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Abstract.

For n � 2, let Fn denote the free group of rank n. We de�ne a total branching
index i for a minimal small action of Fn on an R-tree. We show i � 2n � 2, with
equality if and only if the action is geometric. We thus recover Jiang's bound 2n�2
for the number of orbits of branch points of free Fn-actions, and we extend it to
very small actions (i.e. actions which are limits of free actions).

The Q-rank of a minimal very small action of Fn is bounded by 3n� 3, equality
being possible only if the action is free simplicial. There exists a free action of F3
such that the values of the length function do not lie in any �nitely generated

subgroup of R.
The boundary of Culler-Vogtmann's outer space Yn has topological dimension

3n � 5.

INTRODUCTION AND STATEMENT OF RESULTS.

Various problems from geometry and group theory lead to isometric group ac-
tions on R-trees. An R-tree is a path-connected metric space in which every arc
is isometric to an interval of R. See the surveys [Sh 1], [Sh 2], [Mo] and the papers
[AB], [CM] for basic results about R-trees.

These actions onR-trees are most often small : no edge stabilizer contains a free
non-abelian subgroup. Following work of Rips, it is now known that hyperbolic
groups admitting nontrivial small actions on R-trees have nontrivial splittings (see
[BF 2] for precise statements and corollaries).

Small actions of a given �nitely generated group G determine a closed subspace
in the space of all length functions on G. This subspace is often in�nite dimensional
[CL, Theorem 9.8]. Bestvina-Feighn have proved a �niteness theorem for reduced
simplicial small actions [BF 1].

In this paper we consider actions of Fn, the free group of rank n. We obtain
�niteness results about branch points, rank , and Culler-Vogtmann's outer space.
Our results apply to small actions, and to very small actions.

Recall (Cohen-Lustig [CL]) that a small action of Fn on an R-tree is very small
if for every nontrivial g 2 Fn the �xed subtree Fix(g) is equal to Fix(gp) for p � 2
(no obtrusive powers) and Fix(g) is isometric to a subset of R (no �xed triods).

Outer space Yn consists of (projective classes of length functions of) free sim-
plicial actions of Fn, and its closure consists precisely of very small actions [BF 3].
In particular, an action is very small if and only if it is a limit of free actions.
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Let T be a small Fn-tree (i.e. an R-tree equipped with a small action of Fn).
We always assume that T is minimal (there is no proper invariant subtree).

Let x 2 T be a branch point (i.e. a point such that T n fxg has at least 3
components). In Part III we de�ne an index i(x) in terms of the isotropy subgroup
Stab(x) and its action on the set of directions �0(T n fxg), by

i(x) = 2 rk Stab(x) + v1(x) � 2;

where v1(x) is the number of Stab(x)-orbits of directions with trivial stabilizer; it
turns out that i(x) 2 N.

The index i(x) depends only on the orbit O = Fn(x) and we de�ne the index
of T as

i(T ) =
X

O2T=Fn

i(O):

Theorem III.2. Let T be a small minimal Fn-tree. Then i(T ) � 2n� 2.

If the action is very small, the index of every branch point is positive. We then
get:

Corollary III.3. Let T be a very small minimal Fn-tree. The number b of orbits
of branch points satis�es b � 2n� 2.

Another corollary is:

Corollary III.4. Let T be a small Fn-tree. The stabilizer of any x 2 T has rank
at most n.

In the case of a free action, i(x) + 2 is the number of components of T n fxg, so
that Theorem III.2 specializes to Jiang's theorem [Ji].

It is worth pointing out the analogy with actions of surface groups. Suppose T
is an R-tree with a minimal small action of �1�, where � is a closed surface. By
Skora's theorem [Sk 1], T is dual to a measured foliation F on �. Branch points
of T come from singularities of F and the Euler-Poincar�e formula for line �elds on
surfaces gives the equality i(T ) = �2�(�) (see Part III).

In the case of Fn, equality in Theorem III.2 holds if and only if the action is
geometric (compare [Du]). Roughly speaking, geometric means that the action is
dual to a measured foliation on a �nite 2-complex (see Part II for a discussion).
For instance a minimal simplicial Fn-action is geometric if and only if every edge
stabilizer is �nitely generated.

There is a close connection between branch points and rank. This is best seen
on geometric Fn-actions (not necessarily small). Let L be the subgroup of R
generated by the values of the length function `(g) = minx2T d(x; gx).

For a geometric Fn-action, the group L is �nitely generated. Its rank r is called
the rank of the action (or of the length function). Equivalently T may be viewed
as the completion of a �-tree, with � � R a subgroup of rank r (see [Sh 2, x1.3.1]).
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By studying the 2-group L=2L, we show (Corollary IV.3) the inequality

r � b+ n� 1

valid for any geometric minimal Fn-action without inversions (the number b of
orbits of branch points is always �nite). In particular we have r � 3n � 3 for a
geometric very small action.

If the action is not geometric, the group L needs not be �nitely generated (this
may happen for free actions, see Example II.7). Instead of rank we use Q-rank :
the dimension of the Q-vector space generated by L. Actions with low Q-rank
have been studied extensively ([GS], [GSS]).

Theorem IV.4. Let T be a very small minimal Fn-tree. The Q-rank of the action
satis�es rQ � 3n� 3. Equality may hold only if the action is free simplicial.

Given a �nitely generated group G and an integer k, the space of length func-
tions on G with Q-rank � k has topological dimension at most k (Proposition
V.1). We then get:

TheoremV.2. The boundary of Culler-Vogtmann's outer space Yn has dimension
3n� 5.

This improves the result dimYn = 3n� 4 by Bestvina-Feighn [BF 3].
Theorem IV.4 also implies:

Corollary IV.5. Let T be a very small Fn-tree with length function `. Suppose
` � � = �` with � 2 Aut(Fn) and � 2 R+. Then � is algebraic, of degree bounded
by 3n� 4. If T is geometric, then � is an algebraic unit.

Such an ` represents a �xed point for the action of � on Yn (compare [Lu]). In
Example II.7 we use a construction by Bestvina-Handel to get an example with �
not an unit. The corresponding action is free and does not have �nite rank.

The theorems mentioned above are proved in Parts III, IV, V. Parts I and II
may be viewed as preliminary.

First recall the following construction due to Rips (see [GLP 1]). Let T be
a minimal Fn-tree, and K � T a �nite subtree (i.e. a subtree homeomorphic to
a �nite simplicial complex). If K is large enough, the action of each generator
g1; : : : ; gn of Fn de�nes a partial isometry 'i : g

�1
i K \ K ! K \ giK between

nonempty closed subtrees of K.
In Part I we show how to associate a canonical geometric Fn-tree TK to a

system K consisting of a �nite metric tree K and n partial isometries 'i : Ai ! Bi

between closed subtrees of K (Theorem I.1). Similar constructions are known (see
e.g. [GLP 2]), but they often require an additional hypothesis to ensure that a
certain space is Hausdor�.

In our particular setting this problem does not exist. One consequence, used
in the proof of Theorem III.2, is that orbits of branch points of TK are created
only by vertices of the �nite trees K and Ai (i = 1; : : : ; n). Another consequence,
derived in Part V, is a simple proof of the following result announced by Skora
[Sk 3]:
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Theorem V.4. Every action of Fn may be approximated by simplicial actions.

