise one may lift finite subsets only
isometrically up to ε.

Theorem 4.3 If G is a finitely generated group acting freely and minimally on an R-tree T ,
then K is without reflection for every finite subtree K in T . If Kn is an increasing sequence
of finite subtrees with union T , then G(Kn) is isomorphic to G for n big enough and T (Kn)
converges to T strongly, hence also in the equivariant Gromov topology.

Proof. Let K ⊂ K ′ be finite subtrees of T . Recall that we have chosen a component K of
π−1(K), and thus embedded K isometrically into T (K) (and similarly for K ′). The natural
inclusion Σ(K) → Σ(K′) is a homotopy equivalence. We lift it to a map Σ(K) → Σ(K′),
sending K to K

′, which does not increase (pseudo)-distances. The induced map T (K) →
T (K′) is a morphism, since its restriction to K is isometric and every segment in T (K) may
be covered by finitely many images hiK, hi ∈ G. Similarly, there are natural morphisms
T (K) → T inducing the identity on K. Since every segment of T is contained in Kn for n
big enough, strong convergence follows. ✷

Remark. There is another possible approach to Theorem 4.3, using Lemmas 3.3 and 3.4
as well as Corollary III.5 from [Lev3] but not Theorem 2.3. It is based on the fact that the
length function of the action of G on T (K) is greater than or equal to the length function of
the action of G on T , so that the action of G on T (K) is free.

There is a combinatorial description of the R-tree T (K), due to E. Rips. On K ×G(K),
define a relation ∼ in the following way. First, for x, y in K and g, h in G(K), say that (x, g)
is in relation with (y, h) if (with the above notations) there exists i in {1, · · · , p} such that
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y = ψi(x) and g = hgi (equality in G(K), with the presentation given above). We define ∼
as the equivalence relation generated by the above relation. Then

T (K) = (K ×G(K)) /∼ .

In these terms, the action of G(K) on T (K) is induced by the action on K×G(K) defined
by g · (x, h) = (x, gh).

The distance on T (K) is induced by the natural pseudodistance δ on K × G(K) defined
as follows (see [GL] in the free group case):

δ((x, g), (y, h)) = inf{dK(x, xk) + dK(ψik(xk), xk−1) + · · · + dK(ψi1(x1), y)}

where dK is the distance in K and the infimum is taken over all words gi1 · · · gik representing
h−1g in G(K) and all points xj in the domain of ψij .

Remark. It is possible to approximate any action of a finitely generated group on an R-tree
by actions suitably associated to finite sets of partial isometries on finite trees (see [LP]).

5 Closed pseudogroups

The following notion is a variation on the notion of pseudogroup, as studied by S. Lie and
E. Cartan (see for instance [SS]), Veblen-Whitehead [VW], C. Ehresmann [Ehr], A. Haefliger
[Hae1][Hae2], P. Molino [Mol], E. Salem [Sal].

Definition 5.1 A closed pseudogroup on a multi-interval D is a set P of isometries between
closed subintervals of D such that :

1. the identity on every component of D belongs to P,

2. (inversion) if ϕ ∈ P, then ϕ−1 ∈ P,

3. (composition) for every ϕ,ϕ′ in P then ϕ ◦ ϕ′ belongs to P,

4. (restriction) if ϕ belongs to P and A is a closed subinterval of the domain of ϕ, then
ϕ|A : A → ϕ(A) belongs to P,

5. (extension) for every ϕ : A → B,ϕ′ : A′ → B′ in P with A ∩ A′ non empty, if there is
an isometry ϕ′′ : A ∪ A′ → B ∪ B′ whose restriction to A,A′ is respectively ϕ,ϕ′, then
ϕ′′ belongs to P.

Note that the definition makes sense for every metric space D (for instance an R-tree),
using connected subsets instead of subintervals. We allow singletons in a closed pseudogroup,
and restrictions to points in condition (4) of the definition. The composition of two partial
isometries is understood to be the maximally defined one (maybe the empty map).

An open pseudogroup (or pseudogroup for short) is defined as a closed pseudogroup,
replacing closed by open and allowing extensions with any number of elements. We have to
take finitely many of them in the closed case to be sure that the union of domains is still
closed.

Note that the intersection of any family of closed (resp. open) pseudogroups is again
a closed (resp. open) pseudogroup. For instance, the set of all isometries between closed
(resp. open) subintervals of a multi-interval is a closed (resp. open) pseudogroup.
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Definition 5.2 The closed pseudogroup P(X) generated by a system of isometries X =
(D, {ϕj}j=1···k) on a multi-interval D is the intersection of all closed pseudogroups on D
containing every ϕj. A closed pseudogroup is said to be finitely generated if it is generated by
a system of isometries.

