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Abstract
We show that every non-amenable free product of groups admits free ergodic probability measure pre-

serving actions which have relative property (T) in the sense of S. Popa [Pop06, Def. 4.1]. There are
continuum many such actions up to orbit equivalence and von Neumann equivalence, and they may be cho-
sen to be conjugate to any prescribed action when restricted to the free factors. We exhibit also, for every
non-amenable free product of groups, free ergodic probability measure preserving actions whose associated
equivalence relation has trivial outer automorphisms group. This gives, in particular, the first examples of
such actions for the free group on 2 generators.

Keywords : Free products, Relative property (T), Measured equivalence relations, Group measure space
construction, Outer automorphism group

1 Introduction
Several breakthroughs in von Neumann Algebras theory and Orbit Equivalence have been made possible, during
the last years, by the introduction by S. Popa of the notion of rigidity for pairs B ⊂ N of von Neumann algebras
[Pop06]. This property is inspired by the relative property (T) of Kazhdan and is satisfied by the inclusion
L∞(T2) ⊂ L∞(T2) o SL(2,Z) associated with the standard action of SL(2,Z) on the 2-torus. It has proved
to be extremely useful, more generally, for inclusions A ⊂ M(R) arising from standard countable probability
measure preserving (p.m.p.) equivalence relations R, where A is a Cartan subalgebra in the generalized crossed
product or group-measure-space construction von Neumann algebra [MvN36], [FM77b].

In case the pair A ⊂M(R) is rigid, the relation is said to have the relative property (T). When combined
with antagonistic properties like Haagerup property [Pop06] or (amalgamated) free product decomposition
[IPP08], the rigid Cartan subalgebra were shown to be essentially unique, thus allowing orbit equivalence
invariants (like the cost [Gab00], L2-Betti numbers βn(R) [Gab02] or the fundamental group F(R) [Gab02,
Cor. 5.7],. . . ) to translate to von Neumann algebras invariants. This led to the solution of the long standing
problem of finding von Neumann II1 factors with trivial fundamental group [Pop06].

While the class of groups that admit a free p.m.p. ergodic relative property (T) action is closed under certain
algebraic constructions (like direct products, commensurability [Pop06], or free product with an arbitrary group
[IPP08, Cor. 7.15]), the building blocks were very few and relying on some arithmetic actions [Pop06], [Val05],
[Fer06] leaving open the general problem [Pop06, Prob. 5.10.2.]: "Characterize the countable discrete groups
Γ0 that can act with relative property (T) on the probability space (X,µ), i.e., for which there exist free ergodic
measure preserving actions σ on (X,µ) such that L∞(X,µ) ⊂ L∞(X,µ) oσ Γ0 is a rigid embedding."

The purpose of this paper is first to prove that the class of groups that admit such a free p.m.p. ergodic
relative property (T) action contains all non-amenable free products of groups. Moreover, we show that they
have continuously many different such actions (Th. 1.3) and we remove any arithmetic assumption on the
individual actions of the building pieces. In fact, given the state of art, an arithmetic flavor remains hidden in
the way the individual actions are mutually arranged.
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Outer automorphisms groups of standard equivalence relations are usually hard to calculate and there are
only few special families of group actions for which one knows that Out(R) = {1}. The first examples are
due to S. Gefter [Gef93], [Gef96] and more examples were produced by A. Furman [Fur05]. They all take
advantage of the setting of higher rank lattices. Monod-Shalom [MS06] produced an uncountable family of non
orbit-equivalent actions with trivial outer automorphisms group, by left-right multiplication on the orthogonal
groups of certain direct products of subgroups. Using rigidity results from [MS06], Ioana-Peterson-Popa [IPP08]
gave the first shift-type examples. However, all these examples are concerned with very special kind of actions.
And the free groups keep out of reach by these techniques.

The first general result appeared recently in a paper by S. Popa and S. Vaes [PV10] and concerns free products
Λ ∗ F∞ of any countable group Λ with the free group on infinitely many generators F∞, with no condition at
all on the Λ-action. This relies heavily on the existence of a relative property (T) action for F∞. The second
purpose of our paper is twofold: extend the result from F∞ to free groups on finitely many generators, and
using the first part extend it to any non elementary free products Γ1 ∗Γ2 of groups (i.e. (|Γ1|−1)(|Γ2|−1) ≥ 2).
This leads, in particular, to the first examples of actions of the free groups Fn, ∞ > n > 1, with trivial outer
automorphisms group.

————oooOOOOOooo————

Before stating more precisely our results, let’s recall some definitions. We only consider measure preserving
actions on the standard Borel space. First, from [Pop06, Def. 4.1] the definition of a rigid inclusion (or of
relative rigidity of a subalgebra).