Returning to T as above, we associate an Fn-tree TK to every �nite subtree
K � T . As K grows bigger, these trees approximate T . We de�ne T to be
geometric if T equals TK for some K (see Part II for equivalent de�nitions).

If T is not geometric, it is the strong limit (in the sense of [GS]) of a sequence
of geometric actions. This allows us to prove Theorems III.2 and IV.4 �rst for
geometric actions, and then to \pass to the limit".

In Part II we give examples of geometric and non-geometric actions. In par-
ticular we take advantage of the non-completeness of certain minimal Fn-trees to
construct a lot of non-geometric actions by taking \free products" of actions using
a basepoint not in the tree but in its completion (Example II.6).

Acknowledgements. We wish to thank M. Bestvina, M. Dunwoody, F. Paulin, K. Vogtmann
for very useful conversations, and the referee for suggesting improvements.

I. THE R-TREE ASSOCIATED TO A SYSTEM OF ISOMETRIES.

Let G be a group. A G-tree is an R-tree T equipped with a left isometric action
of G. Two G-trees are considered equal if they are equivariantly isometric.

A �nite tree will be an R-tree homeomorphic to a �nite simplicial complex. A
subtree of an R-tree is a �nite tree if and only if it is the convex hull of a �nite
subset.

A map j : T ! T 0 between R-trees is a morphism if every segment in T may
be written as a �nite union of subsegments, each of which is mapped isometrically
into T 0. If j is an equivariant morphism between G-trees, with length functions `
and `0, then ` � `0 since j does not increase distances.

We let Fn be the free group on n generators g1; : : : ; gn. We write jgj for the
length of g 2 Fn relative to this generating set.

We consider systems K consisting of a �nite tree K and n isometries 'i : Ai !
Bi between closed nonempty subtrees of K. We let S be the (�nite) set consisting
of all vertices of the trees K, Ai, Bi (1 � i � n).

For example, take K to be a �nite subtree in an Fn-tree T , with K\giK 6= ; for
i = 1; : : : ; n. Then de�ne 'i as the restriction of the action of gi to Ai = g�1i K\K.

Theorem I.1. Let K be as above. There exists a unique Fn-tree TK such that:

(1) TK contains K (as an isometrically embedded subtree).
(2) if x 2 Ai, then gix = 'i(x).
(3) every orbit of the action meets K, indeed every segment of TK is contained

in a �nite union of images wK, w 2 Fn.
(4) if T 0 is another Fn-tree satisfying (1) and (2), there exists a unique equi-

variant morphism j : TK ! T 0 such that j(x) = x for x 2 K.

Remark I.2. If j is as in (4), it is surjective if and only if T 0 satis�es (3).

Remark I.3. Before proving Theorem I.1, we give a geometric description of TK.
Let � be the Cayley graph of Fn relative to g1; : : : ; gn. We construct a foliated



THE RANK OF ACTIONS ON R-TREES 5

2-complex � sitting above �, as follows. Place a copy K(g) of K above each vertex
g of �. Above each edge g � ggi, place a strip Ai � [0; 1] foliated by f�g � [0; 1].
Then glue Ai�f1g to K(ggi) using the inclusion of Ai into K, and glue Ai�f0g to
the subtree of K(g) corresponding to Bi, using 'i (i.e. identify (x; 0) 2 Ai � [0; 1]
to 'i(x) 2 K(g)). The tree TK is the space of leaves of this simply connected
foliated 2-complex �. The action of Fn on TK is induced by the natural action of
Fn on �.

Proof of theorem I.1.
Recall that a pseudodistance on a set X is a symmetric map � : X �X ! R+

satisfying the triangle inequality, with �(x; x) = 0 8x. The relation \�(x; y) = 0"
is a (possibly nontrivial) equivalence relation R on X, and � induces a genuine
distance d on the quotient set Y = X=R. We call (Y; d) the metric space associated
to (X; �).

Now suppose T 0 is an Fn-tree satisfying (1) and (2). Write d0 and dK for
distance in T 0 and K respectively. Let �0 be the pseudodistance on K�Fn de�ned
by �0((x; g); (y; h)) = d0(gx; hy).

A simple computation, based on (1) and (2), shows the inequality

�0((x; g); (y; h)) � inf

�
dK (x; xp) + dK('

"p
ip
(xp); xp�1) + : : :

+ dK('
"2
i2
(x2); x1) + dK('

"1
i1
(x1); y)

�
(�)

where the in�mum is taken over all words g"1i1 : : : g
"p
ip

representing h�1g (with "j =

�1) and all points xj in the domain of '
"j
ij
.

Indeed we write:

�0((x; g); (y; h)) = d0(gx; hy)

= d0(h�1gx; y)

= d0(g"1i1 : : : g
"p
ip
x; y)

� d0(g"1i1 : : : g
"p
ip
x;g"1i1 : : : g

"p
ip
xp) + d0(g"1i1 : : : g

"p
ip
xp; g

"1
i1
: : : g

"p�1

ip�1
xp�1)

+ � � �+ d0(g"1i1 g
"2
i2
x2; g

"1
i1
x1) + d0(g"1i1 x1; y)

� dK (x; xp) + dK ('
"p
ip
(xp); xp�1) + : : :

+ dK('
"2
i2
(x2); x1) + dK ('

"1
i1
(x1); y):

With this as a motivation, de�ne �((x; g); (y; h)) as the in�mum in the right
hand side of the above inequality (�). This gives a pseudodistance on K � Fn. It
induces dK on each K � fgg, and it is invariant under the natural action of Fn
given by h(x; g) = (x; hg).

It is important to note that the in�mum is always achieved: we need only
consider the reduced word g"1i1 : : : g

"p
ip

representing h�1g, and then the in�mum is

taken over a �xed number of points xj varying in compact sets.
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More explicitly, let zp be the point in the domain of '
"p
ip

closest to x, let zp�1

be the point in the domain of '
"p�1

ip�1
closest to '

"p
ip
(zp), and so on. Then:

dK(x; xp) + dK('
"p
ip
(xp); xp�1)

= dK(x; zp) + dK (zp; xp) + dK('
"p
ip
(xp); xp�1)

= dK(x; zp) + dK ('
"p
ip
(zp); '

"p
ip
(xp)) + dK ('

"p
ip
(xp); xp�1)

� dK(x; zp) + dK ('
"p
ip
(zp); xp�1)

and induction on p = jh�1gj yields

�((x; g); (y; h)) = dK (x; zp) + dK ('
"p
ip
(zp); zp�1) + � � �+ dK ('

"1
i1
(z1); y): (��)

We claim that the metric space TK associated to (K�Fn; �) is an R-tree. Since
TK is connected (because Ai �fggig and Bi �fgg have the same image in TK), it
su�ces by [AB, Theorem 3.17] to show that any 4 points ui = (xi; hi) satisfy the
0-hyperbolicity inequality:

�(u1; u2) + �(u3; u4) � max
�
�(u1; u3) + �(u2; u4); �(u1; u4) + �(u2; u3)

	
:

This is clear if the elements h1; h2; h3; h4 are equal, since K is a tree. In general,
we consider them as 4 points in a simplicial tree, namely the Cayley graph � of
Fn relative to g1; : : : ; gn. Let �0 be the �nite subtree they span. Assume that
some terminal vertex of �0, say h1, is distinct from the other three elements
h2; h3; h4. Then the reduced words representing h1, h

�1
2 h1, h

�1
3 h1, h

�1
4 h1 all end

with the same letter, say g1. Let z be the point in A1 closest to x1. We have
�(u1; uk) = dK(x1; z) + �(('1(z); h1g

�1
1 ); uk) for k = 2; 3; 4, and 0-hyperbolicity

follows by induction on the size of �0. We leave to the reader the remaining case,
when h1; h2; h3; h4 are equal in pairs.