Note that the elements of the closed pseudogroup generated by X are restrictions of
extensions of X-words.

Main example : The main examples of finitely generated closed pseudogroups are
obtained by taking a compact manifold with a measured foliation (maybe with isolated sin-
gularities, such as thorns, centers, multi-saddles or Morse type saddles) or a finite foliated
n-complex (same type of singularities), by taking D to be a set of closed transversal arcs
meeting every leaf, and by taking P to be the holonomy closed pseudogroup. An easy com-
pactness argument using flow boxes shows that D may be chosen to be compact and that P
is finitely generated. For open pseudogroups, and measured foliations without singularities,
this was proved by Sacksteder [Sac]. The suspension construction (Σ(X),F) in Section 1
shows that every system of isometries on a multi-interval may be obtained that way.

If P is a closed (resp. open) pseudogroup on D, then the orbits of P are the equivalence
classes for the equivalence relation defined on D by

x ∼ y ⇐⇒ ∃(ϕ : A → B) ∈ P, x ∈ A, y ∈ B and y = ϕ(x).

If X is a system of isometries, the orbits of X (resp.
◦
X) are the orbits of the closed (resp.

open) pseudogroup generated by X (resp.
◦
X). Note that the open pseudogroup P(

◦
X) gen-

erated by
◦
X is not necessarily the set of restrictions of elements of P(X) to the interiors of

their domains.

The following definition is an analogue for closed pseudogroups of the notion of equivalent
pseudogroups developped by A. Haefliger [Hae1][Sal].

Definition 5.3 Let P,P ′ be closed pseudogroups on multi-intervals D,D′. An equivalence
between P,P ′ is a finite set Q = {ϕi : Ai → Bi}i=1···m of partial isometries from closed
intervals in D onto closed intervals in D′, satisfying the following conditions :

• The Ai’s (resp. Bi’s) cover D (resp. D′).

• Q ◦ P ◦ Q−1 ⊂ P ′ and conversely, that is for every ϕi, ϕj in Q, for every ϕ in P and
ϕ′ in P ′, we have ϕi ◦ ϕ ◦ ϕ−1

j belongs to P ′, and ϕ−1
i ◦ ϕ′ ◦ ϕj belongs to P.

An equivalence between two systems of isometries is an equivalence between the closed
pseudogroups they generate.

It is difficult to relax the finiteness assumption in the definition of an equivalence, since
if we allow uncountably many elements in an equivalence, any two closed pseudogroups with
the same orbit space cardinality would be equivalent.

Main example : The main example of equivalence Q is, as in Haefliger’s case, obtained
by changing the complete transversal D in the main example above. The fact that Q is finite
follows as usual by a compactness argument on flow boxes.
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E. Rips has introduced examples of equivalences (that he called “elementary moves”). We
have needed in [GLP1] only two of them, “splitting” and “erasing an interval covered once”
(in [GLP1], Proposition 3.5 and Section 7). We recall the first one since we have slightly
generalized it to get rid of the assumption of pureness.

Splitting. Let X be a system of isometries. Let x be an interior point of a component I
of D. We first split the bases Aj (resp. Bj) containing x in their interior, and split Bj (resp.
Aj) at the corresponding point ϕj(x) (resp. ϕ−1

j (x)). We replace ϕj by two isometries, the
restrictions of ϕj to the closures of the two components of Aj − {x} (resp. Aj − {ϕ−1

j (x)}).
We then replace I by two disjoint intervals I1, I2, isometric to the closures of the components
of I − {x}, embedded in R disjointly from the other components of D, so that x is replaced
by two points x1, x2. Let D′ be the new multi-interval thus obtained. Each isometry in X
gives rise to a partial isometry of D′ in the obvious way, by transferring the bases that were
above I either to I1 or I2 accordingly. If {x} was the base of a singleton, then transfer it
arbitrarily to either x1 or x2. The new system of isometries X ′ on D′ is then obtained by
taking the partial isometries defined in this manner, and adding a singleton taking x1 to x2.

It is easy to see that X and X ′ are equivalent.

Theorem 2.3 has important applications to finitely generated closed pseudogroups.