Definition 1.1 Let M be a factor of type II1 with normalized trace τ and let A ⊂ M be a von Neumann
subalgebra. The inclusion A ⊂ M is called rigid if the following property holds: for every ε > 0, there exists a
finite subset J ⊂M and a δ > 0 such that whenever MHM is a Hilbert M -M -bimodule admitting a unit vector
ξ with the properties

• ‖a · ξ − ξ · a‖ < δ for all a ∈ J ,

• |〈a · ξ, ξ〉 − τ(a)| < δ and |〈ξ · a, ξ〉 − τ(a)| < δ for all a in the unit ball of M ,

then, there exists a vector ξ0 ∈ H satisfying ‖ξ − ξ0‖ < ε and a · ξ0 = ξ0 · a for all a ∈ A.

Definition 1.2 [Pop06, Def. 5.10.1] A free p.m.p. ergodic action Γ
σy (X,µ) (respectively a countable standard

p.m.p. equivalence relation R on (X,µ)) is said to have the relative property (T) if the inclusion of the
Cartan subalgebra L∞(X,µ) is rigid in the (generalized) crossed-product L∞(X,µ) ⊂ L∞(X,µ) oσ Γ (resp.
L∞(X,µ) ⊂M(R)).

One could say that the equivalence relation has “the property (T) relative to the space (X,µ)”. Observe that
A. Ioana [Ioa07, Th. 4.3] exhibited for every non-amenable group, some actions σ satisfying a weak form of
relative rigidity, namely for which there exists a diffuse Q ⊂ L∞(X,µ) ⊂M(Rσ) such that Q is relatively rigid
in M(Rσ) and has relative commutant contained in L∞(X,µ).

Recall the following weaker and weaker notions of equivalence for p.m.p. actions or standard equivalence
relations R,S on (X,µ):

Two actions Γ
αy (X,µ) and Λ

β
y (X,µ) are Conjugate

Γ
αy (X,µ) Conj∼ Λ

β
y (X,µ) (1)

if there is a group isomorphism h : Γ → Λ and a p.m.p. isomorphism of the space f : X → X that conjugate
the actions ∀γ ∈ Γ, (almost every) x ∈ X: f(α(γ)(x)) = β(h(γ))(f(x)).

Two p.m.p. standard equivalence relations R,S are Orbit Equivalent

R OE∼ S (2)
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if there is a p.m.p. isomorphism of the space that sends classes to classes, or equivalently [FM77b] if the
associated pairs are isomorphic(

L∞(X,µ) ⊂M(R)
)
'

(
L∞(X,µ) ⊂M(S)

)
. (3)

This makes the relative property (T) an orbit equivalence invariant.
The standard equivalence relations are von Neumann Equivalent if solely the generalized crossed products

are isomorphic
M(R) ' M(S). (4)

They are von Neumann Stably Equivalent if (they are ergodic and) the generalized crossed product
factors are stably isomorphic for some amplification r ∈ R∗+

M(R) ' M(S)r. (5)

We obtained in [GP05] that the non-cyclic free groups admit continuously many relative property (T) orbit
inequivalent, and even von Neumann stably inequivalent, free ergodic actions. We show that free products admit
relative property (T) free actions and that we have a full freedom for the conjugacy classes of the restrictions
of the action to the free factors. In what follows, a free product decomposition Γ = ∗i∈I Γi is called non
elementary if (|I| − 1)

∏
i∈I(|Γi| − 1) ≥ 2, i.e. there are at least 2 free factors, none of them is ∼ {1} and if

|I| = 2, then one of the Γi has at least 3 elements.

Theorem 1.3 Every non elementary free product Γ = ∗
i∈I

Γi admits continuum many von Neumann stably

inequivalent relative property (T) free ergodic p.m.p. actions, whose restriction to each factor is conjugate with
any (non necessarily ergodic) prescribed free action.

More precisely, let Γi
σiy (X,µ) be an at most countable collection of p.m.p. (non necessarily ergodic) free

actions of countable groups Γi on the standard probability space. There exists continuum many von Neumann
inequivalent free ergodic actions (αt)t∈T of the free product Γ = ∗i∈IΓi that have relative property (T), and
such that for every t ∈ T and i ∈ I, the restriction αt|Γi of αt to Γi is conjugate with σi(

Γi
αt|Γiy (X,µ)

) Conj∼
(
Γi

σiy (X,µ)
)
. (6)

We introduced in [Gab00] in connection with cost, the notion of freely independent equivalence relations
and of free decomposition of an equivalence relation (see [Alv08] for a geometric approach):

S = ∗
i∈I
Si. (7)

The following, essentially due to A. Törnquist [Tör06], see also [IPP08, Prop. 7.3], states that countable
standard equivalence relations may be put in general position:

Theorem 1.4 (Tornquist) Let (Si)i∈I be a countable collection of standard p.m.p. equivalence relations on
(X,µ), then there exists an equivalence relation S on (X,µ) generated by a family of freely independent subre-
lations S ′i such that S ′i

OE∼ Si, ∀i ∈ I.

We obtain in fact the following more general form of Theorem 1.3 involving equivalence relations instead of
free actions. Recall that a p.m.p. standard equivalence relation is called aperiodic if almost all its classes are
infinite.