The R-tree TK obviously satis�es (1) and (2), with K embedded in TK as
K � f1g. Furthermore K meets every orbit.

Since K \ giK 6= ; for i = 1; : : : ; n, any segment in TK joining a point of
gK to a point of hK, with hg�1 = g"1i1 : : : g

"p
ip
, may be covered by a �nite union of

images wK, namely gK; (g
"p
ip
g)K; (g

"p�1

ip�1
g
"p
ip
g)K; : : : ; (g"1i1 : : : g

"p
ip
g)K. Applied to an

arbitrary Fn-tree T 0 satisfying (1) and (2), this argument shows that the union of
all orbits meeting K is a subtree (i.e. it is connected). This means that in proving
(4) we may assume that T 0 also satis�es (3).

De�ne �0 on K � Fn as in the beginning of the proof. The map (x; g) 7!
gx identi�es T 0 with the metric space associated to (K � Fn; �

0) (while TK is
associated to (K�Fn; �)). Since �0 � �, the identity ofK�Fn induces a continuous
equivariant map j : TK ! T 0. This j induces the identity on K and is a morphism
because any segment in TK is contained in a �nite union of images of K. Finally,
uniqueness of TK is easy to check using (4).

Since the in�mum de�ning � is always achieved, we have the following facts
about TK:
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Proposition I.4.

(1) two points (x; g) and (y; h) in K � Fn de�ne the same point in TK if and
only if one can write y = '"1i1 : : : '

"p
ip
(x) with g"1i1 : : : g

"p
ip

= h�1g.

(2) given x; y 2 K and g 2 Fn, one has y = gx if and only if one can write
y = '"1i1 : : : '

"p
ip
(x) with g = g"1i1 : : : g

"p
ip
.

(3) if  2 Fn is represented by a cyclically reduced word g"1i1 : : : g
"p
ip
, then

`() = min
xj2dom'

"j

ij

�
dK (xp; '

"1
i1
(x1)) + dK(x1; '

"2
i2
(x2)) + � � � + dK (xp�1; '

"p
ip
(xp))

�
:

Remark. In the situation of Assertion 2, note that all points g
"j
ij
: : : g

"p
ip
x (1 � j �

p) belong to K.

We now prove a few other properties of TK.

Proposition I.5. If  2 Fn is represented by a cyclically reduced word, then its
�xed point set Fix � TK is contained in K.

Proof. Let a 2 TK be a �xed point of . Choose a representative (x; g) 2 K �
Fn of a with the length jgj minimal. We shall identify g and the reduced word
representing it. We assume jgj > 0, and we argue towards a contradiction.

Since (x; g) and (x; g) both represent a, Proposition I.4 (Assertion 1) lets us
write x = '"1i1 : : : '

"p
ip
(x) with g"1i1 : : : g

"p
ip

= g�1g (and g"1i1 : : : g
"p
ip

reduced). Now

('�"1i1
(x); gg"1i1 ) and ('

"p
ip
(x); gg

�"p
ip

) also represent a, so that g cannot end with

g�"1i1
or g

"p
ip

(by minimality of jgj). It follows that gg"1i1 : : : g
"p
ip
g�1 is the reduced

word representing . This means that  cannot be represented by a cyclically
reduced word.

If  6= 1 is not cyclically reduced, then Fix is contained in some hK. We then
get:

Corollary I.6. For any  6= 1 in Fn, the set Fix � TK is compact. If j : TK ! T 0

is a morphism as in Theorem I.1, the restriction of j to Fix is an isometry.

Corollary I.7. Suppose the action of Fn on TK has no global �xed point. Then its
length function is not abelian (i.e. it is not the absolute value of a homomorphism
from Fn to R).

Proof. Otherwise, commutators would have non-compact �xed point sets (see e.g.
[CM, 2.2 and 2.3]).

Recall that S is the �nite set consisting of all vertices of the trees K, Ai, Bi

(1 � i � n).
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Proposition I.8. If x 2 TK is a branch point, its orbit contains a point of S. The
action of the isotropy subgroup Stab(x) � Fn on the set of directions �0(TK n fxg)
has only �nitely many orbits.

Proof. We start with a general argument. Suppose [x; x0] � TK is a segment with
[x; x0] \K = fxg. Some subsegment [x; x1] is contained in some wK. We choose
x1 6= x and w so that p = jwj is minimal. By Proposition I.4 (Assertion 2) we can
write x = '"1i1 : : : '

"p
ip
(y), with y 2 K and w = g"1i1 : : : g

"p
ip
. Since [x; x1] \K = fxg,

minimality of p implies that the segment [y; y1] = w�1([x; x1]) � K meets the
domain of '

"p
ip

only at y. In particular y 2 S.

This argument shows that the orbit of any branch point x 2 TK meets S: since
K meets every orbit we may assume x 2 K, and if x is not a vertex of K then there
is a segment [x; x0] as above. The argument also implies the second assertion since
the number of possible points y 2 S, and possible germs of segments [y; y1] � K,
is �nite.

Corollary I.9. There are only �nitely many orbits of branch points in TK.

Remark. The number of orbits of branch points may be bounded in terms of n
and the complexity of K. Our goal for very small actions will be to �nd a bound
involving only n.

Corollary I.9 implies that the action on TK is a J-action in the sense of [Le 3].
It follows that the closure of any orbit is a discrete union of closed subtrees. If no
orbit is discrete, then every orbit is dense.

We shall use the following fact:

Proposition I.10. Suppose Fn acts on TK with every orbit dense. If the action
is small, then every edge stabilizer is trivial.

This is well-known (Rips, [BF 3, Remark 1.9]), but we sketch a proof. It is
based on a theorem by Imanishi.

Proof.
If the result is false, let E be an edge with stabilizer Z. By shortening E and

applying elements of Fn, we may assume that every subarc of E has the same
stabilizer, and a generator g of Stab(E) is represented by a cyclically reduced
word g"1i1 : : : g

"p
ip
. Note that E � K by Proposition I.5.

Choose x 2
�

E such that the orbit Fn(x) contains no point of S. Observe that
Fn(x) meets K in an in�nite set: otherwise Fn(x) would be discrete. Imanishi's
theorem (see [GLP 1, Theorem 3.1]) then implies that Fn(x) \K accumulates on
x. [Theorem 3.1 of [GLP 1] is stated for systems of isometries on a multi-interval,
but it also holds on a �nite tree]

Consider h 2 Fn such that hx 6= x belongs to
�

E. Then hgh�1 stabilizes some
neighborhood of hx in E, so that hgh�1 is a power of g. It follows that h commutes
with g. Since g is cyclically reduced, this leads to a contradiction for hx closer to
x than any '

"j
ij
: : : '

"p
ip
(x), j = 2; : : : ; p.
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Recall that an Fn-tree with no global �xed point contains a unique minimal
invariant subtree, the union of all translation axes (see [CM]). The following fact
will be used in Example II.6, but not elsewhere.