Proposition 5.4 (1) Let P be a finitely generated closed pseudogroup on a multi-interval
D. Then P is closed under (possibly infinite) extensions: if φ : A → B is an isometry

between closed intervals of D, if (φα : Aα → Bα)α is any family in P, with
◦
A⊂ ∪αAα and

φ|Aα∩A
= φα|Aα∩A

, then φ belongs to P.
(2) The equivalence relation whose classes are the orbits of P is segment closed. ✷

Furthermore:

Proposition 5.5 If P and P ′ are finitely generated closed pseudogroups on a multi-interval
D such that the P-orbit and the P ′-orbit of x are equal for every x in D, then P and P ′ are
equal.

Proof. Any singleton of P is a singleton of P ′ and conversely. Furthermore, any element of
P with domain of non empty interior is in P ′ and conversely, by Theorem 2.3. ✷

If P is a closed (resp. open) pseudogroup on D, and D′ is a multi-interval contained in
D, then the set of restrictions of elements of P to D′ (resp. the interior of D′) is a closed
(resp. open) pseudogroup called the restriction of P to D′. For instance, any subgroup G of
Isom(R) canonically defines a closed (resp. open) pseudogroup on a multi-interval D, simply
by taking the set of restrictions of elements of G to any closed (resp. open) interval of D. Any
homogeneous system of isometries (in the sense of [GLP1], Section 4) may be obtained in this
way (up to changing the embedding of D into R). This fact is a consequence of Proposition
5.5.

Theorem 2.3 also implies that the quasi-isometry type of the orbits of a system of isome-
tries depends only on the generated pseudogroup. Recall that orbits of X may be viewed
as Cayley graphs (see Section 1). We consider them as metric spaces, by giving length 1 to
every edge.
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A (λ, µ)-quasi-isometry between metric spaces E,E′ is a map f : E → E′ such that

∀x, y ∈ E,
1
λ
d(x, y) − µ ≤ d(f(x), f(y)) ≤ λd(x, y) + µ

and there is some C ≥ 0 such that d(x′, f(E)) ≤ C for all x′ in E′. Note that the composition
of a (λ, µ)-quasi-isometry and a (λ′, µ′)-quasi-isometry is a (λλ′, λµ′ + µ)-quasi-isometry.

Proposition 5.6 Let X,X ′ be systems of isometries on a multi-interval D, having the same
orbits. Then for every x in D, the X-orbit and X ′-orbit of x are quasi-isometric.

Proof. By Theorem 2.3, every generator of X (resp. X ′) has a finite expression in terms of
the generators of X ′ (resp. X). We may then apply the classical argument (see for instance
[Gro]) used to show that the quasi-isometry type of the Cayley graph of a finitely generated
group does not depend of the choice of a finite generating system. ✷

More generally:

Proposition 5.7 Let X,X ′ be system of isometries on a multi-interval D. If Q is an equiv-
alence between X and X ′, then for every x in D the X-orbit of x and X ′-orbit of Q(x) are
quasi-isometric.

Note that if x ∈ D belongs to the domain of ψ,ψ′ in Q, then the X ′-orbits of ψ(x), ψ′(x)
coincide, and conversely when permuting X and X ′.

Proof. If X ′ is obtained from X by replacing a generator ϕj : Aj → Bj by its restrictions
to the closures of the components of Aj − {x}, then the orbits are easily seen to be quasi-
isometric. Indeed, the only orbit whose isometry type has changed is the orbit of x, where
every edge labelled by ϕj is replaced by two edges between the same vertices. This obviously
does not change the quasi-isometry type, since a graph is (1, 1)-quasi-isometric to its set of
vertices with the induced metric.

After finitely many such operations, we may assume that no base of X (resp. X ′) contains
in its interior an endpoint of a domain (resp. image) of an element of Q. Hence for every
generator ϕ of X and every ψ,ψ′ in Q, by definition of the generated closed pseudogroup,
the domain of ψ′ ◦ ϕ ◦ ψ−1 may be finitely subdivided so that the restriction of ψ′ ◦ ϕ ◦ ψ−1

to every piece is a restriction of some X ′-word. Define λ to be the maximum of the lengths
of these X ′-words for all such ψ′ ◦ ϕ ◦ ψ−1 (with non empty interior) and of the lengths of
the X-words obtained similarly by permuting X and X ′.

It is clear that the identity map from the vertices of the X-orbit of x to the vertices of the
X ′-orbit of x is (λ, 0)-quasi-isometric, hence that these orbits are (λ, λ + 1)-quasi-isometric.
✷

We now show that the group G(X) associated to a system of isometries X, and the R-tree
T (X) constructed in Section 3, depend only on the equivalence class of X.