Theorem 1.5 Let (Si)i∈I be a countable collection (with |I| ≥ 2) of p.m.p. standard countable aperiodic
equivalence relations on the standard non atomic probability space (X,µ). Then there exists continuum many
von Neumann stably inequivalent relative property (T) ergodic p.m.p. equivalence relations on (X,µ) generated
by a freely independent family of subrelations S ′i such that for every i ∈ I, S ′i

OE∼ Si.
More precisely, there exists a strictly increasing continuum of ergodic equivalence relations St, t ∈ (0, 1] such
that
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1. for every t ∈ (0, 1], we have a free decomposition St = ∗
i∈I
Si,t such that Si,t OE∼ Si for all i ∈ I

2. for every t ∈ (0, 1], lim
s→t,s<t

↗ Ss = St

3. St has the relative property (T)

4. the classes of stable isomorphism among the M(St) are at most countable, in particular there is an un-
countable set T such that for t ∈ T ⊂ (0, 1] the M(St) are pairwise not stably isomorphic.

S. Popa and S. Vaes obtained actions with trivial outer automorphism group for the particular family of free
products F∞ ∗ Λ (and Λ may be trivial):

Theorem 1.6 ([PV10, Th. 4.3]) For every countable group Λ, there exists a continuum of pairwise von Neu-
mann stably inequivalent free, ergodic, p.m.p. actions (σt)t∈T of the free product F∞ ∗Λ, with relative property
(T), with Out(Rσt) = {1}, with trivial fundamental group, and whose restriction to Λ is conjugate with a
prescribed free action.

Inspired by their techniques, we extend this kind of results to the non-cyclic free groups on finitely many
generators, and more generally to any free product without any condition on the building blocks:

Theorem 1.7 There exists continuum many, pairwise von Neumann stably inequivalent, relative property (T),
ergodic p.m.p. free actions (σt)t∈T of the free group Fr, r = 2, 3, · · · such that Out(Rσt) = {1}.

Theorem 1.8 Every non elementary free product of countable groups ∗i∈I Γi admits continuum many von
Neumann inequivalent free ergodic (σt)t∈T actions with relative property (T), with Out(Rσt) = {1} and whose
restriction to each factor Γi is conjugate with a prescribed free action.

This follows from the more general form involving equivalence relations.

Theorem 1.9 Let (Si)i∈I , |I| ≥ 2, be a countable collection of p.m.p. standard countable aperidodic equivalence
relations on the standard Borel space. Then there exists a continuum of pairwise von Neumann inequivalent,
ergodic equivalence relations St, with relative property (T) and Out(St) = {1} such that:

St = ∗
i∈I
Si,t for some Si,t OE∼ Si for all i ∈ I and for all t ∈ T.

Since they satisfy property FT , it follows from [IPP08] that von Neumann stable equivalences between the
von Neumann algebras M(St) entail stable orbit equivalences between the equivalence relations themselves,
and with the same compression constant, in particular the fundamental group of M(St) coincides with the
fundamental group of St. Thus, under mild conditions on L2-Betti numbers (see [Gab02]) or on the cost
(see [Gab00]) we get a more precise information and produce plenty of new examples of factors with trivial
fundamental group:

Corollary 1.10 If some L2-Betti number βn(St) for some n ∈ N \ {0}, or if the cost(St) − 1 does not belong
to {0,∞} then the von Neumann inequivalent St in Theorems 1.3 and 1.9 are in fact von Neumann stably
inequivalent St and the associated von Neumann algebras have trivial fundamental group: F(M(St)) = {1}.
This is also the case for the above Rσt for free products of finitely many finitely generated groups.

Observe that the βn(St) and cost(St) only depend on those of the free factors, namely: βn(St) =
∑
i∈I βn(Si)

for n 6= 1, and β1(St) = |I|+
∑
i∈I β1(Si) and cost(St) =

∑
i∈I cost(Si).
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2 Proofs
Notation

• R|Y the restriction of R to a Borel subset Y ⊂ X.

• Fn the free group on n generators

• Rβ the equivalence relation associated with an action β.

• 〈R1,R2, · · · ,Rk〉 the equivalence relation generated by R1,R2, · · · ,Rk.

• 〈ϕ1, ϕ2, · · · , ϕn〉 the equivalence relation generated by the family of partial isomorphisms (ϕ1, ϕ2, · · · , ϕn).

• dom(ϕ) and rng(ϕ) denote the domain and range of the partial isomorphism ϕ

• R1 ∗R2 means that R1, R2 are freely independent, and R = R1 ∗R2 that R is generated by the freely
independent subrelations R1 and R2

• Rp the p-amplification, i.e. the equivalence relation on X×{1, 2, · · · , p} defined by (x, j) ∼ (y, k) iff xRy.
Thus, identifying X with X × {1},

Rp = R ∗ 〈ϕ2〉 ∗ · · · ∗ 〈ϕp〉 (8)

where ϕj : X × {1} → X × {j} (j = 2, · · · , p) is the partial isomorphism defined by the identity on the
first coordinate.