Proposition I.11. Suppose the action of Fn on TK has no global �xed point.
Then the minimal invariant subtree Tmin is closed in TK.

Proof. Assume Tmin is not closed. Then there is a segment [x; y] with [x; y]\Tmin =
(x; y]. Changing y and applying an element of Fn, we may assume [x; y] � K. We
thus see that the tree K 0 = Tmin \K is not closed in K.

It has �nitely many limit points x1; : : : ; xk. Let K 00 be the tree obtained from
K 0 by removing open segments of equal length (x1; y1); : : : ; (xk ; yk) disjoint from
S. Since Tmin is connected, we have K 0 \Ai 6= ; for each i. The same is then true
for K 00. This implies that the union of all orbits meeting K 00 is a subtree T 00. By
Proposition I.4 (Assertion 2) the intersection of T 00 with K 0 consists only of K 00

since no '"ii can send a point of some (xj ; yj) into K 0. We thus get an invariant
subtree properly contained in Tmin, a contradiction.

Remark. The action of Fn on Tmin is the action associated toK 0, '1jK 0; : : : ; 'njK 0.

Corollary I.12. Suppose the subgroup Fp � Fn generated by g1; : : : ; gp acts with
no global �xed point. Then its minimal invariant subtree Tmin(Fp) is closed in TK.

Proof. The union of all Fp-orbits meeting K is a subtree T (Fp), and the action of
Fp on T (Fp) is the action associated to (K;'1; : : : ; 'p). The set Tmin(Fp) \K is
closed in K (by Proposition I.11), hence also in TK (by an argument given above).

II. GEOMETRIC AND NON-GEOMETRIC ACTIONS.

Let T be a minimal Fn-tree, with length function `. Let K � T be a �nite
subtree such that K \ giK 6= ; (i = 1; : : : ; n). We consider the system K =
(K; ('i)i=1;:::;n), with 'i the restriction of the action of gi to g

�1
i K\K (if T = TK,

this new K equals the original K because g�1i K \ K = Ai by Assertion 2 of
Proposition I.4: notation is consistent).

Theorem I.1 associates toK an Fn-tree TK, with a surjective morphism jK : TK !
T . We shall usually write TK instead of TK, and we denote by `K the length func-
tion of TK . Recall that `K � ` and `K is not abelian (Corollary I.7).

If the action on T is free (resp. small, resp. very small), so is the action on TK :
this is clear for free and small actions, and it follows from Corollary I.6 for very
small actions.

The tree TK is not necessarily minimal, but we can �nd arbitrarily large subtrees
K with TK minimal, as follows. Fix x0 2 T . It belongs to some translation axis
A (see [CM]). Choose an integer p � jj, and de�ne Kp as the convex hull of
the set fgx0; jgj � pg (note that by minimality T is the increasing union of the
subtrees Kp). Since p � jj, all images of x0 by terminal subwords of  belong to
Kp and it follows that the distance between x0 and x0 is the same in TKp

as in
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T . The point x0 thus belongs to the axis of  in TKp
. Being the convex hull of

the orbit of x0, the Fn-tree TKp
is minimal.

Now consider two �nite subtrees K;K 0 of T , with K � K 0. Theorem I.1
provides an equivariant morphism jK;K0 : TK ! TK0 , so that the trees TK form a
direct system of Fn-trees.

We now prove the well-known fact that this direct system converges strongly
towards T in the sense of [GS]. This amounts to showing that, given a segment
I in some TK , there exists K 0 � K such that the set jK;K0 (I) � TK0 is mapped
isometrically into T by jK0 . Choose �nitely many elements hj � Fn such that I
is covered by the trees hjK. Letting m = max jhjj, take any K 0 containing all
images of K by words of length �m.

To be more concrete, T is the strong limit of the sequence of minimal trees TKp

constructed above. The fact that the limit is strong is often used in the following
way. Any �nite subtree A � T may be lifted isometrically to TKp

for p large:
there exists a subtree Ap � TKp

such that the restriction of jKp
: TKp

! T is an

isometry. Furthermore, given g 2 Fn and lifts Ap, A0p of A and gA respectively,
there exists q � p such that A0

q
= gAq, where Aq and A0

q
denote the images of

Ap and A0
p in TKq

. In particular `Kq
(g) = `(g) for q large.

Instead of viewing T as the strong limit of a sequence TKp
, we can also choose

an increasing continuous family K(t) (t 2 R+), with T = [K(t), and view T as
the strong limit of the system TK(t). The following properties then hold.

Fix g 2 Fn, and consider the function �g : t 7! `K(t)(g). It is non-increasing,
and it is constant for t larger than some t0 (depending on g). Furthermore �g is
continuous: by Proposition I.4 (Assertion 3) we can bound j�g(t1)� �g(t2)j by jgj
times the Hausdor� distance between K(t1) and K(t2).

Now we prove:

Proposition II.1. Let T be a minimal Fn-tree. The following conditions are
equivalent:

(1) There exists K = (K;'1; : : : ; 'n) such that T = TK.
(2) There exists a �nite subtree K � T such that T = TK (i.e. jK : TK ! T

is an isometry).
(2') There exists a �nite subtree K � T such that `K0 = ` for every K 0 � T

containing K.
(3) T can only be a strong limit in a trivial way (if T is the strong limit of a

sequence of Fn-morphisms fp : Tp ! Tp+1 between minimal trees, then fp
is an isometry for p large).

Proof.
2 =) 1 by de�nition.
1 =) 2 because (TK)K = TK (see the above remark about consistency of

notation).
2 =) 20 because ` = `K and `K � `K0 � `.
20 =) 2: Take K 0 containing K such that TK0 is minimal. Then TK0 and

T are equal because they are minimal trees with the same, non-abelian, length
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function ([AB], [CM]).
3 =) 2 because T = TKp

for p large.
To prove 1 =) 3, suppose that T = TK is the strong limit of a sequence fp.

For p large enough we may lift K isometrically to a subtree Kp of Tp (see above).
For i = 1; : : : ; n, let Ap

i and Bp
i be the subtrees of Kp corresponding to Ai and

Bi. Since giAi = Bi we may take p even larger so as to ensure giA
p
i = Bp

i , and
Theorem I.1 yields a morphism j : T ! Tp. It follows that the morphism from Tp
to the limit tree T is an isometry, and the strong limit is trivial.

De�nition. A minimal action of Fn is geometric if it satis�es conditions 1-3
above. Using condition 3, we see that being geometric or not does not depend on
the particular set of generators g1; : : : ; gn.

Example II.2. We have seen that every minimal action of Fn is the strong limit
of a sequence of geometric minimal actions.

Example II.3. The non-simplicial free F3-actions constructed in [Le 2] are geo-
metric.

Example II.4. An Fn-action with an abelian length function is not geometric by
Corollary I.7 (compare [Le 4]).

Example II.5. It may be shown that a minimal simplicial Fn-action is geometric
if and only if every edge stabilizer has �nite rank . In particular, small simplicial
actions are geometric.