Lemma 5.8 If X,X ′ are systems of isometries, such that X is obtained from X ′ by adding
a new generator φ : A → B such that x and φ(x) are in the same X ′-orbit for every x in the
domain of φ, then G(X) and G(X ′) are isomorphic.
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Proof. Fix a base point in A ⊂ Σ(X ′) ⊂ Σ(X). Consider the composite map π1Σ(X ′) →
π1Σ(X) → G(X) induced by inclusion and canonical projection. Any closed loop in a leaf
of Σ(X ′) yields a closed loop in a leaf of Σ(X), hence one has a map G(X ′) → G(X). Any
path γ in π1Σ(X) is homotopic (rel. base point) to a path meeting the interior A× (0, 1) of
the new strip in finitely many leaves {xj} × (0, 1), every such leaf being covered only once.
We will assume our paths to have this property.

Since xj and φ(xj) are in the same leaf of Σ(X ′), the image of γ in G(X) is equal to the
image of a path contained in Σ(X ′). So the map G(X ′) → G(X) is onto.

If the homotopy class of a path γ in π1Σ(X ′) is trivial in G(X), then γ is homotopic (rel.
base point) in Σ(X) to a composite path Πm

i=1α
−1
i βiαi with βi a closed loop in a leaf of Σ(X).

Take a disk D in general position with respect to A× {1
2}, with boundary γ−1Πm

i=1α
−1
i βiαi.

The intersection D ∩ (A× {1
2}) consists of finitely many arcs and loops. We may remove

them one by one by considering at each step the outermost disk. We get that γ is homotopic
(rel. base point) in Σ(X) to a composite path Πm′

i=1α
′−1
i β′

iα
′
i with β′

i and α′
i contained in

Σ(X ′).
We want to prove that γ is in fact homotopic (rel. base point) in Σ(X ′) to such a product

path (hence trivial in G(X ′)). Subdividing, we see that it is enough to prove it for a loop of
the form [x, φ(x)] ∪ [φ(x), φ(y)] ∪ [φ(y), y] ∪ [x, y] where [x, y] ⊂ A and [x, φ(x)], [φ(y), y] are
arcs contained in leaves of Σ(X ′) (such a loop is nullhomotopic in Σ(X)). But this follows
from Theorem 2.3, as after finitely many subdivisions, one may assume that [x, y] is contained
in a band of leaves in Σ(X ′) between [x, y] and [φ(x), φ(y)]. ✷

Note that this cannot be generalized to the non finitely generated case. For example,
consider {φi}i∈N where φ0 is the singleton {0} → {2} and φn : [ 1

n+1 ,
1
n ] → [2+ 1

n+1 , 2+ 1
n ] for

every n ≥ 1 is the translation by 2. Then the group naturally associated to this infinite system
of isometries is the free group of rank 2. But if we add the positive generator [0, 1] → [2, 3],
the associated group becomes Z.

Proposition 5.9 If two systems of isometries X1, X2 on multi-intervals D1, D2 are equiva-
lent, then the groups G(X1), G(X2) associated to X1, X2 are isomorphic.

Proof. Let Q be an equivalence between P(X1),P(X2). Call the elements of Q the transfer-
ring isometries. After finitely many splittings, we may assume that the domain (resp. range)
of any transferring element is a connected component of D1 (resp. D2). (This is possible only
because domains and ranges of Q are in different multi-intervals.) In particular, every base
of an element of X1 (resp. X2) is now contained in the domain (resp. image) of a transferring
isometry.

We claim that a splitting does not change the group. This may be found in [GLP1], but
we give the argument for the sake of completeness. Suppose X ′ is a system of isometries
obtained from a system of isometries X by a splitting. When we split one base, then we
replace one band by two bands, hence introducing a new generator in the group. But one
creates a new loop in leaves (going by the left side of one band and coming back by the
right side of the other), giving a relation that kills the new generator. When we split D, we
immediately introduce a new singleton, hence a new band (reduced to one leaf). Pinching
this leaf induces an homotopy equivalence between the old and new foliated 2-complexes,
preserving the loops in leaves.

If a connected component of D1 is the domain of two distinct transferring elements,
with ranges components I1, I2 of D2, then we add to X2 a generator sending I1 onto I2 by
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composing the inverse of one transferring element with the other. Do that in all possible
ways, and similarly in the other direction. Still denote by X1 (resp. X2) the systems of
isometries thus obtained. They are finite, and the group is unchanged by Lemma 5.8.