If R is ergodic, one defines (up to isomorphism) the compression Rt for t ∈ (0, 1) as the restriction R|Y
to a (any) subset Y of measure t. The definition extends to any t ∈ (0,∞) by the formula (Rp)s = Rps. This
is easily shown to be consistent.

We now intend to extend such a definition to non ergodic equivalence relations. The reasonnable requirement
is that Rt “meets equitably” almost all the classes of R or all the invariant Borel subsets. It will be defined for
t ∈ (0,∞) when t times the cardinal of the class |R(x)| belongs to N ∪ {∞}, for almost every x ∈ X.

A Borel subset B of X is said to be independent of R if it is independent from the σ-algebra of R-invariant
Borel subsets of X, i.e. for any Borel subset A ⊂ X that is a union of equivalence classes, one has

µ(A ∩B) = µ(A)µ(B).

Proposition-Definition 2.1 (Contraction) Let R be a (non necessarily ergodic) p.m.p. countable standard
equivalence relation on the standard atomless probability space (X,µ).

(a) There exists a Borel subset B that is independent of R and has measure µ(B) = t,
– for every t ∈ (0, 1) when R is aperiodic
– for every rationnal number t = p

q ∈ (0, 1) p, q ∈ N such that q divides the cardinal of each class,
otherwise1.

(b) If the borel subsets B and C of X are independent of R and satisfy µ(B) = µ(C) = t, then there is a
partial isomorphism ϕ of the full groupoid [[R]] such that ϕ(B) = C; in particular, the restrictions R|B
and R|C are isomorphic.
This common isomorphism class is denoted by Rt and called the t-contraction of R.

(c) More generally, for s ∈ (0, 1) ∪ N∗ and t ∈ (0, 1], the isomorphism class of (Rs)t depends only on the
product r = st as soon as it is defined. It is therefore denoted by Rr.

1with the convention that any positive integer q divides ∞
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Proof. (a) Take (X,µ) to be the interval [0, 1] with Lebesgue measure. Consider theR-ergodic decomposition
m : (X,µ) → EM (where EM is the space of R-invariant ergodic measures) (see [Var63] and consider R as
given by a – non-necessarily free – group action [FM77a, Th. 1]). Consider, for t ∈ [0, 1], the Borel subset

X(t) := {x ∈ X : m(x)([0, x]) ≤ t}. (9)

When the classes are infinite, the invariant measures have no atom. It follows that X(t) meets each ergodic
component along a subset of measure t: for each ergodic measure e ∈ EM, e(X(t)) = e(X(t) ∩m−1(e)) = t.

In case the classes are finite, an invariant ergodic measure is just the equiprobability on an equivalence class.
The assertion follows easily.

(b) The proof is analoguous to the ergodic case. Let G be a countable subgroup of the full group [R]
that generates R, i.e. for every (x, y) ∈ R, there is an element g ∈ G such that g(x) = y [FM77a, Th. 1].
Let G = {gi}i∈N be an enumeration of G. Define B0 := B ∩ g−1

0 (C), C0 := g0(B0) and recursively Bi+1 :=
[B \ (B0 ∪B1 ∪ · · · ∪Bi)] ∩ g−1

i+1[B \ (C0 ∪C1 ∪ · · · ∪Ci)] and Ci+1 := gi+1(Bi+1). Let ϕ : ∪i∈NBi → ∪i∈NCi be
the partial isomorphism of [[R]] defined by the restrictions ϕ|Bi = gi|Bi. Consider the complement B \∪i∈NBi.
By construction, its R-saturation B̄ does not intersect C \ ∪i∈NCi. However, by independence, it intersects B
and C equiprobably: µ(B̄ ∩ B) = µ(B̄ ∩ C) = µ(B̄ ∩ ∪i∈NCi) = µ(ϕ−1(B̄ ∩ ∪i∈NCi)) = µ(B̄ ∩ ∪i∈NBi). From
the equality of the extremal terms, it follows that B̄ ∩ B \ ∪i∈NBi is negligeable, and in turn that B̄ itself is a
null set.

Checking (c) is a routine calculation. �
We will use in several points the following useful observation. It renforce Törnquist’s theorem (Th. 1.4) by

“hiding any prescribed free action of a free group” when putting two relations in general position. For further
applications, we don’t want to require the relations Si to be ergodic.

Lemma 2.2 (Replacement trick) Let S1, S2 be two p.m.p. countable standard equivalence relations on the
standard atomless probability space (X,µ). Let p = 1

t ∈ N \ {0, 1} be some integer such that both Sti (i = 1, 2)
make sense (Prop-Def. 2.1).

(a) If S1, S2 are in free product and there is some Y ⊂ X with µ(Y ) = t for which both Si|Y OE∼ Sti (i = 1, 2),
then

(S1 ∗ S2)|Y = S1|Y ∗ S2|Y ∗ Rα (10)

where Rα is produced by some free action α of the free group Fp−1 on Y .