Example II.6: non-geometric free products of actions
Consider �nitely generated free groups G1; G2 acting non-trivially on R-trees

T1 and T2. Fix basepoints pi 2 Ti. One can combine these two actions ([Sk 2],
[CL]), obtaining an R-tree T with an action of G1 � G2. If the actions on Ti are
minimal (resp. free), so is the action on T . More generally, the action on T is
minimal as soon as no proper Gi-invariant subtree of Ti contains pi.

Now let T1 be a minimal G1-tree. Assume that branch points are dense in
T1 (this happens for instance for the free F3-actions of [Le 2], or for certain very
small F2-actions). Then segments are nowhere dense closed subsets, and by Baire's
theorem T1 is not complete as a metric space since it is a countable union of
segments.

Choose a point p1 in the completion T1 but not in T1, and let T 01 � T1 be the
smallest G1-invariant subtree containing p1. Combine the G1-tree T

0
1 with some

minimal G2-tree T2 (e.g. G2 = Z, T2 = R). The resulting (G1 � G2)-tree T is
minimal, but by Corollary I.12 it is not geometric since T1 is not closed in T .

Example II.7: a free F3-action with L in�nitely generated
Bestvina-Handel have shown how iterating an automorphism of Fn may lead to

a non-simplicial free Fn-action. An explicit example is worked out in [Sh 2]. It is
not geometric because it is a nontrivial strong limit (compare [BF 3]). We give an
example where iterating an automorphism of F3 leads to a free action such that
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the values of the length function do not lie in any �nitely generated subgroup of
R.

Let � be the automorphism of F3 given by �(a) = ab�1, �(b) = bac�1, �(c) =
ca�3. Let � > 1 be the largest eigenvalue of the associated matrix

A =

0
@ 1 1 0
1 1 1
3 0 1

1
A

and let (u; v;w) be a positive eigenvector.
View F3 as the fundamental group of a wedge of 3 circles of respective lengths

u; v;w, and let ` : F3 ! R+ be the corresponding length function (associated to
the action of F3 on the universal covering).

Since `(�h) � �`(h) for every h 2 Fn, each sequence

`p(g) = ��p`(�pg)

is non-increasing. Taking its limit as p ! +1, we get a function `1 : F3 ! R+

which is the length function of a very small action (provided it is not identically
0).

Our discussion so far holds for any automorphism of F3 (or even of Fn), as long
as the matrix A has a positive eigenvector. We now use the special form of �.

First of all, arguing as in [Sh 2], one shows that each sequence `p(g) is eventually
constant, so that `1(g) is positive for every nontrivial g 2 Fn. Thus `1 is the
length function of a free action.

Now the key feature of our example is that � is not an algebraic unit, because
the determinant of A is 3 (it is always an odd integer because A is invertible mod
2). This implies that Z[�; ��1] is not a �nitely generated subgroup of R. Since
`1 satis�es the relation

`1(��1g) = ��1`1(g);

the subgroup L � R generated by the values of `1 is a Z[�; ��1]-module and
therefore is not a �nitely generated group.

Remark II.8.

- It is easy to check that ��2 is a positive automorphism. On the other hand �
could not be positive, since detA = �1 if � is positive.

- One can show that the F3-action just constructed has only one orbit of branch
points. These branch points have index 1 (i.e. T n fxg has 3 components).

- The second author has proved that very small Fn-actions with Q-rank 3n� 4
have �nite (Z-)rank.

III. COUNTING BRANCH POINTS.

Let T be a minimal small Fn-tree. Given x 2 T , a direction d from x is a
component of T nfxg, or equivalently a germ of edges issuing from x. The isotropy
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subgroup Stab(x) � Fn acts on the set of directions from x. The stabilizer Stab(d)
of a direction d is either trivial or in�nite cyclic.

Let v1(x) be the (presumably in�nite) number of Stab(x)-orbits of directions
from x with trivial stabilizer. We de�ne the index

i(x) = 2 rk Stab(x) + v1(x) � 2:

Theorem III.2 will imply that i(x) is �nite. If Stab(x) is trivial, then i(x) + 2 is
the number of components of T n fxg.

This de�nition may be motivated by the analogy with surface groups mentioned
in the introduction. Suppose F is a measured foliation on a closed surface �, whose
singularities are ks-prong saddles (ks � 3). Then

P
s(ks � 2) = �2�(�) by the

Euler-Poincar�e formula [FLP, p. 75]. A branch point x in the �1�-tree associated
to F corresponds to a set A of saddles linked by saddle connections. Setting
i(x) =

P
s2A(ks � 2) leads to the formula above, since v1(x) is the number of

in�nite separatrices issuing from saddles in A while Stab(x) is isomorphic to the
fundamental group of the 1-complex whose edges are the saddle connections.

Proposition III.1. The index i(x) is always non-negative. If i(x) > 0, then x
is a branch point. Conversely, if the action is very small, then every branch point
has index � 1.

Proof.
We �x x 2 T , and we distinguish three cases according to the rank of Stab(x).
If Stab(x) has rank � 2, then i(x) � 2. Since the action of Stab(x) on the set

of directions has an in�nite orbit, x is a branch point.
If Stab(x) is trivial, then i(x) = v1(x) � 2, with v1(x) equal to the number of

components of T n fxg. Minimality of the action implies v1(x) � 2. We thus have
i(x) � 0, and i(x) > 0 if and only if x is a branch point.

If Stab(x) ' Z, then i(x) = v1(x) is non-negative. If i(x) > 0, we deduce that
x is a branch point as in the �rst case. Now we assume that i(x) = v1(x) is 0 and
the action is very small, and we prove x is not a branch point.

Consider a direction from x. The inclusion from its stabilizer into Stab(x) is
an isomorphism because there are no obtrusive powers. This means that every
element of Stab(x) acts on �0(T n fxg) as the identity. By the no-triod condition,
there cannot be 3 distinct directions from x, so that x is not a branch point.

Remark. The proof shows that a branch point x has index 0 if and only if Stab(x) '
Z and v1(x) = 0.

Clearly i(x) = i(x0) if x and x0 belong to the same Fn-orbit O, and we write
i(O) = i(x). We de�ne the total index of T as

i(T ) =
X

O2T=Fn

i(O):
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Theorem III.2. Let T be a minimal small Fn-tree.

(1) If T is geometric, then i(T ) = 2n� 2.
(2) If T is not geometric, then i(T ) < 2n� 2.

Corollary III.3. If T is a minimal very small Fn-tree, the number of orbits of
branch points is at most 2n� 2.

Corollary III.4. If T is a minimal small Fn-tree, the stabilizer of any x 2 T has
rank at most n.

Proof of theorem III.2.
First assume that T = TK is geometric. Given a �nite tree H (such as K or

Ai), and x 2 H, we denote uH(x) the valence of x in H. Then:

X
x2H

(uH(x) � 2) = �2: (1)

Fix an Fn-orbit O � TK. The interesting case is when O contains a point of
S (since otherwise i(O) = 0 by Propositions I.8 and III.1), but for now O may
be arbitrary. We de�ne a \Cayley graph" OK as follows. Vertices of OK are the
points of O belonging to K (recall that K meets every orbit). There is an edge
labelled gi from z to 'i(z) whenever z 2 Ai. Assertion 2 of Proposition I.4 implies
that OK is connected.