In the set of bands newly added by the above operation in Σ(X1) (resp. Σ(X2)), take a
maximal forest (i.e. a maximal tree in every connected component of the graph made up by
those bands), and pinch every component of the forest to an arc, by pinching every leaf to
a point. This homotopy equivalence does not change the associated group. Still denote by
X1 (resp. X2) the systems of isometries obtained from the new foliated 2-complex. It is easy
to see that the transferring elements now reduce to an isometry ψ (after erasing unnecessary
copies) between the new domains D1 and D2.

Now add to X1 (resp. X2) the images of X2 (resp. X1) transferred on D1 (resp. D2)
by using the isometry ψ. By Lemma 5.8, the associated groups are unchanged. We now
claim that the associated groups are isomorphic. Indeed ψ extends to a foliation-preserving
homeomorphism between the foliated 2-complexes Σ(X1) and Σ(X2). ✷

Proposition 5.10 If X,X ′ are equivalent systems of isometries, then T (X), T (X ′) are iso-
metric by an isometry which commutes with the actions of G(X), G(X ′).

Proof. Indeed, the proof of Proposition 5.9 may be followed to get the result. ✷

Ideas in the proof of Proposition 5.9 will be used in [Pau4] to give a conceptual compu-
tation of the group associated to a homogeneous system (see [GLP1], Proposition 4.2).

Finally, we discuss reflections in systems of isometries.
Recall that a reflection in a closed or open pseudogroup is an element with nondegenerate

domain and derivative −1, having a fixed point, called its center. According to Theorem 2.3,
a finitely generated closed pseudogroup P is without reflection if and only if there is no x
such that x + t is in the orbit of x− t for t > 0 small.

Observe that being without reflection is not invariant under equivalence. For one thing,
a splitting may destroy a reflection. Furthermore any closed pseudogroup is equivalent to
one having a reflection. To see this, consider a tripod, i.e. the finite tree union of three unit
intervals [o, a][o, b], [o, c] glued at o, and consider the partial isometry of the tripod sending
[a, b] to [a, c]. Then the natural systems of isometries obtained as in Section 1 by cutting
the tripod into either [a, b] ∨ [o, c] (disjoint union) or [b, c] ∨ [a, o] generate equivalent closed
pseudogroups, but the second one has a reflection. Moreover, they are equivalent to the
identity on an interval of length 2, hence they may be included in any pseudogroup.

Even after finitely many splittings, we may still have reflections. For instance if a center
of reflection x is in the interior of another generator of X, and if the orbits of

◦
X are dense in

◦
D, there are infinitely many centers of reflections.

Proposition 5.11 If P is a finitely generated closed pseudogroup, then there are finitely
many orbits of centers of reflections.

Proof. Since E (as defined in [GLP1], Section 3) is finite, and since the result is obvious
for families of finite orbits, we need only consider the case when X has only one minimal
component (by [GLP1], Section 3). The homogeneous case is easy, since then the centers of
reflections are the fixed points of elements of the finitely generated subgroup P of Isom(R).
In the nonhomogeneous case X−t (as defined in [GLP1], Section 4) has only a finite number of
orbits of centers of reflection, since X−t is a finite union of (possibly twisted) families of finite
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orbits (see [GLP1], Section 3). Furthermore this finite number is bounded independently of t.
Indeed, the number of disjoint Moebius bands that can be embedded in Σ(X−t) is bounded
by the rank of Hom(π1Σ(X−t), Z/2Z), which is uniformly bounded since the homotopy type
of Σ(X−t) does not change. Since any finite number of orbits in X may be found in X−t for
t small enough, the result follows. ✷

In [Gus], there is a computation of the exact number of orbits in terms of the algebraic
structure of a slight variation of the group G(X).

Definition 5.12 A closed pseudogroup P on a multi-interval D is almost without reflection
if only finitely many points of D are centers of reflections.

It is clear that any closed pseudogroup equivalent to P is almost without reflection.
Indeed, after finitely many splittings, the centers of reflections that remain are in the interior
of the domains of the equivalence, so that reflections may be transferred.

Theorem 5.13 The conclusions of Theorem 3.2 hold if X is a system of isometries almost
without reflection.

Proof. After a finite number of splittings, which does not change G(X) nor T (X) nor the
fact that dF (x, y) = 0 if and only if x, y are in the same leaf, we may assume that no center
of reflection of P(X) is in the interior of a component of the multi-interval D. Hence the first
claim of the proof of Theorem 3.2 holds, and the rest of the proof is the same. ✷
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