(b) Consider a free product decomposition

W1 ∗W2 ∗ Rβ with Wp
i

OE∼ Si (11)

and Rβ is produced by SOME free action β of the free group Fp−1 on Y . Then it amplifies to a free
product

(W1 ∗W2 ∗ Rβ)p = S ′1 ∗ S ′2 where S ′i OE∼ Si. (12)

(c) For ANY free action β of the free group Fp−1, there is a free product decomposition as in (11). In
particular, if β has the relative property (T) then the resulting S ′1 ∗ S ′2 in (12) also.

In case S1 and S2 are ergodic, any subset Y of measure 1
p works and the assertion (a) is exactly Proposi-

tion 7.4 (2) in [IPP08]. The point (b) claims in particular that replacing α by any other free Fp−1-action leads
to another general position between S1 and S2, hence the name.

Proof of Lemma 2.2. (a) By assumption Si ' (Si|Y )p. It follows that we have (for i = 1, 2) a free product
decomposition Si = Si|Y ∗ 〈ϕi,2〉 ∗ · · · ∗ 〈ϕi,p〉 where the graphings (ϕi,j : Y → Yi,j)j=2,··· ,p are such that each
of the families Yi,1 := Y, Yi,2, · · · , Yi,p (i = 1, 2) forms a partition of X. Thus,

S1 ∗ S2 = S1|Y ∗ S2|Y ∗ 〈ϕ1,2〉 ∗ · · · ∗ 〈ϕ1,p〉 ∗ 〈ϕ2,2〉 ∗ · · · ∗ 〈ϕ2,p〉 (13)
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and (ϕi,j)i=1,2;j=2,··· ,p is a treeing (see [Gab00]). By considering all the compositions ψj,k = (ϕ2,k)−1 ◦ ϕ1,j :
ϕ−1

1,j(Y1,j ∩ Y2,k)→ ϕ2,k(Y1,j ∩ Y2,k) (for j, k = 2, · · · , p), we get another treeing Ψ = (ψj,k)j,k=2,··· ,p such that

S1 ∗ S2 = S1|Y ∗ S2|Y ∗ 〈ϕ1,2〉 ∗ · · · ∗ 〈ϕ1,p〉 ∗ 〈Ψ〉 (14)

and every point of Y1,1 (resp. Y2,1) belongs to the domains (resp. range) of p − 1 partial isomorphisms of Ψ.
The measurable Hall’s marriage theorem [Bol80, Th. 8] shows that there are p−1 isomorphisms τl : Y1,1 → Y2,1

(l = 1, · · · , p − 1) whose graphs (as subsets of Y1,1 × Y2,1) form a partitition of the union of the graphs of the
ψj,k. In other words, up to subdivision, the ψj,k can be assembled in p − 1 isomorphisms Y1,1 → Y2,1 still
forming a treeing. Now remembering that Y1,1 = Y2,1 = Y , the map al 7→ τl defines a free action α on Y of the
free group F(a1, · · · , ap−1) so that

S1 ∗ S2 = S1|Y ∗ S2|Y ∗ 〈ϕ1,2〉 ∗ · · · ∗ 〈ϕ1,p〉 ∗ 〈τ1〉 ∗ · · · ∗ 〈τp−1〉 (15)
= S1|Y ∗ S2|Y ∗ Rα ∗ 〈ϕ1,2〉 ∗ · · · ∗ 〈ϕ1,p〉. (16)

Since (ϕ1,2, · · · , ϕ1,p) is a smooth treeing with fundamental domain Y , the assertion follows

(S1 ∗ S2)|Y = S1|Y ∗ S2|Y ∗ Rα. (17)

(b) Let a2, · · · , ak, · · · , ap be a free generating set for the free group Fp−1 and β(ak) : Y → Y the associated
isomorphisms. Let ϕj : Y × {1} → Y × {j} (j = 2, · · · , p) be the partial isomorphisms defined by the identity
on the first coordinate. Thus on Y × {1, 2, · · · , p}, identifying Y with Y × {1}, (see eq. (8))

(W1 ∗W2 ∗ Rβ)p = (W1 ∗W2 ∗ Rβ) ∗ 〈ϕ2〉 ∗ · · · ∗ 〈ϕp〉 (18)
= W1 ∗W2 ∗ 〈β(a2)〉 ∗ · · · ∗ 〈β(ap)〉 ∗ 〈ϕ2〉 ∗ · · · ∗ 〈ϕp〉 (19)
= W1 ∗W2 ∗ 〈ϕ2 ◦ β(a2)〉 ∗ · · · ∗ 〈ϕp ◦ β(ap)〉 ∗ 〈ϕ2〉 ∗ · · · ∗ 〈ϕp〉 (20)
= W1 ∗ 〈ϕ2〉 ∗ · · · ∗ 〈ϕp〉︸ ︷︷ ︸

OE∼ Wp
1

OE∼ S1

∗W2 ∗ 〈ϕ2 ◦ β(a2)〉 ∗ · · · ∗ 〈ϕp ◦ β(ap)〉︸ ︷︷ ︸
OE∼ Wp

2
OE∼ S2

(21)