We de�ne the weight w(e) of an edge e labelled gi as the valence of its origin z
in Ai. All but �nitely many edges have weight 2.

Next we de�ne a \blown-up" 1-complex O0K . Vertices of O
0
K will be directions,

viewed as germs of edges. If x 2 K, we shall distinguish between directions from
x in K or in TK.

To de�ne O0K , we start from OK , replacing each vertex x of OK by uK(x)
vertices representing directions d from x in K, and replacing each edge e by w(e)
edges in the obvious way (these edges in O0K carry the same label and orientation
as e). Let � be the natural projection from O0K to OK .

Lemma III.5. Fix x 2 O \K.

(1) The fundamental group of OK is isomorphic to Stab(x).
(2) The set of components O1 of O0K is in one-to-one correspondence with the

set of orbits under Stab(x) of directions d from x in TK.
(3) The fundamental group of a component O1 is isomorphic to the correspond-

ing isotropy subgroup Stab(d), hence to f1g or Z.

Proof.
There is a natural homomorphism � : �1(OK ; x)! Fn, where �() is the prod-

uct of labels of edges crossed by a loop  (taking orientation into account: write
gi if the edge is crossed from z to 'i(z) and g�1i otherwise). Clearly this homo-
morphism is injective and takes values in Stab(x). By Proposition I.4 (Assertion
2), its image is the whole of Stab(x). This proves the �rst assertion of the lemma.



THE RANK OF ACTIONS ON R-TREES 15

Now consider a component O1 of O
0
K . A vertex of O1 is a direction d0 in K, at

a point y 2 O \K. Applying any g 2 Fn taking y to x, we get a direction d from
x in TK. The orbit of d under Stab(x) is independent of the choice of either d0 or
g, and we obtain a map � from components of O0K to orbits of directions from x
in TK.

The argument used in the proof of Proposition I.8 shows that � is onto. To prove
injectivity, suppose that d0; d00 are directions in K that correspond to directions
d; d0 in the same Stab(x)-orbit. Then some g 2 Fn maps d0 to d00. Assertion 2 of
Proposition I.4 implies that d0 and d00 belong to the same component of O0K .

Finally, the proof of Assertion (3) is similar to that of Assertion (1).

Thanks to Lemma III.5 we can now deduce properties of T from combinatorial
properties of �nite subgraphs of OK andO0K . Let G be a �nite connected subgraph
of OK containing every vertex belonging to S and every edge of weight 6= 2 (if
there are any). Let G0 � O0K be the preimage ��1(G).

By Proposition I.8 and Lemma III.5, the 1-complex O0K has �nitely many com-
ponents, each with �rst Betti number 0 or 1. Enlarging G if necessary, we may
assume that �1G

0 generates the fundamental group of every component of O0K .
Note that in general the intersection of G0 with a given component of O0K need

not be connected. These intersections are connected, however, if �1G generates
�1OK , since G then contains any embedded path in OK with endpoints in G. It
is true that �1OK is �nitely generated, but we do not know it yet.

In any connected �nite 1-complex we have the formula:

1� rk �1 = ] vertices� ] edges: (2)

Applying it to each component G0j of G
0 and summing up we get:

X
j

(1� rk �1G
0
j) =

X
x2V (G)

uK(x) �
X

e2E(G)

w(e);

denoting V and E the set of vertices and edges respectively.
Subtracting formula (2) applied to G and multiplied by 2, we obtain:

2rk �1G � 2 +
X
j

(1 � rk �1G
0
j) =

X
x2V (G)

(uK(x) � 2)�
X

e2E(G)

(w(e) � 2): (3)

The right hand side is independent of G (only �nitely many terms may be nonzero),
while every term (1� rk �1G0j) is non-negative. It follows that rk �1G is bounded,
in other words �1OK is �nitely generated .

We may then assume that �1G generates �1OK , thereby ensuring that a given
component of O0K contains only one G0j (see above). By Lemma III.5 this implies
that the left hand side of (3) equals i(O), so that we have proved:

i(O) =
X

x2V (OK)

(uK(x) � 2) �
X

e2E(OK)

(w(e) � 2):
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If O does not meet S, the right hand side is 0 and i(O) = 0. For the other
orbits we recall that the weight of an edge labelled gi is the valence of its origin
in Ai, and we write:

i(O) =
X

x2O\K

(uK (x) � 2)�
nX
i=1

X
x2O\Ai

(uAi
(x) � 2): (4)

Summing up and using (1) we get the required equation:

X
O2T=Fn

i(O) = �2 + 2n:

This completes the proof of Theorem III.2 when T is geometric. From now on
we assume that T is not geometric (compare [Du, Theorem 5]).

Choose a base point x0 2 T , and let Kp be the convex hull of fgx0; jgj � pg.
Recall from the beginning of Part II that TKp

is a sequence of minimal small
Fn-trees converging strongly to T . For convenience we write Tp instead of TKp

,
and we denote jp the morphism Tp ! T .

Let x be a branch point of T , and k � i(x) an integer (if we knew that i(x)
is �nite, we would simply take k = i(x)). We are going to show that, for p large
enough, there exists a lift x0 2 j�1p (x) with i(x0) � k. This will prove i(T ) � 2n�2
(note that lifts x0 and y0 are in distinct orbits if x; y are in distinct orbits).

Choose h1; : : : ; hq 2 Stab(x) belonging to a free basis, and directions d1; : : : ; dr
from x with trivial stabilizers, in distinct Stab(x)-orbits, with 2q + r � 2 = k.
Because of strong convergence, it is possible for p large to lift x to x0 2 Tp in such
a way that h� �xes x0 (� = 1; : : : ; q). Similarly we may assume that d� lifts to
a direction d0� from x0 in Tp (� = 1; : : : ; r). Clearly v1(x0) � r. On the other

hand jp induces an injection from Stab(x0) into Stab(x) whose image contains
h1; : : : ; hq. Since the subgroup generated by h1; : : : ; hq is a free factor of Stab(x),
we get rk Stab(x0) � q and i(x0) � k. This shows the existence of x0, hence the
inequality i(T ) � 2n� 2.

Now we assume i(T ) = 2n � 2 and we argue towards a contradiction (for T
non-geometric). We assume that the basepoint x0 is a branch point.

Consider B � T containing one point from each orbit with positive index. For
x 2 B choose a basis h1; : : : ; hq of Stab(x) and directions d1; : : : ; dr as before with
2q + r � 2 = i(x). Choose p so that we can associate x0 2 Tp as above to each
x 2 B. Also make sure that x0 is a branch point of Kp.

Since i(Tp) = i(T ), the orbit of every branch point of Tp with positive index
contains some x0. Furthermore every direction from x0 with trivial stabilizer is
Stab(x0)-congruent to some d0�.

The morphism jp is not an isometry. Thus two distinct germs of edges e1; e2
at some y 2 Tp are carried by jp onto the same germ at jp(y). We show that this
leads to a contradiction.

If y is a branch point with positive index, previous remarks imply that e1 and
e2 both have nontrivial stabilizer. Since e1 and e2 get identi�ed in T , the union
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of their stabilizers generates a cyclic group, so that e1 [ e2 is contained in some
Fix � Tp. This contradicts Corollary I.6.

If y is a branch point with index 0, then again e1 and e2 both have nontrivial
stabilizer (see the remark after the proof of Proposition III.1), and the argument
is the same.

If y is a regular point, then e1[e2 is contained in some wKp: otherwise y would
belong to the orbit of a terminal vertex of Kp, hence to the orbit of the branch
point x0 of Tp. We have again reached a contradiction since the restriction of jp
to wKp is an isometry.

Remark III.6. The total index of a very small minimal Fn-tree is at least 1. As
mentioned in Remark II.8, the free F3-tree of Example II.7 has index 1. There
exist small F2-actions with total index 0.

IV. BOUNDING THE RANK.

Let G be a �nitely generated group. Let T be a G-tree, with length function `.
Let L be the subgroup of R generated by the values of `. The Q-rank rQ (of the

action, or of the length function) is the dimension of the Q-vector space L 
Z Q
generated by L. The Z-rank (or simply rank) r is the rank of the abelian group L.
Both ranks may be in�nite. If r is �nite, then rQ = r and L=2L is isomorphic to
(Z=2Z)r. A minimal action is simplicial if and only if it is topologically conjugate
to an action with r = 1.

Our main interest will be in very small Fn-actions, but for now we only assume
that T 6= R is a minimal G-tree with non-abelian length function. De�ne � as the
subgroup of R generated by distances between branch points. It is the smallest
subgroup � � R such that T may be viewed as the completion of a �-tree (see
[Sh 2, x1.3.1], or \base change" in [AB]).

We note the inclusions
2� � L � �;

which imply that we may use � instead of L when computing rQ and r.
The second inclusion is obvious since we assume T 6= R. The �rst one comes

from [AB, Theorem 7.13 (c)]. Here is a proof based on the fact that, in a mini-
mal G-tree with non-abelian length function, every segment is contained in some
translation axis (see Lemma 4.3 of [Pa]). Given two branch points a; b, there exists
a translation axis A� (resp. A�) containing a (resp. b) and disjoint from the open
segment (a; b). The well known formula `(��) = `(�) + `(�) + 2d(a; b) (see e.g.
[Pa, Proposition 1.6]) then yields 2� � L.

We shall say that g 2 G acts as an inversion if it interchanges two distinct
points of T . We thank the referee for pointing out that the following result applies
only to actions without inversions (unless we count centers of inversions as branch
points). Of course a very small Fn-action has no inversion.

Proposition IV.1. Let T 6= R be a minimal G-tree with non-abelian length func-
tion and no inversion.

(1) Let g1; : : : ; gn be a system of generators for G. The numbers `(g1); : : : ; `(gn)
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generate L mod 2�.
(2) Let (pj )j2J be representatives of G-orbits of branch points. For j0 2 J , the

numbers d(pj0 ; pj ) generate � mod L.

Proof. First we prove the following equalities modulo 2�:

d(b; b0) + d(b0; b00) = d(b; b00) (5)

d(b; gb) = `(g); (6)

where b; b0; b00 are branch points and g 2 G.

De�ne c by [b; b0]\ [b0; b00] = [b0; c]. The point c is a branch point (possibly b; b0,
or b00), and (5) follows from the formula

d(b; b0) + d(b0; b00) = d(b; b00) + 2d(c; b0):

For (6), we use the formula

d(b; gb) = `(g) + 2d(b;Cg)

where Cg is the characteristic set of g (its �xed point set or its translation axis),
see e.g. [CM, 1.3]. If the point of Cg closest to b is a branch point, we are done.
Otherwise g has a unique �xed point, namely the midpoint m of [b; gb]. Since
m is not a branch point, the segment g([m; gb]) = [m; g2b] meets [m; b] in a non-
degenerate segment and g is an inversion, a contradiction.

If g1; g2 2 G we choose an arbitrary branch point b, and using (5) and (6) we
write (modulo 2�):

`(g1g2) = d(b; g1g2b) = d(b; g1b)+d(g1b; g1g2b) = d(b; g1b)+d(b; g2b) = `(g1)+`(g2):

This proves Assertion (1) of the proposition since g 7! `(g) induces a homomor-
phism from G onto L=2�.

Given two branch points q; r, we write q = gpj and r = hpk with g; h 2 G and
j; k 2 J . Then (also modulo 2�):

d(q; r) = d(gpj ; hpk)

= d(gpj ; gpj0) + d(gpj0 ; gpk) + d(gpk; hpk)

= d(pj ; pj0 ) + d(pj0 ; pk) + `(g�1h)

= d(pj0 ; pj) + d(pj0 ; pk) (mod L): (7)

This proves the second assertion.
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Proposition IV.2.

(1) Geometric Fn-actions have �nite rank.
(2) Consider a non-geometric Fn-tree T as the strong limit of a system TK(t),

as in Part II. If lim inft!+1 r(TK(t)) is �nite, then

rQ(T ) � lim inf
t!+1

r(TK(t))

and
rQ(T ) < lim sup

t!+1
r(TK(t)):

Proof.
Let T = TK. It follows from Proposition I.8 and Equation (��) (from the proof

of Theorem I.1) that � is contained in the subgroup of R generated by distances
between points in the �nite set S, and Assertion (1) holds.

Recall from Part II that for a given g 2 Fn the function t 7! `K(t)(g) is contin-
uous, and constant for t large. Thus every �nitely generated subgroup of L(T ) is
contained in L(TK(t)) for t large. This proves the �rst inequality of Assertion (2).

If the second inequality is false, then r(TK(t)) = rQ(T ) for t large. We choose
a �nite set of elements gj 2 G such that the numbers `(gj) generate L(T ) 
Z Q.
Since each function t 7! `K(t)(gj) is constant for t large, we see that the Q-vector
space generated by L(TK(t)) is independent of t for t large.

Since `K(t) varies continuously, this means that `K(t) is constant for t large.
As `K(t) is not abelian (Corollary I.7), the minimal invariant subtree of TK(t) is
independent of t. Therefore T is geometric, a contradiction.

Corollary IV.3. Let T be a geometric minimal Fn-tree without inversions. Let
b be the number of orbits of branch points. Then r(T ) � n+ b � 1.

Proof. We know by Proposition IV.2 that the action has �nite rank r. The group
�=2� is then isomorphic to (Z=2Z)r . The result follows since �=2� is generated
by n+ b � 1 elements by Proposition IV.1 (note that b is �nite by Corollary I.9).

We now prove:

Theorem IV.4. Let T be a minimal, very small, Fn-tree. Then rQ(T ) � 3n� 3.
Equality may hold only if the action is free and simplicial.

Proof.
If T is geometric, we have r(T ) � 3n � 3 by Corollaries III.3 and IV.3. If T

is not geometric, we recall that the geometric trees TK(t) are very small (see Part
II), so that rQ(T ) < 3n� 3 by Proposition IV.2.

From now on we assume that the action is geometric, but not free simplicial.
We know that it has �nite rank r, with �=2� ' (Z=2Z)r, and we show r < 3n�3.
This will complete the proof.

We consider several cases.
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� If the action is simplicial, it is obtained from a graph of groups �. Consider the
natural epimorphism � from Fn to the fundamental group of � in the topological
sense. Since the action is not free, some vertex group is nontrivial and � is not
injective. Free groups being hop�an, the rank of �1� is strictly inferior to n.