(c) Apply Törnquist’s theorem (Th. 1.4). It follows from [Pop06, Prop. 4.4 2◦, 4.5.3◦, 5.1, 5.2] that relative
property (T) is inherited from a subrelation to a relation containing it, and is stable under amplification. This
concludes the proof of Lemma 2.2. �

2.1 Proof of Th. 1.5
The general result follows from the case |I| = 2 by splitting (Si)i∈I into two families (Si)i∈I1 and (Si)i∈I2 . Take
an integer p ≥ 4. Consider now a free action β of the free group Fp−1 such that one group element, say a2, in
some free generating set (a2, a3, · · · , ap) of Fp−1 acts ergodically, and the restriction to 〈a3, · · · , ap〉 has relative
property (T), for instance the standard free action on the 2-torus T2 = R2/Z2 of some Fp−1 < SL(2,Z) (see
[Bur91] and [GP05, Lem. 6]). In [GP05, Prop. 1] we constructed out of β a continuum of free ergodic actions αt
of Fp−1, indexed by r ∈ (0, 1] defining a strictly increasing continuum of standard p.m.p. equivalence relations
Rαr such that for each r ∈ (0, 1], lim

s→t,s<r
↗ Rαs = Rαr , such that Rα1 = Rβ and such that moreover the

equivalence relation R0 associated with the relative property (T) Fp−2-action α0 = β|〈a3, · · · , ap〉 is contained
in all the Rαr

.

Apply Theorem 1.4 to put S
1
p

1 ,S
1
p

2 and Rβ in general position as in Lemma 2.2(c).

W1 ∗W2 ∗ Rβ with Wp
i

OE∼ Si. (22)

Since Rαr
is a subrelation of Rβ , it follows that W1, W2, Rαr

are freely independent and Lemma 2.2(b)
applies for every r ∈ (0, 1]: W1 ∗W2 ∗ Rαr amplifies to

Sr := (W1 ∗W2 ∗ Rαr
)p = S ′1 ∗ S ′2 with S ′i OE∼ Si (23)
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The family of factors Mr = M(Sr) associated with the equivalence relations Sr thus satisfies the hypothesis
of [GP05, Prop. 4]: it is a strictly increasing family of subfactors A ⊂ M0 ⊂ Mr ⊂ M1, with A = L∞(X)
Cartan, such that M1 = ∪r<1Mr and A ⊂M0 relatively rigid. Then,
(i) the pairs A ⊂Mt are relatively rigid Cartan subalgebras,
(ii) the classes of stable isomorphism among theMr are at most countable, in particular there is an uncountable
set J such that for r ∈ J ⊂ [0, 1] the Mr are pairwise not stably isomorphic.
Observe that moreover
(iii) Mr has at most countable fundamental group (by [NPS07, Th. A.1])
(iv) Sr has at most countable outer automorphism group (by [Pop06, Th. 4.4]).
The proof of th. 1.5 is complete. �

The above proof also show a version of Theorem 1.5, with the same conclusion under the hypothesis that
|I| = 2, and the cardinal of the classes of S1, S2 admit a common divisor p ≥ 4 (again with the convention that
p divides ∞). In case S1 is aperiodic and the classes of S2 all have the same finite cardinality p = 2 or 3, then

put S
1
n
1 , S

1
p

2 in general position by lemma 2.2(c) for some Fp−1-action W1 ∗ W2 ∗ Rβ with Wp
i

OE∼ Si and
then apply the above theorem to the free product decomposition (W1 ∗ W2) ∗ Rβ . In case both Si are finite,
S ′1 ∗ S ′2 can be made treeable and a specific treatment is applicable according to whether the result is amenable
(cardinal of the classes are all = 2) or not.

Proof of Theorem 1.3 If the groups are infinite, or if one can organize the Γi in two families giving infinite
groups ∗i∈I1Γi and ∗i∈I2Γi, then Th. 1.3 follows from Th. 1.5. Observe that if the S ′i are orbit equivalent to
relations that are produced by some free Γi-action, then the natural induced action of the free product ∗i∈IΓi is
free when the S ′i are in general position ∗i∈IS ′i. If the Γi are all finite and |I| = 2 or 3, then ∗i∈IΓi is virtually
a free group and the result follows from the free group study. The remaining situation where |I| = 2, one of the
Γi is finite and the other is infinite follows from the above generalization of Theorem 1.5.

2.2 Proof of Theorem 1.9
It relies on the following:

Theorem 2.3 Let R0 be an ergodic relative property (T) p.m.p. equivalence relation on the non atomic standard
probability space (X,µ). There exist continuum many p.m.p. ergodic equivalence relations (Rt)t∈T , all contained
in a standard equivalence relation R = R0 ∗ Rσ for some free action σ of F2, such that

1. Rt = R0 ∗ 〈gt〉 for some isomorphism gt : X → X

2. the Rt have relative property (T)