On the other hand, every vertex of � is the projection of a branch point of T
(because there is no inversion). By Corollary III.3, � has at most 2n� 2 vertices.
It follows that � has strictly less than 3n � 3 edges. Since � is generated by the
lengths of edges, we have r < 3n� 3.
� Now suppose that every Fn-orbit is dense in T . In the previous case, we had
r < 3n � 3 because L=2� had 2-rank < n. In this case, we prove that �=L has
2-rank < 2n� 3, so that �=2� has 2-rank < 3n� 3.

We write T = TK as in Part II, making sure that every terminal vertex of K is
a branch point of T . If there are less than 2n� 2 distinct orbits of branch points
in T , we are done by Proposition IV.1 (Assertion 2). If not, let p1; : : : ; p2n�2 be
representatives of these orbits, chosen to belong to K. Each pj has index 1.

By Proposition I.10, every edge stabilizer is trivial. This means that the genera-
tors '1; : : : ; 'n are independent in the sense of [GLP 1]: a reduced word '"1i1 : : : '

"p
ip

cannot be equal to the identity on a non-degenerate subinterval of K. Denoting
by j j arclength in K, we then have

jKj =

nX
i=1

jAij (8)

([Le 5, Theorem 2], see also [Le 1, corollaire II.5] and [GLP 1, Part 6]).

Equation (8) is an equality between numbers of the form d(q; r), where qr is an
edge of K or Ai. We view it as an equation in �=L (recall that every vertex of K,
hence also of Ai, is a branch point of T ).

Using Equation (7) from the proof of Proposition IV.1, we may replace each
term d(q; r) by a sum d(p1; pj)+d(p1; pk). We thus obtain a linear relation between
the numbers d(p1; pj ), j = 2; : : : ; 2n � 2 (whose coe�cients are integers mod 2).
We have to check that it is not trivial.

The coe�cient of d(p1; pj) in the expansion of jKj (resp. jAij) has the same
parity as the sum

P
uK(x) (resp.

P
uAi

(x)) taken over vertices of K (resp. Ai)
belonging to the orbit of pj . Since every pj has index 1, Equation (4) from the proof

of Theorem III.2 then yields the nontrivial relation
P2n�2

j=2 d(p1; pj) = 0 mod L

between the 2n� 3 generators of �=L.

� Finally, we simply assume that the action is not simplicial. We recall [Le 3]
that T may be obtained as a graph of transitive actions. In particular, there exists
a subtree Tv � T such that:

- Tv is closed, not equal to a point;

- there exists � > 0 such that, for g 2 Fn, either gTv = Tv (i.e. g 2 Stab(Tv)) or
the distance between Tv and gTv is greater than �;

- Stab(Tv) acts on Tv with dense orbits.
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Let T 0 be the Fn-tree obtained by collapsing each gTv to a point. The natural
action of Fn on T 0 is very small. Apply Theorem III.2 to both T and T 0. We �nd
that Stab(Tv) has some �nite rank p and

i(T ) � i(T 0) = i(Tv) � (2p� 2);

where i(Tv) is the index of Tv viewed as a Stab(Tv)-tree. The left hand side is
non-negative because T is geometric, while the right hand side is non-positive.
This implies i(Tv) = 2p� 2: the action of Stab(Tv) on Tv is geometric.

If there are less than 2p�2 distinct Stab(Tv)-orbits of branch points in Tv, then
there are less than 2n � 2 distinct Fn-orbits in T , and we are done. Otherwise,
the analysis of the previous case yields a nontrivial relation in �(Tv)=L(Tv), hence
also in �(T )=L(T ).

Corollary IV.5. Let T be a very small Fn-tree with length function `. Suppose
` � � = �` with � 2 Aut(Fn) and � 2 R+. Then � is algebraic, of degree bounded
by 3n� 4. If T is geometric, then � is an algebraic unit.

Proof. If the action on T is free simplicial, then � = 1. If not, multiplication by �
de�nes an automorphism of L
Q, a Q-vector space of dimension � 3n� 4. This
implies that � is algebraic of degree � 3n � 4. If the action is geometric, then �
is a unit because it acts on L, a �nitely generated abelian group by Assertion 1 of
Proposition IV.2.

V. SPACES OF LENGTH FUNCTIONS.

Let G be a �nitely generated group. Let 
 be the set of conjugacy classes in
G. Let LF (G) � (R+)
 be the space of all length functions on G, and PLF (G)
the space of projectivized length functions. Recall that PLF (G) is compact [CM].
Also note that the Q-rank of a length function ` depends only on its class in
PLF (G).

Proposition V.1. Let G be a �nitely generated group. Let k � 1 be an integer.
The space LF�k(G) of all length functions with Q-rank � k has dimension � k.
The space PLF�k(G) of all projectivized length functions with Q-rank � k has
topological dimension � k � 1.

Proof. Fix k+1 rationally independent real numbers �0; : : : ; �k. For j = 0; : : : ; k,
let Mj be the space of all x 2 (R+)
 such that no nonzero coordinate of x is a
rational multiple of �j . Each Mj has dimension 0: every x 2 Mj has arbitrarily
small neighborhoods with boundary disjoint from Mj . Next we observe that

every ` 2 LF�k(G) belongs to at least one Mj : otherwise L
Q would contain
�0; : : : ; �k. It follows that LF�k(G) has dimension � k since it is contained in
the union of the 0-dimensional sets Mj , j = 0; : : : ; k (see [HW, p. 29]). A similar
argument applies to PLF�k(G).
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TheoremV.2. The boundary of Culler-Vogtmann's outer space Yn has dimension
3n� 5.

Proof. The boundary of Yn consists of (projective classes of length functions of)
very small actions of Fn which are not free simplicial, so that it has dimension
� 3n � 5 by Theorem IV.4 and Proposition V.1. Since it is easy to �nd in �Yn a
(3n� 5)-simplex consisting of simplicial actions, we have dimYn = 3n� 5.

Remark V.3. Let T1 be a very small F2-tree with dense orbits (see [CV, x5]).
Apply Example II.6, taking T2 to be the universal covering of the graph � pictured
below (for n � 3) and choosing p2 in the preimage of q. We get a non-geometric
very small Fn-tree. Varying the lengths of edges of � gives a (3n � 7)-simplex
of non-geometric actions in �Yn (this application of Example II.6 was suggested
by M. Bestvina). Since we may choose p1 arbitrarily in T1 n T1, which is one-
dimensional (see the proof of Theorem 2.2.2 in [MNO]), the set of non-geometric
actions in �Yn has dimension � 3n� 6 for n � 3.

4.71in by 1.32in (Fig1 scaled 1030)

Finally, we sketch a proof of a theorem announced by Skora [Sk 3].

Theorem V.4. Length functions of simplicial actions are dense in LF (Fn).

Proof. We need to approximate any ` 2 LF (Fn) by simplicial length functions.
By Example II.2, we may assume that ` comes from a geometric Fn-tree TK.
The system K consists of a �nite tree K and n isometries 'i : Ai ! Bi. We
may approximate it by a system K0 such that every distance between vertices of
K 0; A0i; B

0
i is rational . The corresponding length function `0 is then simplicial. By

Assertion 3 of Proposition I.4, this `0 is an approximation of `: for g 2 Fn cyclically
reduced, j`0(g)�`(g)j is bounded by jgj times a constant depending only on K and
K0.
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