3. the Rt are pairwise von Neumann inequivalent

4. Out(Rt) = {1}

Assuming this (to be proved in the next section), we prove Theorem 1.9: The general result follows from the
case |I| = 2 by splitting (Si)i∈I into two families (Si)i∈I′ and (Si)i∈I′′ , and putting the (Si)i∈I′ (resp. (Si)i∈I′′)
mutually freely independent by theorem 1.4. Apply Lemma 2.2(c) to S1,S2 with p = 4, and a free action
β of F3 = 〈a, b, c〉 whose restriction to F2 = 〈a, b〉 has relative property (T) and is ergodic. We get a free
product decomposition: W1 ∗ W2 ∗ Rβ with Wp

i
OE∼ Si. Further decompose Rβ = Rβ〈a,b〉 ∗Rβ〈c〉 and consider

the equivalence relation R0 :=W1 ∗W2 ∗Rβ〈a,b〉 on Y .
Applying Theorem 2.3, we get the family Rt = R0 ∗ 〈gt〉 = W1 ∗W2 ∗Rβ〈a,b〉 ∗ 〈gt〉 for some isomorphism

gt : Y → Y . Now, Rβ〈a,b〉 ∗〈gt〉 may be interpreted as produced by a free action βt of F3 to which Lemma 2.2(b)
applies.

St := Rpt = (W1 ∗W2 ∗Rβt
)p = S ′1,t ∗ S ′2,t with S ′i,t OE∼ Si (24)
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The properties 2., 3. and 4. in theorem 2.3, as well as ergodicity, being invariant under stable orbit equivalence
of fixed amplification constant, it follows that the St are ergodic, they have relative property (T), they are
pairwise von Neumann inequivalent, and satisfy Out(St) = {1}. �

Proof of Theorem 1.7 A stable isomorphism of relatively rigid von Neumann crossed-product FpnA implies
a stable orbit equivalence [Pop06] and the consideration of the first `2-Betti number (see [Gab02]) entails the
triviality of the coupling constant. �

Proof of Theorem 1.8 It follows immediately from Theorem 1.9 for infinite free factors. The same argument
as in the proof of Theorem 1.3 reduces the case Γ1∗(finite group) by using the generalized version of Theorem 1.5
(see the end of its proof) and the case (finite group) ∗ (finite group) ∗ (finite group) to the study for the free
group. �

2.3 Proof of Theorem 2.3
Lemma 2.4 Let R0,R be ergodic p.m.p. equivalence relations on the standard probability space (X,µ). Assume
R0 has relative property (T) and assume that R0 ⊂ R. If (∆t : X → X)t∈T is an uncountable family of (measure
preserving) automorphisms such that ∀t ∈ T , ∆t(R0) ⊂ R, then there exist k 6= l ∈ T such that ∆k = ∆l on a
non-negligible Borel subset.

The ∆t induce trace-preserving isomorphisms
(
A ⊂ M(R0)

)
'
(
A ⊂ M(∆t(R0))

)
leading to embeddings

θt : M(R0) ⊂ M(R) with ∆t(a) = a ◦ ∆−1
t for all a ∈ A = L∞(X,µ). The Hilbert space H := L2(M(R), τ)

with its standard M(R) −M(R)-bimodule structure inherits for each i, j ∈ T an M(R0) −M(R0)-bimodule
structure Hi,j , given by

u ·
i
ξ ·
j
v = Θi(u)ξΘj(v)

By separability of H and uncountability of T , the (tracial) vector ξ, image of Id in the standard embedding
M(R) ⊂ L2(M(R), τ) satisfies for ε < 1/2 the condition of rigidity def. 1.1 for A ⊂ M(R0), for some k 6= l.
Thus there exists ξ0 ∈ L2(M(R), τ) with

‖ξ0 − ξ‖ < ε (25)

such that ∀a ∈ A, a ·
k
χ0 = χ0 ·

l
a, i.e. Θk(a)χ0 = χ0Θl(a). By A − A-bimodularity of the projection P :

L2(M(R), τ) → L2(A), its image h := P (ξ0) ∈ L2(X,µ) satisfies the same identities: ∀a ∈ A = L∞(X),
(a ◦∆−1

k )h = (a ◦∆−1
l )h. In particular, ∆−1

k = ∆−1
l on the support of h (h 6= 0 by (25)). �

We will now construct two treeings Φ = (ϕn)n∈N\{0} and Ψ = (ψn)n∈N\{0}. They will in particular satisfy:
-a- dom(ψn) = dom(ϕn), rng(ψn) = rng(ϕn), and both families (dom(ψn))n and (rng(ψn))n form a partition of
X.
-b- They will be in general position, in the sense that : R := 〈R0,Φ,Ψ〉 = R0 ∗〈Φ〉 ∗〈Ψ〉.

Let’s introduce a notation. For each subset E ⊂ N \ {0}, let’s denote ΦE := (ϕn)n∈E and ΨE = (ψn)n 6∈E .
The relations

RE := R0 ∗〈ΦE〉 (26)

R̃E := R0 ∗〈ΦE〉 ∗〈ΨE〉 (27)

will have relative property (T) since R0 does. By [Pop06, Th. 4.4] Aut(R̃E) is countable modulo the full group
[R̃E ]. Observe that 〈ΦE〉 ∗〈ΨE〉 is a treed equivalence relation and that the partial isomorphisms ΦE ∪ΨE fit
together to form a single automorphism gE : X → X.

R̃E = R0 ∗〈gE〉 (28)

By Th. 1.4, choose a single automorphism g∅ of X which is freely independent from R0. Define the ψn by
restricting it to disjoint pieces of measures εn > 0 such that

∑
n∈N\{0} εn = 1.
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The ϕn’s are now constructed inductively: for n ∈ N, let Sn be the auxiliary p.m.p. standard equivalence
relation generated by R0, Φ{1,2,··· ,n−1}, Ψ and all of the Aut(R̃F ) for F ⊂ {1, 2, · · · , n}. The countability of
Aut(R̃F ) modulo [R̃F ] ensures that Sn is actually countable. For n = 1, simply define S1 to be generated by
R0, Ψ and Aut(R0). Choose an isomorphism fn of X that is freely independent from Sn, restrict it to dom(ψn)
and, by ergodicity of R0, compose it by a certain h ∈ [R0] such that h ◦ fn(dom(ψn)) = rng(ψn). Then define
ϕn := h ◦ fn|dom(ψn).

Theorem 2.5 There is an uncountable family E of subsets of N \ {0} such that for all E ∈ E, Out(R̃E) is
trivial for E ∈ E and the classes of von Neumann equivalence are at most countable.

The proof now follows the lines of [PV10, Th. 4.1]. Choose an uncountable almost disjoint family E1 of N \ {0}
[Sie28], i.e. a family of infinite subsets of N \ {0} such that E ∩ F is finite for each E 6= F in E1 and fix a
∆E ∈ Aut(R̃E) for each E ∈ E1. We will show that at least one ∆E is inner, i.e. belongs to [R̃E ]. It follows
that the sub-family of those R̃E with non-trivial outer automorphisms group is at most countable.

Step 1. There exists E,F ∈ E1 such that E 6= F and ∆E(x) = ∆F (x) for all x in a non-negligible subset
UE,F ⊂ X. We apply lemma 2.4 to the family of ∆E with ∆E(R0) ⊂ RE ⊂ R.

Step 2. Since R0 is ergodic and contained in R̃E ∩ R̃F , there are fE ∈ [R̃E ] and fF ∈ [R̃F ] such that
µ-almost everywhere in X

fE∆E = fF∆F (29)

Step 3. ∆E belongs to [R̃E ]: From the relation (eq. 29)

∆ := fE∆E = fF∆F ∈ Aut(R̃E) ∩Aut(R̃F ) ⊂ Aut(R̃E∩F ) (30)

Let n ∈ E be such that n > max(E ∩ F ). Since ∆ ∈ Aut(R̃E) and ϕn ∈ [[R̃E ]] the partial isomorphism

h := ∆ϕn∆−1 (31)

belongs to [[R̃E ]]. Let p be the smallest index for which h|U ∈ [[R0 ∗〈ΦE∩{1,2,··· ,p}〉 ∗〈ΨE〉]], for a non-negligeable
domain U .

By the condition that the ϕp are freely independent from Sq, for q < p, and since ∆ ∈ Aut(R̃E∩F ) ⊂
[Smax(E∩F )], the relation (eq. 31) entails that p = n. Again by independence, by isolating the letters ϕ±1

n in the
reduced expression of h, the relation (eq. 31) delivers a subword w ∈ [[R0 ∗〈ΦE∩{1,2,··· ,p−1}〉 ∗〈ΨE〉]] ⊂ [[R̃E ]]
such that ∆ = w on some non negligible set, i.e. ∆ is “locally inner”. It follows by ergodicity of R0 that ∆ and
thus that ∆E belongs to [R̃E ].

We show that the classes of orbit equivalence are at most countable. For this, we show that given E ∈ E1,
there are at most countably many F ∈ E1 such that R̃E OE∼ R̃F . Apply lemma 2.4 to an uncountable family
of isomorphisms ∆F,E : R̃E OE∼ R̃F . Then at least two of them, for F, F ′ ∈ E1, coincide on some non-negligible
Borel subset. Like in step 2 above, it follows by ergodicity of R0 ⊂ R̃F ∩ R̃F ′ that there are fF ∈ [R̃F ] and
fF ′ ∈ [R̃F ′ ] such that µ-almost everywhere in X

fF∆F,E = fF ′∆F ′,E (32)

It follows that R̃F = R̃F ′ and thus F = F ′.
Now, von Neumann equivalence reduces to orbit equivalence. The A ⊂M(R̃E) are all rigid. An isomorphism

Θ : M(R̃E) 'M(R̃F ) delivers the relatively rigid Cartan subalgebra Θ(A) ⊂M(R̃F ) = M(R0) ∗
A
M(〈gE〉). By

[IPP08, 7.12], there is a unitary u ∈M(R̃F ) such that uΘ(A)u∗ = A, i.e. uΘ(.)u∗ induces an orbit equivalence
R̃E OE∼ R̃F . This completes the proof of theorem 2.3. �
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